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Abstract Squamous cell carcinoma (SCC) is the most

common and malignant laryngeal cancer. An early-stage

diagnosis is of crucial importance to lower patient mor-

tality and preserve both the laryngeal anatomy and

vocal-fold function. However, this may be challenging as

the initial larynx modifications, mainly concerning the

mucosa vascular tree and the epithelium texture and

color, are small and can pass unnoticed to the human

eye. The primary goal of this paper was to investigate

a learning-based approach to early-stage SCC diagno-

sis, and compare the use of (i) texture-based global

descriptors, such as local binary patterns, and (ii) deep-

learning-based descriptors. These features, extracted

from endoscopic narrow-band images of the larynx, were

classified with support vector machines as to discrimi-

nate healthy, precancerous and early-stage SCC tissues.
When tested on a benchmark dataset, a median classifi-

cation recall of 98% was obtained with the best feature

combination, outperforming the state of the art (recall

= 95%). Despite further investigation is needed (e.g.

testing on a larger dataset), the achieved results sup-
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port the use of the developed methodology in the actual

clinical practice to provide accurate early-stage SCC

diagnosis.

Keywords Convolutional Neural Networks · Deep
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1 Introduction

Nowadays, laryngeal cancer is the 14th most common

cancer in the world with more than 157,000 estimated

new cases [1]. Laryngeal cancer refers to a malignant

tumor that affects the larynx, an organ that has a key

role in breathing, speaking and swallowing. Laryngeal

cancer most commonly takes the form of Squamous

Cell Carcinoma (SCC), which normally origins in the

squamous epithelium [2].

To decrease mortality rate and preserve both laryn-

geal anatomy and vocal-cord function, an early-stage

SCC diagnosis is crucial. Recently, optical-biopsy tech-

niques for screening purposes are progressively spread-

ing to allow early diagnosis [3]. Screening is commonly

performed using laryngoscopy with narrow-band imag-

ing (NBI), which supports visual biopsy by contrasting

superficial vessels better than standard white-light en-

doscopy.

An early-stage diagnosis may not be trivial as the

small laryngeal-tissue changes may pass unnoticed to

the human eye [4]. Main changes occur in the (i) mu-

cosa vascular tree, with the presence of longitudinal

hypertrophic vessels and dot-like vessels (known as in-

traepithelial papillary capillary loops (IPCL)) [5], and

(ii) epithelium, with the thickening and whitening of

the epithelial layer (condition known as leukoplakia) [6].

The changes in (i) are indicative early-stage cancerous
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tissue while the change in (ii) indicates precancerous

tissue.

In [7] and [8], some initial efforts of computer-assisted

SCC diagnosis are proposed, with [7] specifically focus-

ing on early-stage diagnosis. The study proposes an

algorithm for the classification of early-stage vocal fold

cancer based on the segmentation and analysis of blood

vessels. However, the classification is strongly sensitive

to a-priori set parameters and does not take into ac-

count epithelial modifications that do not affect vascular

tree (such as the leukoplakia). This algorithm achieved

a median classification recall of 42% on the Laryngeal

dataset [9].

A more advanced solution has been proposed in [9],

where a learning approach based on handcrafted features
and support vector machines (SVM) was used to classify

healthy, precancerous and early-stage SCC tissues from

patches of NBI images, achieving a median classification

recall of 93%. The work in [10] provides an analysis of
both handcrafted features and learned features, using

features extracted from pre-trained convolutional neural

networks (CNNs) and achieving a classification recall of

95%.

Outside the field of laryngoscopy other researchers

heavily made use of machine learning algorithms to clas-

sify tissues according to texture-based information. In

[11] and [4], the histogram from the local binary pat-

tern (LBP) was combined with intensity-based features

to classify abdominal tissues in laparoscopic images by
means of SVM. Other successful handcrafted features

are grey-level co-occurrence matrix (GLCM)-based fea-

tures, [12] and [13], and Gabor filter-based features, [14].

In [15], a CNN was used to classify interstitial lung

diseases, achieving a classification performance of 85%,

and in [16] CNNs paired with a neighboring ensemble
predictor were used to classify cell nuclei in histopathol-

ogy images of cancerous tissue. In addition, [17] and

[18] also use deep neural networks with optical images

of skin lesions and retinal fundus to classify skin cancer

and predict cardiovascular risk factors, respectively.

A summary of the state of the art for laryngeal

cancer diagnosis is presented in Table 1.

In this work, mainly inspired by the work in [9],

a system was implemented where feature extraction

was applied to the Laryngeal dataset [20]. The dataset

consists of 1320 patches, relative to 4 laryngeal tissue

classes: healthy tissue, tissue with hypertrophic vessels,

leukoplakia and tissue with IPCL-like vessels. Tissue

samples for each class are shown in Fig. 1. Here, feature

extraction was accomplished with:

– Handcrafted texture-based features, such as LBP

and first-order statistics;

Table 1 Recent work on laryngeal-tissue classification from
optical images.

Author Methods Implementation
goal

Barbalata et
al., 2016 [7]

Linear Discrim-
inant Analysis
(LDA) and
Matched Filtering
(MF)

Discriminate be-
tween malignant
and benign issue

Moccia, et
al., 2017 [9]

LBP, GLCM-
based features,
SVM and Gini
Coefficient (GC)

Classification of
laryngeal tissues
captured in NBI
images

Nanni, et al.,
2018 [10]

Deep learning and
handcrafted fea-
tures

Analyze impact of
handcrafted and
learned features
for computer vi-
sion

– Learned features obtained from pre-trained and fine-

tuned CNN models by using transfer-learning.

Fig. 1 Sixteen sample patches, four for each of the four an-
alyzed laryngeal tissue classes, are shown. Red: tissue with
hypertrophic vessels; Blue: healthy tissue; Orange: tissue with
intraepithelial papillary capillary loop-like vessels; Green: tis-
sue with leukoplakia.

Principal components analysis (PCA), [21], was used

before classification for dimensionality reduction. Fea-

ture classification was performed with multi-class SVMs.

With respect to [10], several pre-trained CNN models

were studied (also performing feature extraction from

various layers for each CNN) and fine-tuning approaches
were investigated.

Our main research questions were:

– Research question 1 (RQ1)
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Are CNN-based features more powerful than hand-

crafted ones for laryngeal tissue SVM-based classifi-

cation?

– Research question 2 (RQ2)

Can the performance of CNN-based features be im-

proved by performing fine-tuning on pre-trained

CNN models?

This paper is organized as follows: Sec. 2 explains the

main methods exploited in this paper and the dataset

used to validate it; Sec. 3 explains the evaluation proto-

col used to investigate our two research questions; Sec. 4

and Sec. 5 presents and discusses the main results of

this work, respectively.

2 Methods

The workflow of the proposed method is shown in Fig.
2.

2.1 Pre-processing and feature extraction

Three main classes of features were extracted from the
patches of the Laryngeal dataset: texture-based global

descriptors, first-order statistics and CNN-based learned

features. Prior to feature extraction, the patches under-

went Gaussian smoothing.

2.1.1 Texture-based global descriptors

Inspired by [9], the texture-based global descriptor cho-

sen for this work was LBP, as they are considered the

state of the art for medical image texture analysis. LBP

are grey-scale invariant and of low-complexity.
The base formulation of LBP (LBPR,P ) requires

the definition, for a pixel c = (cx, cy), a spatial circu-

lar neighborhood of radius R with P equally-spaced

neighbor points ({Pn}n∈(0,P−1)):

LBPR,P (c) =

P−1∑
n=0

s(gpn
− gc)2n (1)

where gc and gpn , denote the grey values of pixel c and

of its nth neighbor pn, respectively and s is defined as:

s(gpn
− gc) =

{
1 gpn

≥ gc
0 gpn

< gc
(2)

The formulation for LBP adopted in this work, the

one used more often, was the uniform rotation-invariant

LBP, as rotation invariance is appropriate in this case

since the endoscope pose during the larynx inspection

is constantly shifting.

2.1.2 First-order statistics

For each patch the intensity mean, variance and en-

tropy are computed and concatenated to form a single

intensity-based feature set (STAT), as per [9]. The en-

tropy is defined as:

entropy = −
255∑
i=0

hi log2(hi) (3)

where hi is the image histogram counts.

2.1.3 CNN-based learned features with transfer learning

CNNs are a class of deep, feedforward artificial neural

networks. CNNs are composed of interconnected neu-

rons with learnable weights, biases and activation func-

tions. These networks are essentially built with four type

of layers: convolutional, activation, pooling and fully-

connected. The convolutional layer is the core building

block of a CNN, pooling layers perform non-linear down-

sampling, activation layers apply activation functions

(e.g. rectified linear unit) and fully-connected layers

are made of neurons that have full connections to the

previous layer.

For fine-tuning, the layer weights of the original CNN

were frozen up to a certain layer and our data was used

to train the unfrozen part of the network. Each model

has a different separating layer, which will be described
below.

Here, the following pre-trained CNN models were

investigated: ResNet V2 with 101 layers [22], Inception

V4 [23], and Inception-ResNet V2 [24].

The ResNet V2 with 101 layers model architecture

and freezing method are shown in Fig. 3. This model

consists of four groups of multiple building blocks each.

A building block has 3 convolutional layers. To fine

tune this model, our data was used to train only layers

from the last group forward. Additionally, for each of

the models with origin in this model the features from

earlier layers were obtained: right after the pooling layer

(Layer A for easier addressing) and after the spatial

squeeze layer (Layer B).

The Inception V4-model architecture as well as the

freezing method are depicted in Fig. 4. For this model,
besides the final layer, the following stopping points

were considered for feature extraction: right after the 7x

Inception-B layers (Layer C), after the Average Pooling

layer (Layer D) and after the Dropout layer (Layer E).

Finally, Inception-ResNet V2 model architecture and

freezing method are shown in Fig. 5. As it can be seen

in Fig. 5 the model was trained from the last block

of layers forward and the following ending points used:
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Pre-processing
(Sec. 2.1)

Handcrafted
features

 (Sec. 2.1.1/2)

Classification
(Sec. 2.2)

CNN-based learned
features with

transfer learning
(Sec. 2.1.3)

Healthy tissue
Tissue with hypertrophic vessels
Leukoplakia
Tissue with IPCL-like vessels

Feature extraction
      

Fig. 2 Workflow of the proposed solution for early-stage laryngeal cancer diagnosis.

Fig. 3 Architecture of ResNet v2 with 101 layers. Frozen layers and layers that are fine tuned are shown too.

Fig. 4 Architecture of Inception V4. Frozen layers and layers that are fine tuned are shown too.

Fig. 5 Architecture of Inception-ResNet V2. Frozen layers and layers that are fine tuned are shown too.
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Table 2 Dataset characteristics

Fold 1 Fold 2 Fold 3 Total

Patient
ID

1-11 12-22 23-33 33

N. of
im-
ages

110 (10 per
patient)

110 (10 per
patient)

110 (10 per
patient)

330

N. of
patches

440 (4 per
image)

440 (4 per
image)

440 (4 per
image)

1320

right after the 20-layer block (Layer F, which can be seen

“diverging” from the main network), after the average

pooling layer (Layer G), after the dropout layer (Layer

H) and of course the last layer of the model.

2.2 Classification

In this paper SVM, [25], was used for tissue classifi-

cation in four classes. The basis of SVM is finding a

hyperplane that best divides a dataset into two classes

(binary problem). However, they can also be adjusted to

work with multi class problems. SVM handles the high

dimensionality, characteristic of our problem and with

the kernel-trick it prevents parameter proliferation, lim-

iting over-fitting and lowering computational complexity,
[26] and [27]. The radial basis function kernel (Gaussian

kernel) was used. Additionally SVM is very robust to

noise in training data. To implement multi-class SVM

classification, the one-vs-rest scheme was used.

3 Evaluation protocol

In this work, as introduced in Sec. 1, the publicly avail-

able Laryngeal dataset [20] was used. This dataset con-

sists of images from 33 NBI videos, corresponding to 33

patients affected by SCC, acquired by an NBI endoscopic

system (Olympus Visera Elite S190 video processor and
an ENF-VH rhino-laryngo videoscope) with a frame rate

of 25 frames per second and image size of 1920 pixels x

1072 pixels. For these videos, 10 images were manually

selected from each video obtaining a total of 330 images.

For each of those images, 4 patches were cropped

with a size of 100 pixels x 100 pixels, for a total of

1320 patches equally distributed between four classes,

namely, healthy tissue, tissue with hypertrophic vessels,

leukoplakia and tissue with IPCL-like vessels, as men-

tioned in Sec.1. Each patch was cropped from a portion

of the tissue relative to only one of the four considered

classes. Both the previous image and the following patch

selection were performed under the supervision of an ex-

pert clinician (otolaryngologist specialized in head and

neck oncology). The dataset characteristics are shown

in Table 2.

The patches of the dataset were initially pre-processed

with a Gaussian filter (standard deviation (σ) = 0.8).

In the feature extraction step, LBPs were computed

with the following (R,P ) combinations: (1,8), (2,16),

(3,24) for each RGB channel, and the corresponding L2-

normalized histograms were concatenated. This choice

allowed multi-scale and, therefore, a more accurate de-
scription of the texture information. Adding the STAT

features, for each patch, a 172-feature long vector was

obtained.

As for CNN-based features, transfer learning was

used with CNN models pre-trained on the ImageNet

dataset [28]. These models are the ones mentioned pre-

viously in Sec. 2.1.3, namely ResNet V2 with 101 layers,

Inception V4 and Inception-ResNet V2. These models

provided a 1000-feature long vector.

PCA [21] was used for feature dimensionality re-

duction by selecting the principal components that de-

scribed 95% of the data variance. This process was

followed by the classification.

For the classification, SVM with the radial basis

function and the one-vs-rest scheme was used. The SVM

hyper-parameters (γ,C) were retrieved via grid-search

and cross-validation on the training set. The grid-search

space for γ and C was set to [ 10−7, 10−1] and [10−3,

103], respectively, with six values spaced evenly on log10

scale in both cases.

To obtain a robust estimation of the classification

performance, 3-fold cross validation was performed, sep-
arating data at patient level to prevent data leakage, as

per [9]. The 1320 patch dataset was split to obtain well-

balanced folds both patient and tissue wise, as shown

previously in Table 2. Each time, two folds were used for

training and the other one for testing only. Therefore,
this evaluation does not lead to biased results.

3.1 Evaluation Metrics

The following metrics were used to evaluate the classifi-

cation performance. It was calculated the class-specific

recall:

Recclassj =
TPj

TPj + FNj
(4)

where TPj is the number of elements of the jth class

correctly classified (true positive of the jth class) and

FNj the number of elements of the jth class wrongly

assigned to one of the other classes (false negative of
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the jth class). The class-specific precision was evaluated,

where:

Precclassj =
TPj

TPj + FPj
(5)

being FPj the number of false positive of the jth

class, the F1 score was computed, where:

F1classj = 2×
Precclassj × Recclassj
Precclassj + Recclassj

(6)

finally, the accuracy of the model was also calculated:

Accclassj =
TPj + TNj

TPj + TNj + FPj + FNj
(7)

where TP is the number of true positives in the

model, TN the number of true negatives, FP the number

of false positives and FN the number of false negatives.

The implementation of LBP feature extraction, PCA

and classification was performed with scikit-learn.

Tensorflow-Slim was used for the CNN feature ex-

traction. All the computational efforts were done with

an Intel Core i7-6700K CPU @ 4.00GHz.

3.2 Experiments

To answer our research questions, the following investi-

gations were carried out:

3.2.1 Investigation of RQ1

To assess our hypothesis that CNN-based features are

more powerful than handcrafted texture-based features

for laryngeal tissue classification the SVM results using

LBP and STAT (LBPS), CNN-based features, and LBPS

paired with the CNN-based feature were compared. The

tests were performed with the models mentioned in
Sec. 2.1.3. For each of these models, the features were

extracted from the last layer of each CNN.

3.2.2 Investigation of RQ2

To investigate the possibility of improving the perfor-

mance of the laryngeal tissue classification by fine-tuning

the pre-trained models, two cases were considered. The

former, freezes part of the model and train the rest with

our data, and the latter trains the entire network from

scratch.

Also, for each of the original models and the ones

created in case one and two features from different layers

were extracted, as stated in Sec. 2.

Table 3 Research question 1 results. The first four columns
consist in the percentages of the metrics mentioned before,
the median across the three folds, and the last one is the
total classification time in seconds. The first row is feature
extraction with LBPS only, from 2-4 with CNN only and the
rest with LBPS paired with CNN. The case in bold corresponds
to the best result in the table. The other highlighted cases
(italic) correspond to cases important in the comparison with
the best result.

Rec
(%)

Prec
(%)

F1
(%)

Acc
(%)

Total
time
(s)

LBPS 94 94 94 94 14

Inception-v4 93 94 93 93 25

ResNet V2 101
layers

95 95 95 95 36

Inception-
ResNet V2

94 95 94 94 18

LBPS +
Inception-v4

96 96 96 96 27

LBPS +
ResNet V2
101 layers

98 98 98 98 41

LBPS
+Inception-
Resnet V2

97 98 98 98 20

4 Results

The results are organized according to the research

questions.

4.1 RQ1 results

CNN based features proved to be superior than hand-

crafted features as it can be seen in Table 3 where LBPS

had a median classification recall of 94% and ResNet V2

with 101 layers achieved 95%. The other CNN models,

i.e. Inception-v4 and Inception-ResNet V2, had similar

performance to LBPS, achieving a classification median

recall of 93% and 94% respectively. However, the best

result was achieved with a combination of both: LBPS

and CNN features extracted with ResNet V2 with 101

layers with a median classification recall of 98% as seen
in Fig. 6.

4.2 RQ2 results

With the combination of LBPS and FT INC Layer D

(or E) features, a median classification recall of 97% was

achieved, overcoming the SVM-based results in Table 3

with 96%.
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Fig. 6 Research question 1 boxplots of classification recall
(RecClass) obtained when using (a) local binary pattern and
first order statistics features, (b) ResNet V2 with 101 layers
based features (c) and both.

Fig. 7 Boxplots of classification recall (RecClass) for re-
search question 2. The boxplots are obtained using (a) local
binary pattern and first order statistics features (LBPS) with
Resnet V2 with 101 layers based features, (b) LBPS features
with features based on fine-tuned Inception V4 Layer D and
(c) LBPS features combined with features extracted from
Inception-ResNet V2 Layer F .

The best results, as seen in Fig. 7, were:

– Features from LBPS in combination with ResNet V2

with 101 layers Layer B, with median classification

recall of 98%

– LBPS with FT Inception V4 Layer D features, with

median classification recall of 97%

– LBPS and Inception-ResNet V2 Layer F features,
with a median classification recall of 97%

5 Discussion

From the results of Table 3, learned features outper-

formed handcrafted ones. Additionally a combination of

handcrafted features and learned features contributed

to further improve the classification performance demon-

strating that the two methods extract different infor-

mation from the input images, reflecting the results of

Nanni et al. [10]. As for the CNN models, the more com-

plex ones, Inception-ResNet V2 and ResNet V2 with 101

Table 4 Research question 2 results. The first four columns
consist in the percentages of the metrics mentioned before,
the median across the three folds, and the last one is the total
classification time in seconds. The rows from 1-6 correspond
to the RN network, from 7-13 to the INC network and the
rest to the INC-RN network. The cases in bold correspond
to the best result for each network in the table. The other
highlighted cases (italic) correspond to cases important in the
comparison with the best result for each network.

Rec
(%)

Prec
(%)

F1
(%)

Acc
(%)

Total
time
(s)

LBPS + RN orig-
inal Layer A

97 97 97 97 163

LBPS + RN
original Layer
B

98 98 98 98 41

LBPS + FT RN
last layer

94 95 94 94 13

LBPS + FT RN
model Layer B

94 95 93 94 13

LBPS + Scratch
RN last layer

93 94 92 93 14

LBPS + Scratch
RN Layer B

93 94 93 93 14

LBPS + INC
original

96 96 96 96 27

LBPS + INC
original Layer C

95 95 95 95 25

LBPS + INC
original Layer D

97 97 97 97 96

LBPS + INC
original Layer E

97 97 97 97 97

LBPS + FT
INC Layer D

97 97 97 97 101

LBPS + FT INC
Layer E

97 97 97 97 111

LBPS + Scratch
INC last layer

93 93 93 93 13

LBPS + INC-
RN original
Layer F

97 98 98 98 70

LBPS + INC-RN
original Layer G

97 97 97 97 69

LBPS + INC-RN
original Layer H

97 97 97 97 70

LBPS + FT INC-
RN Layer F

93 94 93 93 14

LBP + FT INC-
RN Layer G

97 97 97 97 72

LBPS + FT INC-
RN Layer H

97 97 97 97 72

LBPS + Scratch
INC-RN Layer
G

94 94 94 94 13
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Table 5 Comparison between the best results in literature for
laryngeal cancer classification. Barbalata et al., 2016 algorithm
applied to the Laryngeal dataset.

Barbalata
et al.,
2016 [7]

Moccia
et al. [9]

Nanni et
al. [10]

LBPS +
RN origi-
nal Layer
B

Recall % 42 93 94 98

layers, demonstrated superior results than the Inception-

V4. This is probably because the deeper the network,
the more detailed the features it is able to extract from

the image.

From the results relative to RQ2 in Table 4, the

models trained from scratch with our dataset under-

performed the other cases. This can be due to the fact

that our dataset was relatively small. The models re-

sulting from fine-tuning with layers which also suffered

a reduction in the number of features, namely the last

layers, layer B, Layer C and Layer F, had a huge hit

in their performance. However, the cases related to the

other layers (Layer A, D, E, G and H) were on par

with the results of Table 3. Nonetheless, we expect that

a bigger dataset coupled with fine-tuning could lead

to a further increase in the overall performance of the

laryngeal-tissue classification.

As for executing the feature extraction in different

layers for each model it increased the overall performance

for most networks by a small margin, confirming that the

layer where features are extracted can lead to a better

laryngeal tissue classification performance. Lastly the

performance obtained using transfer learning was higher

than standard methods in the literature. A comparison

of the best results in literature for laryngeal cancer

classification can be seen in Table 5.

Finally, the results reported were visually evaluated

by three expert clinicians, which agreed with our con-

clusions.

6 Conclusion

In this project, a learning-based system, inspired by [9,

10], for early-stage detection of laryngeal cancer was

implemented. The system processed NBI images using

transfer learning with pre-trained CNN models.

Assisted by a comprehensive evaluation and an ex-

haustive analysis of the results, we demonstrated that

the proposed approach can lead to high-performance

classification results, overcoming the state of the art.

Such high performance was achieved independently from

patient-specific parameters or arbitrary thresholds. This

makes the proposed solution a proper tool to face the

complexity and high diversity of laryngeal pathological

tissues.

For future work, we intend to perform image seg-

mentation to define tumoral margins. This would be

helpful with a view to assist surgeons with robotic pro-

cedures,e.g implementing virtual fixture. Challenges in

this direction will consist in the definition of a proper

CNN architecture for reliable, accurate and real-time

segmentation (e.g. [29], [30] and [31]).
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Tiago Araújo, is a

Master’s Student at the

University of Minho, at

the Department of Infor-

matics. His Master’s re-

search, under the supervi-

sion of Professor Cristina

P Santos at the University

of Minho, is on early-stage

laryngeal cancer segmen-

tation from endoscopic

key images using deep-

learning approaches. His

current research interests

are machine learning and medical imaging processing.

Cristina P Santos (DEng,

Msc, PhD, Habil), is

an Assistant Professor

at UMinho, at the De-

partment of Industrial

Electronics & and a re-

searcher at Research Cen-

ter CMEMs at the Uni-

versity of Minho, Portu-

gal. She was Head Direc-

tor of Integrated Master
in Biomedical Engineer-

ing (2013-2015) and is cur-

rently a member of the Di-

rective Board of the Doc-

toral Program in biomedi-

cal Engineering. Her work focuses on methods to char-

acterize human motion, the study of human locomotion,

Human-Robot Interaction & Collaboration, medical de-

vices, and the neuro-rehabilitation of patients suffering

from motor problems by means of bio-inspired robotics

and neuroscience technologies.

Sara Moccia achieved

the European Ph.D. de-

gree cum laude in Bio-

engineering on May, 16th

2018, with a thesis en-

titled “Supervised tissue

classification in optical im-

ages: Towards new appli-

cations of surgical data

science”. Sara pursued

her Ph.D in collaboration

with the Department of

Electronics, Information

and Bioengineering at Politecnico di Milano (Milan,

Italy) and the Department of Advanced Robotics at Is-

tituto Italiano di Tecnologia (Genoa, Italy). During her

Ph.D, she spent six months at the “Computer-Assisted

Medical Intervention” laboratory at the German Can-

cer Research Centre (Heidelberg, Germany).Sara is now

PostDoc in the Department of Information Engineering
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