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Abstract— Three dimensional visualization of vascular struc-
tures can assist clinicians in preoperative planning, intra-
operative guidance, and post-operative decision-making. The
goal of this work is to provide an automatic, accurate and fast
method for brain vessels segmentation in Contrast Enhanced
Cone Beam Computed Tomography (CE-CBCT) dataset based
on a residual Fully Convolutional Neural Network (FCNN).
The proposed NN embeds in an encoder-decoder architecture
residual elements which decreases the vanishing effect due to
deep architecture while accelerating the convergence. Moreover,
a two-stage training has been proposed as a countermeasure
for the unbalanced nature of the dataset. The FCNN training
was performed on 20 CE-CBCT volumes exploiting mini-
batch gradient descent andthe Adam optimizer. Binary cross-
entropy was used as loss function. Performance evaluation was
conducted considering 5 datasets. A median value of Dice,
Precision and Recall of 0.79, 0.8 and 0.69 were obtained with
respect to manual annotations.

I. INTRODUCTION

Stereo-Electro-encephalography (SEEG) involves the im-
plantation of multiple intracranial electrodes to map spatio-
temporal dynamics of epileptic seizures to identify the
epileptogenic foci. In SEEG procedures, brain vessels are
among the most critical landmarks that need to be accurately
localized for reducing surgical risks, such as intracranial
hemorrhage. Thus, a careful preoperative planning is required
to identify safe electrode trajectories that preserve vascular
structures [1].

Several approaches have been proposed for vessel seg-
mentation and a recent review can be found in [2]. Focusing
on SEEG planning, the work in [3] and [4] applies Frangi’s
3D multi-scale vesselness on Magnetic Resonance Imaging
(MRI) volumes. Similarly, the work in [5] proposes a multi-
scale, multi-modal tensor voting algorithm. In [6] a Gaussian
Mixture Model (GMM) based on Markov Random Fields
(MRFs) combined to manual thresholding is used to segment
vessels from Maximum Intensity Projection (MIP) volumes.

Despite these approaches being promising, (i) the limits
of currently involved imaging techniques and (ii) the com-
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plex morphology of cerebrovascular structures hinders their
translation into the actual clinical practice [7].

To partially overcome limits in vessel imaging, a new
imaging procedure called Cone Beam Computed Tomog-
raphy (CBCT) Three-Dimensional Digital Subtraction An-
giography (3D DSA) has been proposed [8]. This procedure
consists in the acquisition of two CBCT volumes, before and
during the injection of a contrast medium, namely the bone-
mask (BM) and CE-CBCT volumes. The two volumes are
organized to obtain the 3D Digital Substracted Angiography
(3D-DSA) volume, in which vessel and bone contrast are
enhanced and attenuated, respectively.

3D-DSA allows enhanced vessel visualization, however,
it requires further post-processing in order to obtain an
accurate vascular mask for automatic SEEG planning. More-
over, 3D-DSA can suffer from registration error: despite
the subtraction of the BM from the CE, residual bone
structure and noise affect the quality of 3D DSA for which
a manual thresholding is not sufficient. This could be done
using deep-learning strategies, such as Fully Convolutional
Neural Networks (FCNN). FCNNs have achieved remarkable
results in vessel segmentation by automatically learning com-
plex image features and combining them into hierarchical
representations for prediction and classification [2]. Most
approaches are however developed to process 2D images,
while medical data involved in SEEG planning consist of
3D volumes.

In this work, we propose a novel 3D brain vasculature
segmentation that exploits the power and effectiveness of an
end-to-end convolutional neural network architecture. Our
contribution is two folds. First, instead of processing the
input volumes in a 2D slice-wise fashion, we propose to
apply directly 3D convolutional operations to exploit the
intrisic tridimensional information encoded in the CE-CBCT
volume. Second, we combine a two-stage training specifi-
cally designed for medical image segmentation to leverage
class imbalance.

This paper is organized as follows: in Sec. II the proposed
FCNN is described, along with our two-phase training strat-
egy to account for vessel/background imbalance. In Sec. III,
dataset specifications and performance metrics are reported.
In Sec. IV, the achieved results are reported. Finally, Sec. V
concludes this paper summarizing the main achievements and
discussing some future research directions.
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Fig. 1. The scheme of the proposed Fully Convolutional Neural Network (FCNN) architecture: a U-Net architecture [9] is integrated with the residual
blocks introduced in [10] (designed according to a bottleneck setting firstly proposed in [11]). Blue, green and orange boxes on the right report the
architecture of the employed shortcuts.

II. METHODS

A. Architecture

Figure 1 illustrates the proposed 3D-FCNN architecture,
inspired by [9], that demonstrated outstanding performance
in medical-image segmentation. Compared to [9], our 3D
FCNN also embedded residual blocks, firstly introduced
in [10] which allows to overcome the vanishing gradient
effect typical of FCNN training and speed up the training
convergence.

Our FCNN architecture is composed of eight stages,
excluding the input and output blocks, arranged as a
downsampling-upsampling style encoder-decoder network
with four resolution steps. Each stage contains a series of
residual unit blocks characterized by two types of shortcut
connections, namely identity and projection. The shortcuts
are structured with a bottleneck design, which consisted of
a 1 × 1 × 1 layer, a 3 × 3 × 3 layer, and a 1 × 1 × 1 layer
where the first and last convolutional layers are used for
reducing and restoring image dimension, respectively. This
technique is used to decrease the number of parameters while
not affecting the performance of the network [12]. Moreover,
in the identity mapping residual block, each convolutional
layer with unit stride is preceded by batch normalization and
ReLu activation according to the full pre-activation setting
described in [11], which has been found to be more powerful
than the baseline ResNet residual block.

In the first four stages, the number of convolutional filters
is increased of a factor of two, allowing a wider reception
field, as well as in the remaining four stages decreased
of a factor of two. Skip connections from layers of equal
resolution allows to recover spatial information by merging
features from same resolution levels between the contracting
and expanding path.

The input block, was equivalent to the first 3 layers of

ResNet50: a convolutional layer with 7×7×7 and strides =
(2,2,1) followed by BN + ReLu activation and maxPooling
operation with a stride of 2 for downsampling. The output
block was a fully connected layer followed by a binary
sigmoid classifier to produce class probabilities for each
voxel. The architecture had a total of 20760481 parameters
and 279 layers.

B. Training

As described in Sec. III-A, each of our CE-CBCT volume
had size of 512x512x192 pixels. To balance the huge mem-
ory requirements of a 3D-FCNN training without suffering
neither from loss of resolution due to volume resampling or
efficiency issues due to dense patch-wise training, we opted
for a “large” patch-extraction approach. Thus, we extracted
from each volume 64 3D patches of dimensions 128x128x48,
i.e. the maximum dimension allowed by current graphic card.
This on one hand increased the training-set size and on the
other one offered a good alternative to capture both local and
global contextual information.

1) Two-phase training: Our brain-vessel segmentation
problem was highly class-imbalanced (background voxels
accounted for the 99% of total voxels). A random patch
selection would have caused the FCNN training to be
overexposed to no-vascular patches, negatively affecting the
FCNN predictive performance. To overcome this problem,
we initially built our training-patch dataset such that the two
classes (i.e. vessel, non-vessels) were equiprobable. Thus,
we firstly trained our model on this dataset. Then, in a
second phase, we re-built the patch dataset accounting for
the unbalanced nature of our dataset and re-trained only the
FCNN output layer (i.e., keeping fixed the FCNN first-layer
weights).

2) Training parameters: During training, the FCNN
model was regularized with a weight decay of 1e-4 and all
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Fig. 2. On the left the volume rendering of a cerebrovasculature mask. On the right the axial, sagittal and coronal views of a Contrast Enhanced (CE)
Cone Beam Computed Tomography (CBCT) volume with the vascular mask in green.

the weights were initialized according to [13]. To update the
FCNN weights during training, the ADAM [14] optimizer
was used with an initial learning rate of 3e−4 and a scheduled
reduction of 10% at each loss function plateau. Mini-batch
gradient descent was used to minimize the binary cross-
entropy, used as loss function, with a batch size equal to 6.

To monitor the training process, we randomly selected the
25% of the training data as a validation set. The validation set
was used to early-stop the training process based on the Dice
similarity Coefficient (DSC), with patience of 25 epochs:

DSC = 2 · 2Tp

Fp+ Fn+ 2Tp
(1)

where Tp is the number of vessel voxels correctly classified,
and Fp and Fn are the voxels misclassified as vessels and
background, respectively.

The network was trained using Keras and Tensorflow
framework1. All training procedures and experiments were
conducted on a workstation equipped with one single GPU
NIVIDIA GEFORCE GTX-1080 Ti with 12 GB of RAM on
a Windows 10 Professional 64-bit operating system, AMD
Ryzen 7 1700X eight-core processor @3.40GHz with 16 GB
of RAM.

III. EXPERIMENTAL SETUP

A. Dataset

The proposed FCNN was retrospectively applied on 25
patient volumes acquired in 2017 at the Claudio Munari
Centre for Epilepsy and Parkinson Surgery, Niguarda Ca
Granda Hospital, Milan (Italy). All procedures were in
accordance with the ethical standards of the institutional
research committee and with the 1964 Helsinki Declaration

1https://keras.io/

and Ethical approval was sought from the Niguarda Hospital
Ethical Committee. Individual patient consent was obtained
for use of anonymized preoperative imaging. For this study,
formal consent was not required. At the time of the acquisi-
tion, all patients did not present any vasculature pathologies
and underwent the standard acquisition protocol for SEEG
pre-operative planning.

The CE-CBCT acquisition was performed by means of
the O-armTM System (Medtronic; Minneapolis, Minnesota,
USA) over 12s after the start of iopamidole infusion (300
mg/ml) in the ICA depicting the left/right hemispehere’s
vasculature tree. Each volume had a voxel resolution of
0.415x0.415 mm in axial plane and 0.833 mm in z-direction,
accounting for 192 slices, each of size 512× 512 pixels.

Each volume came with a single-label cerebro-vascular
mask, which was retrieved from the 3D-DSA. The labelling
was performed by a neurosurgeon, in a slice-by-slice fashion,
by means of manual thresholding with the assistance of
3D visualization tools2 to take into account the global 3D
vascular structure. The binary mask was further manually
refined using ITKsnap3.

B. Evaluation

The dataset was divided in three folds: 20 volumes were
used for training and 5 others for testing purpose only. To
quantitatively evaluate the performances of the proposed 3D
FCNN, we computed the DSC, precision (Prec) and recall
(Rec), which are defined as follows:

Prec =
Tp

Tp+ Fp
(2)

2https://www.slicer.org/
3http://www.itksnap.org
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TABLE I
MEDIAN (INTER-QUARTILE RANGE) OF PERFORMANCE METRICS FOR

OUR 3D FCNN COMPARED TO STATE OF THE ART ARCHITECTURES.
DICE SIMILARITY COEFFICIENT (DSC), PRECISION (Prec) AND

RECALL (Rec) ARE REPORTED. TRAINING TIME (TIME) IS REPORTED,
TOO.

Methods DSC Prec Rec Time

Otsu’s thresholding 0.49 (0.04) 0.41 (0.07) 0.39 (0.08) −
Frangi Filter [15] 0.54 (0.04) 0.43 (0.07) 0.41 (0.08) −
U-net [9] 0.59 (0.1) 0.51 (0.09) 0.42 (0.13) 22 hours
V-net [16] 0.65 (0.12) 0.59 (0.24) 0.57 (0.19) 28 hours
Our method 0.79 (0.13) 0.8 (0.09) 0.69 (0.12) 14 hours

Rec =
Tp

Tp+ Fn
(3)

where Tn represents voxels that were orrectly identified as
belonging to the background.

IV. RESULTS & DISCUSSION

Table 1 reports the performance in terms of median (inter-
quartile range (IQR) Prec, Rec, and DSC. The obtained
results showed a good agreement between the segmentation
and manually-annotated data. Our approach resulted to be
robust against beam hardening effect caused by the contrast
mean, which increased the intensity of the surrounding area
nearby the vessels (Fig. 2). Computational training time (14
hours) could be acceptable, considering both the lack of code
optimization for our preliminary version and the standard
available hardware. Moreover, it is worth noticing that the
problem of SEEG surgical planning is typically offline.

A limitation of this study could be seen in the lack of
a large clinical dataset for training and evaluation. This
initial work has to be intended as a proof of concept for
the described methodology, and we are currently working
with our clinical partners on expanding our dataset.

V. CONCLUSION

In this paper, we introduced an automatic brain-vessel
segmentation method in CE-CBCT that uses 3D deep convo-
lutional neural networks. Experimental results demonstrated
that the proposed architecture managed to improve with
respect to the current state-of-the-art architectures. Such per-
formance was obtained with the application of the full pre-
activation setting of the residual blocks, which increased both
the model convergence rate and the performance. Moreover,
training the model in two phases offered an effective and
efficient procedure in presence of highly unbalanced label
distribution. As it regards the computational time for the
segmentation, for a volume, excluding the patches extraction
and reassembling time, it takes 145 seconds for the segmenta-
tion. Despite being slightly more computationally expensive
against the Otsu’s thresholding, this approach guarantees a
better performance.
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