
EndoAbS Dataset: Endoscopic Abdominal Stereo

Image Dataset for Benchmarking 3D Stereo

Reconstruction Algorithms

Veronica Penza? †1,2, Andrea S. Ciullo?2, Sara Moccia1,2,
Leonardo S. Mattos1, and Elena De Momi2

1 Department of Advanced Robotics, Istituto Italiano di Tecnologia , via Morego, 30,
16163 Genova, Italy

2 Department of Electronics Information and Bioengineering, Politecnico di Milano,
P.zza L. Da Vinci, 32, 20133 Milano, Italy

Abstract

Background 3D reconstruction algorithms are of fundamental importance
for Augmented Reality (AR) applications in computer-assisted surgery.
However, few datasets of endoscopic stereo-images with associated 3D
surface references are currently openly available, preventing the proper
validation of such algorithms. This work presents a new and rich stereo
endoscopic image dataset (EndoAbS dataset).
Methods The dataset includes: (i) Endoscopic stereo images of phantom
abdominal organs; (ii) 3D organ surface Reference (RF) generated with
a laser scanner; (iii) Camera calibration parameters. It is also provided
a detailed description of the phantom generation and the camera-laser
calibration method.
Results An estimation of the dataset creation overall error is reported
(camera-laser calibration error 0.43mm) and the performance of a 3D
reconstruction algorithm is evaluated using EndoAbS, resulting in an ac-
curacy error in accordance with state-of-the-art results (< 2mm).
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Conclusions EndoAbS dataset contributes to increase the number and va-
riety of openly available surgical stereo-image datasets, including a highly
accurate RF and different surgical conditions.

1 Introduction

In Minimally Invasive Surgery (MIS), the application of augmented reality sys-
tems is aimed at improving the outcome of surgery by intra-operatively enhanc-
ing the surgeon’s perception and providing guidance inside the patient’s body.
Indeed, these systems provide the surgeon with additional useful information
coming from a pre-operative planning, which fused into the intra-operative sce-
nario can, for example, help in the localization of a tumor area, as described
in [14], [2], [15] and [16]. However, during the surgery, the organs’ geometry
is constantly changing due to breathing, heart beating and tissue-instrument
interaction, making the update of the registration of augmented reality features
very challenging.

3D reconstruction algorithms can be integrated in such systems to retrieve
the geometry of soft tissue surfaces intra-operatively, with the aim of measuring
the surgical site deformation in real time [23]. These methods have the potential
to replace the usage of intra-operative Computer Tomography (CT) or Magnetic
Resonance Imaging (MRI), and overcome their drawbacks (such as non-real-time
information, patient radiation exposure and high costs) by just exploiting only
the images captured from a stereo-endoscope. Despite the performance of these
algorithms is well established in different fields, such as domestic, industrial
robots and game industry [21], their application to surgical endoscopic images
has been proved to be challenging due to the peculiarities that a surgical scenario
presents, such as homogeneous or periodic tissue texture, non-uniform illumina-
tion, presence of specular reflections for non-Lambertian tissue behaviour, blood
and smoke caused by tissue cauterization. Thus, a proper evaluation on specific
surgical endoscopic datasets is of special importance to assess their accuracy
and robustness.

The evaluation is typically performed comparing the resulting point cloud
against a 3D surface reference (in this paper referred as RF), assumed to cor-
respond or, at least, to be close to the real solution [8]. Unfortunately, even if
there are many stereo datasets representing static indoor scenes [21, 22], only few
datasets providing surgical endoscopic images with an associated RF are pub-
licly available (see Tab. 1). In [20], authors presented synthetic stereo-images
and the corresponding RF, taken from a virtual model of liver by using a sim-
ulated stereo endoscope. In [24] and [19], it is proposed a stereo-image dataset
of a moving heart phantom (Chamberlain Group, MA, USA), generated using
the da Vinci R© surgical system, providing a CT reference data1. More recently,
a dataset of stereo-images of ex-vivo animal organs (liver, heart and kidneys)
is presented in [11], providing a CT scanner-based RF and exploring different
conditions, such as presence of blood and smoke, as well as different poses of the

1available at http://hamlyn.doc.ic.ac.uk/vision/
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endoscope. These datasets 2 have been used for validating and benchmarking
different 3D reconstruction algorithms, as summarized in Tab. 1.

Having in mind all these aspects, we can state that a surgical endoscopic
dataset to be used for the evaluation of 3D reconstruction algorithms should
present the following characteristics:

1. It should be made of stereo images, associated RF, camera calibration
parameters and errors involved in the RF creation process that can affect
the algorithms evaluation;

2. The images should present the main characteristics of real endoscopic
surgical scenarios, mentioned before;

3. It should be publicly available in order to allow validation and benchmark-
ing of image processing and computer vision algorithms.

2available at http://open-cas.com/

Table 1: Openly available surgical endoscopic datasets
Surgical Dataset

Surgical
scenario

Organ RF Characteristics Refs

virtual
phantom

liver
3D
model

3 liver texture,
endoscope-tissue of 5cm,
360 endoscope rotation
with 5 steps,
zoom in and zoom out of
the same liver spot (max
zoom 40mm with 2mm
step),
tissue deformation

Hu et al.,
2007 [7]
Rohl et
al.,
2012 [20]
Mountney
and Yang,
2010 [13]

ex-vivo
organs

porcine
liver,
kidney,
heart,
fatty
tissue

CT
scan

different illumination
levels,
smoke and blood presence,
two endoscope-tissue
distances (5cm and 7cm),
two endoscope
orientations angles (0 and
30 degrees)

Maier et
al.,
2014 [11]
Lin et al.,
2015 [9]

phantom
organs

heart
CT
scan

two views of a beating
heart

Stoyanov
et al.,
2010 [24]
Pratt et
al.,
2010 [19]
Penza et
al.,
2015 [17]
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Figure 1: Workflow for the dataset generation. Surgical Phantom Construction:
The phantom organs were designed using the 3D models of the liver, spleen and
kidneys provided by 3DIRCADb and a mechanical characterization study was
conducted to define the stiffness of the material used to create the phantoms.
RF Generation: A camera-laser calibration method was developed to register
the RF in the left camera reference system of the stereo-endoscope, in order
to allow the algorithm validation. Acquisition Scenario: The surgical stereo-
endoscopic dataset was generated, consisting in stereo-images, RF and camera
parameters.

The ideal setup to obtain realistic images would be a real surgical scenario.
However, measuring the RF during a surgical procedure is impractical due to
the narrow access space to the operative field and the difficulties in performing
a CT scan. For these reasons, synthetic data [7, 13, 20], phantoms [7, 19, 24]
and ex-vivo organs [10, 11, 13] have been exploited to reproduce the surgical
site. However, these methods present some issues: In the case of simulated
data the conditions are too far away from the reality; In the case of ex-vivo
organs, in order to preserve the shapes of the organs between RF scan and the
images acquisition, the organs has to be kept in specific conditions as long as
possible (in water and at low temperature), causing timing constrains during the
experiments; In the case of organ phantoms, the main difficulties are related with
the reproduction of the appearance and tissue mechanical properties (if tissue
deformations are also simulated). In the latter two cases, another constraint
is associated to the availability in research laboratories of CT scanner or laser
scanner (used to generate the RF) due to their high cost.

Considering the increasing necessity of surgical stereo image datasets, the
aim of this work is the generation of an Endoscopic Abdominal Stereo image
dataset (EndoAbS ) for 3D stereo-reconstruction algorithms validation, specifi-
cally focusing the attention on the evaluation of passive stereo reconstruction
methods. EndoAbS dataset is composed of 120 stereo-images of phantoms of
different abdominal organs, showing either flat organ surfaces (spleen), or more
complex structures as vessels in liver and kidney. The different shape and tex-
ture of the organs, the variation of lighting conditions and the simulation of the
presence of smoke, make the dataset useful to test the robustness of 3D stereo-
reconstruction algorithms under different conditions. Each pair of images is
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coupled with its RF, that was obtained using a high-resolution laser scanner.
In order to encourage the generation of additional datasets, the paper provides
a detailed description of the phantom generation process and, of the method
used to refer the RF in the camera reference system (camera-laser calibration)
and its accuracy performance. Moreover, in order to exemplify the usage of
EndoAbS dataset, the performance of a 3D reconstruction algorithm, previ-
ously implemented by the authors, was evaluated using the proposed protocol
evaluation.

With respect to the already openly available dataset, EndoAbs dataset is
proposed to provide: (i) a higher numerosity of stereo images; (ii) a wider vari-
ety of tissue and organs’ shape, ranging from smooth surface to more complex
structure, as vessels; (iii) a high accurate RF acquired using a laser scanner; (iv)
the description of an accurate markerless method for registering the RF with
the reconstructed point cloud. This dataset and the camera-laser calibration
code is openly available on-line for the benefit of the computer assisted surgery
community3. A preliminary description of the EndoAbs dataset is presented in
[3].

The paper is structured as follows: in Section 2, the workflow for the dataset
generation is described, considering the abdominal phantom construction and
the RF generation process with a description of the camera-laser calibration
procedure. In Section 3, the experimental setup to validate the dataset gen-
eration errors is presented and results are shown in Section 4. The evaluation
and results of a 3D stereo reconstruction algorithm are also presented, in order
to assess the usability of the proposed dataset. Finally, conclusions and open
issues are reported in Section 5.

2 Material and Methods

EndoAbS dataset was generated capturing the stereo images and the corre-
sponding RF of a surgical scenario represented by phantom abdominal models.
The images were captured using a stereo-endoscope made of 2 Ultra Mini CMOS
analogical Color Cameras (MISUMI, Taiwan) with 640× 480 pixels resolution,
with a baseline of 6mm, and two white LEDs. Two frame grabbers (GRABBY,
TERRATEC, Alsdorf) were used to acquire the stereo images. The RF provided
in the dataset is in the form of a point cloud and it represents the 3D surface
of the surgical scenario as close as possible to the real values. It was generated
using the laser scanner VIVID 910 (accuracy4 of x = ±0.22mm, y = ±0.16mm,
z = ±0.07mm and a precision of 8µm) and the software Polygon Editing Tool
(KONICA MINOLTA).

The generation process of EndoAbS dataset, mainly involving the (i) con-
struction of a phantom abdominal model, the (ii) RF generation and (iii) the
acquisition scenario is described in detail in the following sections and it is shown
in Fig. 1.

3http://nearlab.polimi.it/medical/dataset/
4Conditions: distance 0.6m, temperature 20◦C, relative humidity 65%
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Figure 2: On the left, spleen, kidneys and a liver detail are shown; on the right,
the ribcage containing the organs is shown.

2.1 Surgical phantom construction

Liver, spleen and two kidneys were created through a moulding process as in [4],
and a ribcage-like support was 3D printed to maintain the relative position
between the organs, as shown in Fig. 2. The steps of the process are shown in
Fig. 4 and described in the following sub-sections.

2.1.1 3D organ model and mold generation

The 3D models of the organs and ribcage were taken from 3D-IRCADb5. The
3D-IRCADb includes anonymized DICOM CT medical images (voxel size: 0.96mm×
0.96mm × 2.4mm) with an associated manual segmentation performed by ex-
pert clinicians, and an organ surface model stored in VTK format, as shown in
Fig. 4(a). 3D virtual negative molds were modelled using the software Blender
2.7.4 (Blender Foundation, Amsterdam), as shown in Fig. 4(b). The virtual
molds were 3D printed in acrylonitrile butadiene styrene (ABS), using the Elite
Dimension 3D printer (layer thickness: 0.25mm), see Fig. 4(c).

2.1.2 Polyurethane organ phantom

We decided to recreate soft phantoms of abdominal organs with the aim of repre-
senting the surgical scenario as close as possible to the real one. This character-
istic will also permit a future improvement of the dataset with tissue-instrument
interaction images. To this end, a bi-component polyurethane elastomer (F-105
A/B 5 shore, from BJB Enterprise) was combined with a softening agent (SC-22,
from BJB Enterprise) in order to modify the elastomer stiffness and match ap-
proximately the real tissue characteristics. We considered different stiffness val-
ues for liver tissue reported in the literature: 1.3kPa [25], 0.90 to 1.730kPa [28],
2.0kPa [12]. However, since the measured viscoelastic properties can vary de-
pending on experimental conditions and on the used testing method [12], we
decided to perform a compressive mechanical test comparing the results ob-
tained from a cylindrical sample (height = 15mm, diameter = 28.2mm) of
porcine liver against samples of polyurethane made with different percentage of

5http://www.ircad.fr/research/3dircadb/
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Figure 3: Stress-strain curves for each phantom sample with different percentage
of softening agent and the liver sample used as template.

softening agent (from 0% to 80% with steps of 10%). The compressive mechan-
ical test was done with a testing machine (EASYDUR DYNO), compressing
the samples until 2.5mm, with discrete steps of 0.1mm. Each trial was per-
formed from a starting configuration in which the piston was in contact with
the sample, introducing a pre-strain of 0.1mm on the samples. Consequently,
the stress-strain curves (see Fig.3) and the Young’s modulus for each sample
was computed, allowing to find the right percentage of softening agent.

Furthermore, the organs were painted with acrylic colors to simulate the
tissue superficial texture, with the aid of a sponge, and small vessels using
acrylic markers with fine tip, as shown in Fig. 4(d). In the liver and kidney
phantoms, plastic tubular structures were attached on the surface and painted
to represent main vessels, as it is shown in Fig. 2. A transparent ultrasound gel
was laid on the surface of the organs to reproduce the typical wet surface, and
thus the specular highlights in the images.

2.2 RF generation

In order to compare the reconstructed point cloud with the RF, they both have
to be in the same reference system. For this reason, a camera-laser calibra-
tion method for estimating the geometrical transformation between the laser
and the left camera of the stereo endoscope was developed. We chose the left
camera since it is standardly used as the reference system in 3D reconstruction
algorithms.

7



(a) (b) (c) (d)

Figure 4: Example of moulding process for the creation of kidney phantom:
(a) 3D virtual model from 3D-IRCADb CT database; (b) 3D virtual negative
molds; (c) 3D printed negative mould; (d) polyurethane kidney phantom.

LASER  SCANNER

ENDOSCOPE

CALIBRATION  PLATE

{L}

{C}
{W}

𝑻𝑪𝑾
𝑻𝑪𝑳

Figure 5: Camera reference system {C}, Laser reference system {L} and chess-
board reference system {W} are the reference systems involved in the camera-
laser calibration. TW

C is the transformation from {C} to {W}; TL
C is the

unknown transformation from {C} to {L}.

2.2.1 Camera-Laser calibration

The camera-laser calibration method consists in computing the rigid transfor-
mation between the same set of points measured in the laser scanner and in the
left camera reference systems, {L} and {C} respectively. For the sake of clarity,
the setup, the reference systems and the geometrical transformation involved in
this method are summarized in Fig. 5.

In order to perform this calibration, it is necessary to use a custom target
which corners can be identified both by the laser, as 3D geometrical features, and
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the camera, as 2D visual information. To this end, an asymmetrical octagonal
calibration plate was designed, which vertices pvert were used as the set of points
for the calibration process, as shown in Fig. 6.

In order to improve the manual selection of the vertices in {C} (pc
vert), a

standard square chessboard (7 × 11, square size: 2.5mm) was placed on the
calibration plate. Knowing the relative location of the plate vertices pvert with
respect to the chessboard, it is possible to computer the position of pc

vert, ex-
ploiting the relative transformation of the chessboard reference system {W} and
the camera reference system {C}, obtained from the extrinsic calibration. The
same vertices were identified in {L} (pL

vert) as the intersection of the calibration
plate edges estimated on the point cloud measured with the laser scanner, as
shown in Fig. 6(b). A detailed description of pL

vert and pC
vert estimation process

is reported in the following paragraphs:

Vertices estimation in {C}. pC
vert were computed as stated in the following

equation:
pC
vert = TW

C ∗ pW
vert (1)

The vertices pW
vert were geometrically identified in {W} knowing the ver-

tices distances from the origin of the chessboard reference system, and TW
C was

computed using the Stereo Camera Calibrator Toolbox of Matlab 2015b (The
MathWorks, Inc.) [5, 29].

Vertices estimation in {L}. The pipeline for pL
vert identification is:

• The points belonging to the calibration plate were manually selected from
the laser scan point cloud (removing non-informative points belonging to
the background);

(a) (b)

Figure 6: (a) Vertex estimation in {C}: view of the calibration plate. The
vertex points (green dots) are at known distances from {W} origin. (b) Vertex
estimation in {L}: view of the calibration plate point cloud. The vertex coor-
dinates in {L} (yellow circle) were calculated as the intersection of each pair of
estimated lines (green lines).
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Figure 7: Example of endoscopic stereo dataset images. All the different condi-
tions are represented (distances, levels of light and smoke) for one pose of the
spleen, kidney and liver.

• Noise reduction was carried out estimating the calibration plate plane,
according to Maximum Likelihood Estimation SAmple Consensus (MLE-
SAC) [26] and projecting on the estimated plane all the points distant less
than a threshold (comparable with the accuracy of the laser scanner);

• The edges of the calibration plate were semi-automatically identified: (1)
the calibration plate contour was identified searching the minimum and
maximum value of the coordinates x and y for each row and column of
the discretized point cloud; (2) manually selecting the points belonging to
each edge and estimating the corresponding line;

• The pL
vert were computed as the intersection of each pair of lines, as in

Fig. 6(b).
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The scan of the calibration plate and the image acquisition were done con-
secutively, to avoid interference between the laser and the camera.

Once pL
vert and pC

vert were identified, TL
C was estimated solving the equation

(2) with the Singular Value Decomposition (SVD) method:

pC
vert = TL

C ∗ pL
vert (2)

The mathematical solution was guaranteed by using more than three non-
collinear points [1, 6], namely the eight vertices of the calibration plate. The
camera-laser calibration procedure was implemented in Matlab 2015b (The
MathWorks, Inc.).

2.2.2 RF 2D map

To facilitate the comparison between the RF transformed in {C} and the 3D
reconstructed point cloud, the RF was stored into a 2D map. Each (u, v) cell
of the map contains the 3D coordinates (x, y, z) of the point projected on the
image plane using the left camera intrinsic parameters. The projection does not
take into account the stereo camera rectification.

2.3 Acquisition scenario

For the acquisition of EndoAbS dataset, the laser scanner and the stereo en-
doscope were positioned having approximately the same field of view (see Fig.
5). The stereo images and the scans were separately captured, minimising as
much as possible the time interval between the acquisition to avoid any changes
in the phantoms’ pose. All the acquisitions were performed with only the en-
doscopic light turned on (the external lights were switched off) to mimic the
internal abdomen illumination during a surgical procedure. In order to test the
robustness of 3D stereo-reconstruction algorithms under different conditions,
the images were created introducing: (i) Presence of smoke, created immersing
dry-ice in hot water; (ii) 3 different endoscopic light levels (l1, l2, l3), varying
the light intensity; (iii) Two phantom-endoscope distances (distmin ≈ 5cm and
distmax ≈ 10cm). Sample images of the dataset are shown in Fig. 7.

Thus, the obtained dataset is made of:

• 120 stereo-images of the surgical scenario (PNG format), organised as
indicated in Tab. 2;

• RF in form of a point cloud (TXT format);

• Intrinsic parameters for both cameras, and stereo calibration extrinsic
parameters (TXT format);

• Description of the errors involved: laser accuracy, mean re-projection error
of the camera calibration and camera-laser calibration error.
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Table 2: Description of the EndoAbS Dataset structure, including acquisition
conditions for each organ.

Organ dmin dmax Total

Spleen 4 poses 3 poses 7 poses
Kidney 4 poses 4 poses 8 poses
Liver 2 poses 3 poses 5 poses
Total 10 poses 10 poses 20 poses

Each pose comprises six images: three images with a different level of
illumination (l1, l2, l3) and three images with smoke.

3 Experimental Evaluation

3.1 Dataset generation error evaluation

The errors involved in the dataset generation are introduced by (i) characteris-
tics of the camera and the laser scanner; (ii) camera calibration; (iii) strategy for
vertices identification in {C} and {L}. The error resulting from the evaluation
of the camera-laser calibration procedure is assumed to be the overall estima-
tion of the error. In order to measure this error, 10 validation sets consisting
of images and laser scans were acquired with the experimental setup shown in
Fig. 5. In each set, 9 calibration plate orientations (Fig. 8) were exploited, vary-
ing approximately ±30◦along vertical and horizontal direction. These sets were
used to compute TL

C.
In addition, a test set composed of 27 image-scan pairs was acquired to

evaluate the camera-laser calibration error ε, defined as the median Euclidean
distance between pC

vert and pL
vert projected in {C} with the computed TL

C.
The median was considered since the error population was not normally

distributed (Kolmogorov-Smirnov test pvalue < 0.05).
A statistical analysis was conducted to verify if there is a correlation between:

(i) ε and the number of image-scan pairs used in the camera-laser calibration
procedure, (ii) ε and the orientation of the calibration plate with respect to the
camera-laser configuration.

• Number of image-scan pairs: The correlation between ε and the number
of the used image-scan pairs was estimated computing TL

C varying the
number of image-scan pair from 1 to 10 and computing ε applying the
obtained TL

C to the test set. The statistical correlation was evaluated
through the Pearson Product-Moment Correlation Coefficient (pvalue <
0.05).

• Orientation of the calibration plate: The statistical dependence between ε
and the orientation of the calibration plate was evaluated computing TL

C

for 9 different calibration plate orientations of the validation set (Fig. 8).
Kruskal-Wallis test was performed (pvalue < 0.05) to assess the presence
of statistical difference among the different orientations of the calibration
plate.
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Figure 8: Example of calibration plate orientation with respect to the image
plane.

A comparison of our method with respect to a state-of-the-art calibration
method [27] was conducted, using 18 image-scan pairs, as suggested in the
paper. The calibration error ε was evaluated for 10 different trials of calibration
for both methods, and Kruskal-Wallis test was performed (pvalue < 0.05) to
assess the presence of statistical difference between the two methods. Since the
state-of-the-art algorithm requires image-scan pairs of the calibration plate at
different orientations, the calibration plate was positioned farther away from the
laser scanner and the camera, in order to be visible by both of them, however
compromising the calibration accuracy. For this reason, we also evaluated our
method using one single image-scan pair oriented towards the laser scanner and
the camera, thus shortening the distance of the calibration plate from them.

3.2 Dataset realism evaluation

In order to investigate the realism of the endoscopic images as regards to real
clinical images, evaluations of surgeons were collected as part of a questionnaire
with scores in 5-point Likert-type scale. The users involved were 9 medical
doctors with 1 to 30 years of experience in general, urology and cancer surgery.
Their field of expertise ranges from open surgery (11, 1%) to robotic minimally-
invasive surgery (22, 2%) and laparoscopic surgery (66, 7%).

The questionnaire was made of 24 images, a sample of images taken from
EndoAbS dataset and representative of the different level of lights, distances,
presence of smoke and different organs. The order of the images was randomized
to provide a global overview of the image realism. For each image the users had
to indicate an answer to the question How much are the characteristics repre-
sented in the image (tissue, illumination, specular highlight, smoke, distances
from the tissues) similar to a real scenario? along a line divided in 5 intervals
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(the score 1 means very dissimilar, while 5 implies very similar).
The scoremean was considered as the average of the scores assigned to the

images.

3.3 3D reconstruction evaluation

EndoAbS dataset was used for the evaluation of a 3D reconstruction algorithm
previously developed by the authors [18]. For the validation process, we decided
to follow the terminology and methodology of the protocol for reference-based
validation studies proposed in [8], in order to allow for comparability of the
results. The protocol starts requiring the definition of the specification of the
validation objective, including the clinical context and objective (C) that in our
case can be identified as dense and accurate (accuracy < 2mm) 3D reconstruc-
tion for abdominal MIS surgery. Following the terminology of the protocol, the
evaluated method M [18] is referred as FM , and Ref stands for the RF, also
called Ground Truth. The dataset used for the validation is referred as DI , i.e.
in this case the EndoAbS dataset, where DM

I are the 120 stereo images and
RRef the associated RF already transformed in the camera reference system.
ERef is the error committed in the generation of the RF associated to the im-
ages and it is described in Sec. 2.3. The hardware used for the acquisition of
DM

I and DRef
I is also described in Sec. 2.3. The parameters PI used by FM are

described in Tab. 3.

Table 3: Parameters PI used by FM (3D reconstruction algorithm)
FM Parameters value
Census window 9x9
Census Block Size 11x11
Threshold Spurious remover 10
Threshold LRConsistency Check 4
LO-RANSAC max iteration 100
number of super pixel 70
disparity range 150-250

As validation criterion V C, we are proposing n evaluation protocol made of the
following metrics:

Accuracy. The 3D reconstruction accuracy was evaluated as the median of
the Euclidean distances between the reconstructed point cloud RM and RRef ,
which is the discrepancy obtained through the comparison function OD =
FC(RM , RRef ) defined by the protocol. Since the point cloud and the ground
truth are stored in a 2D map, the error can be calculated for each pixel of
the image. Note that the 2D map of the RF is expressed in the non-rectified
left camera image plane. Therefore, a rectification of the 2D map of the RF
was necessary in order to perform a pixel to pixel comparison. Only the pixels
of the left grayscale image with an intensity value greater than 16 (hereafter
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called region of interest) were considered in the evaluation, eliminating the ar-
eas where the organ phantom is not present, following the same criteria used
in [18]. The region of interest (ROI) was chosen on the image with the highest
level of illumination, since the low level of illumination could present pixels with
low intensity even if they belong to the organ surface. The same ROI was used
for the evaluation of the images with other levels of illumination and presence
of smoke.

Percentage of reconstructed points. It was computed as the ratio between
the number of reconstructed points with respect to the number of RF points,
both identified in the region of interest.

Robustness. The algorithm was applied to the entire dataset, considering l1,
l2 and l3 different illumination levels, distmin and distmax between the endo-
scope and the organs, and smoke presence. A non-parametric test (Kruskal-
Wallis pvalue < 0.05) was performed to test if the accuracy was statistically
different varying (i) l1, l2 and l3, (ii) distmin and distmax (≈ 5cm and ≈ 10cm)
considering only l3 and (iii) smoke presence against l3 for distmin and distmax.

4 Results

4.1 Phantom surgical scenario

An abdominal surgical scenario was recreated with phantoms of liver, spleen
and kidneys. Superficial vessels were painted and big vessels were added to
increase the realism of the organs. The stress-strain curves, obtained from the
compressive mechanical test, revealed that using the 50% of softening agent the
Young’s modulus of the polyurethane material (0.97 kPa) is comparable with
the liver one (see Sec. 2.1). A cost analysis of the moulding process is reported
in Tab. 4.

Table 4: Abdominal Phantom Costs
organ molds [e] polyurethane [e] total [e]

Spleen 80 30 110
kidney 40 10 50
Liver 170 90 260

TOTAL [e] 420

4.2 Dataset error

Regarding the camera-laser calibration evaluation, no statistical correlation be-
tween the calibration error ε and the number of image-scan pairs used for the
calibration was found. Moreover, no statistical difference for the calibration
errors ε varying the calibration plate orientation was found.
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Statistical difference was found comparing the calibration error of the pre-
sented method with respect to the method proposed by [27]. There are two main
causes for this difference. The first one is attributed to the filtering of the laser
scanner data during the plane estimation in the proposed method, as described
in Sec. 2.2.1. And the second one is related with the fact that [27] uses plane-
to-plane distance minimization instead of point-to-point distance minimization,
not taking into account the translation along the plane directions and rotation
around the plane axis. Numerical results are summarized in Tab. 5. The evalu-
ation of the camera-laser calibration using only one image-scan pair showed an
error equal to 0.43mm (Q1 = 0.41mm - Q3 = 0.43mm).

A description of the specifications of the instruments used for the generation
of the dataset and of the errors measured in the process is reported in Tab. 6.

Table 5: Camera-Laser Calibration Errors
ε[mm] Q1[mm] Q3[mm]

State of the Art [27] 1.94 1.83 2.62
Our method 1.43 1.02 1.78
Our method∗ 0.43 0.41 0.43

* These results come from an evaluation of the proposed camera-laser

calibration method using only one image-scan pair, as explained in Sec. 3

Table 6: EndoAbS Dataset generation errors
Laser scanner accuracy* x = ±0.22mm

y = ±0.16mm
z = ±0.07mm

Mean Reprojection Error (left camera) 0.250 pixels
Mean Reprojection Error (righ camera) 0.235 pixels
Camera-laser calibration error 0.43mm
* Conditions: distance 0.6m, temperature 20◦C, relative humidity 65% or less

4.3 Dataset qualitative evaluation

In Fig. 9 is presented a box plot summarizing the score assigned to the 24 sample
images included in the questionnaire. The scoremean is 2.7 (±0.50). Note that
the image on the x-axis are presented in the same order as they appeared in the
questionnaire.

4.4 3D reconstruction evaluation

In Tab. 7, the accuracy and the percentage of reconstructed points are re-
ported. In case of distmin, accuracy was not statistically different for 3 lev-
els of illumination (pvalue = 0.38), and with or without the presence of smoke
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Figure 9: Boxplot showing the SUS score (from one to five considering the
System Usability Scale questionnaire) assigned to 24 selected images of EndoAbS
dataset by the surgeons answering to a questionnaire, in order to evaluate the
realism of the characteristics represented by the images.
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Figure 10: Boxplot showing the accuracy of the 3D reconstruction algorithm
varying the level of illumination (l1, l2, l3) and the presence of smoke for distmin

(left) and distmax (right).
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Table 7: 3D stereo-reconstruction algorithm performance in terms of accuracy
(mean and standard deviation) and percentage of reconstructed points.

distmin

l1 l3 l3 s
accuracy [mm] 1.16 1.01 1.00 2.62
std [mm] 0.34 0.25 0.27 4.17
points [% ] 98.99 93.25 93.25 89.52

distmax

accuracy [mm] 2.40 1.80 1.55 3.61
std [mm] 1.07 0.37 0.30 3.81
points [% ] 76.64 87.56 93.04 97.69
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Figure 11: Example of results of the 3D reconstruction algorithm varying the
level of light from the left (l1) to the right (l3). For each pair of stereo images,
the bottom row shows the error map (right) and the reconstructed point cloud
(left). The color bars represent the error in mm.

(pvalue = 0.17). In case of distmax there was significance difference between
l1 and l3 (pvalue = 0.0052), and between l3 and smoke (pvalue = 0.049). The
same test performed between distmin and distmax for the illumination level l3
showed that there was statistical difference with pvalue = 0.0025. These re-
sults are shown in Fig. 10. An example of the errors in the point cloud 3D
reconstruction is shown in Fig. 11 and Fig. 12.

5 Discussion and Conclusion

This paper describes the creation of EndoAbS dataset for the quantitative eval-
uation of 3D reconstruction algorithms based on stereo-images. The dataset
consists in 120 endoscopic stereo-images and the associated RF. The main con-
tribution of this work is to increase the number and variety of openly available
surgical stereo-image datasets, which are essential to test and benchmark the
accuracy and robustness of 3D stereo-reconstruction algorithms under realistic
conditions. In this paper, we also provide an analysis of the errors involved
in the dataset creation process, particularly the camera-laser calibration error,
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Figure 12: Example of results of the 3D reconstruction algorithm without and
with presence of smoke. For each pair of stereo images, the bottom row shows
the error map (right) and the reconstructed point cloud (left). The color bars
represent the error in mm.

which represents an overall estimation of the dataset error and it is an impor-
tant parameter for proper assessment of reconstruction algorithms. In addition,
a detailed description of the phantom development and the methods used was
provided to facilitate future expansion of EndoAbS dataset or the development
of additional datasets adapted to other specific needs.

A surgical scenario made of phantoms was specifically fabricated for the
creation of EndoAbS. This provided a positive tradeoff between the quality of
the RF that can be obtained and the clinical realism of the data. Indeed,
phantom does not suffer of changes in shape in the short time and can be re-
used many times without deteriorating, as opposed to ex-vivo organs. Liver,
kidney and spleen were created with a moulding process, and a compressive
mechanical test was conducted to give approximately to the phantom the same
stiffness of real tissues.

Moreover, in order to make the models as realistic as possible, the organ
surfaces were painted emulating tissue texture and superficial tiny vessels. Big

19



vessels were also reproduced to allow the evaluation of 3D reconstruction algo-
rithms in case of more complicated structures and at different depths. Never-
theless, not all of these realistic properties were exploited for the generation of
images in the dataset yet. The acquisition of images of tissue deformations and
of their interaction with surgical instruments will be part of a future expansion
of EndoAbS.

Regarding the assessment of the realism of the images, results obtained from
questionnaires demonstrate that surgeons consider them of satisfactory realism.
As expected, the average rating score was not high since surgeons can easily
distinguish between real images and those in our dataset. Nevertheless, the
quality of the images was deemed satisfactory for the scope of this contribution.

The corresponding RF of each stereo-image pair was generated using a laser
scanner, and a calibration algorithm was designed to register the RF in the left
camera reference system. The benefits of the proposed calibration approach
with respect to state-of-the-art methods were demonstrated by the highly ac-
curate calibration achieved with a single scan of the calibration plate (median
calibration error 0.43mm). When using other methods, e.g. [27], a comparable
level of accuracy can be achieved with 15 to 20 image-scan pairs. This factor
accelerates and facilitates the calibration process, since it is difficult to find
the right workspace in which the calibration plate is seen by both measuring
systems.

The evaluation of a 3D reconstruction algorithm using the dataset has demon-
strated its applicability. The computed accuracy errors for the evaluated algo-
rithm are in accordance with the ones previously reported in [18]. A deeper
analysis of the algorithm has confirmed that the results are more accurate if
the endoscope is closer to the tissue. In this case, the algorithm performs well
even under varying lighting conditions or the presence of smoke. In case of
higher distances from tissue, the accuracy is more affected by the illumination
level or the presence of smoke. Note that when the endoscope-tissue distance
increases, the illumination and the disparity resolution decreases, directly affect-
ing the algorithm performance. This could explain the difference in accuracy
and percentage of reconstructed points between distmin and distmax.

During this work, the usage of a custom-made endoscope and light was mo-
tivated by the unavailability of a standard commercial equipment, due to their
high cost. Such endoscope does provide lower resolution images compared to
modern clinical devices. Moreover, the images were captured with the endo-
scope in a fixed position, thus, they do not reproduce the shivering behaviour
due to the manipulation of the endoscope by the clinician, better simulating the
condition of robotic surgery, where the camera is moved using a robotic arm.

As part of future work, EndoAbS dataset will be expanded to include images
with presence of blood, instrument occlusion, and dynamic changes. This will
include tissue motions caused by heart beating and breathing, and deformations
due to the contact with surgical instruments. Adding dynamic information
to the dataset, would also give the opportunity to use it within a simulator
environment like SOFA (https://www.sofa-framework.org).
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