
Phase recovery by using optical fiber dispersion and pulse
pre-stretching

C. Cuadrado-Laborde • M. Brotons-Gisbert •

G. Serafino • A. Bogoni • P. Pérez-Millán •
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Abstract In this work, the applicability of a recently

proposed phase recovery technique is extended, by using

temporal pulse pre-stretching. As a proof of concept, the

light pulses emitted by a two-stage laser system consisting

of a sub-picosecond passively mode-locked fiber laser

followed by an erbium-doped fiber amplifier were experi-

mentally analyzed. These results were successfully com-

pared with two indirect phase recovery techniques, both

based on the Gerchberg–Saxton recursive algorithm and

with the intensity autocorrelation when sub-picosecond

light pulses were analyzed.

1 Introduction

The phase recovery belongs to the class of inverse prob-

lems whose resolution can be sought through either direct

or indirect methods [1]. In the former, the sought solution

is expressed through one or several equations explicitly as

a function of the input data; its numerical efficiency is high,

and its non-iterativity turns it very fast. Unlike direct

methods, which attempt to calculate an exact solution in a

finite number of operations, indirect methods starts with an

initial approximation (generally an educated guess) and

generates successively improved approximations in an

infinite sequence whose limit is the exact solution. As a

drawback, indirect methods are often iterative, and there-

fore, computationally intensive, being slower than their

direct counterpart. A well-known example of indirect

method, within the phase recovery framework, is given by

the Gerchberg–Saxton (GS) algorithm and further modifi-

cations [2, 3]. The transport of intensity equation (TIE), on

the other hand, belongs to the direct methods for phase

recovery [4–6].

In fiber-optic communication systems today is of great

importance the phase monitoring of the transmitted light

pulses, since it influences strongly the overall system’s

performance. Recently, three different direct methods for

phase retrieval were proposed, especially well suited to

analyze light pulses in the range from a few picoseconds to

nanoseconds regime [7–10]. Reference [7] showed that a

spectrally shifted differentiator can be used to retrieve the

phase profile of a given temporal optical waveform.

However, the operation is performed by using short- or

long-period fiber gratings, which have fixed operation

wavelengths and restrictive operation bandwidths. In [8, 9],

a direct phase recovery technique was proposed from

temporal intensity measurements at the input and output of
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a linear optical filter. However, precise knowledge of the

filter’s impulse response is necessary in amplitude and

phase, together with the additional restriction in the later to

be limited to a maximum variation range of p rad through

the whole operation bandwidth. Very recently, a direct

method for phase recovery based on the use of the TIE was

introduced, which combines a first experimental stage

followed by a one-step numerical stage [10]. In the

experimental stage, two temporal intensity profiles at the

input and output of a linear dispersive device are acquired

with an oscilloscope, whereas in the numerical stage, a

single equation is applied to retrieve the phase profile in

just one step. The proposal belongs to the framework of the

use of dispersive elements to characterize optical signals by

using oscilloscope measurements, such as the well-known

dispersive Fourier transformation (DFT) [11]. In this work,

the applicability of the direct phase recovery technique

proposed in Ref. [10] is extended by using temporal pulse

pre-stretching. As an example, pulse pre-stretching can be

necessary because of insufficient bandwidth of the avail-

able oscilloscope. This scenario was experimentally tested

by analyzing the light pulses through a two-stage laser

system consisting of a sub-picosecond passively mode-

locked fiber laser followed by an erbium-doped fiber

amplifier (EDFA). These results were compared with two

indirect phase recovery techniques, both based on the GS

recursive algorithm. Finally, the auto-correlation obtained

from the recovered temporal intensity profiles is compared

with the experimental measurement of the intensity auto-

correlation, when sub-picosecond light pulses were

analyzed.

2 Theory

In this section, the theory behind the phase recovery

methods used in this work is reviewed. These phase

recovery methods require as input data one of the

following:

• Two different temporal intensity profiles

• One temporal intensity profile and one optical power

spectrum.

It is worth to emphasize that other approaches based

only on the use of the optical power spectrum and

intensity autocorrelation, i.e., via the Wiener–Khinchin

theorem, have demonstrated to give ambiguous solu-

tions for the phase retrieval problem [12]. Therefore, its

use is not an acceptable option. In the following, we

start with the Fresnel transform (FrT) phase recovery

technique, following with a variation of the GS recur-

sive algorithm, and finally introducing the original GS

algorithm.

2.1 Fresnel transform phase recovery

The phase of a given one-dimensional complex signal

f(t) = |f(t)| exp [ju(t)] can be simply expressed as a func-

tion of its instantaneous angular frequency

u0ðtÞ ¼ duðtÞ=dt, through:

uðtÞ ¼ u0 þ
Z t

�1

dsu0ðsÞ; ð1Þ

where u0 is an arbitrary phase constant. The TIE equation

provides the link to recover the instantaneous angular fre-

quency u0ðtÞ, provided the transversal derivative of the FrT

of f(t) is known, through [13]:

u0ðtÞ ¼ 1

f ðtÞj j2
Z t

�1

o faðsÞj j2

oa

�����
a¼0

ds; ð2Þ

where fa(t) is the FrT of f(t), and a its FrT parameter. As far

as we know, the first time the TIE was used in the temporal

domain was in Ref. [14], when it was applied to determine

the nonlinear coefficients of a highly nonlinear fiber.

Regarding the FrT of a given signal, it can be performed

optically by propagating the input optical pulse f(t) by an

optical fiber, whose transfer function S(x) can be approx-

imated, within a certain operative spectral bandwidth, as:

SðxÞ ¼ exp �jU20x
2
�

2
� �

; ð3Þ

where x is the baseband angular frequency. In that case,

the FrT parameter a = U20, where U20 is the first-order

dispersion coefficient of the optical fiber. In turn, U20 can

be related with the second-order derivative of the propa-

gation constant b20 of the optical fiber through U20 = Lb20,

where L is the optical fiber length. Regarding the derivative

of the FrT signal intensity with respect to the FrT param-

eter, see Eq. (2), it can be replaced by a finite difference

approximation:

o fa tð Þj j2

oa

�����
a¼0

� fa tð Þj j2� f tð Þj j2

a

�����
a!0

; ð4Þ

where the numerator of the right-hand side of Eq. (4) is

known as the temporal profile difference (TPD). The

validity of Eq. (2) is restricted to the near-field regime,

where the fiber length fulfills the following inequality:

LNF �
Dt2

2p b20j j ; ð5Þ

where LNF is the near-field length. However, it is important

to keep in mind that enough fiber length is still required to

get enough TPD, in order to minimize the noise influence.

Finally, it is worth mentioning that Eq. (2) has a spectral

counterpart, which was applied to characterize the electric
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field of a light pulse by performing two different spectral

measurements after a quadratic phase modulation [15].

2.2 Fresnel transform Gerchberg–Saxton algorithm

The GS algorithm was originally developed to retrieve the

phase of a spatial image based on intensity recordings in the

image and diffraction planes [2]. The method depends on

there being a Fourier transform relation between the waves

in these two planes. However, an adaptation of this concept

is suitable for the present problem, replacing the Fourier

transform (FT) by a FrT [16], relaxing in this way the use of

high dispersion values. This phase retrieval technique also

requires the measurement of the temporal intensity profiles

of the original |f(t)|2 and FrT |fa(t)|
2 signals, i.e., at the input

and output of an optical fiber of known dispersion. The

proposed algorithm is illustrated schematically in Fig. 1,

which should be followed clockwise. To begin the procedure

(upper left corner), an educated guess for u(t) is required,

which is necessary only for the first roundtrip. The educated

phase guess and measured magnitude |f(t)| are combined and

numerically Fourier transformed. Once in the frequency

domain, the dispersion contribution S(x) is applied [see

Eq. (3)], and the waveform is transformed back to time. At

this point, only the calculated phase /(t) is retained; the

calculated FrT magnitude f 0aðtÞ
�� �� is replaced by the measured

FrT magnitude |fa(t)|. The calculated phase and measured

FrT magnitude are combined and numerically Fourier

transformed. Once in the frequency domain, the dispersion

contribution is removed by using S-1(x), and the waveform

is transformed back to time. The cycle is then completed by

retaining only the calculated phase u(t), whereas the cal-

culated magnitude f 0ðtÞj j is replaced by the measured

magnitude |f(t)|. This iterative algorithm can be executed as

many times as required.

2.3 Gerchberg–Saxton algorithm

This technique is the time-domain version of the classical

GS algorithm [2]. This phase retrieval technique requires

one temporal intensity profile |f(t)|2 and one optical power

spectrum |F(x)|2. The algorithm goes back and forth

between these experimentally measured intensities, very

similarly as described in Sect. 2.2. The proposed algorithm

is illustrated schematically in Fig. 2, which should be fol-

lowed clockwise, beginning by the upper left corner. As

opposed to techniques described before in Sects. 2.1 and

2.2, a dispersive media is not a priori necessary, i.e., both

measurements are performed in the same point.

The optical power spectrum |F(x)|2 can be obtained in

two different ways, either by using an optical spectrum

analyzer (OSA) or by DFT. In the former, the inherent

single-shot capabilities of this phase retrieval technique are

inhibited, whereas in the later are preserved. This distinc-

tion could be important, e.g., when it is necessary to

recover the phase of a non-periodical signal. In the DFT,

the optical signal is propagated long enough that the Fra-

unhofer approximation holds Dt2/2p|U20| � 1 (far-field

regime). In that case, the transmitted signal envelope is,

within a phase factor, proportional to the FT of the input

signal envelope [17]. In this case, a second temporal

intensity profile is registered, which represents the signal

spectrum in intensity. In the downside, it is generally

necessary to use high dispersion values, which translates in

the use of a long length of optical fiber.

2.4 The pre-stretching technique

Techniques described in Sects. 2.1–2.3 require at least one

temporal intensity profile of the signal under test, i.e., the

true intensity profile of the envelope of the optical field.

Therefore, these techniques are limited by the typical

bandwidth of temporal test equipment, i.e., the sampling

scope of the available oscilloscope. In particular, a 50 GHz

bandwidth oscilloscope can perform the detection of arbi-

trary light pulses ranging from *10 ps of temporal width,

and a much more expensive 100 GHz bandwidth oscillo-

scope can extend this detection range up to *5 ps of

temporal width. Thus, these techniques could be directly

applied only over optical pulses with time features[5 ps or

[10 ps, depending of the available oscilloscope. To

overcome this limitation, we propose here to use the

pre-stretching technique, by using a well-characterized

Fig. 1 FrT-GS algorithm for temporal phase retrieval Fig. 2 GS algorithm for temporal phase retrieval
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dispersive optical fiber, in order to temporally stretch the

optical pulse under test before the application of the pro-

posed techniques [18]. Using this simple linear method, it

is possible to characterize shorter light pulses. For ultra-

short pulses (temporal width \1 ps), nonlinear effects

become increasingly important, being Eq. (3) unsuitable to

describe the increasingly complex behavior of the optical

fiber, establishing in this way a lower limit for the pre-

stretching technique.

The short pulse f0(t) = |f0(t)| exp [ju0(t)] is propagated

through a dispersive media—whose transfer function is

known, let us denote it by S0(x)—until it temporally

broadens enough that its measurement by an oscilloscope is

possible. Let us denote this pre-stretched pulse by

f(t) = |f(t)| exp [ju(t)]. Next, techniques 2.1–2.3 can be

applied in the usual way, and the phase u(t) of the pre-

stretched pulse is recovered. Now, since f(t) is known in

both amplitude and phase, the numerical FT of f(t) can be

calculated, let us denote it by F(x). The short pulse f0-

(t) can be recovered in both amplitude and phase, by

removing the contribution of the pre-stretching dispersion,

S0(x), to the spectrum of f(t), followed by an inverse FT of

the resulting spectrum, in the following way:

f0 tð Þ ¼ f0 tð Þj j exp ju0 tð Þ½ � ¼ FT�1 F xð Þ
S0 xð Þ

� �
: ð6Þ

High-order dispersion terms in S0(x), which may be nee-

ded for wide spectral windows, can be easily included.

3 Experiment

As a proof of concept, the light pulses of a laser system

consisting of a passively mode-locked laser, whose pulses

were subsequently amplified through an EDFA, were

experimentally analyzed. Since the light pulses in these

two stages have very different characteristics, in the fol-

lowing we will analyze it separately.

3.1 Characterization of the light pulses at the output

of the mode-locked laser

The available oscilloscope (100 GHz bandwidth) can per-

form the detection of arbitrary light pulses ranging from

*5 ps of temporal width. However, according to the

intensity autocorrelation measurements, the output of the

mode-locked laser is in the sub-picosecond regime; there-

fore, it will be necessary to use the pre-stretching tech-

nique. As a consequence, there are two dispersive lines of

length L0 and L1, being the former for pre-stretching and

the later for the phase recovery technique, see Fig. 3. The

light pulses were measured in every stage by using an

oscilloscope, OSA, and autocorrelator, except immediately

after the mode-locking laser, where oscilloscope mea-

surements could not be performed. The oscilloscope was

triggered by using the same light pulse via a photodetector.

The passively mode-locked fiber laser provided light

pulses at an emission wavelength k0 = 1,556.87 nm with a

repetition rate of 36.77 MHz. In this stage, the temporal

width of the autocorrelator profile was DtAUC = 0.83 ps

(FWHM). As dispersion line, a standard telecom optical

fiber (SMF-28 by Corning) was used. Since the spectral

bandwidth of the light pulses under study is nonnegligible,

the variation of the first-order dispersion D as a function of

the optical wavelength was taken into account, which can

be approximated by D(k) = SZD(k - kZD
4 /k3)/4, where

kZD = 1,313 nm is the zero-dispersion wavelength, and

SZD = 0.086 ps/(nm2 km) is the zero-dispersion slope. The

inclusion of a third-order dispersion term was not neces-

sary, since the central wavelength of the pulse under ana-

lysis is not close to kZD. The length of the pre-stretching

line was selected as L0 = 92.5 m, which was enough to

pre-stretch the sub-picosecond light pulses to a ten-of-ps

regime, where oscilloscope measurements can be per-

formed. At the end of the pre-stretching dispersive line, the

light pulses have a temporal width Dt = 9 ps (FWHM) and

a peak power P0 = 0.4 W, which was derived using a

measured average power of 0.15 mW. The near-field

length—calculated by using Eq. (5) with b20(k0) = k0
2

D(k0)/2pc = - 20 ps2/km—results in LNF � 586 m. As a

result, for the phase recovery dispersive line a dispersion

length L1 = 25 m was used, which fulfills the near-field

requirement. On the other hand, the nonlinear length for the

phase recovery line LNL was obtained from LNL =

(cP0)-1 = 2 km, by using a nonlinear parameter

c & 0.001 W-1/m (derived using a mode field diameter of

10.4 lm and a nonlinear index coefficient n2 = 2.6 9

10-20 m2/W). In the following, since L1 \\ LNL, the

influence of nonlinear effects in the phase recovery dis-

persive line can be safely ignored.

Figure 4a shows the measured temporal intensity pro-

files of the pre-stretched and FrT pulses, i.e., |f(t)|2 and

Fig. 3 Experimental setup for phase recovery of the output light

pulses of the mode-locked laser, in the presence of pulse pre-

stretching
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|fa(t)|2, together with its TPD. The noise content in the TPD

was mainly due to a sequential measurement of |f(t)|2 and

|fa(t)|2. The measurement sensitivity was therefore limited

because of the laser amplitude noise and thermal and

mechanical drift of the laser and measurement setup [19].

However, the noise content in the TPD could be highly

reduced with a simultaneous measurement of |f(t)|2 and

|fa(t)|2. It is worth to emphasize that this measurement

simultaneity is perfectly allowed by our experimental

setup, provided the available oscilloscope has two inde-

pendent channel operatives for this task. Figure 4b shows

the measured spectrum as a function of the baseband

optical frequency, the spectral linewidth Dm = 726 GHz

(FWHM) (Dk = 5.9 nm). The phase recovered for f(t) by

using the technique described in Sect. 2.1 is shown in

Fig. 4c. This phase profile was directly recovered from the

raw data, being unnecessary to smooth previously the data

set. The instantaneous angular frequency—obtained from

Eq. (2), not shown—decreases monotonously from the

leading to the trailing edge of the pulse, which is currently

known as a down-chirp. For comparison purposes, the pre-

stretched pulse f(t) can be approximately fitted in both,

modulus and phase, through a linearly chirped secant

hyperbolic profile f(t) = sech t=T0ð Þ � expð�jCt2=2T2
0 Þ;

with T0 = 5.1 ps and C = 15, see Fig. 4a, c. The phase

recovered by using the FrT-GS technique described in Sect.

2.2 is also shown in Fig. 4c, after 60 roundtrips. The

educated phase guess was a parabolic profile, which is a

reasonable choice since f(t) has been linearly chirped by the

pre-stretching dispersion line. In Fig. 4c, it is also shown

the phase recovered after 60 roundtrips by using the GS

technique described in Sect. 2.3, by using the temporal

intensity profile and the optical power spectrum at the end

of the pre-stretching line, shown in Fig. 4a, b, respectively.

The same educated phase guess used for the FrT-GS phase

recovery technique of Sect. 2.2 was used. The phases

recovered match with reasonable accuracy, although it

should be mentioned that in the FrT technique, it is not

necessary an educated guess for the phase.

Once the phase of the pulse at the output of the pre-

stretching line is known, it is possible to apply the pre-

stretching technique to fully recover the pulse at the output

of the mode-locked laser, see Fig. 3. It is important to note

that the model of a purely dispersive transfer function for

the pre-stretching dispersive line is justified only when the

peak power of the transmitted light pulse is moderately

low. This can be checked by calculating the nonlinear

length for the pre-stretching line, which results in

LNL = (cP0)-1 = 122 m, where now P0 = 6.6 W is the

peak power at the input of the pre-stretching line, derived

using a measured average power of 0.15 mW and assuming

a temporal width 0.65 9 DtAUC = 0.65 9 0.83 ps =

0.54 ps. Since the selected pre-stretching line length

L0 = 92.5 m is below the LNL, in the following the influ-

ence of nonlinear effects can be ignored. Once the Fourier

transform of the pre-stretched pulse is numerically

obtained by using the intensity and phase profiles shown in

Fig. 4a, c, respectively, Eq. (6) can be used to obtain the

pulse in both amplitude and phase at the output of the

mode-locked laser f0(t). In Fig. 5a, it is shown the intensity

of f0(t) recovered by using the different techniques.

Regarding the recovered phases, see Fig. 5b, each one of

the techniques shows an approximately linear phase, which

indicates the absence of frequency chirp in the output light

pulses of the mode-locked laser. It should be emphasized

that our attention should be focused in the region where the

pulse energy is concentrated, i.e., from -0.5 to 0.5 ps,

being the rest of the phase profile meaningless. It is worth

to emphasize that the characterization of the pre-stretching

dispersive line is critical when ultra-short pulses are under

analysis, as it was previously demonstrated in Ref. [20]. As

an additional confirmation of the recovered temporal

intensity profile for f0(t), Fig. 5c shows the autocorrelation

curve calculated from the recovered temporal pulse

Fig. 4 a Measured temporal profiles at the input and output of the

phase recovery dispersive line, i.e., |f(t)|2 and |fa(t)|
2, respectively; the

TPD and fitting of |f(t)|2 are also shown. b Optical power spectrum

measured at the input of the phase recovery dispersive line.

c Temporal phase profiles experimentally recovered at the input of

the phase recovery dispersive line by the FrT, FrT-GS, and GS phase

recovery techniques; a parabolic phase profile with linear chirp

parameter C = 15 is also shown
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intensity profiles shown in Fig. 5a and that directly mea-

sured with a commercial auto-correlator. For secant

hyperbolic-shaped pulses, the pulse duration is & 0.65

times the temporal width of the measured auto-correlation

signal DtAUC. Since DtAUC = 0.83 ps, the corresponding

secant hyperbolic pulse would be 0.54 ps, which was also

shown in Fig. 5a, labeled as ‘‘sech’’ profile for comparison

purposes. Finally, when another pre-stretching dispersion

line length was used—i.e., L0 = 117.5 m, and keeping

constant the phase recovery dispersion line length, i.e.,

L1 = 25 m—essentially the same results were obtained for

the recovered intensity and phase profiles at the output of

the mode-locked laser f0(t).

3.2 Characterization of the light pulses at the output

of the EDFA

Our objective was to characterize the amplified light pulses

f0(t) provided by the EDFA, see Fig. 6. However, a certain

length of optical fiber is necessary to reach the different

measurement apparatus, which eventually can modify the

pulse, because of the presence of dispersion. In this case,

this optical fiber length—let us denote it by L0—can be

considered as a pre-stretching dispersion line. At the end of

this line, the pre-stretched pulse f(t) can be measured with

an oscilloscope and OSA. A second optical fiber plays the

role of the phase recovery dispersive line of length L1, at

the end of which the light pulse fa(t) can be registered with

an oscilloscope and OSA. The oscilloscope was triggered

by using the same light pulse via a photodetector. There-

fore, once the phase of f(t) is known by using the tech-

niques discussed in Sects. 2.1–2.3; the light pulse f0(t) can

be recovered in both amplitude and phase by applying

Eq. (6).

At the output of the EDFA, the light pulses showed a

broader spectrum as compared with the input, whose

spectrum was shown in Fig. 4b. For this reason, it becomes

even more relevant than before to include the change in

dispersion as a function of the optical wavelength. In this

case, the pre-stretching dispersive line of length L0 was

made with a SMF-28 optical fiber, whose dispersive

characteristics were described before (Sect. 3.1). The phase

recovery dispersive line, on the other hand, was made of a

dispersion compensation fiber (DCF), whose first-order

dispersion as a function of the optical wavelength can be

approximated by D(k) = -113-0.44 (k - 1,550), with k
in nm and D in ps/(nm 9 km). At the end of the pre-

stretching dispersive line, the light pulses have a temporal

width Dt = 18.42 ps (FWHM) and a peak power

P0 = 38 W, which was derived using a measured average

power of 29 mW. The near-field length—calculated by

using Eq. (4) with b20(k0) = -k0
2D(k0)/2pc = 155 ps2/

km—results in LNF � 34 m. As a result, a dispersion

length L1 = 2.5 m was used for the phase recovery dis-

persive line, which fulfills the near-field requirement. On

the other hand, the nonlinear length for the phase recovery

dispersive line LNL was obtained from LNL = (cP0)-1 =

22 m, assuming a nonlinear parameter c & 0.001 W-1/m.

In the following, since L1 � LNL, the influence of non-

linear effects in the phase recovery dispersive line can be

safely ignored.

Figure 7a shows the measured temporal intensity pro-

files of the pre-stretched and FrT pulses, i.e., |f(t)|2 and

|fa(t)|2, together with its TPD, i.e., |fa(t)|2 - |f(t)|2.

Fig. 5 Temporal intensity and phase profiles of the output light

pulses of the mode-locked laser, experimentally recovered by the FrT,

FrT-GS, and GS phase recovery techniques, (a) and (b), respectively.

c Measured intensity autocorrelation as compared with the calculated

according to the different phase recovery techniques

Fig. 6 Experimental setup for the phase recovery of the output light

pulses of the EDFA, in the presence of pulse pre-stretching
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Figure 7b shows the spectrum registered by an OSA as a

function of the baseband optical frequency, the spectral

linewidth Dm = 1.75 THz (FWHM) (Dk = 14.3 nm). The

phase recovered for f(t) by using the technique described in

Sect. 2.1 is shown in Fig. 7c. This phase profile was

directly recovered from the raw data, being unnecessary to

smooth previously the data set. The instantaneous angular

frequency—obtained from Eq. (2), not shown—increases

monotonously from the leading to the trailing edge of the

pulse, which is currently known as an up-chirp. The phase

recovered by using the FrT-GS technique (described in

Sect. 2.2) is also shown in Fig. 7c, after 60 roundtrips. The

educated phase guess was a parabolic profile. In Fig. 7c, it

is shown the phase recovered after 60 roundtrips by using

the GS technique (described in Sect. 2.3), by using at the

end of the pre-stretching line the temporal intensity profile

f(t) and its corresponding intensity optical spectrum, shown

in Fig. 7a, b, respectively. The same educated phase guess

used for the FrT-GS technique was used here. All recov-

ered phases match reasonably well, although it should be

mentioned also that in the FrT technique, it is not necessary

an educated guess for the phase.

Once the pulse at the output of the pre-stretching line

f(t) is known in both amplitude and phase, it is possible to

take into account the pre-stretching to fully recover the

pulse at the output of the EDFA, see Fig. 6. The model of a

purely dispersive transfer function for the pre-stretching

line is justified, since the nonlinear length LNL = 22 m is

above the pre-stretching dispersive line length L0 = 5 m,

where the nonlinear length LNL was assumed the same as in

the phase recovery dispersive line calculated above. Once

the Fourier transform of the pre-stretched pulse is numer-

ically obtained by using the intensity and phase profiles

shown in Fig. 7a, c, respectively, Eq. 6 can be used to

obtain the pulse in both amplitude and phase at the output

of the EDFA f0(t). In Fig. 8a, it is shown the intensity of

f0(t) recovered by using the different techniques. Regarding

the recovered phases, see Fig. 8b, the three techniques

show that it is approximately parabolic, indicating the

presence of a strong frequency chirp in the output light

pulses of the EDFA. It should be emphasized that our

attention should be focused in the region where the pulse

energy is concentrated, from -15 to 15 ps, being the rest of

the phase profile meaningless. For comparison purposes,

the pulse f0(t) at the output of the EDFA can be approxi-

mately fitted in both, modulus and phase, through a linearly

chirped secant hyperbolic profile f(t) = sech t=T0ð Þ�
expð�jCt2=2T2

0 Þ, with T0 = 8.51 ps and C = -63, see in

Fig. 8a, b the curves labeled as ‘‘sech’’ and ‘‘linear chirp,’’

respectively. Essentially, the same results were obtained

for the recovered intensity and phase profiles at the output

of the EDFAf0(t), when the same pre-stretching dispersion

line length was used—i.e., L0 = 5 m, but with a phase

recovery dispersion line length of L1 = 4.7 m.

When an initially up-chirped light pulse propagates

under an anomalous dispersive regime, the dispersion-

induced chirp is in opposite direction to that of the initial

chirp. As a result, the net chirp is reduced, leading to pulse

narrowing [21]. The minimum pulse width Dtm occurs at

the optical fiber length Lm in which the two chirps cancel

each other. When the propagation distance is increased

further, the dispersion-induced chirp starts to dominate

over the initial chirp, and the pulse begins to broaden again.

With the purpose to corroborate the up-chirp detected in

the output light pulses of the EDFA, another set of

experiments was performed by propagating this output

light pulses through a dispersive line made entirely of

SMF-28 optical fiber, which is anomalous at the propa-

gating wavelength. The maximum narrowing was detected

at a propagation length Lm = 52.5 m, when the measured

temporal width of the intensity autocorrelation was

DtAUC = 0.35 ps. A further propagation monotonously

increases the temporal width again. This behavior reason-

ably matches with the temporal width of the calculated

Fig. 7 a Measured temporal profiles at the input and output of the

phase recovery dispersive line, i.e., |f(t)|2 and |fa(t)|
2, respectively; the

TPD is also shown. b Optical spectrum measured at the input of the

phase recovery dispersive line. c Temporal phase profiles experimen-

tally recovered at the input of the phase recovery dispersive line by

the FrT, FrT-GS, and GS phase recovery techniques
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intensity autocorrelation, i.e., DtAUC = 0.37 ps, for the

theoretical pulse shown in Fig. 8, when the propagation

through the same distance, i.e., Lm = 52.5 m, is simulated.

This further corroborates the result obtained, i.e., an

approximately parabolic phase profile in the output light

pulses of the EDFA, with a chirp parameter C % -63.

4 Conclusion

In this work, the applicability of the recently proposed FrT

phase retrieval technique was extended by incorporating

pulse pre-stretching, for those cases where the oscilloscope

bandwidth is insufficient, or there is a physical limitation to

reach the point under analysis. The proposed technique

makes high-speed real-time reconstruction of light pulses

possible, down to the ps regime. In the downside, a high-

speed oscilloscope is necessary. As a proof of concept, the

light pulses of a two-stage laser system were analyzed. The

recovered temporal intensity and phase profiles were suc-

cessfully compared with two indirect phase recovery

techniques, both based on the GS recursive algorithm. As a

result, the output light pulses of the mode-locked laser are

un-chirped. On the contrary, a strong frequency up-chirp in

the output light pulses of the EDFA was detected and

measured.
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