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ABSTRACT

Background: Abnormal beta band activity in the subthalamic nucleus (STN) is known to be exaggerated
in patients with Parkinson’s disease, and the amplitude of such activity has been associated with akinetic
rigid symptoms. New devices for deep brain stimulation (DBS) that operate by adapting the stimulation
parameters generally rely on the detection of beta activity amplitude modulations in these patients.
Movement-related frequency modulation of beta oscillatory activity has been poorly investigated,
despite being an attractive variable for extracting information about basal ganglia activity.
Objective: We studied the STN oscillatory activity associated with locomotion and proposed a new
approach to extract movement related information from beta band activity.
Methods: We recorded bilateral local field potential of the STN in eight parkinsonian patients implanted
with DBS electrodes during upright quiet standing and unperturbed walking. Neurophysiological re-
cordings were combined with kinematic measurements and individual molecular brain imaging studies.
We then determined the information carried by the STN oscillatory activity about locomotion and we
identified task-specific biomarkers.
Results: We found a gait-related peak frequency modulation of the beta band of STN recordings of
parkinsonian patients. This novel biomarker and the associated power modulations were highly infor-
mative to detect the walking state (with respect to standing) in each single patient.
Conclusion: Frequency modulation in the human STN represents a fundamental aspect of information
processing of locomotion. Our information-driven approach could significantly enrich the spectrum of
Parkinson’s neural markers, with input signals encoding ongoing tasks execution for an appropriate
online tuning of DBS delivery.
© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

or the motor thalamus — does little to improve (or can even exac-
erbate) gait disturbances [1—4].

The use of deep brain stimulation (DBS) to intervene directly in
pathological neural circuits has changed the way we treat brain
diseases and investigate their underlying pathophysiology. How-
ever, more than two decades after its introduction as a treatment
for motor symptoms of Parkinson’s disease (PD), DBS is still asso-
ciated with drawbacks, including limited efficacy and adverse ef-
fects. For example, stimulation at the most commonly used targets
— the subthalamic nucleus (STN), the globus pallidus internus (GPi)
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Most DBS systems in current use are open-loop devices. They
provide continuous stimulation (cDBS) regardless of the (task-
related) state of neural activity or its symptom-specific de-
rangements. By contrast, new DBS systems being developed oper-
ate by adapting the stimulation parameters (such as amplitude and
frequency) in response to an input signal (adaptive DBS, aDBS)
[5—7]. The most studied input signal to control aDBS in PD relies on
the analysis of oscillations in local field potentials (LFP) in the
dorsolateral (motor) territory of the STN. Excessive oscillations in
the beta frequency range [13,35]Hz are consistently recorded over
time by the stimulating electrodes of unmedicated PD patients in a
resting state condition [8]. Although a definitive demonstration of
causality is lacking, the relationships between excessive
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subthalamic oscillatory activity and the severity of akinetic-rigid
symptoms [8] and between beta amplitude suppression and the
effectiveness of levodopa therapy [9] or ¢DBS [10] further sup-
ported the use of the power of beta oscillations as a biomarker for
PD [8,11—13].

However, caution is warranted in using beta oscillations for
aDBS, as they are relevant for many perceptual, cognitive, and
motor physiological processes [14]. Indeed, while ameliorating
certain symptoms, power beta modulation might impair the re-
sidual task-related physiological coding capacity of the stimulated
area [15]. Furthermore, amplitude modulation might not capture
circuit dynamics, such as frequency- and phase-specific synchro-
nization [16,17], which would be fundamental in routing the in-
formation flow across distant brain areas [18,19]. This might be
particularly the case for large-scale networks such as the locomotor
network [20,21].

In this study, we investigated the beta modulations associated
with locomotion in the STN of eight parkinsonian patients and
identified beta-related neural features able to reliably discriminate
between the standing and walking conditions in each single
patient.

Methods
Subjects, surgery, clinical and molecular imaging evaluation

We tested eight patients with idiopathic PD according to the UK
Parkinson Disease Brain Bank criteria [22]. Additional inclusion
criteria were a stable clinical response to STN DBS, with unchanged
parameters and medications for at least eight weeks prior to the
study. Exclusion criteria were any other neurological disorder
including cognitive decline or mood disturbances, as evaluated
using standardized rating scales (i.e., Parkinson neuropsychometric
dementia assessment, Mattis dementia rating scale, Hamilton
depression rating scale, and the non-motor symptoms scale), dia-
betes, and orthopedic problems. A preoperative 3 T MRI (T1, T2, T2*,
FLAIR, Trio, Siemens Medical Systems) ruled out morphological
anomalies.

All patients were implanted at the University Hospital of
Wiirzburg (Wiirzburg, Germany) with the Activa PC+S® system
(Medtronic, PLC). This system allows therapeutic DBS as well as on-
demand LFP recordings from the chronically-implanted electrodes.
The device and the related hardware and software for program-
ming and readout were provided by Medtronic PLC under a request
for application agreement. The company had no impact on study
design, patient selection, data analysis, or reporting of the results.

The surgical procedure has been previously described [4,23]. All
patients received quadripolar macroelectrodes (model 3389,
Medtronic PLC). The intended coordinates for the STN (i.e., 12mm
lateral, 2mm posterior, 4mm ventral to the mid-commissural point)
were adjusted according to individual delineation of the STN on T2-
weighted and susceptibility-weighted MRI (Siemens MAGNETOM
Trio 3.0 T). The precise localization of the active (and recording)
contacts in the STN was confirmed by image fusion of preoperative
stereotactic MRI and postoperative CT scans (SureTune™, Med-
tronic, PLC) [4,24].

For clinical assessment, parkinsonian patients were evaluated
within one month before surgery (pre-DBS) with the Unified Par-
kinson’s Disease Rating Scales motor score (UPDRS-III) after over-
night (>12h) withdrawal of all dopaminergic medications (meds-off)
and about 1h upon receiving 1 to 1.5 times levodopa/benserazide of
the levodopa-equivalent morning dose (meds-on). After surgery
(post-DBS), patients were clinically assessed using the UPDRS-III
with: (i) stimulation off for at least 2 h (stim-off), (ii) stimulation
on (stim-on) with the clinically optimized and chronically used
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stimulation parameters, (iii) meds-on (as before surgery), and (iv)
meds-on and stim-on. The stimulation parameters were controlled
by a physician independent from our study, which provided sus-
tained improvement without any side effects.

All patients performed a single-photon computed tomography
(SPECT) and ['?%I|N-w-fluoropropyl-2p-carbomethoxy - 3p -(4-
iodophenyl)nortropane (FP-CIT) to measure the striatal dopamine
reuptake transporters (DAT) density. SPECT data acquisition and
analysis have been described previously [25,26]. Striatal DAT
binding measurements of the patients were compared with normal
values of 15 healthy subjects (four males; age, mean and standard
deviation (SD) 62+9 years, range [44; 68] years) (Supp. Table 1).
Based on the non-displaceable binding potential (BPnp) of the DAT,
we identified the STN of the brain hemisphere with more (+) or less
(—) dopaminergic innervation [7,24].

The local Institutional Review Board of the University Hospital of
Wiirzburg approved the study and all patients gave written
informed consent according to the Declaration of Helsinki.

Protocol and biomechanical assessment

The gait analysis was performed in the morning in the meds-off
and stim-off condition. Subjects walked barefoot at their preferred
speed over a 7m long walkway. At the beginning of each walking
trial, we recorded about 30s of quiet upright standing. Subjects
started walking after a verbal cue. Patients performed at least six
trials (range six to ten) according to their clinical conditions.

Kinematic data were recorded using an optoelectronic system
(SMART-DX, BTS) and 29 spherical retro-reflective markers (15mm
diameter) fixed to anatomical landmarks [27]. The gait cycle (i.e.,
the stride) was characterized by a set of parameters automatically
extracted with MatLab-based custom scripts (Matlab 2019, The
MathWorks, Inc) and visually inspected [28].

The stride is the interval between two sequential initial floor
contacts by the same limb (i.e., the heel strike of one foot and the
next heel strike of the same foot). We measured the stride duration,
length, and velocity (normalized to subject’s height), as well as the
stance and double-support duration (time-normalized as a per-
centage of the stride duration). For each subject and condition, all
variables were averaged over the trials. Normative data were ob-
tained with the same experimental setup from 11 healthy controls
matched for age and anthropometric measurements (nine males;
age, mean and SD 58+4.7 years, range [50; 66] years) (Supp.
Table 2).

Electrophysiological signal recording and analysis

We recorded the LFP with single bipolar derivation, amplified by
1000, and sampled at 422Hz. We selected a bipolar montage
crossing the chronically-active electrode [29].

The synchronization across devices was achieved with two
transcutaneous electrical nerve stimulation (TENS) artefacts at the
beginning and at the end of each trial, introduced simultaneously
into the Activa PC+-S® and the SMART-DX acquisition systems. The
TENS electrodes were placed on the supraclavicular fossa, directly
on the cable that connects the impulse generator with the elec-
trodes, and over the burr-hole site. One electromyographic probe
(FREEEMG, BTS), built-in with the SMART-DX, was placed next to
the TENS electrodes. We used the last peak of each TENS artefact as
the synchronization instant across modalities, easily recognizable
because of its sharp drop-off.

The LFP recordings of two STNs (STN+ for wue09 and STN- for
wuel0) showed cardiac artefacts. In this case, we first detected
signal peaks representing the QRS complex of the (synchronized)
electrocardiogram. We then divided the LFP signals in epochs of 1s,
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centered on each QRS peak time. We created a matrix N x time-
frame (where N is the number of QRS peaks) and computed its
singular value decomposition. To clean the LFP signal [30], we (i)
visually detected all the eigenvectors corresponding to ECG arte-
fact, (ii) reconstructed from these components the artefact signal,
and (iii) subtracted from the original LFP signal the reconstructed
artefact signal.

We analysed the LFP by means of a time-frequency decompo-
sition using 46 Morlet wavelets in the [5;40]Hz range (central
frequency = 1Hz, Full Width Half Maximum = 3s) [31]. The re-
cordings during walking were divided into epochs corresponding
to a stride (WALK [epochs]). Since the stride length varied across
trials and subjects, we used a linear time-warp algorithm, similar to
the one proposed by Sadeghi and coll [32] to normalize the time-
frequency representation of each stride to a reference stride
duration of 1.15s, which was equal to the mean stride duration of
the whole patient population (Supp. Table 2). We used a third order
polynomial interpolation with a 1.5s time-window centered at each
velocity peak of the swing foot. This time window lasted 1.5s to
exceed the duration of the stride, and ensured that the interpola-
tion border-effect did not influence the analysis window. The
number of WALK epochs in the whole study population was in the
range [13;21]. In line with this approach, the LFP recordings of
quietly upright standing (STAND [epochs]) were also divided in
successive, non-overlapping epochs with the same duration of the
reference stride (i.e., 1.15s). For each epoch, we then estimated the
PSD integrating its time-frequency representation over time. We
then computed the mean PSD for both STAND and WALK, averaging
across epochs of the respective condition.

The LFP recordings were characterized by the simultaneous
presence of an aperiodic background with 1/f PSD superimposed to
the true oscillatory periodic components. To properly analyze
specific power changes, we decided to parameterize the estimated
mean PSD to disentangle this double aperiodic/periodic nature of
LFP signal power [33]. Following Haller and coll. [33], we modeled
the mean PSD as the sum of putative, periodic oscillatory compo-
nents parameterized by their central frequency, power and band-
width, as measured from Gaussian mixture model fits, plus an
aperiodic component, as described from a power law fit (Supp.
Fig. 1). Following the parameterization procedure, we removed
the “colored” 1/f background noise from the PSD of each epoch to
analyze only the true oscillatory components (Fig. 1). Unless
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Fig. 1. Spectral peaks during the walking and standing condition of one patient
(wue02).

A) Power spectral density of the subthalamic nucleus (STN) local field potentials after
removal of the aperiodic component (see Methods) during standing (red line) and
walking (blue line). Filled areas represent the standard error of the mean (SEM)
computed as the 5% and 95% confidence intervals of the bootstrapped distribution
across trials (100 repetitions with replacement). B) Same as (A) for the other STN (of
the least dopamine-depleted hemisphere, STN+). (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this article.)
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otherwise specified, the PSD results discussed in the text were
obtained after 1/f noise removal.

Information analysis

Mutual information [34] can quantify the reduction of uncer-
tainty about a given external state that can be gained from
observing a single-trial neural activity feature [35,36].

We evaluated for each subject how much information about the
state or condition (i.e., STAND and WALK) was contained in
different features of the subthalamic LFP spectrum during each
epoch. Given a feature F having values r and a set of subject states S,
the mutual information between F and S is given by (Eqn 1):

P(r]s)
P(r)

I(S;F)="_P(s))_P(rls)log, (1)

where P(s) is the probability of being in the state s, P (r|s) is the
probability of observing in the same epoch a value r of the feature
given a state s, and P(r) is the probability of observing across all
epochs a value r of the feature. Here, the set of possible states S was
composed by two different conditions, S = {STAND, WALK}.

We considered the following six features (i-vi) of the sub-
thalamic LFP spectrum. The first feature (i) was the frequency with
the highest amplitude (fprak) in the entire beta band [13;35]Hz in
the PSD of each epoch. In the PSD parameterization, we selected the
Gaussian component G (defined in terms of its amplitude A¢, center
frequency fg, and support ¢¢) with the highest amplitude. We were
thus able to define a dominant frequency peak for the STAND
(fstanp) and WALK (fuwark) condition. Then we considered the power
of each epoch, integrating the PSD of each STN, (ii) in the range
fstanpx2 Hz (Psg), (iii) in the range fwarx+2 Hz (Pwg), and (iv) for the
entire beta band [13;35]Hz (Pgera). The fifth (v) feature considered
was the amplitude of the PSD at each frequency bin in the range
[5;40]Hz, used to compute the amount of information carried by
each bin (i.e., spectral information [37,38]). From the spectral in-
formation, we identified the most informative frequency (fuyr) as
the frequency bin showing the highest significant peak. The last
feature (vi) was the power (Pyyr) of each epoch computed, inte-
grating the PSD of each STN in the range fyyr+2 Hz.

Each set of feature values was binned into four equipopulated
bins to reduce information bias [39].

This single-feature information analysis (e.g., for Pyyr of the STN-
and the STN+ separately) was then extended to compute how
much information about the state was carried by the combination
of features pairs (e.g., for Pyyr of the two hemispheres combined).
The mutual information that the joint knowledge of the features F;
and F, conveys about the states is defined as (Eqn 2):

P(rq,12]s)

P(ry,13)

In case of joint information, we also computed information
redundancy (Eqn 3):

> P(ry,13]s)log,

2

I(5: F1. Fp) = S P(s) 2)

Red(S;Fq, F2) =I(S;F1) +1(S;F2) — I(S;Fq, Fa) (3)
which defines the amount of information about the state shared by
the two features. When redundancy is less than the amount of
information carried by each single feature, the two features convey
some independent information. We corrected the bias in the in-
formation estimate due to the limited dataset using the Panzeri-
Treves (PT) bias correction [40]. The significance of mutual infor-
mation was computed with a bootstrap test, (significance if infor-
mation >95% percentile of the information carried by randomized
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data, 100 repetitions). All estimates were computed with the In-
formation Breakdown Toolbox [39].

Spectral information simulation

We performed a simulation to investigate the relationship and
possible dependency of the fy;r from the beta frequency modula-
tion between the STAND and WALK condition. We generated
different PSDs describing beta peaks with frequency shifts varying
in the range +10Hz. First, we modeled the average power distri-
bution p(f). To do so, having performed a PSD parameterization, we
could estimate the power at each frequency bin f as the sum of N
gaussian functions. For simplicity, we assumed N = 1 and consid-
ered the highest parameterized PSD peak. Doing so, for two ideal
states s1 and s, we could model the mean power p(f) as (Eqn. 4):

2
M>7 k:SLSZ

(4)
262

u(f) =Ay exp ( -

for which we could set the amplitude (Asand As, ), the frequency
peak (fs,and f;,) and the standard deviation (£5and £,). Then we
used the maximum likelihood estimation to find p and ¢ for each
frequency bin in the range [5;40]Hz, for each condition and for each
hemisphere (STN- and STN+). We combined all the (y, ¢) pairs and
performed a linear regression analysis to find the parameters m and
q of the line best fitted to their distribution. We then estimated the
standard deviation o(f) as a linear function of a known mean power
u(f) (Eqn. 5):
o(f)=mu(f) +q (5)
for each frequency f (Supp. Fig. 2).

Finally, we computed the spectral information from the three
probability functions of Equation (1) (i.e., state probability P(s),
conditional probability P(r|s), and feature probability P(r)) that
could now be determined from the distribution of the resulting PSD
values.

Classification

We used a binary (two-class) logistic regression (LR)-based
classifier for classification of the STAND and WALK conditions,
based on a linear combination of features extracted from pre-
processed LFP. LR is widely used for classification in machine
learning, and is a special case of a generalized linear model that
allows easy interpretation of the results. Generally, a logistic
regression defines the membership probability for one of two
classes, ¢; and ¢y, in the data set as P(cq]x, a) = g(hq(x)) and P(c;|x,
a) =1 — P(cy]x, ), where h,(x) is a linear function representing a
weighted sum of different features hy(x) = ag + a1X1 + axXy + ...
+ anXn, Where xy and ay represent the Nt feature and parameter
respectively, and g( -) is the sigmoid function used to limit the
output of the linear function to the range [0;1].

The objective of the LR-based classification is to find the set of
parameters o that provides the hyperplane (or decision boundary),
satisfying the equation h,(x) = 0 and optimally separating the two
classes. In LR analysis, we used as predictor variables the scalar
features introduced for the information analysis, i.e., fprak, Pss Pws
Pgera, and Pyyr

We evaluated the performance of decoding between STAND and
WALK of different LR models, based either on one single feature or
on pairs, considering each hemisphere separately or both hemi-
spheres jointly. A leave-one-out cross validation was used. Since
the number of STAND and WALK epochs differed for each subject,
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we decided to perform the validation for 100 subsamples of epochs
built as follows: (1) we randomly selected without replacement a
number N of STAND epochs equal to the number of available WALK
epochs; (2) we merged the two sets to create a single dataset with
2N epochs. Of note, a leave-one-out cross validation was used for
each subsample.

To evaluate the classification rate of the classifiers, the perfor-
mance (expressed as percentage of epochs that was accurately
detected as STAND or WALK) were quantified and presented. The
performance reported in the results is the average across the 100
subsamples.

The performance was evaluated also in terms of accuracy and
sensitivity-specificity in the ROC space plotting the ROC curve, and
measuring the AUC. The ROC curve plots the true positive rate
(sensitivity) against false positive rate (1-specificity) for different
thresholds. The AUC provides a measure of the ability of the clas-
sifier to distinguish between the two states, with 0.5 indicating a
chance-level accuracy and 1 suggesting perfect classification.

Data availability

The data sets generated during and/or analysed during the
current study are available from the corresponding author on
reasonable request.

Results

We recorded LFP in the STN of eight patients with PD as they
executed a gait task, using a novel DBS device that allows on-
demand recording of subthalamic neural activity from the
chronically-implanted electrodes months after the surgical pro-
cedure. Demographic and clinical data are listed in Table 1. Values
are presented as median [range]. All patients showed a sustained
improvement from DBS, further supporting the correct placement
of the electrodes that were used for the recording the neural ac-
tivity (Table 1).

In comparison with healthy controls, all patients showed a sig-
nificant bilateral reduction of striatal DAT binding (p < 0.001,
Wilcoxon signed rank test [WSRT]). In each patient we identified
one hemisphere (H) more dopamine-depleted than the opposite
one (H-: 70 + 10%; H+: 60 + 12%). The individual values of striatal
DAT binding were reported in Supp. Table 1. The clinically most
impaired body side corresponded in each patient to the striatum
with less non-displaceable binding potential (BPnp) of DAT. We
analysed separately the most and least dopamine-depleted hemi-
sphere (STN- and STN+, respectively).

With respect to healthy control subjects, parkinsonian patients
showed reduced stride length and average stride velocity, but
normal stride duration, stance duration and double support dura-
tion. The individual kinematic values were reported for all patients
in Supp. Table 2.

Frequency modulation of beta oscillatory activity informs about the
standing vs. walking condition

We compared the LFP recordings between the STAND and WALK
condition (see Methods). LFP power spectral density (PSD) dis-
played a distinctive frequency peak for each condition (fszanp and
fwark) within the beta band [13;35,]Hz (Fig. 1). The epoch wise
frequency peak (fpeak) shifted towards higher frequencies from
STAND to WALK in all the STN- (fpeag shift 3.6 [0.68; 8.06]Hz;
p = 0.01, WSRT) (Fig. 2A). For the STN+, we found a positive fpeax
shift in five out of eight patients (fpgak shift 2.45 [-4.16; 16.34]Hz;
p = 0.46, WSRT) (Fig. 2A).
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Table 1
Clinical and demographic data.

Brain Stimulation 13 (2020) 1743—1752

Patients were evaluated with the UPDRS-III within one month prior to surgery (pre-DBS) after overnight (>12 h) suspension of all dopaminergic drugs (meds-off) and upon
receiving 1 to 1.5-times (range:200—300 mg) the levodopa-equivalent of the morning dose (meds-on). After surgery (post-DBS), patients were also assessed with the UPDRS-III
in four conditions: (i) stimulation off for at least 2 h (stim-off); (ii) bilateral STN stimulation (stim-on); (iii) meds-on (as pre-DBS); (iv) meds-on and stim-on. Wue11 was the
only female patient. DBS, deep brain stimulation; LEDD, levodopa equivalent daily dose; STN, subthalamic nucleus; UPDRS-III, Unified Parkinson Disease Rating.

Subject Age (years) Disease duration (years) LEDD (mg UPDRS-III (score)
pre-DBS post-DBS pre-DBS post-DBS
meds-off meds-on meds-off meds-on
stim-off stim-on stim-off stim-on

wue02 65 10 1100 800 40 23 39 19 17 16
wue03 61 18 2725 600 40 9 45 17 23 14
wue04 54 7 658 400 26 8 27 5 9 8
wue06 51 11 1133 180 46 11 48 12 11 6
wue07 61 10 650 220 43 24 29 15 8 9
wue09 55 19 1200 730 50 11 33 16 8 11
wuel0 56 10 1200 550 69 14 65 25 20 5
wuell 53 11 1300 460 55 4 51 9 13 14

The average power of the LFP in the beta band (Pggrs) did not
show a significant modulation between STAND and WALK for both
STN- (Cohen’s d = 0.61, p = 0.15, WSRT) and STN+ (Cohen’s
d = 0.34, p = 0.31, WSRT) (Fig. 2B). No significant difference was
found when computing the power relative to the range fspanp+2 Hz
(Psg see Methods) for the STN- (Cohen’s d = 0.57, p = 0.31, WSRT)
and STN+ (Cohen’s d = 0.02, p = 0.46, WSRT) (Fig. 2C). In contrast,
the power relative to the range fuwaix+2 Hz (Pwr see Methods)
significantly differed between the STAND and WALK condition in
both the STN- (Cohen’s d = 0.82, p = 0.01, WSRT) and STN+
(Cohen’s d = 0.58, p < 0.01, WSRT) (Fig. 2D).
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Fig. 2. Spectral differences between the standing and walking condition.

A) Comparison of median fpgax in the subthalamic local field potentials power spectral
density during standing and walking for each subject. Black and grey markers indicate
the most and least dopamine-depleted hemispheres of the subthalamic nucleus (STN-
and STN+), respectively. The dashed line represents the identity line. Insets indicate
the significance of the matched pair Wilcoxon signed rank test. B-D) Same as (A) for
the whole beta power Pger4 (B), the power in the range fsranp+2 Hz (Psg) (C), and the
power in the range fiyaixt2 Hz (Pwr) (D).
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We then computed the mutual information (see Methods) be-
tween the aforementioned spectral features and the STAND and
WALK condition. The fpgak carried significant information (p < 0.05,
bootstrap test) about STAND and WALK for 16 of 18 hemispheres
(STN-, 0.35 [0.002; 0.83]bits; STN+, 0.35 [0.03; 0.60]bits) (Fig. 3A).
Very poor information was carried by Pggra (STN-, 0.05 [0.003; 0.21]
bits; STN+, 0.06 [0; 0.35]bits) and was significant only in eight of 16
hemispheres (p < 0.05, bootstrap test). There were similar values
for Psr (STN-, 0.01 [0; 0.18]bits; STN+, 0.03 [0; 0.11]bits; p < 0.05 in
5/16 hemispheres, bootstrap test) and Pyr (STN-, 0.02 [0; 0.40]bits;
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Information carried by fpeax. Black and grey markers indicate the most and least
dopamine-depleted hemispheres of the subthalamic nucleus (STN- and STN+),
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STN+, 0.05 [0; 0.58]bits; p < 0.05 in 7/16 hemispheres, bootstrap
test) (Fig. 3B—D). Information carried by Pggrs, Psg and Pyr was
significantly less than information carried by fpgax (all p < 0.01,
WSRT).

Striatal DAT bindings values of both STN- and STN + did not
correlate with any of the aforementioned spectral features (p > 0.3,
WSRT).

Frequency peak shift and most informative frequency

We computed a complete spectral information analysis (see
Methods) and identified for each patient the most informative
frequency about the WALK and STAND condition (fyyr, Fig. 4A). This
was typically located outside the range Ifstanp - fwawkl (15/16
hemispheres, Fig. 4B). The power relative to the range fyr+2 Hz
(Pygr) carried significant information about STAND and WALK
(p < 0.05 for 16/18 hemispheres, bootstrap test; STN-, 0.16 [0.04;
0.41]bits; STN+, 0.25 [0.03; 0.58]bits) (Fig. 4C). The joint knowledge
of Ppyrin the two hemispheres led to an increase of the information
(0.28 [0.14; 0.66]bits; p < 0.05 for 16/18 hemispheres, bootstrap
test) (Fig. 4D). Of note, the joint information carried by Pyyr in the
two hemispheres showed a redundancy of 34 [-39; 67]% (Fig. 4D).

We then simulated an ideal condition (see Methods) in which
the average spectral densities over two different states differed
only for the peak frequency (Fig. 5A). We implemented an inter-
trial variability proportional to the power that we observed in our
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recordings (Supp. Fig. 2). Under these conditions, the fy;r would be
located outside the range within fsanp and fwark for a broad range
of shifts (Fig. 5B), coherent with our experimental observations.

Frequency-shift features fpeax and Pyyr reliably classify the standing
and walking condition

We assessed the ability of the aforementioned features in
discriminating between STAND and WALK with a binary logistic
regression-based classifier (see Methods). When based on fpgag, the
classifier discriminated between the two conditions for both
hemispheres (STN-, performance 0.87 [0.58; 1], p < 0.05 Clopper-
Pearson test (CPt) for 8/8 patients; STN+, performance 0.90 [0.68;
1], p < 0.05 CPt for all eight patients) (Fig. 6A top). Comparable
results were obtained when the classifier was based on the Py
(STN-, performance 0.78 [0.59; 0.92], p < 0.05 CPt for 7/8 patients;
STN+, performance 0.84 [0.71; 1], p < 0.05 CPt for 8/8 patients)
(Fig. 6B top), which further improved when the two hemispheres
were combined (performance 0.90 [0.82; 1]; p < 0.05 CPt for 8/8
patients) (Fig. 6C top). In line with these results, the accuracy of the
decoder measured as the area under the curve (AUC) of the receiver
operating characteristic (ROC) was high when based on fpgax (STN-,
0.94[0.51; 0.95]; STN+, 0.93 [0.66; 1.00]) and Py (STN-, 0.80 [0.55;
0.99]; STN+, 0.84 [0.61; 1.00]; combined hemispheres, 0.91 [0.60;
1.00]) (Fig. 6A—C bottom). Discriminating STAND and WALK using
Pgera, Psp and Pyyr led to poor performances (Supp. Fig. 3).
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A)Spectral information (yellow line) computed for the power spectral density in standing (red line) and walking (blue lines) for the most dopamine-depleted hemisphere of the
subthalamic nucleus (STN-) of patient wue02 (related to Fig. 1a). Green dashed lines represent the p = 0.05 significance threshold (bootstrap test). The red dot indicates the
frequency peak of STAND epochs (fstanp), the blue dot indicates the frequency peak of WALK epochs (fwaik) and the yellow star indicates the most informative frequency (fyr). B)
Representation of fspanp, (red dot), fwark (blue dot), and the MIF (yellow star) for each subject for the STN- (left) and the STN+ (right). C) Information about standing and walking
carried by the power in the range fyr+2 Hz (Pyyr) for STN- (black) and STN+ (grey) for each subject. D) Same as (C) combining Py of the two hemispheres. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)
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A) Simulated power spectral density (PSD) power for an ideal reference state s; with
amplitude A5, = 1pv? /Hz , standard deviation &, = 2Hz, and frequency peak fs, =
24Hz (red), and three conditions with same distribution but peak frequency shifts
equal to -4 Hz (black line), -1 Hz (grey line), and 2 Hz (light grey line). The shaded areas
represent the standard deviation (see Methods). B) Spectral information between s1
and a second state s, with frequency shift in the range [-10; 10]Hz, excluding the
singular point at 0 Hz shift. Red and black dotted lines represent the location of the
frequency peak, respectively, in states s; and s, PSD. White line indicates the location
of the maximum of the spectral information for each frequency shift between s; and sj.
Black, grey, and light grey lines show the three examples of frequency shifts described
in (A). (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Discussion

Our study provides the first evidence of beta frequency modu-
lation associated with locomotion in the STN of parkinsonian pa-
tients. Starting from this result, we performed an information
theoretic analysis and we identified a maximally informative fre-
quency (fyur) whose power (Pyyr) can accurately decode the
walking state, with respect to upright standing, for each single
patient. This marker could be used in already available aDBS de-
vices that sense for beta power modulation to timely adjust the
stimulation delivery to locomotion.

The orthograde human posture and locomotion are unique
among all mammals and probably one of our most vital activities.
Human gait is complex and requires a constant and coordinated
flow of information across functionally-specialized brain areas, the
locomotor network [20,41,42]. This network comprises several
cortical areas (including the premotor, supplementary motor, and
parietal areas), the basal ganglia and the STN, the mesencephalic
locomotor region (MLR), the thalamus, the cerebellum, and the
central pattern generators (CPG), i.e., the spinal neuronal circuit
that control the basic rhythms and patterns of motor neuron acti-
vation during locomotion [20]. Each of these structures plays a
specific role in gait control as part of highly coordinated indepen-
dent oscillators of distinctive circuits. For example, the spinal CPG
circuitry involves the stretch reflex, reciprocal and non-reciprocal
inhibition, and flexion reflexes that are fundamental to generate
rhythm and pattern of limb movements [20]. The STN circuitry also
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plays an essential role in the locomotor network [41]. It gates the
integration of cortical (motor feedforward) and cerebellar (sensory
feedback) information by activating or inhibiting the MLR via direct
glutamatergic projection or through the basal ganglia GABAergic
output nuclei (i.e., the GPi and the substantia nigra pars reticulate
[SNr]). The STN is the cornerstone that gears up the locomotor
network. Indeed, failure of cortical-subthalamic information pro-
cessing in parkinsonian patients can result in an abrupt interrup-
tion of locomotion (freezing of gait) [24].

Very few studies have recorded the timely activity of the STN in
PD during actual gait. In particular, Quinn and coll [43]. showed a
reduced subthalamic beta power during walking with respect to
standing in akinetic-rigid parkinsonian patients. A reduced high
beta band [20;30]Hz power during normal and slow gait with
respect to standing was also reported by Hell and coll [44]. How-
ever, Syrkin-Nikolau and coll. and Arnulfo and coll. showed similar
subthalamic beta power during standing and walking [21,45]. All
these studies were performed in chronically-implanted PD patients
with the same device (i.e., Activa PC+S®, Medtronic PLC), and all
patients experienced a sustained benefit from DBS, thus supporting
a correct clinical diagnosis and proper placement of the electrodes
used for stimulation and recording of the STN neural activity. The
discrepancy in results cannot rely solely on different methodolog-
ical approaches, but instead suggests other domains than ampli-
tude modulation for the coding of locomotion at an STN level.

As previously suggested by Priori and coll. [18,46], frequency
modulation (FM) could be an alternative modality to effectively
convey the information flow across multiple, weakly connected
circuits (autonomous oscillators, e.g., CPG, thalamocortical-basal
ganglia, etc.) of a large-scale network such as the locomotor
network [47,48]. Accordingly, local brain circuits would tune their
endogenous frequency (rhythms) to engage a variety of phase re-
lationships within a functional network, routing task-related in-
formation toward relevant neural targets [16,17]. Such a
communication through frequency- and phase-specific synchro-
nization has been previously described for alpha frequency oscil-
lations in cognitive and sensorimotor processing, including
postural maintenance [19,49], and now also for the first time in the
beta band recordings of the STN of parkinsonian patients.

In the context of PD, our understanding of circuit-specific al-
terations and their reflection at a network level is still at its prime.
On one hand, we notice symptom-specific (and dopamine-
dependent) circuit oscillatory derangements [24]; on the other,
we can envision the presence of physiologically preserved or
compensatory circuits dynamics capable of restoring, at least
temporarily, proper network functioning. Indeed, PD clinically
manifests upon a loss of approximately 30% of substantia nigra pars
compacta neurons and 50%—70% of dopaminergic markers in the
striatum [50,51]. In line, we did not observe any correlation or
dependency between beta power or frequency modulation and
striatal DAT density. Together with the relatively preserved kine-
matics measurements of our patients (Supp. Table 2), these findings
would suggest a neurophysiological relevance of subthalamic FM in
human locomotion. Future studies with multiple complementary
investigations (e.g., EEG, '8F-Dopa PET) in patients with different
neurological disorders might confirm this assumption.

Our study provides an innovative approach to extract more
robust biomarkers encoding ongoing tasks execution intervals. Until
now, research has aimed to identify electrophysiological biomarkers
targeting symptom-specific causal pathological mechanisms within
the implanted brain area (e.g., the STN). However, these biomarkers,
such as beta power [52], might not accurately capture task-related
dynamics at a circuitry level, especially when coded in the fre-
quency domain [18,19]. Indeed, we showed that even when reaching
statistical ~significance across subjects, subthalamic power
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Fig. 6. Linear regression classifier based on features related to peak-frequency shift.
A) (top) Average performance in discriminating between standing and walking for a logistic regression binary classifier, based on the fpgak for the least and most dopamine-depleted
hemispheres of the subthalamic nucleus (STN- (black) and STN+ (grey), respectively) for each subject. The green dashed line indicates 50% chance level. Vertical red error bars
indicate the 5% and the 95% Clopper-Pearson Binomial proportion confidence interval. (bottom) Receiver operating characteristic curves showing, for STN- (black) and STN+ (grey)
of each subject, the trade-off between false positive rates (FPR) and true positive rates (TPR) of the logistic regression classifier for fpeax. B—C) Same as (A) for the power in the range
fmirt2 Hz (Pyyr) B) and for the combination of the Pyyr of the two hemispheres C), respectively. . (For interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)

modulations may carry scarce gait-related information due to intra-
subject variability (such as Py, see Figs. 2D and 3D), rendering them
unable to properly discriminate the walking condition (Supp. Fig. 3).
Of relevance, the use of a suboptimal biomarker could be detri-
mental, possibly interfering with the FM needed for the transition
from upright quiet standing to steady state walking [15].

In this context, spectral and mutual information analysis of
subthalamic LFP recordings is a valuable aid to identify maximally
informative frequencies whose power changes reflect tasks
execution. This approach could be readily tested in available aDBS
devices (intended to monitor power changes rather than frequency
modulations), to promptly activate stimulation parameters more
effective for locomotion (e.g., 60Hz) [53,54]. This approach can also
reduce the number of task-specific frequencies to be monitored by
aDBS devices (i.e. Pyyr instead of fpeag shift or fszanp and fiaik).
Finally, our simulation study shows that the fy;r is a direct conse-
quence of the shift of the frequency peak in the beta range. It should
be highlighted that this implies that (i) these results are not related
to any oscillation occurring in the basal ganglia network with fre-
quency fuir (ii) ideally, fygr matches with fsganp and fuark only for
very large peak frequency shifts (Fig. 5B), and (iii) as the peak fre-
quency shift is patient-specific fyyr differs between patients. Pre-
liminary recording sessions of different motor and non-motor tasks
should therefore be envisioned to identify multiple patient- and
task-specific fyyr for aDBS devices.

In conclusion, we have provided preliminary evidence of gait-
related beta-frequency modulation in the STN of parkinsonian
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patients. Highly-sensitive metrics (i.e., fyyr and Pyyr) can enrich the
spectrum of symptom-based biomarkers, with input signals encod-
ing ongoing tasks execution for an appropriate tuning of DBS
parameters.
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