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a b s t r a c t

We implemented a functional neuronal network that was able to learn and discriminate haptic features
from biomimetic tactile sensor inputs using a two-layer spiking neuron model and homeostatic
synaptic learning mechanism. The first order neuron model was used to emulate biological tactile
afferents and the second order neuron model was used to emulate biological cuneate neurons. We have
evaluated 10 naturalistic textures using a passive touch protocol, under varying sensing conditions.
Tactile sensor data acquired with five textures under five sensing conditions were used for a synaptic
learning process, to tune the synaptic weights between tactile afferents and cuneate neurons. Using
post-learning synaptic weights, we evaluated the individual and population cuneate neuron responses
by decoding across 10 stimuli, under varying sensing conditions. This resulted in a high decoding
performance. We further validated the decoding performance across stimuli, irrespective of sensing
velocities using a set of 25 cuneate neuron responses. This resulted in a median decoding performance
of 96% across the set of cuneate neurons. Being able to learn and perform generalized discrimination
across tactile stimuli, makes this functional spiking tactile system effective and suitable for further
robotic applications.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Objectives of the study

Creating a better understanding of learning paradigms, by
which mammals and humans process sensory information, could
pave way to engineer effective and efficient sensory solutions
for both robotics and neuroprosthetics applications (Dario et al.,
2005; Service, 2014; Yang et al., 2016). Considering the sense
of touch, given the complexity and variation of the tactile in-
puts that the brain receives during frequent unpredictable in-
teractions with the dynamic world, the human nervous system
should adapt a functional mechanism in unfolding these tactile
representations.

In this direction of understanding, we aim to realize a func-
tional tactile system by integrating computational neuron models
and learning algorithms along with tactile sensory systems, that
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will allow us exploit the robust and effective way of dimension-
ality reduction that happens in tactile sensing: from abundant
sensory information across the skin to fewer useful dimensions
such as categories describing the qualities associated to tactile
interaction. This sequentially leads to learn and represent tactile
stimuli, under dynamic sensing conditions.

1.2. Background work

Focusing on neuro-physiology of the sense of touch, in the
last four decades several researchers investigated the character-
istics and functional role of primary afferent sensors, in trans-
ducing the complex contact dynamics between the skin and the
external world (Abraira & Ginty, 2013; Johansson & Flanagan,
2009; Pruszynski & Johansson, 2014; Weber et al., 2013). A step
further, other research studies proposed various techniques by
which this abundant primary afferents information is processed
in cuneate neurons (Bengtsson, Brasselet, Johansson, Arleo, &
Jörntell, 2013; Jörntell et al., 2014; Suresh et al., 2017) and further
how such tactile information is represented in higher levels of
the brain (Bensmaia, Denchev, Dammann, Craig, & Hsiao, 2008;
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Genna et al., 2018; Mountcastle & Henneman, 2017; Oddo et al.,
2017).

In the field of robotics, spiking neural networks were in-
creasingly used to process sensory-motor information in order
to achieve efficient and robust learning of surrounding physical
environment. Spiking neuron models emulate spatio-temporal
spike patterns (group of binary events) from input sensory in-
formation. These spike patterns contain both frequency (spike
rate) and time (precise spike timing) related information which
can be transferred to other neurons in a network using dynamic
synaptic connections. Learning these synaptic connections based
on previous experiences incrementally over time, will enable a
specific network to evolve creating representation of complex
input dynamics. Therefore, adopting bio-inspired synaptic and
neuron learning paradigms has the potential to enable to mimic
the functionality of the brain (Kasabov, 2018). Specifically, in
the field of neuro-robotic tactile sensing there were studies that
encoded data from various tactile sensors into spike responses
emulating primary afferents and further used this neuromorphic
spike data to classify tactile stimuli such as braille dots, textures,
geometric orientations (Bologna et al., 2013; Friedl, Voelker, Peer,
& Eliasmith, 2016; Lee, Kukreja, & Thakor, 2017) or for bionic
limb prostheses (Oddo et al., 2016; Osborn et al., 2018). Some re-
search studies presented simulation models of primary afferents
(PA) with millisecond precision (Saal, Delhaye, Rayhaun, & Bens-
maia, 2017), and other ones successfully modeled multi-layer
neuron models based on neuro-physiology data to successfully
classify edge orientations under varying sensing conditions (Hay
& Pruszynski, 2018) or emulated learning mechanisms of high
order brain structures (Chou, Bucci, & Krichmar, 2015).

Previously, we have built and validated a neuromorphic tac-
tile sensor system (Rongala, Mazzoni, & Oddo, 2017) by which
we were successful in decoding 10 naturalistic tactile stimuli,
based on the precise spike-time information of individual PA
response, under different sensing conditions. Later, we have es-
tablished a cuneate neuron (CN) model and synaptic learning
mechanism based on intrinsic membrane dynamics and synaptic
weight distribution as observed in in vivo recordings (Rongala
et al., 2018).

The main objective of this study has been to construct a bio-
inspired tactile system, that could learn and represent stimulus
specific input tactile features under generalized sensing condi-
tion. Towards this objective, we follow an integrated approach
where (1) we generate population of PA responses from our
tactile sensory system. (2) Adopt the synaptic learning mecha-
nism and cuneate neuron models for population of PA inputs, to
generate an ensemble of CN networks. (3) Validate the cuneate
neuron responses (based on post-synaptic learning), by decoding
stimulus under varied sensing conditions. (4) Further validate the
generalized decoding capabilities of a population of CNs.

2. Materials and methods

In this research study we have two phases of network evalu-
ations:

(a) Synaptic learning phase: The raw data from biomimetic
tactile sensors (for given stimulus) was encoded into pri-
mary afferent spike responses (1st order neurons) and pro-
jected onto cuneate neurons (2nd order neurons), through
randomly distributed excitatory synaptic seed weights. A
synaptic learning rule (calcium activity dependent plastic-
ity rule) was adapted to achieve feature specific synap-
tic end weight distribution, from an initial randomly
distributed synaptic seed weight distribution (Figs. 1A and
3C).

Fig. 1. Methods. (A) Structure of multi-layer spiking neural network. A physical
tactile sensor was used to recreate primary afferent like spike responses using
Izhikevich neuron model. Sensory data was filtered (as shown in insert) to
replicate coding strategies of different afferents (SA-like, FA-like). These primary
afferent signals were further provided to the cuneate neurons through a specific
synaptic weight (Wi,n). The synaptic weight learning was based on a calcium
activity dependent plasticity rule. (B) Naturalistic tactile stimuli. Each strip
shows the microscopic image of tactile stimuli presented to the sensor. Top row:
five tactile stimuli (S1–S5) that are used in the synaptic learning process. Bottom
row: five tactile stimuli (S6–S10) that are used in model validation along with
the top row five stimuli. (C) Experiment protocol. A passive touch protocol was
followed, where the tactile sensor was fixed, and the stimuli was slid along the
sensory surface. This protocol was classified in three main phases: indentation,
sliding and retraction.

(b) Testing phase: The primary afferent spike trains (for given
stimulus) were projected onto cuneate neurons through
learnt excitatory synaptic end weights (post-synaptic
learning phase). Later, the two-layer spiking neuron models
were validated based on the generalized stimulus decoding
capabilities (decoding irrespective of sensing conditions)
from these cuneate neuron spike responses (Figs. 1A and
3D).

The following material and methods text is sectioned as fol-
lows; In Sections 2.1–2.4, we discuss the methods adopted to
generate tactile sensory data. In Sections 2.5 and 2.6 we elaborate
the neuron models by which tactile sensory information was
processed. In Section 2.7, we discuss the network connectiv-
ity between 1st and 2nd order neurons. In Sections 2.8–2.10,
we describe the synaptic learning mechanisms. In Section 2.11,
we describe various statistical methods adopted to validate the
two-layer spiking neural networks.
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2.1. Tactile sensor

An in-house developed biomimetic fingertip (tactile sensor)
was used for these experiments (Oddo, Controzzi, Beccai, Cipri-
ani and Carrozza, 2011). The fingertip encompasses an array
of four (in 2 × 2 formation) piezoresistive sensors constructed
using MEMS technology. These sensors are placed on a flat rigid
bone-like structure for support and encapsulated with compliant
silicon (DragonSkin 10, Smooth-on, USA) around the assembly
(Fig. 1A). Each of these piezoresistive sensors comprises of four
piezo-resistors coupled in a cross-shape structure, constituting 16
sensory channels for single fingertip. The fingertip has a sensing
area of 22.3 mm2. In case of exploratory motion along a single
direction, the tethered construction among piezo resistors (cross-
structure) delivers a similar response across opposite sensory
channels, lone with shift in polarity of the data. Therefore, in
this study we consider only 8 of the 16 sensory channel data
(shaded channels in Fig. 1A, C1–C8). The sensory channels are
responsive for both normal and tangential forces, whose precision
and robustness was established in some of our previous studies
(Oddo et al., 2011; Oddo, Controzzi et al., 2011; Rongala et al.,
2017).

2.2. Stimuli

Ten naturalistic textures were used as tactile stimuli (S1–S10)
for these experiments (Fig. 1B). Five of these stimuli were textiles
and the rest were non-textile textures, each of them exhibiting
varied physical properties. Each tactile stimulus of dimension
75 × 30 × 2 mm (length × width × height) was fixed onto an
aluminum base plate (that of stimulus dimensions) for support.
The tactile sensory data corresponding to five textures (Glass,
Latex, Velvet, TextileWhite and BioSkin, S1–S5) was used for
synaptic learning phase and sensory data corresponding to all ten
textures (S1–S10) was used in testing phase.

2.3. Experimental protocol

A passive touch protocol (Jones & Lederman, 2007) was fol-
lowed to create the tactile sensory datasets, for which the tac-
tile sensor was fixed secure and stimulus was slid along the
surface of the tactile sensor (Fig. 1C). A 2 degree-of-freedom
mechatronic platform (Oddo, Beccai et al., 2011; Oddo, Controzzi
et al., 2011) was used to perform these experiments (Fig. 1C).
The mechatronic platform encompassed a ball-screw mechanism
based linear slider (for displacement along x-axis, Fig. 2A) and
a voice coil actuator (for displacement along z-axis, Fig. 2B),
offering a resolution of 0.98 µm along x-axis and <20 mN of
force along z-axis (with closed loop force control). The tactile
sensor was fastened onto a fixed frame and the stimulus was
loaded onto a moving pallet (connected to both linear slide and
voice coil) of mechatronic platform (Fig. 1C). In this experimental
protocol, we followed a pre-defined trajectory (red line, Fig. 1C) of
the moving pallet, allowing three main experimentation phases:
Indentation, Sliding and Retraction (Fig. 2). First, the stimulus was
indented onto the surface of the tactile sensor (indentation phase)
using voice coil, with a specific amount of sensing force. Next,
the stimulus was slid along the surface of the sensor (sliding
phase) using linear slider, with a given sensing velocity while
maintaining a constant sensing force. At the end of sliding phase
the stimulus was retracted back from the contact with tactile
sensor (retraction phase). We kept a wait time of 1 s–2 s between
the transition of these experimental phases.

In this study, each stimulus was investigated under 5 different
sensing velocities (5, 10, 15, 20 and 25 mm/s, V1–V5 respectively)
for a fixed sensing force of 400 mN. For each sensing condi-
tion, 10 experimental repetitions were performed to assess the
repeatability of our demonstrated system.

Fig. 2. Experimentation protocol and tactile sensor responses. (A) Trajectory of
the slider that maneuver tactile stimuli along horizontal axis (along the surface
of the tactile sensor), in a controlled velocity (15 mm/s in this illustration).
(B) Trajectory of the voice coil that proceeds tactile stimuli along vertical axis
(perpendicular to the tactile sensor) causing controlled indentation for given
sensing force (400 mN in this illustration). (C) Raw tactile sensor data for one
sensory channel during the illustrated experiment protocol. (D) First derivative
of the sensory data. (E) Artificial mechanosensory responses (SA-like and FA-like)
corresponding to all the 8 active sensory channels data (C1-8 in Fig. 1A) and
their derivative.

2.4. Data processing

The 8 sensory channels (C1–C8, see Section 2.1) chosen for this
study are further referred as ‘‘active sensory channels’’. The data
from each active sensory channel was differentiated to obtain
dynamic components (such as transient states) of the sensory
data. Both the normal and differentiated sensory signal are split
into positive and negative half of the signal and further rectified
(Saal et al., 2017). This process resulted in 4 time-varying inputs
from each active channel sensory data (Fig. 1A, insert). Following
this data processing technique, we multiplexed 8 active sensory
channel data into 32 sensory inputs. This data filtration process
was adopted in order to maximize the sensory information from
8 active sensory channels. Additionally, a two fixed time shifts
were added to all the sensory signals to replicate nerve con-
duction delays as observed in humans and mammals (Johansson
& Flanagan, 2009). This signal processing mechanism resulted
in a population of 96 sensory input signals from 8 active sen-
sory channels (Fig. 1A), which were fed as input current to the
first-order neuron model.

2.5. First-order neuron model to emulate biological primary tactile
afferents

Preprocessed tactile sensory data (Fig. 2C) was fed as cur-
rent input (Iinput ) to the first-order neuron model in order to
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Table 1
Izhikevich model parameters.
A B C Cm a b c d

0.04 s−1 V−1 5 s−1 140 V s−1 1 F 0.02 s−1 0.2 −65 mV 8 mV

mimic mechanoreceptor like spike responses (Primary Afferents,
PAs, Fig. 2E). We have opted for the Izhikevich neuron model
(Izhikevich, 2003) as it exhibits adaptation dynamics, which was
a characteristic feature of mechanoreceptors (Johansson & Flana-
gan, 2009), also with the purpose to compare with previous
results of our group that already validated this model (Oddo et al.,
2016; Rongala et al., 2017, 2018). However, since the AdEx model
(Brette & Gerstner, 2005) is able to emulate Izhikevich neurons
firing patterns (Naud, Marcille, Clopath, & Gerstner, 2008) in-
cluding adaptation dynamics, we expect our results are able to
generalize with a full AdEx model.

The Izhikevich neuron model was derived based on two dif-
ferential Eqs. (1) and (2) discretized using Euler’s method. In
following equations, v denotes the membrane potential of neuron
and u describes its adaptation variable.

v̇ = Av2
+ Bv + C − u+

Iinput
Cm

(1)

u̇ = a(bv − u) (2)

When membrane potential reaches a pre-defined voltage
threshold (Spkthr = 30 mV), a spike was produced following an
after-spike reset of membrane potential. This was given by,

if v ≥ 30 mV, then
{

v← c
u← u+ d (3)

A, B and C are the standard Izhikevich neuron model parame-
ters, whereas a, b, c, and d parameters were chosen in order to
reproduce regular spiking behavior (Table 1) (Izhikevich, 2003).
This spiking neuron model adaptation enabled us to encode both
transient state changes and finer frictional components from the
analog sensory data (Fig. 2). Therefore, with help of 1st order
neuron model we emulate 96 PA spike responses (PA1 − PA96)
from preprocessed sensory data.

2.6. Second-order neuron model to emulate biological cuneate neu-
rons

A calcium based cuneate neuron model was used in this study,
that was formulated based on biological cuneate neuron in vivo
recordings (Rongala et al., 2018). The biological cuneate neurons
(CNs) exhibited unique spiking behavior, where they tend to com-
prise both fast and intermediate dynamics (Bengtsson et al., 2013;
Rongala et al., 2018). The fast-dynamic spiking property was ob-
served in initiation of membrane potential to reach the threshold
and generate a spike following with after-spike hyperpolarization
(Ispike). Additional to this spiking behavior CNs also tend to exhibit
intermediate spiking dynamics, based on currents from additional
ion channels (Iion). These currents do not generate the action
potential but tend to influence the action potentials during high
input synaptic activity. One such property of these additional
currents is to produce high frequency spike bursts. Such spiking
behavior was previously observed (Huguenard, 1996; Llinás &
Jahnsen, 1982; Molineux et al., 2008), and was partly attributed to
the effect of low-threshold voltage gated calcium channels (LVA)
and calcium-activated potassium channels (CAP).

Considering both these spiking properties, the cuneate neu-
rons were modeled using conductance based exponential inte-
grate and fire model (Fourcaud-Trocmé, Hansel, van Vreeswijk, &

Brunel, 2003) with added calcium dynamics (LVA and CAP). The
cuneate neuron membrane potential (Vm) was given by,

Cm
dVm

dt
= IL + Ispike + Iion + Iext + Isyn (4)

where, Cm is the membrane capacitance. IL is the leak current,
Ispike is the spike currents, Iion is the ion channel currents, Isyn
is synaptic input current and Iext is external injected currents
steps that were used to evaluate the CN responsiveness. These
individual currents are given by the following equations,

IL = −ḡL(Vm − EL)

Ispike = ḡL∆T exp
(
Vm − Vt

∆T

)
Iion = ICa + IK (5)

Isyn = gmax

∑
i

wi exp
(
−τ

(
t − t∗

)) (
Erev,exc − Vm

)
+ gmaxwinh

∑
i

exp
(
−τ

(
t − t∗

)) (
Erev,inh − Vm

)
The variable definitions and their respective values were re-

ported in Table 2. The membrane resistance and time constants
were chosen as per in vivo recordings, whereas the other model
parameters were chosen based on an optimization procedure. The
parameter optimization was done with an objective to match the
model membrane potential to a recorded in vivo CN potential, for
given step current input (Rongala et al., 2018).

The ion channel currents (Iion), were computed as summa-
tion of currents from calcium sensitive LVA channels and CAP
channels. These currents are given by following equations,

ICa = −ḡCax3Ca,axCa,i (Vm − ECa)

IK = −ḡK x4KCax
4
KVm (Vm − EK ) (6)

where, ḡCa and ḡK are the maximum conductances, ECa and EK are
the reversal potentials, and xCa,a, xCa,i, xKCa , xKVm are the activity
states of the channels. The conductance and reversal potential
values are defined in Table 2, whereas the modeling and opti-
mization of activity states is elaborated in Rongala et al. (2018).
Both these ion channels (xCa,a , xCa,i ) are considered as source of
calcium concentration in the cell membrane

([
Ca2+

])
. According

to the reasoning depicted in Saarinen, Linne, and Yli-Harja (2008)
we construct the total calcium concentration activity based on
following Eq. (7).

d
([
Ca2+

])
dt

= BCaḡCax3Ca,axCa,i
(
Vm − ECa

)
+

([
Ca2+

]
rest −

[
Ca2+

])
/τ[Ca2+] (7)

The input synaptic current (Isyn), was calculated as the sum-
mation of both excitatory and inhibitory synaptic currents across
all individual primary afferent synapses. The primary afferent
spike responses (PA1− PA96) are transposed as conductances and
multiplied with their respective synaptic weights (wi and winh,
see Sections 2.7–2.10), to serve as input to the CN model Eq. (5).
In Eq. (5), gmax is the maximum synaptic conductance, Erev is the
reversal potential, Vm is the membrane potential and t∗ is time of
primary afferent activation. The respective values are reported in
Table 2.

2.6.1. Local synaptic calcium activity
The synaptic learning process adapted in this study is based

on the correlation between total calcium activity in the neuron
and the local calcium activity in the individual synapse. The
total calcium activity in each CN is considered as a product of
total calcium concentration in the cell and an arbitrary constant
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Table 2
Second order neuron model parameters.
Parameter Symbol Value

Membrane capacitance Cm 4.270e−11 F
Leak conductance gL 8.100e−09 S
Leak reverse potential EL −62.309 mV
Width of the spike (EIF model) ∆t 1.3063
Spike threshold (EIF model) Vt −57.129 mV
Maximum potassium conductance gK 2.022e−08 S
EPSP reversal potential Erev,exc 0 mV
IPSP reversal potential Erev,inh −80 mV
Potassium reversal potential EK −104.514 mV
Maximum calcium conductance gCa 2.082e−08 S
Calcium reversal potential ECa 121.436 mV
Conversion factor between calcium current and concentration BCa 3.374e−15
Calcium concentration at rest (equilibrium) Ca2+rest 1.010e−07
Time constant of the calcium concentration leak τCa2+ 0.0063
Time constant of the calcium activation state τCa,a 2.722e−04
Time constant of the calcium inactivation state τCa,i 0.0207
Time constant of the potassium calcium dependent activation state τKca 0.0013
Time constant of the potassium voltage gated activation state τKVm 0.0011
Constant for sigmoid function of intermediate dynamic model pCa,a,1 −60.8369 mV
Constant for sigmoid function of intermediate dynamic model pCa,a,2 6.3419 mV−1
Constant for sigmoid function of intermediate dynamic model pCa,i,1 −68.0100 mV
Constant for sigmoid function of intermediate dynamic model pCa,i,2 1.3008 mV−1
Constant for sigmoid function of intermediate dynamic model pKVm,1 −64.0785 mV
Constant for sigmoid function of intermediate dynamic model pKVm,2 0.7833 mV−1
Constant for sigmoid function of intermediate dynamic model pKCa,1 2.2166e−07 mV
Constant for sigmoid function of intermediate dynamic model pKCa,2 4.7923e−08 mV−1

(Ca2+Tot = kact ∗ [Ca2+]), in this study kact = 1. The local calcium
activity of individual synapse i, for each PA spike input at t∗ is
given by following kernel (Mazzoni, Panzeri, Logothetis, & Brunel,
2008),

Ca2+Loc_i (t) =
τ1

τd − τr

[
exp

(
−

t − τl − t∗

τd

)
−exp

(
−

t − τl − t∗

τr

)]
(8)

where, τr is the raise time (4 ms), τd is the decay time (12.5 ms),
τl is the latency time (0 ms) and τ1 is the constant (21 ms) to
calculate the ratio. The values chosen to define this kernel were
based on the biological assumptions to reflect slow after-spike
hyperpolarization of CNs, reflecting the calcium concentration in
individual synapses (Rongala et al., 2018).

2.7. Network connectivity

Each CN was fully connected to all 96 PA by means of both ex-
citatory synapses (blue triangles, Fig. 3A) and inhibitory synapses
(red triangle, Fig. 3A). Each PA input was projected onto the CN
as an individual excitatory synapse. Whereas, responses across
all PAs were grouped into a single inhibitory synaptic input to
the CN (Rongala et al., 2018). The magnitude of post-synaptic
potential projected on a CN for given PA input, is dependent on
its excitatory and inhibitory synaptic weights (wi, winh). In our
model, the synaptic weights are gain factor that vary from 0.001
to 1. The total synaptic current input (Isyn) to a CN is given by
Eq. (5).

During synaptic learning phase, the CN and synaptic learning
models (see Section 2.10) were presented with PA responses
associated to five stimuli (S1–S5) for a given sensing velocity (25,
20, 15, 10, 5 mm/s, V1–V5) and synaptic seed weight distribution
(SW1–SW5, see Section 2.8). Based on these input configura-
tions (‘‘SW distribution’’ and ‘‘sensing velocity’’ of input stimuli),
post-synaptic learning we achieve a feature specific synaptic end
weight distribution (post-synaptic learning weight distribution).
Such synaptic end weight (EW) distribution allows a unique
combination of PA inputs to be relayed onto CN, leading to a

distinctive CN responses. Therefore, based on combination of all
5 sensing velocities and 5 seed weight configurations, we attain
25 varied EW distributions (Fig. 3B, C) resulting in an ensemble
of 25 CN networks (CN1–CN25).

For testing phase, all the 25 CNs were presented with PA
responses associated to 10 naturalistic stimuli (S1–S10) for a given
sensing velocity (V1–V5). Further, the two-layer spiking neural
network model was validated by classifying the stimuli based on
the CN spike responses (see Results) (Fig. 3D).

2.8. Synaptic seed weights

Pre-synaptic learning, all the excitatory synapses were as-
signed with randomly generated (normal distribution, µ = 0.15
and σ = 0.15) initial synaptic weights (Seed Weights, SWs).
In this study, we have generated 5 different randomized SW
distributions (Figs. 3B, 8A) that further in this text will be referred
as ‘‘SW1–SW5’’. Additionally, in order to assess the effects of SW
generation mechanism, we have tested the synaptic learning rule
for SWs generated using both gaussian and log-normal distribu-
tions, for varying µ and σ (Figure S4 and S9). The initial inhibitory
synaptic weight (winh) of each synapse was set to 0.2.

2.9. Synaptic weights learning protocol

During synaptic learning phase the CN is fed with PA spike
responses for 1500 stimulus presentations in series. Each of this
stimulus presentation corresponds to a spatiotemporal pattern
of all 96 PA spike inputs (first 1 s of the sliding phase spike
responses, Fig. 5). The 1500 presentations were generated from
5 physical stimuli (S1–S5, for a given sensing velocity). Each
stimulus presentation was repeated for 300 times. Due to the
lack of 300 experimental repetitions of sensory data, we add a
gaussian noise (µ = 0 ms and σ = 5 ms) to each PA spike
train (10 experimental repetitions x 30 gaussian repetitions). The
gaussian noise addition also helps to attain robust learning. The
1500 stimulus presentations were randomized, to avoid bias in
learning from a specific stimulus.
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Fig. 3. Synaptic learning protocol. (A) Schematic of network connectivity, where PAs responses are projected onto CNi as excitatory (blue triangles) and inhibitory
synapses (red triangles). (B) The schematic illustration of synaptic learning protocol, through which we achieve 25 different post-training synaptic weight distributions
(End Weights, as shown in Figs. 7C, 8B). The variation between each EW configuration, allow each CN to respond for different PA inputs. (C) Simulation flow illustrating
the synaptic learning phase. (D) Simulation flow illustrating the testing phase.

2.10. Synaptic learning mechanism

We used calcium-based ‘activity dependent synaptic plastic-
ity’ rule in this study. The underlying biological assumptions
of this synaptic learning rule, was detailed to cellular level in
our previous study (Rongala et al., 2018). Briefly, this synaptic
learning paradigm was formulated to potentiate (increase in wi)
the weight of the synapses whose local calcium activity (local
calcium, Ca2+Loc) is highly correlated with the total calcium activity
of the CN (total calcium, Ca2+Tot ) (as illustrated in Fig. 4A). Con-
trariwise the model depresses a specific synapse (decrease in wi)
whose local calcium activity was de-correlated with the CN total
calcium activity.

2.10.1. Excitatory synaptic weight (wi) learning
Individual excitatory synaptic weights were learnt and up-

dated with each stimulus presentation (see Section 2.9), during
the synaptic learning phase. The weight change in each synapse
is given by the following equation (illustrated in Fig. 4B–F),

∆wi =

∫ tmax

t0

{(
Ca2+Tot (t)− LPT

)
∗ Ca2+Loc (t)

}
∗ Ki ∗ dt (9)

The synaptic weight change (∆wi), is given by the integral of
correlation between the total calcium activity (Ca2+Loc) and local
calcium activity (Ca2+Loc), for each stimulus presentation (t0 to
tmax). A learning polarity threshold (LPT) was computed in order
to regulate the total calcium activity around an equilibrium set
point (SPEQ = 10). The learning polarity threshold was given
by Eq. (10), where the activity gain factor (kwi) is defined as
a function of total excitatory synaptic weight (

∑
w), with dual

slope having zero point preset to SPEQ (slope = 0.04, if
∑

w <
SPEQ ; slope = 0.12, if

∑
w > SPEQ ). The dual slope was adopted

in order to avoid rapid potentiation (or) constant depression in
synaptic weight, allowing them to regulate around SPEQ (Fig. 4B).

LPT = avg
(
Ca2+Tot

)
∗ kwi (10)

The Ca2+Tot was offset to zero by the LPT, dividing total calcium
activity into positive zone (potentiation) and negative zone (de-
pression) (Fig. 4C). Further, the product of total calcium activity
and local synaptic calcium activity results in a learning signal
(Fig. 4D), who’s integral in time (t0 to tmax) would determine if
respective synaptic weight is bound towards depression (LTD,
negative weight change) or potentiation (LTP, positive weight
change) (Fig. 4E). An additional gain factor (ki, Fig. 4F) was used
to define the strength of potentiation and depression for a given
synapse. We adapted a sigmoid curve (defined by S (t) = 1/(1+
e−t ), steepness gain of 0.005) in order to limit the potentiation
of a synaptic weight, if its current weight is high (near to 1), and
vice versa.

2.10.2. Inhibitory synaptic weight (winh) learning
The total inhibitory synaptic weight (winh) was updated for

each stimulus presentation (see Section 2.9), during the synaptic
learning phase. The winh was adapted towards an activity set
point Ca2+SP , that regulates the calcium firing rate of the CN. An
increase in calcium activity in CN will result an increase in the
winh and vice versa. Therefore, the inhibitory synaptic weight was
used to keep the calcium firing rate at a predefined set point(
Ca2+SP

)
, which was 20 Hz for this simulation. During each stimulus

presentation, the inhibitory synaptic weight change (∆winh) was
given by a dual slope function zeroing at the set point

(
Ca2+SP

)
. The

range of weight change (∆winh) was set between −0.01 and 0.01
for a calcium spike rate ranging from 0 to 200 Hz. This mech-
anism results stability in synaptic learning process (excitatory),
by avoiding excessive calcium activity or no calcium activity.
This synaptic weight adaptation was done based on the average
change across last three consecutive learning cycles, in-order to
attain a smooth adaptation of synaptic weights.
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Fig. 4. Synaptic learning mechanism. (A) Schematic illustration of calcium based activity dependent synaptic learning model. (B) Illustration of the ‘Learning Polarity
Threshold (LPT)’ computation. (C) Illustration of total calcium activity in the neuron, which was offset to zero by the LPT, dividing total calcium activity into positive
zone (potentiation) and negative zone (depression). (D) The local calcium activity in a single synapse. (E) Learning signal, computed as the product of total calcium
activity and local calcium activity. Integral of the learning signal over time. (F) Synaptic weight compensation factor, this is a gain factor that was multiplied with
the integral learning signal to calculate the final weight change for that stimulus presentation.

Fig. 5. Primary afferent responses across ten tactile stimuli, for a single sensing velocity. Each row of spike response corresponds to the sensory data as depicted in
Fig. 1A (insert). The responses presented here correspond to a sensing velocity of 15 mm/s (V3), during indentation phase and sliding phase of the experimentation
protocol. The green shaded area depicts the dataset chosen for training, i.e. the process of learning the synaptic weights between the PA and the CNs. Inset: Four
primary afferent spike responses (PA1-PA4) for paper stimuli.

2.11. Data analysis

2.11.1. Multi-Dimensional Scaling (MDS)
We used a classical multi-dimensional scaling method, based

on an in-built MATLAB R⃝ function ‘‘cmdscale’’. This was used to
create a graphical representation (Fig. 7) of excitatory synap-
tic weight evolution throughout the learning process (for each
learning cycle, 1–1500 stimulus presentations, see Section 2.9).

Euclidian distance measure was calculated between consecutive
learning cycles, across all the PAs. This measure was used as
input to represent the change in synaptic weights during learning
process across all the PAs.

2.11.2. Victor–Purpura distance
We used Victor–Purpura distance (VPd) measure (Victor &

Purpura, 1996) to evaluate the similarities between spike pair



280 U.B. Rongala, A. Mazzoni, A. Spanne et al. / Neural Networks 123 (2020) 273–287

Fig. 6. Primary afferent responses for a single stimulus (glass) across varying sensing velocities (V1–V5). Spike responses from each row corresponds to the sensory
data as depicted in Fig. 1A (insert). One second data (green shaded area) at start of the sliding phase was chosen for synaptic learning, irrespective of sliding velocity.
This allows the synaptic learning to be un-biased of the sensing velocity.

Fig. 7. Synaptic weights. (A) The initial weight (Seed Weight, SW) distribution
across all the PA excitatory synapses. (B) The post-training excitatory synaptic
weight (End Weight, EW) distribution. (C) Evolution of the excitatory synaptic
weights across all the PA synapses, during the synaptic-learning process. A
classical multi-dimensional scaling (across Euclidian distance measure) was used
to illustrate the divergence in excitatory synaptic weights through learning
process (for all the 25 EW configuration, five sensing velocities × five seed
weights).

responses. We use this measure to evaluate the information in
spike responses of given CNs spike responses (Figs. 9 and 10). This
method gives a cost that needed to match two given spike trains.
This cost was calculated based on two rules (1) Addition/deletion
of individual spikes (cost = 1, for each operation). (2) Shifting
a spike time for given interval (∆t) (cost = q.∆t), where q was
the gain factor that defines the relevance of time scale for spike
trains.

2.11.3. KNN classifier
We constructed a KNN classifier to validate the CN spike

responses for stimulus decoding (Figs. 11–13), based on VP dis-
tance matrix. We have constructed the KNN classifier with 3
neighbors (k = 3), 50% training set and 50% test set. These
classes are selected in randomized method. The classifier was run
for 100 repetitions and the mean of the decoding percent was
reported, this was done in-order to have a vigorous validation
across randomly chosen training and test set.

3. Results

3.1. Primary afferent

Contact between tactile sensors and naturalistic textures dur-
ing a passive touch experimentation protocol (Section 2.3) gener-
ated spike responses form first order neurons (or primary affer-
ents (PAs), see Section 2.5). The time-continuous tactile sensor
raw data from 8 channels (C1–C8) were multiplexed into 32
different time-continuous signals using signal processing tech-
niques (see Methods, Section 2.4). These sensory signals were fed
as input currents (Iinput ) to a regular spiking Izhikevich neuron
model (Izhikevich, 2003), which emulated spatiotemporal spike
trains of tactile sensory data. Tactile sensory data was generated
for 10 naturalistic textures (tactile stimuli), under five different
sensing velocity conditions (V1–V5) (25, 20, 15, 10 and 5 mm/s).

In Fig. 5, we display the spike responses of a subset of the PAs
(PA1 − PA32) across all tactile stimuli for a single sensing velocity
(V3, 15 mm/s) including both the indentation and the sliding
phases of the experimental protocol. For a given stimulus, 8/32
PAs (as PA3, PA7 in Fig. 5) exhibit spike bursts during transient-
state changes (Fig. 5, insert), which imitates the fast adapting (FA)
like mechanoreceptor behavior (Abraira & Ginty, 2013; Johansson
& Flanagan, 2009). Whereas, 8/32 PAs (as PA1, PA5 in Fig. 5)
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Fig. 8. Excitatory synaptic weight distributions. (A) The five synaptic seed weight distributions, that were generated using random distribution process (mean = 0.15
and σ = 0.15). (B) The synaptic end weights across PAs, for all 25 EW configurations (as illustrated in Fig. 3E) . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. Single cuneate neuron (CN1) spike responses. Each column illustrates the spike responses of CN1 for PA inputs across 10 tactile stimuli (S1–S10, Fig. 1B)
and 5 sensing velocities (V1–V5). Each stimulus for a given sensing velocity was repeated 10 times experimentally, which were illustrated along rows of the spike
responses.

exhibit fast adaptation (with a quick burst) during the start of a
transient-state change and further generate more tonic activity
in their spiking pattern, imitating the slow adapting (SA) like
mechanoreceptor behavior as observed in mammals and humans
(Abraira & Ginty, 2013; Johansson & Flanagan, 2009). Different
sensory channels exhibit varied spatiotemporal spike patterns (as
PA1, PA5, PA9, PA13) creating a rich representation of the input
stimulus.

By analyzing the responses at the level of the individual PAs
(for example PA1 in Fig. 5), the temporal spiking pattern varies
across all the 10 tactile stimuli (Figure S1A). To quantify the
variation in individual spike responses (PA1, Figure S1A) across
stimuli, we clustered them based on two spike train features
(spike rate and ISI-CV ) (Figure S1B). By using a KNN classifier
(with 5-fold validation) on the clustered PA1 data, we achieved
94% correct stimulus decoding. This decoding performance in
complementary with our previous study (Rongala et al., 2017),
affirming that individual PA responses from our adopted neu-
romorphic implementation, is stimulus specific (during sliding
phase).

In order to implement the concept of variable nerve conduc-
tion delays from the periphery to the CNs observed in humans
and mammals (Johansson & Flanagan, 2009), we have expanded
the 32 PA responses (Figs 5, 6) to 96 PA responses by applying
two different levels of delays (∆T = 75, 150 ms) to each of the
original PA responses (thus obtaining PA33 − PA96).

3.1.1. Effect of sensing velocity
In-order to achieve a ‘‘Learnt, generalizable representations of

the tactile sensing interface’’, we have explored the effect of the
sensing conditions on the synaptic learning algorithm and CN
responses. Fig. 6 illustrates the spike responses of PA1–PA32 for
a single stimulus (Glass, S1) for 5 different sensing velocities.

At the level of individual PAs (for example PA1 in Fig. 6), we
observe a modulation (along time) of spiking responses inversely
proportional to the sensing velocity (as shown in Figure S1C). To
study the similarities in PA spike pattern across different sensing
velocities, we have normalized the PA1 responses in space (Figure
S1D). The PA spike times are normalized based on prior knowl-
edge of sensing velocity. The space normalized PA1 responses
were convolved (Figure S1E) with an exponential decay (τ = 2
mm), and the similarity between these convoluted signals was
evaluated using cross-correlation measure (with zero-lag). The
cross-correlation coefficient across all convolved signals resulted
between 0.96 ∼ 0.99 (Figure S1F). This implies that temporal
firing patterns of the spike responses were similar irrespective
of sensing velocity. This result suggests that PA spike responses
might carry information about the spatial structure of the stim-
ulus (irrespective of the sensing velocity), forming a basis for
generalized stimulus decoding (irrespective of sensing velocity,
Section 3.3.4).



282 U.B. Rongala, A. Mazzoni, A. Spanne et al. / Neural Networks 123 (2020) 273–287

Fig. 10. Normalized cuneate neuron (CN1) responses. (A) The CN1 responses (shown in Fig. 9), were normalized on space (relative position of the tactile sensor on
stimulus). (B) Convolution of the normalized CN1 spike responses, with an exponential decay (τ = 2 mm). Each signal displayed, was the mean across 10 experimental
repetitions.

3.2. Synaptic learning

All the 96 PA responses (PA1 − PA96), were provided to
cuneate neurons (CNs) as excitatory and inhibitory synaptic
weights (wi, winh) (Fig. 3A). Pre-synaptic learning, the excitatory
weights were defined as normal distribution (Seed weights (SWs),
Section 2.8 and Fig. 7A). Following a synaptic learning protocol
(Section 2.9), i.e. a time series of tactile sensing conditions and the
gradual synaptic weight transformations imposed by the synaptic
learning model (Section 2.10), the synaptic weights acquired a
post-learning synaptic weight distribution (End Weights (EWs),
Fig. 7B). The normal distribution of SWs (Figure S2, 7A) evolved
into a bi-modal EW distribution (Figure S2, 7B), post-learning.
Similar phenomenon of few high EWs was previously observed
in the CN in vivo recordings (Bengtsson et al., 2013; Jörntell et al.,
2014).

The synaptic learning had resulted in dimensionality reduc-
tion based on specific input tactile features, that had consti-
tuted for information maximization. This was validated based
on stimulus decoding performance of CN spike responses (post-
synaptic learning, using EWs). We used Victor–Purpura spike
distance measure along with KNN classifier to perform the stim-
ulus decoding (detailed in Section 2.11). Based on the spike
responses of a single CN with synaptic SW (SW1) distribution
(Figure S3A), we achieved a stimulus decoding performance be-
tween 11.76%∼62.14% (across 5 sensing velocities). Whereas,
from the responses of the same CN with EW (EW1) distribu-
tion (Fig. 10), we were able to achieve a decoding performance
between 51.76%∼83.62% (Figure S3B, C).

Based on a previous study (Rongala et al., 2018), the chosen
synaptic learning rule was established to award the PA synapses
that are in high correlation. Therefore, the learning rule po-
tentiates (increase) PA synapses that exhibit synchronized fir-
ing behavior with the PA that has high initial SW (red bars in
Fig. 8A). This makes the SW distribution an important component
of synaptic learning. We have used a multi-dimensional scaling
(MDS) method (Section 2.11.1), to visualize the synaptic weight
changes from SW to EW as shown in Fig. 7C. From this analysis,
it is evident that the synaptic EWs take a different direction

(relative to each other) based on their initial weight distribution
(SW1–5, Fig. 8A).

To assess the effects of seed weight generation mechanism,
we have tested the synaptic learning rule for SWs generated
using both gaussian and log-normal distributions, for varying
mean (µ) and standard deviation (σ ) (Figures S4 and S7). For
gaussian distribution, we tested the learning algorithm for each
combination of µ and σ between 0.05 to 0.25, with step of 0.05.
Whereas, for log-normal distribution we have tested the learning
algorithm for each combination of µ and σ between 0.6 to 1, with
step of 0.1.

With variation in gaussian distribution parameters, we noticed
for smaller σ (σ = 0.05 and 0.10) there is higher degree of
variation from SW to EW landscape (‘‘weight landscape’’ denotes
the distribution of weights across all the 96 PA synapses) (Figures
S4 and S7). From Figure S4, we notice that SWs with low µ and
σ (µ and σ < 0.10) tend to have a clear bimodal EW distribu-
tion. Whereas, SWs with high µ and σ (µ and σ > 0.20) have
difficulties in resulting higher EWs. We have performed stimulus
decoding (using VPd and KNN, see Section 2.11) based on the
spike responses of CN with these EWs (corresponding to the SWs
and EWs in Figure S4) to realize the effect of variation in gaussian
distribution parameters. We achieved a stimulus decoding per-
centage ranging between 79.46% to 98.6%, with a mean decoding
of 89.34% (Figure S6). Further, by considering log-normal SW
distribution (Figure S7), we found that the learning algorithm
tends to achieve a bi-modal EW distribution even for variation in
the distribution parameters (µ and σ ). We achieved a stimulus
decoding percentage ranging between 79.06% to 89.36%, with a
mean decoding of 82.14% (Figure S9) based on CN response for
the EWs learnt using log-normal SW distribution. These results
indicate that the proposed learning algorithm is robust to the
variation in SW generation mechanisms.

We have simulated synaptic learning for a configuration of
five different SW distributions (Fig. 8A) and PA responses for five
different sensing velocities, which resulted in 25 varied EW dis-
tributions (see Section 2.7 and Fig. 8B). During synaptic learning
phase, only the first 1 s data of PA responses during the sliding
phase (shaded zone in Figs. 5, 6) was considered as input to the
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Fig. 11. Stimulus decoding across single cuneate neuron (CN1) responses, for
PA inputs of single sensing velocity (V1). (A) Victor–Purpura distance measure
was used to evaluate the dissimilarities between the stimulus spike responses
of CN1 (Fig. 9, first column data). The VPd cost q = 10/s. (B) Confusion matrix
based on KNN classifier, with 50% training set, 50% test set and K = 3. Using
this classifier, we achieved a correct stimulus decoding performance of 80%.

learning algorithm. This was done in order to avoid the bias of
sensing velocity on the synaptic learning algorithm. However,
post-synaptic learning, the proposed algorithm was able to pick
similar high EWs for a given SW distribution and varying sens-
ing velocities (Figs. 7C, 8). This strengthens the goal of forming
generalized tactile feature representation.

3.3. Cuneate neurons

In order to validate the two-layer spiking neural network
and assess the generalization capabilities of such network, we
opted to perform stimulus classification based on the CN re-
sponses. Post-synaptic learning we achieve 25 varied end weight
distributions (Fig. 8). Each synaptic end weight (EW) distribu-
tion allows a unique combination of PA inputs to be relayed
onto CN, leading to a distinctive CN responses. Therefore, fur-
ther in this article CNs labeled CN1–CN25 indicate the second
order neuron model responses, for respective synaptic end weight
configuration (EW1–EW25).

3.3.1. Single cuneate neuron responses
In this section we analyze individual cuneate neuron

responses for PA inputs corresponding to all 10 tactile stimuli
(S1–S10) under five sensing velocities (V1–V5). In Fig. 9, we show
CN1 (based on EW1) spike responses resulting to PA inputs for all
10 stimuli and 5 sensing velocities. The spike trains were shown
in a matrix structure, where rows display spike responses across
stimuli (separated with red dotted lines) and columns display
spike responses with respect to the sensing velocity. The 10 rows
of spiking responses (for every given stimulus and sensing ve-
locity), indicate the experimental repetitions from passive touch
experimental protocol (Section 2.3). The experimental repetitions
were carried out to assess repeatability of the system presented
in this study (Fig. 9). To evaluate this repeatability in presented
neuron model responses, we convolved the CN1 spike responses
with an exponential decay (τ = 0.5 s) and performed cross-
correlation measure across all the experimental repetitions (for
each stimulus and sensing velocity). This analysis yielded an aver-
age cross-correlation coefficient of 0.84, signifying robustness of
our two-layer spiking neural network model across experimental
repetitions.

From the CN1 responses shown in Fig. 9, it can be perceived
that the spatial pattern of each stimulus was preserved irrespec-
tive of sensing velocity. In order to qualitatively evaluate this
claim, we have normalized the CN1 spike responses in space,
based on the prior knowledge of sensing velocity (Fig. 10A).
The normalized CN1 spike responses were convolved using an
exponential decay (τ = 2 mm) (Fig. 10B). A cross-correlation
measure (with zero-lag) was performed to determine similarities
in these convolved signals. For all 10 stimuli, we achieved an
average cross-correlation coefficient between 0.65∼0.91 (i.e. 0 in-
dicating high dissimilarity, and 1 indicating high similarity) across
convolved signals from different sensing velocities (Figure S10).
Whereas, the cross-correlation coefficient was low (<0.5) for
some CN1 responses based on low sensing velocities (V4 and V5,
10 and 5 mm/s), for certain stimuli (S1, S4, S5, S8, S10), which
could be a result of the stimulus surface property (see discussion).

Overall, with a notable cross-correlation measure across CN1
responses for varied sensing velocities (Figure S10), paved strong
ground towards generalized stimulus decoding.

3.3.2. Validation of single cuneate neuron responses
To evaluate CN spike responses, we have performed stimulus

decoding. We adopted Victor–Purpura (Victor & Purpura, 1996)
spike distance measure, that determine the similarity between
two given spike trains for a pre-defined time shift cost q (see
Section 2.11.2). Lower the Victor–Purpura distance (VPd) measure,
more similar the spike trains and vice-versa. As part of initial
validation, we performed the stimulus decoding based on CN
spike responses for PA inputs corresponding to single sensing
velocity (V1, 25 mm/s). We performed VPd measure (q = 10/s)
between each spike pair of CN1 responses (Fig. 9), for 100 sets
of PA inputs (10 stimuli x 10 experimental repetitions). The VP
distance matrix for this computation was shown in Fig. 11A. Each
stimulus was arranged in blocks of 10 repetitions. Based on this
distance measure, we built a KNN classifier to validate the CN1
responses. A correct decoding performance of 80% was achieved
with 50% training set, 50% test set and K = 3 (Fig. 11B).

We further extended our analysis to validate all 25 CNs, for
PA inputs corresponding to individual sensing velocity. We have
computed VP based distance matrix (as mentioned above) for
individual CN (1–25) responses, for 100 sets of PA inputs (10
stimuli x 10 experimental repetitions, for a given sensing velocity
(V1–V5)). Using a KNN classifier (50% training set, 50% test set,
K = 3), we achieved a stimulus decoding performance ranging
between 32.1%∼94.2% across all 25 CN responses, for PA inputs
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Fig. 12. Stimulus decoding across pairs of CNs, for individual sensing velocities.
(A) Victor–purpura distance-based stimulus decoding was carried out across
individual CN responses (q = 1/s). The median of decoding percent across all
possible n-combinations for a CN population size was presented. (B) Maximum
decoding percent across all the possible n-combinations for a CN population
size. (C) Median decoding percent across all the 25 CNs, for varied VPd cost.

based on given sensing velocity (Figure S11). On an average across
all the 25 CNs, the stimulus decoding performances were 84.66%,
77.24%, 74.78%, 62.30% and 48.61% for respective sensing velocity
V1, V2, V3, V4 and V5 based PA inputs. This analysis present a clear
effect of sensing velocity on the stimulus decoding performance.

3.3.3. Validation across population of cuneate neurons responses
We performed stimulus decoding procedure by grouping the

response from n CNs. For this analysis, we formed different sets
composed increasing number of CNs (p, Fig. 12A, B). In a given
set of population size p and total number of neurons n (= 25),
the number of all possible combinations (nCp) are considered(
nCp = n!/((n− p)!p!)

)
. In this section, we consider the CN re-

sponses based on the PA inputs for individual sensing velocities.
The maximum stimulus decoding performance was computed

(using KNN classifier based on VPd measure (q = 1/s)) across
all the CNs responses for the given combination set. Further, we
compile the median and maximum of decoding percent across all
the possible CN combinations in a set (Fig. 12A, B). Comparing
the decoding performance between individual CNs and pairs of
CNs (p = 2), we found a significant increase in stimulus decod-
ing performance between 3.2% to 18.4% with a mean increase
of 10.2% (Fig. 12A, B). Considering pairs of 2 CNs (p = 2),
the median of stimulus decoding performance ranged between

70%∼90% across all 5 sensing velocities and the maximum stim-
ulus decoding performance was between 68%∼95%. Whereas,
considering bigger CN pair size (p = 5) the stimulus decoding
percentages significantly increased to 80%∼96% (median) and
90%∼100% (maximum). When all the 25 CNs (p = 25) were
considered, we achieved a median stimulus decoding percent of
82%∼100% (and maximum decoding percent of 95%∼100%) for
individual sensing velocity based PA inputs (Fig. 12C). We also
investigated the stimulus decoding performance as a function
of varying VPd cost (q) in-order to assess the robustness of this
measure (q, Fig. 12C). The stimulus decoding performance re-
mained firm between 90%∼ 100% (except in one condition where
q = 100 and at a low sensing velocity V5) across all the given
sensing velocities for changing VPd cost (q = 1 ∼ 100). The
decoding performance for q = 0, corresponds to the spike rate
of CN responses.

3.3.4. Validation across population of cuneate neurons responses
(generalization)

In above sections, we have validated the stimulus decoding
performance based on individual CN responses and pairs of CN
responses, for PA inputs based on individual sensing conditions.
In this section we analyze and validate the CN responses based
on PA inputs irrespective of sensing velocity. Due to difference
in length of spike trains for varied input sensing velocities, we
normalized the CN responses on space based on prior knowledge
of the sensing velocity (as spike responses shown in Fig. 10A).

We have determined spatial Victor–Purpura distance measure
(sVPd), where the VP cost (q) for time shifting spikes was replaced
by space-shifting cost (qs, see Section 2.11.2). This adaptation of
VP helped in assessing the spike trains that were normalized in
space (Fig. 10A). We computed sVP distance matrix for individual
CN (CN1–CN25) responses for PA inputs across all 10 stimuli and
all 5 sensing velocities. We grouped individual cuneate neuron
responses based on stimulus (irrespective to the sensing velocity).
We performed stimulus decoding across individual CN responses
using KNN classifier (with 70% training set, 30% test set, K =
5). The maximum stimulus decoding performance across all the
25 CNs was reported in Fig. 13 (red line with circle marker).
Irrespective of sensing velocity we achieved a strong stimulus
decoding performance of 96% (qs = 0.5).

Crucially, in order to assess the generalizability of the infor-
mation content in CNs, we have modified the KNN classifier. We
have removed the sVPd data that corresponds to two sensing
velocities (V2 and V4) from the training set of KNN classifier.
Whereas, the classifier test set contains sVPd data for all five
sensing velocities. By performing such procedure, we assess if the
classifier could identify stimulus, from the responses that were
never experienced before by the classifier. The decoding perfor-
mance results from this classification technique was labeled as
‘‘generalized classifier’’ in Fig. 13 (blue line with triangle marker)
and rest of this article. Based on this classification technique, we
yielded a stimulus decoding percent of 94.5% (for qs = 0.5) which
establishes the generalizable capabilities of the two-layer spiking
neural networks and adopted synaptic learning techniques in this
research study.

We have also tested the generalized stimulus decoding across
different sVPd cost (qs) in Fig. 13. We achieved a strong classifi-
cation until certain VPd cost (qs = 7.5), further the performance
decreases as a result of loss in spatio-temporal information after
a certain spike shifting cost.

4. Discussion and conclusion

The main objective of this study has been to construct a
neuromorphic tactile system, that could learn and represent input
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Fig. 13. Stimulus decoding across all 25 CN responses that were normalized
on space. The normalized responses of individual CNs are paired according to
stimulus irrespective of their velocity. A KNN classifier with 70% training set,
30% test set and K = 5 was adopted to define stimulus decoding percentage
across each individual CN. Further, maximum decoding percent across all 25 CN
was reported in this plot. Traditional classifier: all 5 sensing velocities (V1–V5)
based stimulus responses are considered in both training and test set of the
KNN classifier. Generalized classifier: only three velocities (V1 , V3 and V5) based
stimulus responses are considered in training set, and all the five velocity-based
responses are used in the test set of the KNN classifier.

tactile features under generalized sensing condition. Towards this
objective we have developed a bio-mimetic functional tactile sys-
tem based on neuro-inspired computational models and learning
algorithms. This system was successful in differentiating natu-
ralistic textures (trained and un-trained) under varying sensing
conditions.

A bionic fingertip-like tactile sensor was used to explore nat-
uralistic textures under passive touch protocol by means of a
mechatronic platform (Fig. 1A, B, C). Further, an Izhikevich neuron
model was adopted to encode mechanoreceptor-like (Primary
Afferent, PA) spike responses from the tactile sensory data. This
neuromorphic adaptation was proven to be stimulus specific (a
stimulus decoding accuracy of 95%, Figure S1) and robust from
our previous studies (Oddo et al., 2016; Rongala et al., 2017;
Spigler, Oddo, & Carrozza, 2012), and also in this current work
(Figure S1). These studies were based on individual channel sen-
sory data. Whereas, the human hand was approximated to have
10000 s of PAs spread across a hand (Johansson & Flanagan,
2009), with hundreds of PAs projecting onto a single cuneate
neuron (2nd order neurons). There is no existing biomimetic
tactile system that can imitate a sensory population to that extent
or neither even in a small population of 100 sensory channels
(Yi, Zhang, & Peters, 2018; Yousef, Boukallel, & Althoefer, 2011).
To tackle this challenge, in this study we have pre-processed
the sensory data to multiplex 8 active sensory channel (physical
sensors) data to 32 sensory signals ( see Methods, Fig. 1A insert).
Addition to this sensory processing we have added two conduc-
tion delays to all the sensory signals. This was done with a motive
to replicate the nerve conduction delays as observed in humans
and mammals (Johansson & Flanagan, 2009). In field of neuro-
science, the role of conduction delays was only hypothesized, but
there was no clear validation of its advantage in processing tactile
information. However, implementing these delays mechanisms

for tactile information processing in robotics has been proved
advantageous for extracting certain haptic features (Bologna et al.,
2013; Rongala et al., 2019). Such sensory data elaborations are
essential for synaptic learning algorithm to extract varied haptic
features. Based on these signal processing techniques and fine-
tuned Izhikevich neuron parameters, we were able to recreate
various firing dynamics properties that resemble slow and fast
adapting mechanoreceptors-like responses (Figs. 5, 6). Addition-
ally, in order to validate the generalized sensing capabilities we
explored each tactile stimulus under five varying sensing veloc-
ities (5, 10, 15, 20, 25 mm/s). We realized for a given stimulus
the firing pattern of PA spike responses were consistent across
different sensing velocities (a cross-correlation of 0.96∼0.99, Fig-
ure S1C, D, E, F). This lay strong ground to our objective of
learning and representing tactile features in generalized sensing
conditions.

We adapted a calcium based cuneate neuron model and synap-
tic learning rule, that were modeled based on the intracellular
dynamics as observed in cuneate neuron in vivo recordings (Ron-
gala et al., 2018). In previous biological studies conducted on
cuneate neurons in adult mammals (Bengtsson et al., 2013), it
was observed that these neurons exhibit strong bi-modal synaptic
weight distribution with few high synaptic weights and other
very low synaptic weights (silent synapses). Such phenomenon
was dubbed to act as feature extractor, by reducing high-dimens-
ional sensory inputs to a few important learnt dimensions (Jörn-
tell et al., 2014). Therefore, we designed a calcium activity de-
pendent synaptic plasticity rule based on multiple assumptions
and in vivo recordings (Rongala et al., 2018). We implemented
the cuneate nucleus as a feedforward network with homeostatic
plasticity rule (self-stabilizing learning mechanism). A similar
structure was proposed in Kasabov (2010). However, in Kasabov
(2010) the plasticity is supervised while that was based only on
the current internal state of the neuron and not on classifica-
tion results. Overall, Kasabov (2010) mimics more closely higher
level/abstract processes of classification, while our model was
more grounded into the dynamics of peripheral nervous system
as needed for our neuroprsothetic purposes.

This learning rule was established to learn the sensory cor-
relations from input PAs synapses. Based on such learning rule,
by assigning randomly distributed initial synaptic weights (pre-
synaptic learning, ‘seed weights (SWs)’) we allow the learning
algorithm to pick correlation in the input sensory synapses with
respect to the random combination of high initial synaptic weig-
hts. Therefore, leading to pick a set of synapses that were re-
sponding to a specific haptic feature in the input sensory space.
This results in few highly correlated synapses to have high weights
post-synaptic learning (end weights (EWs)). Hence, different SWs
distribution would allow the algorithm to pick different haptic
features (from resulting EWs) in the input sensory space. In
the current study we were able to reproduce such phenomenon
(Figs. 7, 8). The learning algorithm was validated by stimulus
decoding performance, which raised from 11.76%∼62.14% (with
synaptic SW distribution) to 51.76%∼83.62% (with synaptic EW
distribution) (see Section 3.2, Figure S3). Further, we studied the
effect of seed weight generation mechanism on the learning algo-
rithm (Section 3.2, Figures S4–S11). We found that our learning
algorithm is sensitive to the variation of synaptic SW distribution
parameters (mean (µ) and standard deviation (α)), where in
some cases of high µ and α the learning mechanism finds hard
to have high end weights (or bimodal distribution). However,
the synaptic learning algorithm still tries to segregate EWs from
SWs for any given µ and σ . This can be perceived from a high
stimulus decoding percentage ranging between 79.46% to 98.6%
with a mean decoding of 89.34% (Figure S6), for gaussian SW
distribution, and stimulus decoding percentage ranging between
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79.06% to 89.36% with a mean decoding of 82.14% (Figure S9), for
log-normal SW distribution.

Crucially, we found that the synaptic EWs based on PA in-
puts associate with different sensing velocities but same SW,
evolve to have similar high-EW synapses (Figs 7C, 8B). This fur-
ther strengthens the generalization in input feature learning,
irrespective of sensing velocity.

In order to validate the two-layer spiking neural network and
assess the generalization capabilities of such network, we opted
to perform stimulus classification based on the CN responses. We
have trained 25 CNs based on the combination of 5 different
SW distributions (SW1-5) and PA inputs for 5 different sens-
ing velocities (see Sections 2.7 and 3.2). Further we performed
stimulus classification on CN responses (Fig. 9) using Victor–
Purpura spike train measure. This resulted in an average correct
decoding percent of 84.66% (min: 76.1%, max: 94.3%) across all
the 25 CNs individually, for PA inputs associated to single sensing
velocity (V1, 25 mm/s) (Fig. 11, S5). Further, we achieved de-
coding performance between 32.1%∼94.2% across all individual
CNs for PA inputs with varied sensing velocities (Figure S11).
We found that the decoding performance consistently worsens
along with reduced sliding velocity, mostly for the two lower
velocities (V4 and V5, 10 and 5 mm/s). The effect of slow sliding
velocity was already evident (cross-correlation coefficient <0.5)
in PA responses (Figure S10). This could be a result of force-based
control strategy used in the mechatronic platform (Oddo, Beccai
et al., 2011; Oddo, Controzzi et al., 2011), where the stimuli were
slid (using a voice coil, with absolute tracking error < 20 mN)
along the surface of the tactile sensor with a pre-defined contact
force (400 mN). With slow sliding velocity the voice coil adapts its
height in order to maintain the intended contact force between
the stimuli and tactile sensor, indirectly results in adapting to
the irregularities in stimuli surface and subsequently losing some
temporal properties.

Further, we performed stimulus decoding across an ensemble
of CN networks responses for PA inputs corresponding to indi-
vidual sensing velocity. An average decoding performance over all
the possible combination of 25 CNs, for a specified size of CN pop-
ulation was considered (Section 3.3.3). Through this co-operative
decoding methodology, we voted for maximum and median de-
coding performance across the CN population (p) (Fig. 12A, B). The
decoding performance has increased from 59.4%∼84.6% (median
voting, p = 1) to 82%∼100% (median voting, p = 25) (Fig. 12C).
This high decoding performance shows the significant amount of
stimulus specific features encoded by our two-layer network.

Lastly, we opted to validate generalized stimulus decoding
(decoding stimulus irrespective of sensing velocity) based on all
25 CNs responses. In humans we have multiple sensory per-
ceptions, where fusion of these sensory data can construct a
multi-dimensional sensory perception. For example, during a tac-
tile manipulation task, sensory data from skin stretches, muscle
movements contribute to a proprioceptory feedback, assisting us
to estimate the sensing velocity. On basis of which we could
normalize the tactile sensory data. In our modeling approach to
perform generalized decoding, we normalized the CN spike re-
sponses across space (with prior knowledge of velocity). As a first
step, we analyzed a single CN responses (normalized in space) for
each stimulus across PA inputs based on different sensing velocity
(Fig. 10). We found the firing pattern of CNs responses remain
certain (average cross-correlation coefficient between 0.65∼0.91,
across all stimuli), for varying sensing velocities (Figure S10).
Based on this verification, we performed stimulus decoding across
normalized CNs responses using spatial Victor–Purpura measure
and KNN classifier (test set = 70%, training set = 30%, K = 5).
From which, we have achieved a maximum decoding perfor-
mance of 96% across all 25 CNs (for cost qs = 0.5, Fig. 13). In order

to also generalize the classification method, we have trained the
KNN classifier with CN responses associated to only PA inputs
(for all 10 stimuli) from three sensing velocities (V1, V3 and V5).
Further, tested the classifier with PA inputs (for all 10 stimuli) for
all five sensing velocities (‘Generalized classifier’). This procedure
yielded a decoding performance of 94.5% (for cost qs = 0.5,
Fig. 13). The high stimulus decoding performance across CNs
responses irrespective of varying sensing velocities confirms that
our system could learn and represent input tactile features under
generalized sensing condition.

With the learning model presented in this article, we were
able to create a representation free feature extractor. Any artificial
neural networks can be added on top of the presented model
to learn and classify the input stimuli. The learning mechanism
proposed in this study can also be used to address the problem
of initial weight configuration in artificial neural networks (Glorot
& Bengio, 2010; He, Zhang, Ren, & Sun, 2015). With neuronal reg-
ulatory mechanisms and self-stabilizing learning, we were able to
create a bio-inspired feature extractor with generalized learning
capabilities. This system can be reliable for robotic applications
but could be potentially expanded to other application domains
ranging from bionics up to climate data as approached by prior
art (Kasabov et al., 2016).

In this research study, we found implementing SNN with
a realistic calcium plasticity model, can be efficient in learn-
ing the emergent features in the temporal evolution of a 2D
space, and performing an accurate classification. The adopted
learning rule reinforces the correlations present in the random
seed weights, which at the same time ensures robust feature
extraction and makes each cuneate neuron unique potentiating
population encoding. Interestingly, these results are achieved
with a large fraction of silent synapses, which at the same time
might be energetically efficient and can allow mimicking the
actual neurophysiology of the cuneate nucleus.
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