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Abstract—Network Function Virtualization (NFV) is the key
technology that allows modern network operators to provide
flexible and efficient services, by leveraging on general-purpose
private cloud infrastructures. In this work, we investigate the
performance of a number of metric forecasting techniques based
on machine learning and artificial intelligence, and provide
insights on how they can support the decisions of NFV operation
teams. Our analysis focuses on both infrastructure-level and
service-level metrics. The former can be fetched directly from
the monitoring system of an NFV infrastructure, whereas the
latter are typically provided by the monitoring components of the
individual virtualized network functions. Our selected forecasting
techniques are experimentally evaluated using real-life data,
exported from a production environment deployed within some
Vodafone NFV data centers. The results show what the compared
techniques can achieve in terms of the forecasting accuracy and
computational cost required to train them on production data.

Index Terms—Forecasting, NFV, Operations, Time-series,
LSTM

I. INTRODUCTION

In recent years, the landscape of information and commu-
nication technologies has been facing an unprecedented turn
into distributed computing. The wide-spread availability of
high transmission bandwidths—at affordable rates—enabled
multiple scenarios where computing can effectively and ef-
ficiently be distributed. Coupled with the relentless develop-
ment of virtualization technologies, this led to the realization
of nowadays cloud computing. Cloud technologies enabled
the flexible management of pools of shared general-purpose
processing, storage and communication resources. Consumers
can remotely access them in an on-demand, rapid, completely
automated and dynamically adaptable fashion.

At the same time, communication technologies have been
evolving towards more sophisticated services, higher capacity
and lower latency in both landline and mobile access networks,
as well as in backbone transport segments. The new distributed
computing scenarios, including big-data processing in the
cloud and on-the-fly processing at the edge, exposed the
incapability of traditional networks at managing the complex
and fast-evolving requirements of new and emerging services.

Thanks to the increasing convergence of networking tech-
nologies towards IP-based networks (e.g., LTE), telecommu-
nications are benefiting of well-established principles com-

ing from the cloud computing space. This led to the re-
cent paradigm of Network Function Virtualization (NFV) [1],
where general-purpose private cloud infrastructures allows for
quickly provisioning virtualized resources (i.e., network slices)
in which to instantiate flexible virtualized network functions
(VNFs), seconding the instantaneous workload conditions and
their requirements. This way, a more infelligent use of physical
resources can be pursued [2].

At the heart of automated management and orchestration op-
erations (including capacity planning, performance monitoring
and management), there are monitoring systems continuously
gathering a plethora of metrics, for each individual element of
the infrastructure. For instance, tens of system-level metrics
may be gathered from each individual physical host, virtual
machine or networking element, with a typical time granu-
larity of one sample every few minutes. At the same time,
individual VNFs continuously collect metrics related to the
status, performance and failures happening at the application
level. This data is normally aggregated and analyzed in real-
time by an alerting system that, under precise threshold-
based conditions on said metrics, is able to trigger operators’
attention (e.g., when failure rates or response latencies exceed
certain thresholds), or even activate automated fault manage-
ment and recovery actions (e.g., exclude a physical host from
the fleet and send it to data-center operators for repair and
maintenance).

Accurately forecasting how key metrics will evolve over
time is an increasingly important problem, both for short-
term and mid/long-term forecasts. For this reason, Machine
Learning (ML) techniques have been gaining momentum as
key technologies accompanying enterprises operating in pretty
much any business domain. In networking, these techniques
have been successfully applied in NFV infrastructures for
anomaly detection [3], [4], behavioral pattern analysis [5], [6]
as well as resource demand estimations [7], [8]. In particular,
Deep Learning (DL) methods are among the techniques that
are receiving increasing attention from both research and
industry. Therefore, it is worth investigating the applicability
of DL models and the trade-offs that can be achieved in terms
of precision and training cost of the available techniques. In
this paper, we contribute with a useful investigation along this



line, comparing various methods based on DL and advanced
statistics in forecasting NFV infrastructure metrics.

II. RELATED WORK

Adoption of predictive techniques in NFV and Software
Defined Networks (SDN) schemes is a long-standing approach
for adapting available virtualized resources to varying loads
[31, [4], [9]. In this way, service-chains deployed on cloud
infrastructures are able to offer quick proactive measures to
ensure quality of service (QoS) and reduction of CAPEX
and OPEX costs. However, achieving such a goal comes
with several challenges like, for instance: (i) employing
effective predictive models that do not lead to under- or
over-provisioning virtual resources; (ii) assessing which com-
ponents of a service-chain should be scaled to maximize the
overall efficiency; (iii) optimizing the placement of newly
created virtual resources on the physical infrastructure [10],
[11]. Our work focuses on (i), in particular, by investigating
effective time-series forecasting techniques that can provide
NFV operation teams with actionable feedbacks to support
their decisions (e.g., whether a VNF needs to be scaled to
accommodate traffic growth).

A standard solution for real-time forecasting and scaling
of resources is static thresholding [12]. Despite being a
straightforward heuristic, it can provide interesting results
when dealing with simple systems. However, in general,
different services require different threshold policies, thus
a generic approach will lead to over- or under-sizing the
infrastructure. On the other hand, dynamic thresholding pro-
vides an adaptive mechanism to set thresholds, that can be
implemented with, e.g., Reinforcement Learning (RL) [13],
[14]. However, the burdens related to using RL algorithms
often limit their applicability to real infrastructures (e.g., the
need for—sophisticated—simulation environments to train the
agents). For instance, in [15], the authors do train a Q-learning-
based algorithm on a real telco system, but the resulting
agent is observed to take several unexpected decisions before
converging to the optimal policy, suited for the dynamics of
the system. A rather successful RL-based approach to VNF
service-chains deployment is presented in [16], where the
authors propose NFVdeep that jointly minimizes operation
costs and maximizes requests throughput, also taking into
account different QoS requirements.

When it comes to proactive approaches, that leverage on
forecasting techniques to estimate the system dynamics, [17]
describes the usage of ML algorithms ensembles for auto-
scaling of NVI architectures based on VNF features. In [18],
instead, a more modern approach, based on Long Short-
Term Memory (LSTM) networks, is adopted to forecast VNF
requirements. However, it is not clear whether there is an
actual improvement, in terms of forecasting accuracy, when
compared to other methods, as the authors mainly focus on
features selection aspects.

Nowadays, LSTM has been proven to be an extremely
effective tool for time-series analysis, both for classification
[19], [20] and forecasting [21], [22] tasks. In particular, the

sequence-to-sequence architectural pattern, when implemented
with LSTM-based encoder and decoder components [23],
yields surprisingly good results. This kind of architectures
are also widely adopted for machine translation and Natural
Language Processing (NLP) tasks in general. In NFV context,
they can be helpful when translating VNF metrics sequences
to infrastructure metrics sequences and vice-versa. Since com-
munication from the encoder to the decoder is limited to
the hidden state values, there are no real requirements on
the structure and architecture of both, thus allowing even for
different types of input and output metrics.

As described in [3], [4], forecasting accuracy can also be im-
proved by leveraging on information about the topology of the
deployed VNFs like, e.g., graphs characterizing interactions
among the VMs belonging to the same VNFs. In [7], such
topology-aware time-series forecasts were achieved through
Graph Neural Networks (GNNs) [24], [25].

III. BACKGROUND CONCEPTS

In this section, we recall some fundamental time-series
forecasting algorithms used for this work. We included stan-
dard system identification models from statistical sciences and
signal processing, e.g., SARIMA and Holt-Winters (HW),
as well as more advanced ML methods, e.g., Non-linear
Auto-Regressive (NAR) neural networks and Long Short-Term
Memory (LSTM).

In what follows, {x;}+cz with z; € R™ denotes a generic
discrete—possibly multi-variate—time-series whose historical
evolution is known up to the current time. Its future evolution
{@+} is to be predicted with one of the mentioned techniques.

A. SARIMA

The Auto-Regressive Moving Average (ARMA) model pro-
vides a flexible tool for forecasting. Given the samples {x;}
up to time ¢ — 1, the forecasted sample Z; is computed as:

p q
Br=do+ Y dimiit+ » Oje )
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where: ¢¢ is a constant; {¢;}?_, are the model parameters
controlling the linear dependency of Z; from the p last samples
of the signal; {0; }?:1 are the parameters defining the linear
dependency of the output from the ¢ errors {e;_; = Te_j —
Ti—j }5:1 performed by the model on the last ¢ predictions.
From ARMA, it is possible to derive another technique,
known as ARIMA, that can be used for non-stationary time-
series. ARIMA is actually an ARMA model applied to the
d—order differenced signal (defined as xEl) £ ¢, — x4, for
d =1, and xgd) £ xgd_l) — :cﬁ_ll), for d > 1), for some
d € NT, to obtain d—order differenced forecasts :L'gd), that
need to be integrated to reconstruct the final forecast Z;:

p q
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Equation (2) is referred to as an ARIMA(p, d, ¢) model. From
such a general definition, it is possible to derive simpler
models by tuning the meta-parameters (p, d, q). For instance:

e When d = ¢ = 0, an Auto-Regressive model AR(p) =
ARIMA(p, 0,0) is obtained, where z; is a linear combi-
nation of its lagged values up to ¢ — p.

e« When p = d = 0, a Moving Average model MA(q) =
ARIMA(0, 0, ¢) is obtained, where x; is a linear combi-
nation of the errors at previous timestamps up to ¢ — g,
not to be confused with moving average filtering.

The meta-parameter d is typically chosen to obtain a d—order
differenced time-series xﬁd that is stationary, i.e., whose
mean, variance and auto-correlation are independent of .

ARIMA can be further extended to deal with seasonal
patterns by introducing additional terms in Equation (2). Such
a variant is known as Seasonal ARIMA (SARIMA ). Given a sea-
sonality period of m samples and meta-parameters (P, D, @),
that are seasonal equivalents of (p,d, q), we get an additional
component that corresponds to an ARIMA where the signal
values (and errors) at t — m,t — 2m,t — 3m, ... are used
to compute the output at ¢. The parameters of the model are
usually optimized via least-square optimization or likelihood
maximization with Kalman filters [26].

B. Holt-Winters

Holt-Winters (HW)—often referred to as triple exponential
smoothing [27]—is a commonly adopted method for forecast-
ing and signal processing. Its peculiarity consists in explicitly
separating predictive components into level (or expected value,
ly), trend (by) and seasonality (s;). In its additive form, given
knowledge of the samples {z;} up to the current time ¢, HW
forecasts future samples ;5 for h € N as

Goan=li+ 0+ >+ -+ "+ Stn-m
Iy = axy — St—m) + (1 — a)(li—1 + Pbi—1)
be = Bl —li—1) + (1 — B)pbi—r
st =y(we —li—1 — Pbr—1) + (L = 7)8t—m
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where: m is the seasonality period; 0 < «, 8,7 < 1 are the
smoothing factors for the level, trend and seasonality forecasts;
0 < ¢ <1 is the damping factor. Alternatively, HW can be
also formalized in a multiplicative form as

Topn = [l + (0 + R ¢h)bt] *St+h—m

Iy =« Tt + (1 —a)(lg—1 + dbi—1)
Stem 4)
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HW parameters are optimized via Sequential Least Squares
Programming, a classical optimization technique for con-
strained minimization problems.

C. Non-linear Auto-Regressive Neural Networks

A NAR neural network is an auto-regressive model where
the forecast z; at time ¢ is a non-linear combination of the last

Signal

Fig. 1: NAR neural network for time-series forecasting.

p observations of the input signal. In the case of the so-called
tunable-basis, the estimated sample is obtained as a linear
combination of r non-linear functions, where each function
fi processes the same input using a set of ¢; specialized
parameters f3; 1, ..., Bi.q € R:

Ty :Zaifi(xt—lv-~~7xt—p;61’,17~~-aﬂz’,qi) )
i=1

The one-hidden layer sigmoidal neural network is a notable
instance of this type of functions. In this case, the parameters
are optimized via back-propagation [28], [29], using input-
target pairs consisting of past and current observations. Fig-
ure 1 represents a NAR forecasting model with a single hidden
layer in the case of p =4 and r = 6.

D. Long Short-Term Memory

As to more advanced ML techniques, LSTM networks [30]
represent a common architecture for time-series classification
and forecasting [23], [31]. They consist of an improved version
of Recurrent Neural Networks (RNNs), NNs with feedback
connections used to—theoretically—predict arbitrarily long
sequences. If {z:}, for x; € R™ and ¢ € [0, 7], is a discrete
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Fig. 2: LSTM cell processing a time-series together with the
additional internal signals c¢; and h;.
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Fig. 3: Integration of the realized Analytics Engine within
Vodafone NFV infrastructure operations.

multi-variate input sequence, then we can formalize how an
LSTM cell with d units processes its inputs at time ¢ as

it = 0 (Waixt + by + Whihi—1 + bri)

Jt =0 Wapxy + by + Whyphi—1 + bny)

g¢ = tanh (Wygxy + byg + Whghi—1 + brg)

0t = 0 (WaoTt + bzo + Whohi—1 + bno)

= [t Oci—1+i O gy

hy = o4 ® tanh (¢;)

(6)

where each W is a (learnable) weight matrix, ® is the element-
wise (or Hadamard) product and o(y) = 1/(1 +e7Y) is the
(element-wise) sigmoidal function. We refer to hy = (hy, ¢;) €
R2? as the latent state at time t.

Figure 2 visualizes how the gates that compose an LSTM
cell are connected with each other. In practical terms, LSTM
leverages on the interactions between the cell state c;, the
hidden state h; and the current value of the signal z; to
formulate an internal representation of the input variables, that
captures long- and short-term dependencies among them. The
main reason why LSTMs show an advantage when compared
to standard RNNs is that the cell state can traverse the cell
freely without being altered—other than linear interactions
as summation and element-wise product—in backward and
forward passes of the learning algorithm, thus reducing the
risk of computational problems affecting regular RNNs, such
as the vanishing gradient [32]. The exact way Z; is computed
depends on the architecture where the LSTM cell is plugged
into. Section IV reports some practical examples.

IV. COMPARED APPROACHES

NVI metric forecasting, both at INFRA and VNF level,
aims at providing a snapshot of the system dynamics in the
future. This information is useful to operation teams to support
their decisions, e.g., for capacity planning purposes. Figure 3
shows how forecasting capabilities enhance Vodafone NFV
operations. The NVI time-series produced by each component
of the infrastructure are ingested by the VMWare vRealize
Operations Manager (VROPS) and the monitoring subsystems

of the individual VNFs. The Analytics Engine sits in front
of these monitoring components and computes NVI forecasts.
Such outputs are used in a semi-automated decision-making
process, where humans consume them to get insights and
possibly uncover early symptoms of system outages. The
acquired knowledge provides decision-makers with actionable
feedbacks that may trigger capacity planning and infrastructure
management actions.

The data provided by Vodafone consists of a set of relevant
indicators (metrics), each one coming in the form of a time-
series that describes the evolution in time of a specific NVI
metric. Dealing with time-series—especially in multi-variate
settings—is an inherently complex problem. An effective
model must take into account the dynamic and sequential
nature of the information. Furthermore, possible high variance
in the data poses an additional challenge. To mitigate the
impact of such quality issues, we applied a pre-processing
pipeline that includes scaling and normalizing the data using
a min-max strategy.

We tested three classes of metric forecasting methods:
(i) SARIMA, (ii) Holt-Winters and (iii) neural architectures.
In order to train the latter on NVI metrics, we reshaped the
data-set in the form of training samples. Namely, we built a set
of pairs of input and output sub-sequences, fixing the length
of input and output time periods upfront.

Note that supervised models rely on the data seen during
training, to discover patterns and correlations among the de-
fined variables. Although several techniques have been applied
to reduce the generalization error, such models perform the
best when test data and training data distributions are similar.

A. Neural Architectures

From a general standpoint, we aim at forecasting the
future dynamics of a discrete uni-variate time-series {z:},
for x; € R, leveraging on the knowledge of its values for
t € [0, T:ra1in]. In other words, we want to compute {Z,} for
t € [Tirvain + 1, Tiest]. If available, we can exploit additional
auxiliary metrics {y; }, for y; € R™ whose historical dynamics
is known in the same time range as the prediction target
t € [0, Tt rain]. In the context of NFV operations, for instance,
{z;} could represent the average cpu utilization of a given
subset of hosts in the infrastructure, while {y;} could represent
a set of service-level indicators that are particularly relevant
for the VNF deployed on such hosts.

All the models described in this section are examples
of encoder-decoder architectures, a common architectural
pattern for sequential data processing. An encoder-decoder
architecture is composed of two distinct layers connected in
series: (i) the encoder &y, whose job is to accept a—possibly
variable-length—sequence in input and compute a state with
fixed shape, and (ii) the decoder Dy, that maps the state to an
output sequence.

The parameters of the neural models can be trained by
comparing their outputs with the ground truth values, provided
by the training data-set, and minimizing the Mean Squared
Error (MSE). To this aim, in our implementation we used the



Adam optimization algorithm, setting its hyper-parameters as
suggested in the seminal paper [33].

1) Baseline: Our baseline architecture is rather simple and
consists of an LSTM layer followed by a fully-connected layer,
jointly trained by back-propagation. An input time-series is
fed to the LSTM that is set to output only the last value of its
recurrent process, for each internal unit. The resulting vector
is then provided to the fully-connected layer that outputs an
estimation of the target time-series in a one-shot fashion (i.e.,
the entire output is generated by a single inference pass). More
formally, if ¢ is the desired length of the output sequence, d the
number of neurons of the LSTM, m the number of auxiliary
variables, the model is characterized by:

& R™ x R* — R x R*

7
Dy : R — RI*¥ ™

Note that & is designed to process each element of the input
sequence separately, not the whole sequence at once. Let
(Tt—r+1,--.,x¢) be the input sequence and (yi—xr+1,...,Yt)
be the auxiliary sequence, both with length equal to A. The
output & = (&441,...,L+4,) is generated as follows:

hi_x =0, he_y € R%
zs = vec (Zs,Ys) t—A<s<t
(05, hs) = (26, hs1), t—A<s<t
= Dg (0r)

®)

where izs are the latent states.

Due to the way the fully-connected layer is configured, this
architecture requires the output length to be fixed upfront. Such
requirement entails that if we need to increase the forecasting
horizon, then we have to re-train a different model from
scratch. These settings do not allow for fully leveraging on
the recurrent nature of LSTMs that, in general, can be trained
and perform inference on sequences of variable length. On top
of that, the complexity of the model—in terms of learnable
parameters—grows proportionally to the output length. This
aspect is crucial not only from a scalability perspective but also
for the quality of the inference. The more the parameters, the
higher the risk of over-fitting the training data-set and perform-
ing poorly on unforeseen inputs. For these reasons, we decided
to build upon this first attempt and devise other architectures
that overcome in part the aforementioned limitations.

2) Sequence-to-dense and Dense-to-dense: The model de-
scribed in Section IV-A1 imposes the limitation of deciding the
length of the output sequence (i.e., the number of time steps
to forecast in a test scenario) upfront. To address such issue,
we have introduced a change to the inference process that
consists of using—smaller—forecasted sequences as inputs to
the model. This way, it is possible to forecast an unlimited
number of time-steps while using a model with a fixed output
size. However, due to its closed-loop nature, the revised
inference process has an important drawback: it is possible to
use only the historical values of the target variable to estimate
its evolution. In other words, the architectures leveraging on

this method can only be used in uni-variate mode (i.e., without
auxiliary variables).

In particular, we devised two architectures that employ this
method at their core. The first one—referred to as sequence-
to-dense (seq2den)—has a structure similar to the baseline
described in Section IV-Al. It consists of an LSTM layer
followed by a fully-connected layer. Since the LSTM layer
weights are shared between time-steps, the input length does
not affect the number of model parameters. The second
one—referred to as dense-to-dense (den2den)—consists of
two fully-connected layers in series. When feeding the input
time-series to the input layer, each input time-step has an
associated weight that is independently optimized during back-
propagation. In this case, the length of the input sequence con-
tributes to the growth of the learnable parameters. Moreover,
due to the output layer being fully-connected, for both these
variants the number of learnable parameters is proportional to
the output sequence length.

3) Sequence-to-sequence with Time Embedding: The mod-
els described in Section IV-A2 improve our baseline by
introducing a closed-loop inference strategy. However, they
are not able to work in multivariate settings and, thus, we
cannot leverage on contextual information to get more accurate
forecasts. With the aim of taking the best from both worlds,
we developed an additional model—referred to as sequence-to-
sequence (seq2seq)—that is able to accept auxiliary variables
while not being constrained in the length of the output.
Additionally, as the time-series under consideration turn out
to be greatly affected by timing information such as the hour
of the day and the week day, including non-periodic changes
occurring on holidays, we added to this model the capability
to use additional time embedding metrics, as described below.

a) Temporal Embedding: Each sample of both input
and target signals, at each time-step t, is associated with
a unique date and time. This information can be encoded
using additional time-series: (i) {ay}, for ay € {0,1,...,23},
encoding the hours; (ii) {5;}, for 8; € {0,1,...,6}, encoding
the week-days; (iii) {7:}, for v € {0,1,...,11}, encoding
the months; (iv) {d;:}, for 6; € {0,1}, encoding whether the
time-steps correspond to holidays. Note that such time-series
are completely known a-priori. However, {«:}, {8:} and {~;}
cannot be fed directly to a neural network, because their values
fail to encode the cyclic nature of the series (e.g., that 23:00
and 01:00 are at the same distance from 00:00). Therefore, we
need to embed them properly into a vector space. A simple
one-hot encoding (i.e., one Boolean per possible value) would
produce an excessive number of variables, and it would lose
again the relative temporal distance among the values. To this
aim, we propose a circular 2D embedding that can preserve
such information by mapping each original k-values sequence
to the 2D coordinates 7 () of the vertices of a regular k-sides
normalized polygon:

o= (s () () )



Using such an embedding we are able to produce an addi-
tional—pilor—time-series by concatenating the desired em-
bedded temporal features. For instance, for hourly timestamps,
consider p; = (ma4(ar), w7 (Br), ma(ve), &) € R (p = 7).
b) Piloted Sequence-to-sequence Model: The neural net-
work model discussed in this section could be thought of as a
modified version of a sequence-to-sequence model (e.g., [23])
adapted to accept an external variable, the pilot sequence,
whose dynamics is known a-priori. It can be described as

Ep : RUMHPHD) o R2d _y R2d
Dy : RP x R 5 R x R?¢
Ry :RY 5 R

(10)

where & and Dy are two LSTM layers with d units and Ry
is a fully-connected layer acting as a rectifier (that reshape the
result to the desired dimensions).

Let  (z4—a41,.-.,%¢) be the input sequence,
(Yt—rt1y---sYt) the auxiliary sequence, and
(Pt—x+1s---+Dts---,Dt4y) the pilot sequence. The output
(Ztg1,--- 755t+¢)) is generated as follows:

hi—x =0, hi—x € R*
zs = vec(Ts, Ys, Ps)s t—A<s<t
hs = Ep(2s, hs_1), t—A<s<t (11)
(Os» Bs):Da(ps,ﬁsfl); t<3§t+§0
Zs = Raol0s), t<s<t+e¢

where ﬁs are the latent states. Note that the number of
learnable parameters depends only on the feature dimensions,
not on the length of input and output sequences (A and ).

c) Trend-Seasonality Decomposition: Time-series de-
composition techniques can be effectively used to improve
forecasting accuracy [34]. In this case, we opted for Additive
Decomposition, by decomposing time-series {x;} in its frend
and seasonality, such that z; = b; + s;. By assuming such
a decomposition, our aim is to devise a decomposable model
that produces forecasts by aggregating the contributions of two
different models for trend and seasonal components. Without
loss of generality, let us consider a simplified case in which
there are no auxiliary variables. The workflow to train a
decomposable model, and to ultimately forecast the target
time-series, consists of:

a) Fitting the trend model. In our implementation, we
fit a logistic function a + H_eib_ct over {x:}, using the
Levenberg—Marquardt optimization technique, to obtain
{bt} for t € [Othrain]-

b) Data detrendization. Remove the trend component from
the data: s; := x; — by.

c) Fitting seasonality model. Train the neural architecture
over {s;}, for t € [0, T ;ain]-

d) Seasonality forecasting. Use the neural model to gener-
ate a forecast {§;} for ¢t € [Tirain + 1, Tiest]-

e) Trend forecasting. Use the fitted trend function to gen-
erate the forecasted trend b, for ¢ € [Tirain + 1, Trest]-

f) Aggregate contributions. Compute &; := l;t + §;d for
te [Ttrain + 1aTtest}'

If needed, in steps d) and e), temporal embedding can be added

to train the seasonality and to forecast the target time-series.

V. EXPERIMENTS

In this section, we report experimental results from the
application of the techniques described in Sections III and IV
on data provided by Vodafone. We compared the different
techniques according to three main aspects: accuracy, training
time and stability. Stability refers to the capability of a model
to produce similar results under different weights initial values
and/or small variations of the hyper-parameters.

A. Experimental Set-up

We focused our experimental evaluation on data coming
from two distinct VNFs, namely CSCF and DRA. Both data-
sets report samples recorded with hourly granularity, but we
also re-sampled the DRA data-set to get a daily-aggregated
(average) version. The metrics under analysis was chosen by
Vodafone due to their relevance in the monthly monitoring
and reporting activities performed by the NFV capacity team.
Due to confidentiality reasons, such data-sets will not be made
available to the public.

The CSCF data-set spans a time range of 16 months,
with hourly frequency. It reports the dynamics of the
cpu|usage_average infrastructure-level metric, aver-
aged among the VMs composing the VNF, and of four
application-level metrics: SCSCF_REGISTERED_USERS,
SCSCF_SUCCESSFUL_INIT_REGIST, SCSCF_RE_REG—
ISTRATION_ATTEMPTS, UNREGISTERED_IMPI_ON_-
SCSCF. Such metrics exhibit a low Pearson correlation. We
used the last 30 days as test set, to evaluate the trained models.
The reminder is divided in training and validation splits, by
taking the first 90% and the last 10%, respectively. The goal
is to forecast cpu|usage_average.

The DRA data-set includes hourly- (DRAh) and daily-
aggregated (DRAd) time-series spanning a time range of
16 months. The data-sets report the dynamics of the
cpu|usagemhz_average infrastructure-level metric, av-
eraged among the VMs composing the VNF, and of two
application-level metrics: DRA-DIAM-MSG.0.Max_TPS,
DRA-DIAM-INT.0-S6a/S6d.Res_Sent. Such metrics
exhibit a low Pearson correlation. We used the last 6 months
as test set, to evaluate the trained models. The remainder is
divided in training and validation splits, by taking the first
90% and the last 10%, respectively. The goal is to forecast
cpulusagemhz_average.

Experiments involving neural architectures were carried out
on a Google Cloud Platform VM, equipped with: an Intel Xeon
processor (24 virtual CPU cores, 2 GHz); 120 GB of RAM; an
NVidia Tesla V100 GPU (16 GB of dedicated memory, CUDA
10.0); Debian 9.9 operating system. Experiments involving
classical forecasting techniques were carried out on an on-
premise test-bed, equipped with: an AMD Ryzen 7 2700x
processor (16 virtual CPU cores, 3.7 GHz); 64 GB of RAM;



TABLE I: Neural architecture configurations for each data-set.

CSCF DRAhQ DRAd
A 24, 168, 720 24, 168, 720 7, 30
© 24, 168, 720 24, 168, 720 7, 30, 182
d 25, 50,..., 150 25, 50,..., 150 25, 50,..., 150
b 32, 512 64, 512 16
T false true true

TABLE II: HW configurations space for each data-set.

CSCF DRAQ DRAd

m 24, 48,..., 168 24, 48,..., 168 3,7, 14, 21, 28
« 0.0, 0.1,..., 0.5 0.0, 0.1,..., 0.5 0.0, 0.1,..., 0.5
B 0.0, 0.1,..., 0.5 0.0, 0.1,..., 0.5 0.0, 0.1,..., 0.5
¥ 0.0, 0.1,..., 0.5 0.0, 0.1,..., 0.5 0.0, 0.1,..., 0.5
¢ 0.1,02,03,04,1 0.1,02,03,04,1 0.1,0.2,03,04,1
by add, mul add, mul add, mul

St add, mul add, mul add, mul

Ubuntu 18.04 operating system. Both environments were
configured with Python 3.7.7, tensorflow-gpu 1.14.0,
statsmodels 0.12.0, numpy 1.18.5.

B. Presentation of Results

We compare the performance of the models when provided
with the same data. So, we trained each model with each of the
3 data-sets described above. For our evaluation, we considered
the following key performance indicators (KPIs):

« RMSE: the Root Mean Squared Error of the forecast
{%:} with respect to the ground truth {z;}, for ¢ €
[Ttrain + laTtest]~

e MAPE: the Mean Absolute Percentage Error of the
forecast {Z;} with respect to the ground truth {x;},
for t € [Tirain + 1,Ttest]. MAPE is defined as the
percentage of the average forecasting error:

100

Ttest - Ttrain

Ty — Xy

€T
i t

o Training Time (TT): The time elapsed between the start
of the first epoch the end of the last epoch of training,
expressed in seconds.

Each model was tested under multiple different configura-
tions of its parameters. If the training algorithm of the model
involved a random weights initialization, each configuration
was repeated for 10 independent runs. The performance indica-
tors were then computed by averaging the independent scores.
For neural architectures, a model configuration consists of the
following hyper-parameters:

« A: the length of the input sequence

¢ : the length of the output sequence

o d: the number of units of the LSTM cell

o b: the batch size

o 7: whether the trend decomposition was used.

For the baseline architecture, ¢ corresponds to the length
of the forecast (i.e., Ttest — Ttrain). Also, note that trend
decomposition is only available for the seg2seq architecture.

TABLE III: SARIMA configurations space for each data-set.

CSCF DRAhQ DRAd
p 1,2....5 1,2..5 L1,2...,5
d 0 0 0,1
q 0,1,2 0,1,2 0,1,2
P 01,....,7 01 7 0,1,...,7
D 0 0 0,1
Q 0,1,2 0,1,2 0,1,2
m 24 24 7

TABLE IV: Average KPIs (among 10 repetitions) for the
configuration with the best average MAPE (CSCF data-set).

MAPE [%] RMSE TT [s]
baseline 4.39 1.17 30.23
den2den 4.18 1.22 2.44
seq2den 4.27 1.30 98.11
seq2seq 3.04 0.95 23.39

The configurations used for the neural architectures are sum-
marized in Table I. Likewise, the configurations used for
HW and SARIMA are summarized in Table II and Table III,
respectively.

In the remainder of this section, results will be presented by
means of tables, box-plots and line-plots. For each model, ta-
bles report the mean scores of the most accurate configuration
(i.e., the one with the lowest average MAPE). In other words,
tables show the lower-bounds, in terms of accuracy, for each
model. Box-plots allow for visualizing the average accuracy
of a model: the shorter the box, the lower the variance in the
accuracy; the lower the box is positioned along the y-axis,
the higher the average accuracy of the model. Combined with
tables, box-plots provide insights on models stability. To ease
the visualization, box-plots are grouped by \. For each value of
A, the boxes show how the model accuracy changes when the
remaining hyper-parameters (i.e., ¢, b and d) are tuned. Note
that box-plot whiskers are set such that no value is excluded
from the visualization. While running such a huge amount of
configurations, we noticed that the choice of A\ may deeply
impact on the training time of the model. Line-plots allow
for visualizing how big the impact of A is for the proposed
architectures. For each value of )\, the solid line is an estimate
of the central tendency, computed as ¢, b and d change, while
the stripe width indicates the confidence interval.

C. Neural Architectures

1) CSCF Dataset: The CSCF data-set contains a stationary
time-series with a strong seasonality component. Table IV
highlights that the seq2seq architecture outperforms the others
in terms of accuracy, but the den2den has an interestingly
reduced training time by an order of magnitude, at the cost
of raising the accuracy from 3% to 4.2%. Figure 4a also
shows that, in general, seq2seq provides more stable results, as
50% of the observations are densely concentrated around the
average and the whiskers are relatively short (consider also
the log-scale on the Y axis). This entails that the model is
very robust with respect to the hyper-parameters variations.
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TABLE V: Average KPIs (among 10 repetitions) for the
configuration with the best average MAPE (DRAh data-set).

MAPE [%] RMSE TT [s]
baseline 5.01 55.69 40.37
den2den 3.38 41.19 3.12
seq2den 3.72 42.37 4.93
seq2seq 2.87 38.43 35.60

As expected, Figure 4b shows that the training time grows as
the sequence gets longer for all models but den2den.

2) DRAh Dataset: Table V shows that the seq2seq archi-
tecture achieves the best performance for the DRAh data-set.
From Figure 5a, we can see that, in general, its accuracy is
more stable with respect to variations of the hyper-parameters,
compared to the other models. As expected, Figure 5b shows
that the training time grows as the sequence gets longer for all
models but den2den. When applied on this data-set, with such
a huge forecasting range (i.e., Tiest — Tirain = 4368), the
baseline model turns out to have a decoder (i.e., a dense layer)
composed by a 4368-rows weight matrix, as it is designed to
provide the output sequence in one-shot at the decoding stage.
In this case, we were expecting an explosion of the training
time, which does not happen. This is probably due to the nice
way the computations of the decoder can be parallelized on
the underlying GPU. Indeed, the other architectures do not
fully exploit the GPU acceleration, either because they are
made entirely of recurrent units or because of their closed-

TABLE VI: Average KPIs (among 10 repetitions) for the
configuration with the best average MAPE (DRAd data-set).

MAPE [%] RMSE TT [s]
baseline 3.54 38.80 6.12
den2den 1.94 23.29 1.35
seq2den 2.12 24.72 1.67
seq2seq 2.06 26.26 3.29

loop nature. However, defining the root-cause of such an
unexpected performance boost requires a deeper investigation.

3) DRAd Dataset: Table VI shows that the den2den model
achieves the best performance for the DRAd data-set. How-
ever, from Figure 6a, we can see that the variability of the
accuracy for this architecture strongly depends on the choice
of the hyper-parameters. As can be seen in Figure 6b, due to
the small number of timestamps, the differences in terms of
training time are not relevant for this data-set.

D. Classical Forecasting Techniques

Table VII summarizes the best results achieved by the classi-
cal forecasting techniques, described in Section III. Regarding
the accuracy, Figure 7a shows that HW outperforms SARIMA,
for all the tested data-set. Looking at Figure 7b, We can
draw a similar conclusion for what concerns the training time.
In particular, for the CSCF and DRAh data-sets, SARIMA
generally requires more than 100 seconds per run, while HW
less than a second.
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TABLE VII: KPIs for the configuration with the best MAPE.

MAPE [%] RMSE TT [s]

Dataset  Model
CSCF HW 2.85 1.00 2.14
SARIMA 4.69 141  832.46
DRAd HW 1.34 17.09 0.01
SARIMA 1.47 18.34 12.86
DRAQ HW 2.49 35.07 0.22
SARIMA 3.69 42.08 15443

E. Comparative Analysis

The presented results highlight what trade-offs can be
achieved between accuracy and training time with the various
techniques. Among the neural architectures, in general, the
seq2seq outperforms the others in terms of accuracy and
stability (see Figures 4a, 5a and 6a). Such level of accuracy
is achieved thanks to the time embedding and the additive
decomposition. In particular, the highest stability is due to
using recurrent layers in both encoding and decoding phases,
that reduces the impact of the hyper-parameters A\ and ¢. How-
ever, in general, seq2seq training time grows proportionally to
the length of the input and output sequences, as the recurrent
layers process samples sequentially (see Figures 4b and 5b).
Note that this process cannot be improved even using GPU
acceleration, as it is not possible to parallelize the computation.
On the contrary, the den2den model makes a much better use
of GPU acceleration and results to be the fastest neural model.

For what concerns classical forecasting techniques, there

are cases such that they match neural architectures in terms
of accuracy. For instance, comparing Tables IV to VI with
Table VII, we can see HW best runs consistently scoring
a—slightly—lower MAPE than seq2seq, for CSCF (2.85%
vs 3.04%), DRAh (1.34% vs 2.06%) and DRAd (2.49% vs
2.87%) datasets. However, such level of performance is most
likely due to a particularly lucky shot, in terms of hyper-
parameters tuning, rather than an evidence of its superior
capacity at modeling complex time-series.

The low stability shown by HW seems to support this
hypothesis. Without any other statistical assumption (e.g.,
similarity of the distribution with other times-series or different
time-ranges), the results reported in Section V-D suggest that
HW is less likely to achieve the same accuracy of the seq2seq
architecture for the tested data-sets. Figure 7a shows that the
choice of the hyper-parameters has a strong impact on the
performance of HW. In fact, for all the datasets, the worst
HW runs score a MAPE that is very close to 100%. This is
not the case for seq2seq, whose overall worst performance is
around 10% (see Figure 5a). On hourly data-sets (i.e., CSCF
and DRAh), despite the best HW run achieves a MAPE lower
than 3%, the first quartile is greater than 5% (see Figure 7a).
Instead, for the seq2seq architecture, the third quartile is lower
than 4% (see Figures 4a and 5a). In other words, 75% of HW
runs score a MAPE greater than 5%, while 75% of seq2seq
runs score a MAPE lower than 4%. On the DRAd data-set,
despite the best HW run achieves a MAPE lower than 2%, the
first quartile is greater than 3% (see Figure 7a). In this case,



the seq2seq architecture exhibits a third quartile strictly lower
than 3% (see Figure 6a). In other words, 75% of HW runs
score a MAPE greater than 3%, while 75% of seq2seq runs
score a MAPE lower than 3%.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, the problem of forecasting the future evolution
of metrics in an NFV infrastructure was tackled. A number
of techniques for time-series forecasting was compared ex-
perimentally, using a real data-set from the production NFV
infrastructure of the Vodafone network operator.

Regarding possible future works on the topic, we plan to ex-
tend our analysis by: (i) comparing additional data-sets among
the many available within the Vodafone data centers, possi-
bly extending the set of considered metrics; (ii) considering
techniques that can process additional information—besides
the operational metrics to be forecasted—Ilike, for instance,
rough traffic volume forecasts manually produced by internal
analysts quarterly; (iii) investigating the applicability of topol-
ogy-aware prediction techniques [7] that look quite promising
in the context of NFV metrics forecasting.
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