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Abstract— In this paper, we propose the preliminary version
of a novel pre-impact fall detection (PIFD) strategy, optimized
for the early recognition of balance loss during the steady
walking.

The technique has been implemented in a multi-sensor
architecture aiming to jointly analyzes the muscular and
cortical activity. The physiological signals were acquired from
10 electromyography (EMG) electrodes on the lower limbs and
13 electroencephalography (EEG) sites all along the scalp.

Data from the EMGs are statistically treated and used both to
identify abnormal muscular activities and to trigger the cortical
activity assessment. The EEG computation branch evaluate the
rate of variation of the EEG power spectrum density, named m,
to describe the cortical responsiveness in five bands of interest.
Then, a logical conditions network allows the system to
recognize the loss of balance induced by the slippage, by
considering both the evaluated muscular parameters and the
cortical ones.

Experimental validation on six adults (supported by the motion
capture system) showed that the system reacts in a time
compliant with the fall dynamic request (403.16 ms), ensuring a
competitive  detection accuracy (Sensitivity =93.33%,
Specificity=99.82 %).
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1. INTRODUCTION

In its annual report (last update Jan. 16, 2018 [1]) on the'most
common injury and death causes, the, World Health
Organization (WHO) reports the fallsias the second leading
cause of accidental or unintentional injury deaths worldwide
[1]. Globally, about 646000 individuals (estimated value) die
from falls. Approximately 28-35% of adults older than 70+
years of age experiences up to 5-7 fall events per year, because
it has been widely proved that the natural aging process alters
the ability to address unexpected perturbations of balance,
increasing the probability of falling [1, 2].

For these reasons, several research groups are still developing
increasingly efficient fall prevention strategies to mitigate the
harm of falls. In this context, the fall detection (FD) field aims
to automatically detect the occurrence of a loss of balance,
enabling proper on-demand fall protection systems (e.g.,
wearable airbags for hip protection, exoskeletons, etc.) [3, 4].
A general classification of the FD strategies divides the
proposed solutions in post-fall mobility detection and pre-
impact detection. The former type (i.c. post-fall mobility
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detection) has the role of avoiding the “long lie” (i.e., the time
spent on the floor following a fall), but it does not prevent
from the fall-related injuries [5].

The pre-impact fall detection (PIFD) strategies can be
generally defined as techniques that allow falls to be detected
before the body-to-ground impact [5]. Specifically, they are
designed to detect and eventually intervene (e.g., by activating
on-demand protection system) in the early phase of the
balance loss [6].

The performance of a PIFD strategy can be expressed in terms
of accuracy - by considering the sensitivity and specificity
parameters - and efficiency, evaluating the detection and the
lead time [6].

To ease of readingjin thisisection we will often refer to a lack
of balance (LoB) event by naming it “fall”.

Commonly, the sensitivity parameter is defined as in eq.(1):

Se (%) = (#(TrF)/Ngau) - 100 (M

where #(T7F?) is the number of correctly detected fall events
and N,y is the total number of evaluated falls.
The specificity can be written as:

Sp (%) = (#(TTNF)/Nygau) - 100 @

where #(TrNF) is the amount of successfully detected non-
fall activities, while Nf, is the total number of the evaluated
non-falls.

The PIFD strategy efficiency is evaluated in terms of lead time
and detection time. The first one (i.c., the lead time) is defined
as the time span between the fall detection and the body-
ground impact. It takes into the account the time to actuate
protection or compensatory measures.

In a complementary way, the detection time is the time range
from the perturbation initiation and the fall detection.
According to [7] the time interval between the heel-strike and
the fall impact can be estimated to be, on average, 0.9 s (range:
0.7—-15s).

Table 1 summarizes some selected state of the art PIFD
solutions [4, 6, 8, 9] by analyzing: the detection equipment,
the lack of balance indicators, the implemented algorithm, the
accuracy and efficiency of the used strategy. All the selected
works concern the early LoB recognition in slip-induced falls,
standardizing the comparison with our work.

Most of the PIFD solutions proposed by the literature base the
fall detection on motion capture systems (MCSs) and
kinematic fall indicators obtained by reflective markers on
anatomic landmarks of the human body. Cameras mounted in
fixed locations trace the trajectories of these markers [6, 8, 9].
Although these approaches ensure high accuracies (Se=88.5%
- 100% and Sp=92.9%-99.2%) and efficiency (detection time
from 300 to 710 ms), they are practically impossible to be



TABLE I: PIFD STRATEGIES: STATE OF THE ART

Spec. 18] 19] 16] 4] Our work
Hip Encoders EEG/EMG
Technology MCS + IMU MCS MCS Ver- MCS Ver- MCS
Head vertical acc., .
Lower limbs
upper arm and trunk muscular activity +
. Trunk Angular Linear accel. of body vertical vel. , shank MOS and COM . 1y
Indicator . . . Reactive cortical
velocity segments frontal velocity, head Hip angle
response to the LoB
frontal angular
velocity
Error function
between the hip Muscular score AND
. Individualized ICA+ Neural ngtwork ARIMA model + angles of the robot (logical) Cortical
Algorithm . to classify walking vs statistical based . - -
Threshold on velocity with those predicted Dynamics Change
fall thresholds :
by an adaptive Detector
oscillators
Accurac Se=100% Se=92.7% Se=88.5-94.7% Not specified Se=93.33%
¥ Sp=96.5 % Sp=98% Sp=92.9-99.2% P Sp=99.82%
Detection time (ms) 300 351 620710 ~350 403
Protection System v
Activation X X X Active Pelvis Orthosis X
Dataset 10 OA I15YA 60 YA 80Aand2 TA 6 YA
MCS: Motion Capture System, IMU: Inertial Measurement Unit, MOS: Margin of Stability, COM: body Center of Mass, ICA: Indipendent Component
Analysis, OA: older adults, YA: young adults, TA: transfemoral amputees. Note: Ver means that the system has been only verified by using MCS.

implemented in real life applications [7]. Moreover, all the
proposed solutions (except [4]) do not activate external
protective devices even if they ensure a detection time that
paves to the possibility of effectively trigger them. The
authors in [4] analyze the error function between the hip
angles of the robot (exoskeleton) with those predicted by
adaptive oscillators. If a LoB is detected, counteracting
torques are supplied by the Active Pelvis Orthosis at the hip
joints to promote the balance recovery.

In this preliminary work, we investigated a new PIFD strategy
for the early detection of a lack of balance (LoB) when
unexpected slippages delivered during steady walking.

More in details, the proposed technique was implemented
with a multi-sensor architecture that jointly analyzes the
muscular activity and the cortical involvement of a subject that
actively reacts to recover the perturbed balance. Specifically,
the muscular activity was acquired by using ‘surface
electromyography (EMG), while the costical/dynamics was
investigated via electroencephalography (EEG).

The proposed architecture is based, on  statistic-derived
thresholds and a network of logical conditions, which are
progressively individualized during the systemruse. It allows
the approach to require very limited personalization.
Experimental validation, via MCS, showed that the system
reacts in a time compliant with the fall dynamic request
(403.16 ms), ensuring a high detection accuracy (Se=93.33%,
Sp=99.82 %).

The paper is structured as follows: Sec. II outlines the
detection algorithm, also providing details about the
experimental protocol and setup. Sec. III shows some
preliminary experimental results and Sec. IV provides the
conclusions.

II. THE PIFD SYSTEM

A general block diagram of the proposed multi-sensor
architecture is shown in Fig.1. According to the figure,
during the experimental trials, the subjects were asked to
manage unexpected slippages occurred during steadily
walking at their preferred speed (Perturbation Protocol —
Fig.1). Data from EEG and EMG electrodes are wirelessly
collected by a common gateway and treated by a novel

detection algorithm, which aims to extract useful information
about the cortical dynamics in the reactive balance recovery.
In general, the implemented algorithm is composed of two
main units: the EMG computation branch (EMG Side — Fig.1)
and the EEG onesy(EEGSide — Fig.1).

The first one! (i.e.;JEMG computation branch) realizes a
trigger for the EEG signals analysis. In this way, the proposed
algorithm focuses the EEG analysis only in correspondence
of a'specific 'gait phase. It permits to exclude from the
computation the cerebral activity that is not strictly related to
the 'specific movement.

Firstly, the EMG signals are properly treated to identify the
contraction onsets of each monitored muscle. This procedure,
named. Trigger Extraction in Fig.l, translates a double
precision EMG signal in a binary waveform.

All the contraction onsets can be used to trigger the EEG
computation, however only one muscle (bilaterally) was
selected to manage the cortical branch working. In this
application, the Gastrocnemii (left and right) were selected as
Master Triggers (MTs).

The MT enables the EEG signals analysis at every step (both
the sides, right and left), allowing the system to investigate
the cortical activity related to both unperturbed steps and
compensatory ones.
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Fig.1 Overview of the proposed multi-sensor architecture
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Specifically, the EEG side aims to evaluate the variation of
the EEG power spectrum density, quantifying the cortical
responsiveness in five bands of interest (OLS est. — Fig.1).
The evaluated EMG and EEG parameters are then used to
build a progressive statistic of the general muscular and
cortical behaviors near the MTs onset. The extracted statistics
are used to train a logical conditions network. It permitted
identifying abnormal behaviors in the muscle contractions
and the reactive response in the cortical dynamics when the
subject experienced a gait cycle perturbation. The network
concludes the operative flow, returning the final
classification (walking or balance loss).

A. Perturbation Protocol

The perturbations was provided by a custom-made split-belts
treadmill named SENLY [10] and consisted of sudden
forward movements toward the antero-posterior direction.
Specifically, the selected belt was accelerated and decelerated
to 0 m/s with a triangular speed profile (slope 8 m/s? and total
displacement of 0.15 m).

The belt movement was triggered by detecting the heel strike
of the foot appointed for the perturbation.

After a first acclimation stage (~ 5 min), the protocol
consisted of a series of 10 consecutive trials in which the
subject gait was perturbed by a slippage. The slippages were
equally delivered alternating right foot related belt and the
left foot one. In this respect, a demonstrative sequence of
frames, concerning the implemented experimental protocol,
is shown in Fig.2.

B. Experimental Setup

The PIFD strategy is based on a multi-sensor acquisition
system consisting of a 32-channel wireless EEG headset, 10
wireless EMG surface electrodes and 23 reflective markers
for the 3D kinematics reconstruction. All the devices were
worn by the subjects as in Fig.2.

Specifically, 10 surface EMG channels were monitored from
(bilateral muscle groups): Anterior Tibialis, Lateral
Gastrocnemius, Vastus Medialis, Rectus Femoris, and Biceps
Femoris. The EMG signals were sampled at 500 Hz with 16-
bit resolution.

Contextually, 13 EEG sites were monitored: E3, Fz, F4, C3,
Cz, C4, Cp5, Cpl Cp2, Cp6, P3, Pz, P4 11, 12], AFz as
ground and the A2 (right ear-lobe) as the reference electrode.
The EEG data were sampled at 500 Hz with 24-bit resolution.
Both EEG and EMG were transmitted via Bluetooth Low
Energy protocol (BLE) and synchronized by a dedicated
gateway.

To temporally validate the proposed PIFD strategy, data
collected were analyzed offline by using MATLAB® 2017b
and the 3D trajectory of the markers on the subject’s lower
limbs was recorded by an 8-camera MCS.

The markers were mounted on: anterior superior iliac spines,
sacrum, prominence of the greater trochanters external
surface, lateral and medial epicondyle of the femurs, heads of
fibula, lateral and medial malleolus, calcaneus, 1% and 5%
metatarsal heads, midfemurs and midshaft of the tibia. Data
from the MCS were sampled at 100 Hz.

C. Data Pre-Processing

Data from EEG and EMG equipment were collected from a
gateway and stored in a MATLAB® workspace for further
analysis. Kinematic data and electrophysiological signals
underwent a pre-processing stage, which is summarized in
Table II in terms of allowed frequency span and used filter
type. Both EEG and EMG operate the filtering stage before
the transmission (labeled as Online in Table II). Concerning
the kinematic record, the missing data were estimated by using
cubic spline interpolation.

D. The EMG Computation Branch

1) Trigger Extraction

The first step of ‘the, detection algorithm was the muscle
triggers extraction,[13].5,It consisted of a dynamic threshold
approach, intwhich each EMG signal (16-bit) was converted
in a binary signal (named trigger). It is high when the muscle
is contracted, low otherwise. Fig.3 shows all the steps for the
trigger generation. The method, widely treated in [14, 15],
consists of comparing the average signal power on a time span
of M=500,ms (PM — Fig. 3) and the average signal power on
a time span of N=250 ms (i.e., the last 250 ms of the M
register, PN — Fig.3). The process was refreshed sample-by-
sample. For the i sample, PN was compared with the PM. If
PN is'higher than PM, the trigger goes high, otherwise zero.
The Tirst panel of the Fig.3 shows, sample-by-sample, the PM
and PN values, while the second panel demonstrates how the
trigger fits the raw EMG [15].

For ease of reading, only one onset of the MT has been

TABLE II: PRE-PROCESSING STAGE FEATURES

Signal lf}r 1?:5;:; Filter Type Notch*
EMG 10 Hz-240Hz | , 5 O Online v
Butterworth
0
EEG Hz-40Hz | g8 % | Online v
Zero-lag
Kinematic <10 Hz 4% ord. Offline X
Butterworth
*Implemented Notch Filter: 48 Hz-52 Hz

Fig.2 Chronologically ordered demonstrative frames (6 frames) that shows the implemented experimental protocol. All the participants were secured by
a safety harness attached to an overhead track.
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Fig.3 Trigger extraction procedure: (a) PM and PN values to be compared;
(b) MT overlapped to the raw EMG signal; (c) the MT onset enables an
EEG window extraction (time span between the two dashed red lines).
considered as the EEG computing branch trigger in the Fig.3
(red arrow).

2) Muscular Activity Pattern and Score Assignement
The extracted triggers (i.e., 10 binary signals) were
transmitted to a computation block that assigns, in
correspondence of every MT onset, a statistics coherence
coefficient between the step to be evaluated and the general
muscles behavior during the steady walking.

The assignment procedure is based on the hypothesis of a
moderate inter-step repeatability when the subject is involved
in an unperturbed walking. Differently, in the presence of a
perturbation, due to the parallel activation of normally non-
concurrent muscles (e.g., co-contraction of agonist and
antagonist muscles [11]), it was expected an abnormal
behavior.

In this respect, it has been developed a routine,mamed Query,
which interrogates the state of each evaluated trigger, starting
from the MT onset for a time interval of 20 msy@.e., 11
samples).

For each trigger (or muscle), the final value,is then provided
according to a predominance-based approach. The resulting
binary vector, which considers the states of all the muscles,
is named Muscular Activity Pattern (MAP), MAPE R ™"
with Tr=10 the number of evaluated triggers.

For sake of clarity, considering the j® muscle, if the number of
“1” in the evaluated window (i.e., 11 samples) is >T1/2 (i.e.,
5), the resulting MAP(j] value is set to “1”, “0” otherwise.
To extract the statistically “most probable” muscular pattern,
it was introduced proper weights based on the statistical
occurrence. The procedure is composed of two steps:

1. The system studies the occurrence of a specific logic
state (e.g., “1”), for each single trigger in correspondence
of the MT onset (e.g., the Right Lateral Gastro.: R_LG).
This computation is done on a selected statistic sample
(Analyzed Contractions — Fig.3). This process leads to
the definition of a vector, Fir € R ™, with “1” the
selected state, “R” the reference to the considered MT.
The generic element of Fir can be defined as:

#(Tr; == 1)

f 1R,Tr; = Nobs MT=R_LG (3)

where #(Tr; == 1) represents the number of “1”
collected, by the i trigger, during the trial and Nos is the
number of observations that compose the statistic
sample. The eq. (3) ensures that figry, € [0,1].
Contextually, the architecture extracts the For=1- F1r.

2. In a similar manner, the system extracts the Fi. € R™
and the For € R™, by considering as MT the left lateral
Gastro. (L_LG).

The Fig. 4 shows an experimental extraction of the triggers
evolution during a trial, by considering R LG as MT. The
label “Analyzed Contractions” refers to the observations that
compose the statistic sample for the Fir and For definition.
The label “Steady Walking” refers to the R_LG contractions
during the unperturbed walking, while the “Perturbation &
Recovery” concerns the perturbed steps and the compensatory
ones. Fig.4 also shows an experimentally derived numeric
example of the weights vectors Fir, For.

Once the weights vectors are defined (i.e., Fir, For, FiL, FoL)
the Query routine is applied at every MT contraction,
generating a step-by-step MAP.

In this respect, the Fig. 5.a sketches the processing algorithm
for the statistical coherence degree assessment of the i step
related MAP.

Tr. Fip | For
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Fig.4 Muscular triggers behavior near the R_LG activation. Each row
represents a muscle trigger, the yellow square means “1”, while the blue
ones “0”. The table shows the weights related to Fyr and For
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Fig.5 Score extraction algorithm: (a) i step score extraction block diagram;
(b) overall score trend (experimental data from Sub.6 — Trial 4)
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multiplied, element-by-element, by the Fir, while the MAP

negative logic copy is multiplied by For.

Considering the R LG contraction, the products are then

progressively summed, to define the specific score according

to eq. (4):

1T MAP () * Fip(D) + 21T, MAP (1) * For (i) %)
ZLT; max([F; (i), For (D])

where the denominator allows the system to normalize the

score (i.e. ScoreRL.€ [0,1]). The same procedure is applied to

the MAPs derived by using L_LG as MT (i.e. L MAP — Fig.

5.a). Finally, the Fig.5.b shows an experimentally extracted

example of the overall score trend (Score RL U Score LL)

across a clinical trial.

E. The EEG Computation Branch

ScoreRL =

1) Online Artifacts Rejection

The detection of the lateral Gastrocnemius (both sides) rising
edge, enables the EEG processing branch (see Fig. 3).
Specifically, a 1.04 s (520 samples) long EEG time window
was extracted across the MT as 1 s (500 samples) before and
0.04 s (20 samples) after the trigger. This EEG chunk
underwent an on-line Riemannian Artifact Subspace
Reconstruction (rASR) [16], which is an online artifacts
rejection approach for mobile EEG application.

2) Cortical Responses Analysis

The authors in [12] investigated the cortical dynamics while
subjects experienced perturbations, even unexpected, which
could critically affect their orthostatic quite stance [12]. They
recorded a first increase of the power spectral density (PSD)
in the range 4-13 Hz (9 and a waves), typically related to
sensorimotor and cognitive functions (e.g., fall perception
phase) [12, 6]. In addition, the authors also show an increase
of energy of the PSD in the range 13—40 Hz (B 1, 1L, III bands).
The B bands are typically involved in motor functions,[4]»The
sharp changes in the cortical activity typically reached their
peaks in about 80-171 ms after stimulus [12].

Basing on these evidences, in our previous /work [16], we
widely investigated changes in the cortical involvement when
subjects were actively managing unexpected ‘slippages
delivered during steady walking. Wetalso demonstrated,
through experimental results, that the proposed algorithm is
able to distinguish between steady walking and early reactive
balance recovery [16].

For this reason, the EEG computation branch of the proposed
architecture exploits the algorithm behind the clinical study in
[16] to manage the EEG side of the PIFD strategy.

The Fig. 6 shows the implemented procedure for the cortical
dynamics assessment.

Briefly, the artifacts-free EEG block is split in 10 overlapped
500-samples long time windows, running along the whole
chunk (with 2 samples, or equivalently 4ms, step). For each of
them, the system computes the FFT and extract the energy of
the PSD in 5 bands of interests (Bol): & (4-7 Hz), a. (8§—12 Hz),
B 1, B II, B IIT rhythms (13-15, 15-20, 18-28 Hz). The sums on
a specific Bol are represented in Fig.5 by the labels: Z;._1o.
For each Bol, a linear model of the measured data (i.c., Zi...10)
is extracted via ordinary least squares (OLS — Fig.6) fitting.
The slope of this model, m (i.e, p(1)), is then used to describe
the cortical responsiveness [16]. According to the literature
[12], a sharp increment of m indicates a greater involvement
of the cortical area.

The Fig.6 shows the EEG computation branch for a single
EEG channel (i EEG Ch - Fig. 6) and a specific Bol (yellow
area — Fig.6). The structure in Fig.6 is repeated for all the
thirteen EEG channels and considering the five Bols. It leads
to a total of 65 m values per MT activation (i.e., 13 channels *
5 Bol).

F. Logical Conditions Network

As above-stated the proposed multi-sensor architecture jointly
analyzes the muscular activity and the cortical involvement of
a subject that actively reacts to recover the perturbed balance.
For this purpose, the system statistically derives thresholds
and a network of logical conditions to detect, with proper
accuracy, the loss of balance induced by the slippage.

More in details, the threshold extraction procedure consists of
two steps:

1. The system considers an initial observation window. In
this preliminary work, the selected initial window
coincides with the “Analyzed Contractions” area in Fig.
3. From this time window, the system extracts:

e the 5" percentile of the evaluated muscular scores
(Sec. 11.D.2);
e the 95" percentile of the m values, for each Bol,
averaged on 4 functional groups of EEG channels:
= Supplementary Motor Area (SMA): {F3, Fz,
F4};
= Motor area(M1): {C3, Cz, C4};
= Sensoty-motor area: {CpS5, Cpl, Cp2, Cp6};
= Parietal area: {P3, Pz, P4}.

2. Oncethe initial thresholds are extracted the system waits
for a newsMT contraction. If the MT rising edge is
detected’the muscular score is compared with the initial
threshiold (iThr). If i score < iThr the muscular side
activates an alert.

Contextually, if the m values, in the functional group and
for each Bol, overcome (>) the initial dedicated
thresholds (i.e., 95™ percentile), also the EEG side reacts
by activating several alerts. An overall of 20 alerts can
be generated by the EEG side (5 Bols * 4 functional
groups).

After the comparisons the thresholds are updated, taking into

account the new values of score and m.

Finally, the architecture will enable a potential feedback

procedure, if there is a parallel presence of a muscular alert

and, at least, the 51% of the available EEG warnings.

III. EXPERIMENTAL RESULTS

Six healthy young subjects (5 males, 1 female, 26.3 + 2.4
years, 64.5 = 9.8 kg, 1.71 £ 0.06 m) were involved in this
study. Subjects walked at an average speed of 1.10+0.07 m/s
m/s (range: 1 - 1.15 m/s). No falls were reported during the
trials. All participants were able to recover their balance.
Before starting the experimental sessions, all participants
signed an informed consent. Research procedures were in
accordance with the Declaration of Helsinki and was
approved by the Local Ethical Committee.

A. Architecture Performance

The performance of a PIFD strategy is quantified in terms of
accuracy - by considering the sensitivity (Se — eq (1)) and
specificity (Sp — eq (2)) parameters - and efficiency,
evaluating the detection and lead time (DT and LT).

Table I summarizes these parameters, focusing on the inter-
subject variability.
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The proposed multi-sensor architecture shows a sensitivity of
93.33 +5.16 % and a specificity of 99.82 + 0.16 %. The table
also reports the false alarms (FA) detected during the trials.
On average, only 1 + 0.89 FA was registered during each run
(10 trials per subject).

The system detection time is, on average (on all the subject),
403.16 + 71.82 ms. The LT showed in the table is computed
considering the difference between 900 ms (i.e., time interval
between the heel-strike and the fall impact) and the mean
value of the DT. The LT represents a quantitative measure of
the time available time to actuate protection or compensatory
strategies.

B. System Timing

It is important to highlight that most of the DT is zelated to
the MT activation. In fact, considering the/MT rising edge as
the “zero-time”, the architecture asks for: 40 ms of EEG
register filling, 2.23 + 0.54 ms for the FFT and’Bol extraction,
0.32 £ 0.07 ms to extract the m values and’0.12+ 0.05 ms to
realize the thresholds comparisons. Thus, in the worst case
the processing chain requests only 43.33 ms.

IV. CONCLUSIONS

The paper described a step-by-step design of a multi-sensor
architecture, implementing a preliminary version of an
innovative PIFD strategy. The system was tested and
optimized for the carly detection of balance losses when
unexpected slippages occur during the walking.

The architecture is composed of a wearable and wireless
acquisition system: 10 surface EMGs and 13 EEGs
electrodes, which sends data to a main PC. This latter
analyzes the physiological data (EEG/EMQG) extracting a
network of statistic-based thresholds.

Experimental validation on six young adults demonstrated
that the system recognize a lack of balance with a sensitivity
0f 93.33% and a specificity of 99.82 %. Finally, the system r
requests, on average, 403.16 ms to recognize the LoB, of
which only 43.33 ms are due to the parameters extraction.

TABLE III: PIFD ACCURACY AND EFFICIENCY CHARACTERIZATION

Sub | Se"(%) | Sp(%) | FA DT(:E::)EG] (';1;
1 90 99.81 1 389.834+97.49 510.17
2 100 99.63 2 514.61+£99.31 385.39
3 100 100 0 319.76+107.99 580.24
4 90 99.64 2 380.23+79.24 519.77
5 90 99.83 1 460.57+91.36 439.43
6 90 100 0 354.01+108.47 545.99
“'Ni=10 for all the subjects Se value.

The here-proposed PIFD strategy has been designed to be
computationally suitable for the implementation on FPGA or
microcontroller. The experimentally measured architecture
performance (accuracy and detection time) paves the way to
the system applicability in real time applications. Despite
this, the identification of the proper protection or mitigation
strategies (e.g., by using wearable robotic platforms) and the
improvement of the acquisition system wearability is still
under investigation.
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