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Efficient embedded sleep wake 
classification for open‑source 
actigraphy
Tommaso Banfi1,2,3*, Nicolò Valigi3, Marco di Galante3,4, Paola d’Ascanio5, Gastone Ciuti1,2 & 
Ugo Faraguna3,4,5

This study presents a thorough analysis of sleep/wake detection algorithms for efficient on-device 
sleep tracking using wearable accelerometric devices. It develops a novel end-to-end algorithm using 
convolutional neural network applied to raw accelerometric signals recorded by an open-source 
wrist-worn actigraph. The aim of the study is to develop an automatic classifier that: (1) is highly 
generalizable to heterogenous subjects, (2) would not require manual features’ extraction, (3) is 
computationally lightweight, embeddable on a sleep tracking device, and (4) is suitable for a wide 
assortment of actigraphs. Hereby, authors analyze sleep parameters, such as total sleep time, waking 
after sleep onset and sleep efficiency, by comparing the outcomes of the proposed algorithm to the 
gold standard polysomnographic concurrent recordings. The relatively substantial agreement (Cohen’s 
kappa coefficient, median, equal to 0.78 ± 0.07) and the low-computational cost (2727 floating-point 
operations) make this solution suitable for an on-board sleep-detection approach.

Reliably studying human sleep in naturalistic conditions, while using non-invasive techniques, is still an unsolved 
problem. Currently, the gold standard to objectively study human sleep is the overnight polysomnography (PSG). 
In order to meet the requirements defined by the American Academy of Sleep Medicine (AASM), a PSG should 
simultaneously record various electrophysiological signals, i.e. electroencephalogram, electrocardiogram, elec-
trooculogram, and electromyogram1. These signals are used to manually perform the so-called sleep staging. 
During this procedure, an expert and trained technician examines and tags the PSG recording by eye. For the 
entire duration of the recording, the operator is tasked with labelling the behavioral state corresponding to each 
non-overlapping 30 s epoch in the recording. AASM defines standard criteria for the five different behavioral 
states that can be assigned to each epoch: (1) waking, (2) NREM sleep N1, (3) NREM sleep N2, (4) NREM sleep 
N3, and (5) REM sleep. This manual approach is rather time consuming and is affected by a modest test–retest 
reliability: agreement between independent scorers on the same data was measured to be around 78.1 ± 9.7%2,3.

The administration of a PSG exam usually requires subjects to spend a night in a specialized laboratory in an 
unfamiliar environment, thus changing the very same sleep features, object of the study4. This limitation may be 
mitigated by using a portable PSG system, hence allowing subjects to leave the sleep laboratory and enabling the 
collection of data remotely in a naturalistic environment. Moreover, recording the physiological signals requires 
the application of several skin electrodes (around 30) and additional instrumentation potentially interfering with 
normal sleeping condition. While PSG remains the gold standard for its ability to directly record brain electrical 
activity and polygraphic signals, its application to long-term monitoring is severely limited by its invasiveness. 
Thus, for some common sleep disorders, such as insomnia—and particularly chronic insomnia—PSG cannot 
be considered the gold standard as the time window monitored by the technique is too short and the discomfort 
of the approach can impair sleep quality by itself.

A less invasive, clinically validated approach, is represented by Actigraphy (ACT). ACT is defined in the 
PubMed MESH dictionary as “the measurement and recording of motor activity to assess rest/activity cycles”. This 
technique is used in clinical and research studies where PSG is difficult to administer. ACT can be successfully 
used to monitor sleep longitudinally, non-invasively and in unstructured setting outside the laboratory5–7. Prac-
tice parameters and clinical guidelines set the perimeter of FDA-cleared ACT as an acceptably accurate estimate 
of sleep patterns in normal and healthy adult populations7. More recently, the AASM task force of sleep medicine 
clinicians with expertise in the use of actigraphy, provided guides and recommendation statements for clinicians 
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using actigraphy in evaluating patients with sleep disorders and circadian rhythm sleep–wake disorders8. In 
numerous of such disorders, ranging from insomnia to central hypersomnolence, the recommendation fell into 
the “conditional” strength category, according to the GRADE process9. The “conditional” recommendation (e.g. 
“We suggest…”) versus the “strong” recommendation (e.g. “We recommend…”) reflects a lower degree of certainty 
regarding the outcome and appropriateness of the patient-care strategy for all patients. In the specific case of 
the application of ACT to sleep and circadian disorders, the overall quality of evidence was moderate due to 
imprecision. The degree of imprecision is variable according to the different ways accelerometric raw data are 
processed and by the mathematical models used to estimate sleep versus waking. This imprecision variability is 
summarized in Supplementary Table 1, displaying an overview of the performances reported by other studies 
using ACT in the binary sleep/wake classification concordance.

The state of the art in the field of sleep/wake classification using actigraphy data include a variety of meth-
ods to address this task. The average epoch-by-epoch accuracy of traditional algorithms with PSG scoring is 
75.6 ± 3.9% (considering binary sleep/wake classification), with an associated average error of 61.3 ± 10.6 on 
WASO and 18.6 ± 5.1% on SE% estimation10. Many of these traditional algorithms do not exploit recent advances 
in classification techniques to achieve their task, and were proved to be inferior to machine-deep learning 
approaches in both epoch-by-epoch comparison and in the estimation of sleep quality and quantity metrics. In 
fact, deep learning algorithms scored an average accuracy of 87.7 ± 2.3%, an average WASO error 44.4 ± 2.2, and 
an average SE% error of 10.6 ± 0.7. To the best of our knowledge, no solution reported in the current state of the 
art developed models that are optimized to exploit the advances in computing and sensing hardware, nowadays 
commonly embedded in a variety of wearable devices. A drawback of ACT is its relatively low ability to distin-
guish between quiet wakefulness and sleep11. This feature impairs the ability of actigraphy to detect sleep onset, 
which is usually affected by a non-random anticipation of detection, when compared to PSG detected onset7. 
Another source of imprecision is the widespread use of brand-specific pre-processing techniques and coding of 
motion data derived from raw acceleration using mathematical methods (e.g. integration over a fixed window of 
time). This practice limits cross-study reproducibility of results, encumbers the pooling of datasets, and might 
lead to a reduction in the overall accuracy. However, the current technology allows recording of raw triaxial accel-
eration at both high frequency (~ 100 Hz) and resolution (~ 10bit or higher), thus promising to alleviate some 
of these challenges. While much of the existing research studies focused on developing algorithms for offline 
use, limited effort has been devoted to the possibility to embed sleep–wake classifiers on wearable devices. This 
approach has obvious privacy benefits as all the information processing takes place locally and offline without 
the need to rely on remote servers. This advantage becomes rather practical since all the leading consumer elec-
tronics manufacturers have released toolkits for on-device machine learning applications (e.g. Apple’s CoreML 
and Google’s TensorFlow Lite). A standalone classification algorithm, designed to operate on computationally 
constrained platforms, as the one presented in this paper, can run at the edge, enhancing reliability while using 
it in longitudinal monitoring protocols or if employed in unstructured environments and remote off-the-grid 
locations. By using only raw triaxial accelerometric measurements, the developed models have the potential to 
be highly generalizable to unspecified devices. In this perspective, authors developed one such classifier and 
carefully examined the trade-off between accuracy, model size and runtime complexity.

Results
Convolutional neural network hyperparameters optimization.  After several iterations (see “Meth-
ods” section), the following Convolutional Neural Network (CNN) architecture (named by the authors lightC-
NNA, see Fig. 1) was implemented and it is constituted by the following parameters: (1) number of convolutional 
1D layers: 3, (2) number of filters: 8, (3) kernel’s size: 8, (4) dilation rate first convolutional 1D layer: 6, (5) dila-
tion rate second convolutional 1D: 3, (6) dilation rate third convolutional 1D: 1, (7) use of bias vector in convo-
lutional layers: false, (8) use of bias terms in dense layers: false, (9) number of units dense classification layer: 16, 
and (10) activation function used: rectified linear unit (ReLU) for all, except the final dense layer output unit, 
which endowed a sigmoid activation function.

Figure 1.   Simplified CNN architecture representation, named lightCNNA. For each layer, the layer type used 
and its main hyperparameters are reported.
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Comparisons between PSG and equivalent lightCNNA sleep measures.  PSG and lightCNNA 
sleep measures are displayed in Table 1. Total Sleep Time (TST), Waking After Sleep Onset (WASO), and Sleep 
Efficiency (SE) were found to be statistically different from each other although with modest absolute differences 
in their mean values (PSG minus lightCNNA: TST 15 min, WASO -11 min, SE -2.5%, Fig. 2). 

Bland–Altman Plots.  Bland–Altman plots for TST, WASO, SE are reported in Fig. 3. The calculated aver-
age biases (TST 5.59 min, WASO -5.59 min, and SE% 1.20%), and a priori set clinically satisfactory limits for 
TST and WASO (discrepancies ≥ 30 min)12 are summarized in Table 1. To compute the sleep metrics, we isolated 
the true night using the true sleep onset and offset manually determined on the PSG scoring.

Epoch‑by‑Epoch (EBE) analysis.  Overall, lightCNNA had 92.02 ± 3.11% specificity (ability to detect 
wake), 89.23 ± 3.46% sensitivity (ability to detect sleep), 89.32 ± 3.36% concordance, and 90.88 ± 3.04% F1 score, 
relative to PSG (see Table 2 and Fig. 4).

The overall Cohen’s kappa coefficient (CKC) for the lightCNNA, as compared to PSG, was 0.78 ± 0.07. All 
metrics are presented as median ± mean amplitude deviation. Table 2 reports the EBE performance of each 
machine learning algorithm implemented.

Optimization of lightCNNA output binarization.  A binarization threshold of 0.370 was optimized on 
the hold-out training set (Fig. 5a,b,c). Using the data gathered trough the leave one subject out (LOSO) valida-
tion scheme, we computed a threshold value for each subject (see “Methods”section, n = 81). By averaging across 
subjects, a further binarization threshold equal to 0.426 (Fig. 5d) was obtained.

Finally, varying the binarization threshold on each single LOSO subject resulted in an optimal threshold 
of 0.350 (Fig. 6). The overall variation in models performance was small (average absolute variation of CKC 

Table 1.   Comparison of sleep metrics computed using the lightCNNA and the relative gold standard-derived 
values.

PSG lightCNNA Statistics

Median ± IQR Min–Max Median ± IQR Min–Max Shapiro–Wilk p Dunn’s p

TST (min) 368.0 ± 56.7 65 – 472 353 ± 52 144 – 467.5 0.003  < 0.05

WASO (min) 71 ± 40.5 27 – 282.5 82 ± 43.5 31.5 – 235  > 0.001  < 0.05

SE (%) 83.8 ± 7.3 18.7 – 93.5 81.3 ± 7.5 41.4 – 90.9  > 0.001  < 0.05

Figure 2.   A comparison of the main sleep metrics calculated using PSG, lightCNNA and other alternative 
machine learning models for each subject included in the Leave One Subject Out (LOSO) validation procedure.
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0.013 ± 0.011) across threshold estimation techniques, hence we adopted the personalized threshold (one for 
each subject, n = 81) to measure models performance at its optimal working point.

Discussion
Currently available algorithms used to automatically detect and score sleep, based on actigraphic data, exhibit 
a common limitation in the relatively low level of classification reliability (average ± standard deviation CKC of 
0.45 ± 0.15, n = 4, see Table 2 and Supplementary Table 1) and specificity achieved (average ± standard deviation 
of 60.7 ± 22.0%, n = 21, minimum of 32.9%11, see Table 2 and Supplementary Table 1). This significantly limits 
the application of actigraphy in the diagnosis of sleep disorders13, and more specifically of chronic insomnia, as 
specificity reflects the capability of detecting awakenings. In an attempt to overcome this limitation, we imple-
mented a machine-learning approach obtaining good results in terms of specificity (average ± standard deviation 
of 89.33 ± 7.85%, median ± mean amplitude deviance of 89.23 ± 3.46%), at the expense of a slight reduction of 
sensitivity (average ± standard deviation of 87.66 ± 6.28%, median ± mean amplitude deviance of 92.02 ± 3.11%), 
in comparison with commonly used algorithms (Table 2 and Supplementary Table 1). Moreover, the lightC-
NNA exhibits high reliability in the binary classification of sleep and waking, achieving a CKC of 0.78 ± 0.07 
(median ± mean amplitude deviance, or 0.75 ± 0.13 average ± standard deviation).

Figure 3.   Estimation error for each sleep metric. Bland–Altman plots showing the difference in sleep metrics 
obtained using each of the machine learning models and the lightCNNA (highlighted by a black box) with 
respect to the PSG reference. The first row shows total sleep time for each model, the second waking after 
sleep onset, and the third sleep efficiency. Solid red lines identify the a priori acceptable limits of agreement 
of ± 30 min difference on TST. A dashed black line shows the zero error or perfect agreement with the PSG. 
Scaling is kept constant for each figure. For each axis we show the minimum and maximum values. The values 
reported on the y-axis are computed as PSG reference value minus the value computed by the alternative 
method.

Table 2.   Comparison of performance metrics scored by the lightCNNA model and other machine learning 
approaches. An * denotes the presence of a statistically significant difference between lightCNNA and other 
algorithms.

Kappa F1 Concordance Specificity Sensitivity

Perceptron 0.751 0.884 0.876 0.899 0.872

SVM 0.687* 0.844* 0.843* 0.972* 0.742*

RandomForest 0.776 0.889 0.888 0.948 0.842*

NaiveBayes 0.524* 0.721* 0.759* 0.983* 0.573*

AdaBoost 0.775 0.887 0.887 0.948 0.842*

GradientBoost 0.524* 0.721* 0.759* 0.983* 0.573*

lightCNNA 0.782 0.909 0.893 0.920 0.892*
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The lightCNNA showed a good agreement with PSG in the whole night estimation of TST, WASO and SE in 
this heterogenous group of adults, with 85.19% of the participants lying within the a priori-set clinically satis-
factory ranges for TST and WASO (≤ 30 min difference)12. The Bland–Altman plot limits of agreement for TST, 
WASO and SE of the current study were significantly higher as compared to both medical-grade14 and consumer-
grade actigraphs15–17 (Supplementary Table 1 summarizes the metrics for a sample of published algorithms). The 
lightCNNA did not show clinically relevant, systematic TST, WASO and SE overestimation, underestimation or 
magnitude related trends (Fig. 3).

Overall the lightCNNA model proved to be better than all other algorithms in every comparative metrics, 
except for specificity. Regarding specificity (see Table 2), this value was higher for other algorithms (Naïve Bayes 
and Gradient Boost) at the expense of sensitivity. When considering the most compelling comparison metrics, 
such as Kappa and F1, the lightCNNA model showed a more robust performance (see Fig. 4) by scoring: the 
highest number of test subject with a F1 score above 0.9 and the highest number of test subject with kappa val-
ues above 0.8, while the lowest number of test subject with a F1 score below 0.8 and the lowest number of test 
subject with kappa values below 0.6. An important issue to highlight is the epoch duration, i.e. the temporal 
resolution for the estimation of epoch-by-epoch performance comparison. In this paper, we used a 30 s time 
window while others (Table 3) reduced the temporal resolution to 60 s. Manipulating the time resolution also 
imposes to modify the ground truth reference time series, as PSG scoring is done on 30 s epochs. This procedure 
may add noise into the ground truth labels as custom re-scoring rules should be created to solve ambiguities 
creating new epochs from non-homogeneous source labels. As an example, Aktaruzzaman et al.18 considered 
epochs containing both NREM sleep N1 sleep and waking as waking, Sadeh et al.19 scored as wake any mixed 
epochs, and Paquet et al.12 scored PSG data on 20 s epochs and re-scored the signal to a 60 s resolution using a 
majority criterion. The result of these approaches may alter the ability of machine learning methods to correctly 
identify brief transitions between behavioral states due to injection of noise in the training ground truth data. 
Hindering a method ability to detect brief awakenings during night time is relevant, as the nature of these events 
is limited to a few epochs but may account for a significant fraction of clinically relevant infra-sleep waking over 
the night, and ultimately improves the specificity achieved by the scoring method.

A strength of the proposed classification model is the ability to process raw accelerometric data, reducing the 
complexity and the computational costs of the method, while maximizing its generalizability. The use of CNNs 
also allows to avoid the time-consuming and inherently suboptimal feature engineering process as the model can 
autonomously learn relevant features during training. CNNs are also easily extensible to new sources of informa-
tion (e.g. photoplethysmography, acoustic, anamnestic) providing possibilities to expand the applicability to a 
wide array of data types and tasks. As an example, the use of raw photoplethysmographic data may enable the 
introduction of breathing and circulatory variables. Breathing patterns variations are particular relevant in the 
diagnosis of breathing-related sleep disorders (and may be collected on the wrist38,39), but are also associated to 
the physiological sleep onset process40, and might be used to compensate for the systematic differences in sleep 
onset estimation between PSG and actigraphy.

Figure 4.   Comparison of kappa and F1 performance metrics scored by the lightCNNA model and by all other 
machine learning approaches. All data were computed using the LOSO approach Each point represents a 
subject. The number of subjects with a F1 score below 0.8 or above 0.9 is shown in panel c, at the left and right 
side of each boxplot. The corresponding number of subjects scoring kappa above 0.8 or below 0.6 is shown in 
panel d.
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Figure 5.   Optimization of binarization threshold of lightCNNA output. (a) shows the effect on models 
performances of the variation of the binarization threshold. (b) highlights the point in which the classifier 
maximizes concordance, by showing the minimum absolute difference between specificity and sensitivity (c). 
(d) shows the value of the best threshold estimated for each subject during the LOSO validation.

Figure 6.   Variation of binarization threshold on single LOSO subject data. (a) Effect of variation of the 
binarization threshold level on CKC for each LOSO subject. Performance achieved using a specific binarization 
treshold: in (b) CKC and concordance, in (c) specificity and sensitivity; solid lines represent median values, the 
shaded area shows the corresponding mean amplitude deviance.
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Methodologically, a significant advantage of the implemented approach consists of the following strengths: 
(1) the data used in our work come from relatively long monitoring windows (about 14 h on average), including a 
representative balanced sample of both spontaneous waking, as well as sleep, and (2) the concurrent portable PSG 
and actigraphic recordings allowed for a rather naturalistic approach, as the subjects spent their monitoring time 
in a familiar, comfortable and usual environment and not in the hospital or laboratory. Moreover, as the source 
of information feeding this algorithm is only a triaxial accelerometer, the approach is easily generalizable to a 
vast number of actigraphic devices coming from both the medical-grade and the wearable consumer realm. This 
characteristic helps to make the lightCNNA model more generalizable than those developed using data recorded 
by conventional actigraphs. In fact, those model cannot be easily used across brands as usually each actigraph 
encodes movement into slightly different “actigraphic counts”, ultimately limiting generalizability. This type of 
data is not the raw acceleration recorded by the embedded sensors but, usually, is an integral of the acceleration 
over a certain period of time or other proprietary conversion of the raw acceleration. This approach is largely 
inherited by the previous generation of actigraphic devices that had low computing power and a small embed-
ded memory. Several of the producers of already widespread consumer devices (e.g. Apple, Fitbit, Garmin, etc.) 
provide a simplified way to log and/or stream data from the accelerometer embedded in their products. This is 
beneficial as it greatly widens the range of compatible devices and simplifies the technical complexities of build-
ing a custom hardware-software infrastructure for data collection purposes. Using already available hardware 
with simplified programming interfaces is also beneficial as it enables the integration of additional modules 
that can collect user inputs useful to track a variety of additional variables of interest, e.g. therapy compliance, 
getting in–out of bed, caffeine consumption, anxiety rating, subject response speed, life events. The widespread 
possibility of recording accelerometric data from simple-inexpensive devices also enables the possibility to study 
sleep on vast population outside the laboratory, in an unobtrusive but reliable way for extended periods of time, 
beyond the PSG applicability.

The described approach allows the processing of the data entirely at the edge, using simple computing devices. 
This characteristic enhances the security of personal sensitive data as the approach is intrinsically safe avoid-
ing any exchange of data over public or proprietary network and computing infrastructures. Moreover, the low 
sampling rate that can be used to gather data to feed the lightCNNA model simplifies power management of 
the device running the data collection and the inference at the edge. In fact, lowering sensors sampling rate 
reduces the power usage and allows the device to “sleep” when not actively used (i.e. powering only a subset of 
peripherals-sensors interfaces or drastically reducing clock speed).

Moreover, future developments of the lightCNNA model might go in the direction of improving performance 
trough personalization, as seen in other recent approaches28. If on one side it is not easily conceivable to run 
a training procedure on device, on the other side some personalized descriptors (e.g. age, overall sleep wake 
cycle architecture, sleep regularity) might improve the output of the model. However, this would require a large 
person-specific dataset, paired with a complex technical implementation enabling the fine-tuning of a general 

Table 3.   Comparison of methodologically relevant parameters of other algorithms reported in literature.

Reference Epoch duration (s) Population size Avg. subject recording duration (minutes)

Aktaruzzaman et al. 18 390 18 –

Blood et al.20 – 9 –

Cole et al.21 60 41 443.7 ± 61.5

de Souza et al.22 60 21 –

Domingues et al.23 30 29 –

Farabi et al.24 30 27 –

Haghayegh et al.25 30 40 –

Hedner et al. 26 30 228 –

Jean-Louis et al. 27 30 5 480

Khademi et al.28 30 54 –

Kosmadopoulos et al.29 30 22 –

Kushida et al.30 30 100 –

Li et al.31 400 10 –

Lichstein et al.32 30 57 –

Long et al.33 30 25 396 ± 54

Marino et al.11 30 77 –

Palotti et al.10 30 1817 –

Paquet et al.12 60 15 –

Pollak et al.34 30 28  ~ 10,000

Roberts et al.35 30 8 –

Sadeh et al.36 60 36 –

Sivertsen et al.37 30 34 –

lightCNNA 30 81 858 ± 132
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model such as lightCNNA. A possible novel application of our lightCNNA could be developed in conjunction 
with bio-mathematical modeling of attentional levels41,42 to develop automatic algorithms able to estimate and 
possibly mitigate the exposure to sleep deprivation, a raising concern of our society43. This tool may also be 
investigated as a way to reduce accident risk due to the effects of sleep deprivation44,45, e.g. during safe sensitive 
and around the clock tasks, such as surgery.

A limitation of lightCNNA is that it cannot distinguish sleep stages. Possible improvements derive from: 
(1) the use additional physiological signals (e.g. photoplethysmography)46–48 to overcome, at least in part, the 
impossibility to detect the sleep stages and further enhance the robustness and accuracy of the model includ-
ing exogenous inputs to the model mapping anamnestic and behavioral information, and (2) the possibility to 
synthetize high fidelity physiological signals, using custom-built generative adversarial models to mitigate the 
paucity of data or its unbalancing.

Methods
Participants.  81 subjects were recruited in this study (average age of 23.4 ± 5.2 yrs). All subjects were 
enrolled within the Pisa University Hospital, Pisa, Italy. The sample included both healthy as well as subjects 
undergoing a diagnostic exam for sleep disturbances. Each participant was equipped with a portable PSG system 
(Morpheus, Micromed SpA, Mogliano Veneto, Italy) and an open-source actigraph (Axivity AX3, Axivity Ltd., 
Newcastle upon Tyne, United Kingdom) placed on the wrist of the non-dominant hand. The study was carried 
on in accordance with relevant national and regional regulations and following the principles detailed in the 
Declaration of Helsinki. The local ethical committee (Azienda Ospedaliero Universitaria Pisana, Ethical comitee 
Area Vasta Nord Ovest, Approval number 987 Protocol number 13711) approved the experimental protocol and 
subjects filled a written informed consent before the beginning of the study. Subjects were monitored overnight 
and spent the night at home in their usual sleeping environment. The mean acquisition duration was 14.3 ± 2.2 h. 
The Axivity AX3 is an open-source device equipped with a triaxial accelerometer (ADLX345) and 512 MB of on 
NAND flash memory. PSG data were sampled at 512 Hz for the 12 EEG derivations (F3, F4, C3, C4, T3, T4, P3, 
P4, T5, T6, O1, O2, P, ground in Cz, reference in Fz), 1 EKG (bipolar derivation placed symmetrically around 
the sternum within the 3rd and 4th ribs), 2 EOG (left and right vertical), and 2 EMG derivations (electrodes 
placed on the chin over the suprahyoid muscles). Raw triaxial acceleration was recorded at a mean frequency of 
99.7 ± 2.3 Hz with a 10bits resolution. PSG data were exported in EDF + format, imported in Alice (Koninklijke 
Philips N.V., Amsterdam, The Netherlands), and visually scored based on 30 s epochs by an expert technician 
following AASM criteria1.

Convolutional neural network.  The sequential nature of actigraphy data motivates the use of Convo-
lutional Neural Networks (CNNs). Various network architectures were implemented and tested to achieve the 
maximum accuracy, while keeping the computational cost as low as possible. All models were developed using 
open source software: Python 3.6 (Python Software Foundation), Keras-GPU 2.2.449, and TensorFlow-GPU 
1.13.150. Training was accomplished using a Nvidia GeForce GTX 1080 Ti GPU (Nvidia Corp., Santa Clara, 
California, USA). All plots were created using matplotlib51 and GIMP 2.10.2251. The following parameters were 
systematically investigated, and the best performance was selected based on the highest CKC and concordance 
between the actigraphic-based binary scoring and the visual EEG-based gold standard scoring, within the test 
set. Models’ hyperparameters tuned are: (1) number of convolutional 1D layers, (2) number of filters, (3) kernel’s 
size, (4) dilation rate of each convolutional layer, (5) use of bias vector in convolutional layers, (6) use of bias 
terms in dense layers, (7) number of units dense classification layer, and (8) activation functions.

For equal CKC performance, the architecture with the lowest Floating-Point Operations (FLOPs) was selected. 
The resulting architecture (Fig. 1), named lightCNNA, counts a total of 1361 parameters (all trainable). The 
overall computational cost was estimated to be 2727 FLOPs.

The lightCNNA model can be converted to a format suitable to be embedded in iOS or Android applications 
using the TensorFlow Lite converter. Furthermore, the model might be deployed on targets without an operat-
ing system by converting the TFLite model, obtained using the aforementioned converter, to a C array format 
optimized for suitable targets.

Dilated convolutions and the role of context.  Increasing the kernel size improves performance at the 
expense of computational complexity. A larger kernel can process more information from its input at the same 
time which, for example, can be beneficial for the detection of sleep/wake transitions. From this point of view, 
a larger kernel can serve the same purpose as the hidden states in recursive models. In this study, authors take 
advantage of dilated (a trous) convolutional layers to increase the receptive field of the network with a limited 
computational load. While in standard convolutional layers the kernel is directly convolved over the input, in 
dilated convolutions the kernel is resampled over a larger area, effectively adding “holes” to the convolution oper-
ation. The kernel resampling rate is controlled by the dilation rate. Dilated convolutions are a powerful method 
to grow the receptive field without increasing the kernel size (and thus the computational load).

Optimization of models output binarization.  The raw output of the lightCNNA is a floating-point 
number comprised between zero and one representing the probability of a certain epoch of being labelled as 
wake. An optimal threshold for a balanced binary classifier can be set as the point where the true positive rate is 
highest, for the lowest number of false positive misclassifications. We estimated the optimal binarization thresh-
old using the standard hold-out test set data, already used for model hyperparameter optimization (Fig. 5a,b,c). 
We computed the performance metrics achieved by the model, while modifying the binarization threshold 
level between 0.05 and 0.95 with an increment of 0.01. Additionally, while computing lightCNNA performance 
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within the LOSO validation approach, each subject test data was binarized using the optimal threshold estimated 
using the very same data of the subject itself (Fig. 5d). Lastly, for each LOSO iteration we binarized each subject 
data with the thresholds array as defined for the binarization of the hold-out dataset (Fig. 6). Then, for each 
threshold level, we averaged CKC, concordance, specificity and sensitivity across subjects. Using the averaged 
data, we identified the last binarization threshold value.

Accelerometer sampling rate.  Authors simulated lower sampling rates by decimating the accelerometer 
time series without the use of filters or interpolation techniques to better approximate slower sampling accel-
erometers. Results in Supplementary Fig. 1 show that data sampled at 8.3 Hz performed with the highest CKC 
(0.72). Moreover, we chose not to use higher sampling frequencies as the frequency of most voluntary human 
movements spans from 0.6 to 8Hz52,53 and rarely (essentially limited to young subjects54) exceeds 4Hz55.

Training regime.  CNNs operate on fixed-length sequences. However, the duration of the actigraphy record-
ings vary from patient to patient and from night to night. For this reason, we partitioned the training time series 
into fixed-length chunks and shuffled them, to reduce bias, before each training epoch. The straightforward 
approach is to pair each PSG-labeled 30 s epoch with its corresponding accelerometer samples. However, this 
choice is overly restrictive, as it does not provide the network with enough context around the labelled epoch to 
classify it correctly. Instead, we provided a larger context window around the labeled epoch. The length of this 
window influences both classification accuracy and computational complexity. Each sequence of input data is 
built including data from the previous 30 s and to the subsequent 30 s. The applied optimizer is Adam56 with L2 
weight normalization and the following initial parameters, i.e. (1) initial learning rate: 0.001, (2) beta1:0.9, and 
(3) beta2: 0.999.

Data normalization.  We applied a min–max normalization to raw accelerometric data to improve robust-
ness. Data were fit in a range comprised between -1 and 1. To enhance reproducibility, we used the minmax 
scaler function of the sklearn preprocessing package v0.21.3 for Python 3.6.

Synchronization of actigraphy and Polysomnography data.  To ensure a reliable alignment 
between actigraphy and polysomnography, we performed a synchronization of the internal clocks of both the 
Axivity AX3 actigraph (Axivity Ltd., Newcastle upon Tyne, United Kingdom) and the Micromed PSG holter 
(Micromed SpA, Mogliano Veneto, Italy). Both internal clocks were updated and synced each time a new record-
ing session was started, at the beginning of an experimental session and also at the end for the PSG data. The 
reference clock used to synchronize the instruments was the one of the computer used to launch the recording 
session of both devices. As an additional control, the PC clock was automatically kept in synchronization with an 
external atomic clock (Istituto Nazionale di Ricerca Metrologica, server address: ntp1.inrim.it, supported proto-
cols: Network Time Protocol RCF-5905), using a background NTP server that updated and re-synced the local 
PC clock before each recording. After the experiment, each PSG start and stop timestamps were read from the 
header of the EDF + file storing the PSG data. The start and stop timestamps were then used to find the closest 
timestamps in the actigraphy raw data (non-decimated) series. The actigraph recorded a millisecond resolution 
time stamp for each sample acquired. As the PSG timestamps were stored using a precision of a single second, 
the maximum synchronization error is ± 2 s considering a same sign error for both the starting and ending of 
the recording.

Performance metrics and statistical analysis.  Since this study is focused on computational complexity 
and on-device inference, we report results in terms of per-epoch classification accuracy of the lightCNNA. To 
enable direct comparisons with all implemented machine learning models and with the available literature in the 
field, we report the following epoch-by-epoch metrics:

(1)Accuracy =
TP

TP+ TN+ FP+ FN

(2)Sensitivity =
TP

TP+ FN

(3)Specificity =
TN

TN+ FP

(4)F1score = (
2

sensitivity−1
+ specificity−1

)

(5)Kappa = 1−
accuracy − pe

1− pe

(6)Precision =
TP

TP + FP
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In Eq. (5), the term pe represents the expected chance agreement (see 57 for details), whereas TP and TN 
represent true positive and true negative samples.

In the comparison of EBE performance metrics reported above, for each proposed algorithm, we employed 
a Shapiro–Wilk test to probe data normality. Since data were not normally distributed, we opted for a Kruskall-
Wallis test (one way) followed by multiple comparison test administered using the Dunn’s correction method.

Moreover, we implemented the Receiver Operating Characteristic (ROC) curves and their Area Under Curve 
(AUC) (Supplementary Fig. 2a). Since ROC curves and AUC can be a misleading goodness-of-fit metric for 
classifiers dealing with unbalanced datasets58,59, we also include Precision-Recall Plots (Supplementary Fig. 2b). 
Sleep metrics were compared using a one way Friedman repeated measures analysis of variance on ranks followed 
by multiple comparison procedure using the Dunn’s method, after checking for normality (Shapiro–Wilk test). 
When appropriate, we reported median values accompanied by their median absolute deviation. As a measure 
of computational complexity, we report the total number of FLOPs for each model configuration. FLOPs can be 
computed directly through the analysis of the network architecture (e.g., depth and convolutional kernel size, 
etc.) and are an acceptable proxy for power consumption of the computing device. To enhance reliability and 
reproducibility of the calculation of this metric, we used the built-in TensorFlow 1.13.1 model profiler.

Since hyperparameter search space is relatively wide, only during the preliminary phase of hyperparameter 
optimization we evaluated our models using the aforementioned metrics calculated on a hold-out validation 
set, i.e. a randomly picked 20% of all the available data. After this preliminary phase, a comprehensive LOSO 
validation scheme was adopted to calculate final performance metrics of each model. If not stated otherwise, we 
only report the results calculated using the LOSO approach.

Alternative machine learning models.  We implemented an array of seven machine learning models 
alternative to lightCNNA. All models are features based. Then, for each 30 s epoch, we computed a vector con-
taining the median, standard deviation, minimum and maximum value of the accelerometric input data for 
each of the three axis of the inertial sensor. Hence a total of 12 features were fed to each classifier. Implemented 
machine learning classifiers were: (1)  Linear Support Vector Machine,  (2) Random Forest, (3)  Naïve Bayes, 
(4) AdaBoost, (5) Gradient Boost, and (6) a swallow neural network or perceptron. Models were implemented 
using the open source software modules, i.e. SciKit-learn 0.22.260, Keras 2.2.4, and TensorFlow 1.12.0.

Data availability
Anonymized data, used with permission for the current study, are available upon request, according to data 
protection policies defined by the Ethical Committee approval.
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