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Preface  
 
 
It is our pleasure to welcome the guests, participants and contributors to 
the International Conference (ASMDA 2017) on Applied Stochastic 
Models and Data Analysis and (DEMOGRAPHICS2017) Demographic 
Analysis and Research Workshop.  
 
The main goal of the conference is to promote new methods and 
techniques for analyzing data, in fields like stochastic modeling, 
optimization techniques, statistical methods and inference, data mining 
and knowledge systems, computing-aided decision supports, neural 
networks, chaotic data analysis, demography and life table data analysis.  
 
ASMDA Conference and DEMOGRAPHICS Workshop aim at bringing 
together people from both stochastic, data analysis and demography 
areas. Special attention is given to applications or to new theoretical 
results having potential of solving real life problems.  
 
ASMDA 2017 and DEMOGRAPHICS 2017 focus in expanding the 
development of the theories, the methods and the empirical data and 
computer techniques, and the best theoretical achievements of the 
Applied Stochastic Models and Data Analysis field, bringing together 
various working groups for exchanging views and reporting research 
findings. 
  
We thank all the contributors to the success of these events and 
especially the authors of this Proceedings Book. Many thanks to the 
honorary guest Gilbert Saporta and the Colleagues contributed in his 
special session on data analysis. Special thanks to the Plenary, Keynote 
and Invited Speakers, the Session Organisers, the Scientific Committee, 
the ISAST Committee, Yiannis Dimotikalis, Aristeidis Meletiou, the 
Conference Secretary Mary Karadima, and all the members of the 
Secretariat. 
 
 
 
 
November 2017 
 
 
Christos H. Skiadas  
Conference Chair 
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Saporta at Seventy 

Pieter M. Kroonenberg,  

Emeritus Professor at the Department of Education and Child Studies, Leiden University and The Three-Mode 

Company, Leiden 

Abstract.  This paper is an introduction to the Keynote lecture by Prof. Gilbert Saporta at the occasion of his seventieth 

birthday. An overview of this major publications, his citation record, his academic non-statistical interests is presented as 

well as a pictorial overview. 

1. Introduction 
The Applied Stochastic Models and Data Analysis International Society 

(ASMDA) decided to pay a special tribute to Prof. Gilbert Saporta of the 

Centre National des Arts et Métiers, Paris at the occasion of his 70
th

 birthday. 

Clearly such a tribute is not bestowed upon just any septuagenarian. If his 

contributions to applied statistics and data analysis and his support to ASMDA 

activities themselves were not already enough for such a tribute, his 

nomination as Président d’Honneur de la Société Française de Statistique, 

made just before the conference, is additional proof that Prof. Saporta is not an 

average man. 

. 

 
In his keynote lecture entitled “50 Years of data analysis: from EDA to predictive modelling and machine 

learning” Prof Saporta sketches what has taken place in data analysis during his academic career, but this 

introduction will concentrate on some of the highlights of his publishing career, looking at his key publications, 

his citation record and his presence at various statistical gremia. A full curriculum vitae of Prof. Saporta can be 

found at the CNAM site: http://cedric.cnam.fr/~saporta/CVSaporta_english_April2017.pdf. 

2. Publication records and their citations 
There are at present several organisations, publishers and individuals who provide citation records of 

individual academics and academic groups. Two of the older ones are the ISI Web of Science and Google 

Scholar. Given that the latter includes books and more  publications in languages other than English, I have 

taken Google Scholar as the basis for the information presented in this article -- although its use is not without 

difficulty. Anne-Wil Harzing has created a program Publish or Perish, which uses Google Scholar as its data 

base. In this program she calculates various statistics about publications, satisfying specific search terms 

(authors, subjects, research groups, etc.). One unfortunate circumstance is that academics are human, too, and 

not uncommonly references to their colleagues’ work are not completely accurate. Given the automated 

character of data gathering by Google Scholar, such inaccuracies are generally not detected, so that multiple 

variants of the same publications can be found in the data base, and hence also in that of Harzing’s Publish or 

Perish database. Therefore, this article contains such inaccuracies as well, but they would be too time-

consuming and too difficult to rectify. I have tried to eliminate some of the more glaring ones, but more will 

have remained.  

ResearchGate  indicates that Prof. Saporta obtains a (albeit somewhat ResearchGate-specific) score which 

exceeds the scores of  70% of other researchers on its site. I would imagine that if all his publications were 

uploaded on this site he would easily score in the 90s. 

Incidentally, it turns out that references to Prof. Saporta’s work also appear under “S. Gilbert” (see Table 

1). The probable reason is that algorithms gathering information on a person need to allocate publications of “G. 

Saporta”,  “Gilbert Saporta”, “Saporta, Gilbert”, “Saporta, G” to the same person, but “Saporta Gilbert” (without 

1

https://webmail.campus.leidenuniv.nl/owa/redir.aspx?C=roRKBv7vLcJrp4zwIKjLosloPfjxTwHQHUkYSm3yXo4ZcV54S7fUCA..&URL=http%3a%2f%2fcedric.cnam.fr%2f%7esaporta%2fCVSaporta_english_April2017.pdf
https://www.webofknowledge.com/
https://scholar.google.co.uk/
https://scholar.google.co.uk/
https://harzing.com/
https://harzing.com/resources/publish-or-perish
http://www.harzing.com/pop.htm
http://www.harzing.com/pop.htm
https://www.researchgate.net/profile/Gilbert_Saporta/reputation


the “,”) also occurs. How is the algorithm to know what which is the first name and which is the family 

name? Note that on the same line Jean-Marie Bourouche has been reduced to a mere Mr. B. 

Table 1. Citations to publications by S. Gilbert (Source: Publish or Perish, 18/6/2017) 

 
 

An additional aspect is that Prof. Saporta has published in both French and English and that for the casual 

investigator such as me it is unclear whether some English publications are straightforward translations of the 

French ones or vice versa. Finally, do we count various editions of the same book as different publications, or as 

the same publication? I have merged the results of the citation analysis so that in these cases all references were 

to the same publication. This leads to higher citation counts for those books, but I think this is only proper. 

3. Saporta’s productivity 
Let us first look at Prof. Saporta’s productivity as found in Publish or Perish (Fig. 1), but only counting 

those publications which have been cited at least once. 

 

Figure 1. Number of publications cited at least once, arranged per year. 

Figure 1 clearly shows that Prof. Saporta’s peak productivity was in his sixties. His publications included 

not only cited journal papers but also several books, including textbooks from which many generations of 

French students were taught (and hopefully learned) statistics; in particular Probabilités, analyse des données et 

statistique, which so far has known three editions (2006, 1991, 2011). 

As a slightly frivolous exercise I asked Google to produce images of the covers of his books, which 

resulted in Figure 2. I have not edited the results, so there are some rogue and fantasy ‘covers’ included here as 

well. The one I loved best was the second from the right on the top row. It reads "L’Analyse des données 

(French Edition)". Why ‘French Edition’? Who would have been surprised that this book was not written in 

English? The solution to this riddle is that it is actually not a real cover (as stated almost illegibly in this figure), 

but a place holder for the real one, as is the first one of the same row. The actual covers of the two books  from 

the Que sais-je series are given in Figure 3. 

PhD CNAM 
President 

IASC 

Retired 

CNAM 
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Figure 2. Covers of books (co)authored and/or (co)edited by Gilbert Saporta.  

 

 

 

Figure 3. The real covers of the first and last editions of L’Analyse des Données from the Que sais-je series. 
 

4. Saporta’s prominent publications  
In Table 2 below I present the results of a search for “Gilbert Saporta” in Publish or Perish. The outcomes 

are ranked according to frequency of citation. Prof. Saporta has an h index of 24, which means that on 17 June 

2017, 24 of his publications had 24 citations or more, and it is those publications which are included in the list. 

The number of citations is a lower bound, because incorrect referencing has created new entries in the database. 

However, these citations should be part of the record of the correctly referenced publications. 

The results in Table 2 make very clear that Prof. Saporta’s books have been widely used, and one 

could even wonder what their citation count would have been had they also been available in English, the lingua 

franca of the scientific world. Finally, it is interesting to note how widely read and cited his two academic thèses 

have been. Not many scholars have that honour; of course it may be that this more usual in France than in the 

English-speaking world, but this does not diminish the acknowledged importance of these theses.  
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Table 2. Number of citations to publications (co)authored by Prof. Saporta (17/6/2017). Books are in bold 

Nr.  Cites Cites/Ye

ar 

Authors Title 

1 2101 191.3 G Saporta (1990, 2006, 2011) Probabilités, analyse des données et statistique. Paris : Editions Technip (3 editions). 

2 140 11.7 C Preda, G Saporta (2005) Clusterwise PLS regression on a stochastic process. Computational Statistics & Data Analysis, 49, 99-108. 

3 123 3.2 G Saporta (1978) Théories et méthodes de la statistique. Paris : Editions Technip. 

4 121 3.5 JM Bouroche, G Saporta, (2006)  L'analyse des données (Que sais-je ?) (9 editions).Presses Universitaires de France. (translated in Arabic, Italian and Portuguese). 

5 110 5.5 JJ Droesbeke, J Fine, G Saporta (Eds.) 

(1997)  

Plans d'expériences: Applications à l'entreprise. Paris : Editions Technip. 

6 99 2.4 G Saporta (1975)  Liaisons entre plusieurs ensembles de variables et codage de données qualitatives. Thèse de 3e Cycle  Université Pierre et Marie 

Curie - Paris VI.  

7 90 9.0 C Preda, G Saporta, C Lévéder (2007) PLS classification of functional data.  Computational Statistics, 22, 223–235. 

8 77 2.1 G Saporta (1981) Méthodes exploratoires d'analyse de données temporelles. Thèse de doctorat d’état Université Pierre et Marie Curie - Paris VI. 

10 72 3.4 F Dazy, JF Le Barzic, G Saporta, F. 

Lavallard (Eds.). (1996). 

L'analyse des données évolutives-Méthodes et applications. Paris : Editions Technip. 

11 68 6.8 M Plasse, N Niang, G Saporta, A 

Villeminot, L Leblond (2007) 

Combined use of association rules mining and clustering methods to find relevant links between binary rare attributes in a large 

data set. Computational Statistics & Data Analysis, 52, 596-613. 

12 60 4.0 G Saporta (2002) Data fusion and data grafting. Computational Statistics & Data Analysis, 38, 465-473. 

13 54 6.0 S Zaugg, G Saporta, E. van Loon, H. 

Schmaljohann, F. Liechti (2008) 

Automatic identification of bird targets with radar via patterns produced by wing flapping. Journal of the Royal Society Interface, 

5, 1041-1053. 

14 48 6.0 M Vichi, G Saporta (2009) Clustering and disjoint principal component analysis. Computational Statistics & Data Analysis, 53, 3194-3208. 

15 48 3.4 D Karlis, G Saporta, A Spinakis (2003) A simple rule for the selection of principal components. Communications in Statistics - Theory and Methods, 32, 643-666. 
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16 42 2.8 G Saporta, G Youness (2002) Comparing two partitions: Some proposals and experiments (pp. 243-248). In W. Härdle, B. Rönz (Eds), Compstat 2002.  

Heidelberg: Physica, Verlag. 

17 40 3.1 G Youness, G Saporta (2004) Une méthodologie pour la comparaison de partitions. Revue de Statistique Appliquée, 52, 97-120. 

18 29 2.4 JJ Droesbeke, M Lejeune, G Saporta (2005) Modèles statistiques pour données qualitatives. Paris : Editions Technip. 

19 27 2.7 A Tenenhaus,, A Giron, E viennet, M Bera, 

G Saporta, & B Fertil (2007) 

Kernel logistic PLS: A tool for supervised nonlinear dimensionality reduction and binary classification. Computational Statistics & 

Data Analysis, 51, 4083-4100. 

20 29 4.1 AM Aguilera, M Escabias, C Preda, G. 

Saporta (2010) 

Using basis expansions for estimating functional PLS regression: Applications with chemometric data. Chemometrics and 

Intelligent Laboratory Systems,104, 289-305 

21 28 2.3 V Stan, G Saporta (2005) 

Customer satisfaction and PLS structural equation modeling. An application to automobile market . Presented at the 

Applied Stochastic Models and Data Analysis. Conference (ASMDA 2005). 

22 26 1.1 L Jaupi, G Saporta (1993) Using the influence function in robust principal components analysis.. S. Morgenthaler, E. Ronchetti (Eds.), New directions in 

statistical data analysis and robustness. Basel: Birkhäuser. 

23 25 1.7 C Preda, G Saporta (2002) Régression PLS sur un processus stochastique. Revue de Statistique Appliquée, 50,. 27-45. 

24 24 3.0 G. Saporta, N Niang(2010) Principal component analysis: Application to statistical process control. In G. Govaert (Ed.), Data analysis. Wiley Online Library. 
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5. Gilbert Saporta: A man for all disciplines. 
"The best thing about being a statistician is that you get to play in everyone's backyard." (J. W. Tukey). Clearly 

Prof. Saporta likes to play in other people’s backyards, but more to the point, he likes to play with the owners of 

the yards as well. This is evident from his co-authorship in backyard papers such as: 

 applications à l'entreprise [business applications] 

 bird targets with radar via patterns produced by wing flapping 

 chemometric data 

 automobile market  

 radioactive waste produced at hadron accelerators 

 psychosocial factors impacting stress level 

 radiological characterization of historical waste 

 vascular surgery  

 vieillissement cutané chez femmes caucasiennes adultes [skin aging by adult Caucasian women]   
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6. Gilbert Saporta in the picture  
 

 
Jan de Leeuw, Gilbert Saporta and Yutaka Tanaka 

Calcutta, December 1985, International Conference on Advances in Multivariate Statistical Analysis (from JSS 2016 

Festschrift De Leeuw) 

 
Groningen, European Meeting Psychometric Society 1980 

(with, amongst others, Gerhard Fischer, Herman Wold, Jan-Berndt Lohmöller) 
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Leiden, European Meeting Psychometric Society 1995 

  
Rennes: Carme 2011 Rennes: Carme 2011 

 
 

Napoli: Carme 2015 Napoli: Carme 2015 

Photos by  Pieter M. Kroonenberg, except Groningen – photographer unknown 
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Gilbert Saporta at Pieter Kroonenberg’s Farewell Symposium: 14-11-14 

 
 

  

 
Photos by Jan Piet Hartman (https://www.4fotos.eu/) 
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At the ASMDA 2017 conference: Saporta and Skiadas, Organiser. Last-minute adjustments before his keynote 

lecture. Photos: Pieter M. Kroonenberg 
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Evaluation of Stopping Criteria for Ranks in
Solving Linear Systems

Benard Abola1, Pitos Biganda1,2, Christopher Engström1, and Sergei
Silvestrov1

1 Division of Applied Mathematics, The School of Education, Culture and
Communication (UKK), Mälardalen University, Box 883, 721 23, Vster̊as, Sweden
(E-mails: benard.abola@mdh.se, christopher.engstrom@mdh.se,
sergei.silvestrov@mdh.se)

2 Department of Mathematics, College of Natural and Applied Sciences, University
of Dar es Salaam, Box 35062, Dar es Salaam, Tanzania
(E-mail: pitos.biganda@mdh.se)

Abstract. Linear systems of algebraic equations arising from mathematical formu-
lation of natural phenomena or technological processes are common. Many of these
systems of equations are large, the matrices derived are mainly sparse and need to
be solved iteratively. Moreover, interpretation is crucial in making decision. Bioin-
formatics, internet search engines (web pages) and social networks are some of the
examples with large and high sparsity matrices. For some of these systems only the
actual ranks of the solution vector is interesting rather than the vector itself. In this
case, it is desirable that the stopping criterion reflects the error in ranks rather than
the residual vector which might have a lower convergence. In this paper, we evalu-
ated stopping criteria on Jacobi, successive over relaxation and power series iterative
schemes. Numerical experiments was performed and results show that Kendall’s
correlation coefficient, τ gives good stopping criterion of ranks for linear system of
equations. Numerical experiments have been performed and results presented.
Keywords: stopping criteria, networks, rank.

1 Introduction

Sparse and large linear systems of equations are common in many physical ap-
plications. In particular, internet search engines is one of the area where such
systems are encountered and have been studied intensively. The concepts have
been deployed in areas such as social networks, bioinformatics and infectious
disease management (Wills et al.[23]). With growing technology, the size of
data from these fields are reaching billions and numerical computations are
becoming more demanding (Boldi et al.[7]). Moreover, for the case of search
engines, only a few relevant pages for query are provided, which is literally
termed as ranking of web pages as explained by Kohlschületter et al.[3]. In-
deed, ranking requires efficient algorithms, understanding parameter influence
on convergence and stability or error tolerance as suggested by Engström and

17thASMDA Conference Proceedings, 6 – 9 June 2017, London, UK

c© 2017 ISAST
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Silvestrov [24]. Recently, PageRank, connecting a Line of nodes with a complete
graph was studied and explicit formula to determine of ranks were proposed,
which was mainly aimed at minimizing errors in estimating ranks as pointed
out in Engström and Silvestrov [25]. Much as these attempt have been made
to improve ranking processes by increasing convergence rate and formulating
formulas, the issue on the quality of ranks obtained still remain unresolved.
As a matter of fact, paying much attention to the accurate solutions of linear
system of equations underscore the practical significance for ranking in areas
where they are applied.

In this paper, we focus on the termination criterion as means of obtaining
good ranks. We first outline some studies made on stopping criteria in solving
linear system.

Bennani and Braconnier[4] studied convergence detection of iterative solvers.
They pointed out that such criterion may allow excessive number of iterations
to be performed. Geometric distance such as absolute error and normalized
residual for linear systems have been preferred as terminating criteria when
using Jacobi iterative schemes (Gleich et al.[6]). Another study was done by
Qiu and Cho [19] who applied ranking distance as termination criterion to ap-
proximate PageRank vector. They noted that there are instance in which the
relative error may be large but the ranks are pretty good.

Essential goal in PageRank computing is to rank webpages (Gong et al.[18]),
while accuracy of the PageRank vectors is secondary. In the view of Haveliwala
[21], if Pagerank vector is to be used for establishing the importance of pages
the convergence should be measured based on how the ordering changes as
the number of iterations increases. Berklin [22] questioned the sense to iterate
beyond the accuracy that establishes the order of the pages in search engines
analysis. Boldi et al.[7] said ’it is the relative order of pages with respect to
PageRank that is actually interesting for search engines’. Rank ordering as
an algorithm provides few number of iterations sufficient for the purpose of
identifying important webpages and moreover, time complexity of algorithm
can be drastically reduced (Bidoki et al.[13]). In fact with the advancement in
technology and adaptation of PageRank algorithm in areas like object tracking
or target filtering, the importance of stopping criterion for ranks should not be
underscored. This motivates the need to evaluate stopping criteria in relation to
ranks. This paper aims to answer the following questions:- 1) Which stopping
criterion out performs the others? 2) Which criteria are similar? and 3) Is there
any link between the stopping criterion and the iterative methods in ranking
problems?

2 Methods

This section describes some notions used in the methods to an easy under-
standing. Preliminaries of concepts such as key definitions and theorems are
outlined. Also, iterative methods and stopping criteria are briefly described.
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2.1 Preliminaries

Consider a large sparse system of equation

Ax = b, (1)

where A ∈ Rn×n is a nonsingular matrix and x, b ∈ Rn are vectors. To avoid
confusion all the matrices and vectors are real numbers unless otherwise stated.

Definition 1. (Hadjidimos [16]) If a matrix A satisfies A ≥ 0, then it is said to
be non-negative. The matrix A is said to be an L-matrix if and only if ai,i > 0,
i = 1, · · · , n and ai,j ≤ 0, i 6= j. A matrix, A is said to be a M-matrix if it is
both an L-matrix and invertible.

Theorem 1. (Perron-Frobenius Theorem [27]) Let A be an n× n positive ma-
trix with spectral radius ρ. Then the following statements holds:

1. There is a positive real eigenvalue λ1 = ρ = max{|λ| : λ ∈ C}
2. There is an eigenvector ς > 0 such that Aς = λ1ς.

3. The eigenvalue λ1 has multiplicity 1.

4. Apart from ς there are no positive eigenvector of A other than positive
scalar multiples of ς.

Having stated some essential definitions and a theorem that will be referred
to in this work, we next present the formulation of two iterative schemes, that
is the Jacobi and Successive overrelaxation methods. Solving Equation (1)
iteratively involves splitting matrix A as

A = M −N, (2)

where M is nonsingular. It is also a convergent splitting of A if the spectral
radius of iterative matrix, M−1N , is less than 1 (Li and Wu [8]). Following
representation (2), the iterative solution of Equation (1) becomes

x(m+1) = M−1Nx(m) +M−1b,

= Tx(m) + g,
(3)

where T = M−1N is called iterative matrix and g = M−1b is a vector.

2.2 Iterative methods

This subsection presents iterative techniques applied in solving large sparse
linear systems, namely Jacobi method, Successive Overrelaxation method and
Power series method. Note that the performance of iterative solver(s) depends
mostly on the structure of iterative matrix which we have taken into account
without much details described in this paper, see Young [9].
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Jacobi Iterative method: To derive the Jacobi iterative formula, the matrix
A is split as A = D − (L + U). Using representation (2), M = D, where
D = diag(A), and N = L + U , where L and U are respectively strictly lower
and upper triangular n × n matrices, whose entries are the negatives of the
entries of A respectively below and above the leading diagonal of A. It follows
from Equation (3) that

x(m+1) = D−1(L+ U)x(m) +D−1b, m ≥ 0, (4)

where x(0) is the initial estimate of the unique solution x of (1). Equation (4)
is called the point Jacobi iterative method (Varga[15]) and the matrix

J = D−1(L+ U) (5)

is called the point Jacobi iterative matrix associated with the matrix A. The
method requires a simultaneous storage of all the components of the vector
x(m) while computing the components of the vector x(m+1).

Successive Overrelaxation (SOR) Iterative method: In a similar way as
the Jacobi method, we split matrix A as A = M−N , but M−N ≡ D−L−U =
(Dω −L)− (( 1

ω − 1)D+U), where the quantity ω is called the relaxation factor
(Young [9]). From (3), we have

(D − ωL)xm+1 = [(1− ω)D + ωU ] xm + ωb. (6)

Since D − ωL is a nonsingular, (6) is equivalent to

x(m+1) = (D − ωL)−1 [(1− ω)D + ωU ] x(m) + ω(D − ωL)−1b, (7)

which is called the point SOR iterative method. The matrix JSOR is given by

JSOR = (D − ωL)−1 [(1− ω)D + ωU ] ,

is called the point SOR matrix. To find an optimal value of ω, it is assumed that
the decomposed matrix has Property ’A’ (Hadjidimos [16]), and the optimal
choice of the parameter can be obtained from the theorem below.

Theorem 2. (Optimal Successive Overrelaxation parameter (Young[9] ) Let J
and JSOR be Jacobi and SOR iterative matrices respectively and derived from
a matrix A. If µ(J) is the eigenvalues of J and the spectral radius, ρ(J) < 1,
then the optimal SOR parameter, ωo = 2

1+
√

1−ρ2(J)
.

Before, we have a look at how to approximate ωo, it is important to note
that explicit formula that compute the optimal parameter for SOR method
in general does not exist. There are some special form of matrices such as
tri-diagonal, property A and weakly-cyclic their relaxation parameters can be
derived precisely. This implies that determining ρ(J) is practically challenging
so one need to approximate ωo which was the case in this problem. Now, by
Equation 5 and Equation 13, the matrix, J = L+U = cP , taking 1-norm of J ,
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we have ρ(J) ≤ c, and using this bound, one gets an estimate of the parameter
as ωo = 2

1+
√
1−c2 . Since the damping factor c = 0.85, an approximate value of

ωo = 1.3099. This value works only if the matrix has property ‘A‘.
Alternatively, if J is weakly-cyclic then for each eigenvalue of J , µ(J) with

1
2 < µ(J) < 1, set ωo = 2

1+
√
2c−1 , where c = µ(J) as earlier mentioned.

Hence, a better choice of ωo is 1.0889. Exploring connectivity of the graph
that generated a iterative matrix J is important to avoid extreme initial guest
of ωo.

Power Series method: The formulation of Power series iterative method
arise from Equation (12), that is multiplying both sides by (I − cP )−1, we
obtain

π = (1− c)(I − cP )−1v. (8)

Expressing the term (I − cP )−1 as geometric series yields

(I − cP )−1 = I + cP + c2P 2 + · · · =
∞∑
j=0

(cP )j .

Substituting in Equation (8) gives

π = (1− c)[
∞∑
j=0

(cP )j ]v. (9)

3 Formulation of linear system

Linear systems of equations that is considered in this paper are those arising
from PageRank problems (Langville and Meyer[10]). We briefly describe how
one can formulate the system from a web link graph G with n vertices. That is
we let P be weighted adjacency (stochastic) n×n matrix derived from outgoing
vertices of the graph. If G has no outgoing links in some vertices, then P is a
sub-stochastic matrix. We remedy this by adding to P rows corresponding to
dangling vertices (vertices without outgoing links) a positive probability distri-
bution v over all vertices. A stochastic matrix P, obtained after adjustment
for dangling vertices is defined as

P = P + dvT ,

where d is a column vector such that

di =

{
1, if vertex i is dangling,

0, otherwise,
(10)

and v = e
n , n is the dimension of P and e = (1, 1, · · · , 1).

Suppose c ∈ (0, 1) is the probability that a web surfer follows the link as
described by P and jump to any vertex in the graph according to evT with
probability (1− c), then the matrix defined in PageRank problem becomes

T = c(P + dvT ) + (1− c)evT . (11)
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By Theorem 1 we can formulate the problem to determining a stationary dis-
tribution of the web link graph by multiplying (11) by an eigenvector π corre-
sponding to eigenvalue 1. Rearranging, we get

(I − cP )π = (1− c)v, (12)

where c is damping factor, P is a stochastic matrix and (I − cP ) is M-matrix.
This is the version of linear system defined in Engström and Silvestrov [24] as
the eigenvalue problem. However, the version of the system considered is the
one in which ‖π‖1 6= 1 and is given as

(I − cP )π = ngv, (13)

where ng is the size of the one vector e in case v is uniform.

Remark 1. From Equation (13), and comparing it with Equation (1), then
A ≡ (I − cP ), x = π and b = ngv.

4 Stopping Criteria

Whenever one attempt to solve large linear system of equations, the solution
is always approximated because of round off errors. Therefore, some degree
of accuracy need to be adopted which will depend on stopping criteria among
others. This section briefly outlines five stopping criteria used in large linear
system solvers. We intend to use them based on their popularity in PageRank
problem which is a sister problem to linear system of equations (12).

(I) Assume that the residual vector at the (m+ 1)th iteration is r(m), then the
norm of the residual is

‖r(m)‖1 = maxi|x(m) −Ax(m−1)|, (14)

where x(m) is the approximate solution vector at mth iteration.
(II) Componentwise backward error: The criterion allowed for determination

of finite bound when the matrix A is sparsed Arioli et al.[1] is

maxi
|rm|i

(|A|.|xm|+ |b|)i
. (15)

At this point, the use of 1-norm appears in many literature but infinity
norm and 2-norm may also work. However, one must be conscious on
technical reasons to use a norm or combination of norms. We highlight
this in the next criterion.

(III) Normwise backward stopping criterion: the ideal to include this bound
stem from the fact that in most iterative methods their convergence solely
depends on eigensystem of iteration matrix where the backward error is
also unknown. Moreover such iteration involves successive computation
matrix-vector; this result to dense matrix. Hence, a solution obtained may
be quite near machine precision, which in turn result to stoping iteration
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to early. To remedy this one would need to choose some larger threshold
to determine termination, i.e.

‖rm‖∞
‖A‖∞.‖xm‖1 + ‖b‖∞

. (16)

(IV) The ratio of residual to infinity norm of vector b neglecting the effect of
matrix A:

‖rm‖∞
‖b‖∞

. (17)

This criterion has been discussed in Arioli et al.[1] in detail.
(V) Before defining the criterion, let us consider the following lemma:

Lemma 1. If J ∈ Rn×n and ‖J‖ < 1, then I − J is nonsingular and
(I − J)−1 =

∑∞
k=0 J

k with ‖(I − J)−1‖ ≤ 1
1−‖J‖ .

Proof. To proof nonsingularity, we use proof by contradiction. Let I−J be
singular, then for some vector x ∈ Rn we have (I−J)x = 0 but ‖x‖ = ‖Jx‖,
hence ‖J‖ ≥ 1. Thus I − J is nonsingular.

To prove the second part of the lemma, consider the identity
∑N
k=0 J

k(I −
J) = I − JN+1, since ‖J‖ < 1, it follows that Jk → 0 as k → ∞ because

‖Jk‖ ≤ ‖J‖k for some k. Therefore limN→∞
∑N
k=0 J

k(I − J) = I. This is

equivalent to (I − J)−1 = limN→∞
∑N
k=0 J

k.
Taking matrix norm on both sides, we get ‖(I − J)−1‖ ≤ 1

1−‖J‖ .

In the second lemma, we derived the bound of successive residual which
will turn out to be stopping criterion.

Lemma 2. Suppose a stationary iterative scheme is defined as x(m+1) =
Jx(m) + d, where ‖J‖ < 1, d is a constant and m = 1, 2, · · · , . Then the

estimate ‖J‖
1−‖J‖‖x

(m) − x(m−1)‖ < ε.

Proof. Let x be the exact solution obtained when using the iterative scheme,
then at the m-th iteration, we can write the residual as

x− x(m) = Jx− Jx(m−1)

= Jx− Jx(m) + Jx(m) − Jx(m−1).

Collecting similar terms and taking vector norm on both sides yields

‖(x− xm)− J(x− xm)‖ = ‖J(xm − x(m−1))‖
‖(x− xm)(I − J)‖ ≤ ‖J‖‖(xm − x(m−1))‖,

‖(x− xm)‖ ≤ ‖J‖‖(I − J)−1‖‖(xm − x(m−1))‖,

using lemma 1, we get ‖J‖
1−‖J‖‖x

(m)−x(m−1)‖ which is less or equal to some

tolerance, ε. Now, we write criterion V as c
1−c‖x

(m) − x(m−1)‖, where c
(damping factor) is approximated by ‖J‖.

17



(VI) Kendall’s τ rank correlation: This is one of the many correlation indices
for comparing orders. It is a non parametric correlation index and widely
used for ranking aggregation in the web community (Dwork et al.[14]). It
also helps to determine how fast the computation of PageRanks converges
(Kamvar et al.[17]). Kendall’s τ is defined as follows:

Definition 2. Let x ∈ Rn and y ∈ Rn be two vectors of rank values.
Given a pair (xi, yi) and (xj , yj), 1 ≤ i, j ≤ n, then the pair is said to be
– concordant iff xi > xj and yi > yj or xi < xj and yi < yj ;
– discordant iff xi > xj and yi < yj or xi < xj and yi > yj ;
– neither concordant nor discordant iff xi = xj (x- tie) or yi = yj (y- tie)

or xi = xj = yi = yj (joint tie).
Let nc and nd be the number of concordant pairs and discordant pairs,
respectively. Kendall’s τ is calculated as

τ =


nc−nd

n(n−1)/2 , if no tie
nc−nd√

(n0−n1)(n0−n2)
, otherwise,

(18)

where n0 = n(n − 1)/2, n1 =
∑
i ti(ti − 1)/2, n1 =

∑
j uj(uj − 1)/2, ti is

the number of ties in the ith group of ties for x and uj is the number of
ties in the jth group of ties for y.

Kendall’s correlation range between 1 and −1. If τ = 1, there are no non-
joint ties and the two total orders induced by the vectors are the same.
The converse is true for τ = −1, i.e., no non-joint ties and the two total
orders are of opposite signs. When τ = 0, the pairs are not correlated.
Top k lists: This technique was introduced by Fagin et al.[12]. It is under-
stood as a ranking metric in which the first k elements are considered in
the list of n, where k ≤ n. The top k lists can be ranked in many ways
[12]. However, due to its simplicity, Kendall’s metric is mostly used.
Let N = {1, . . . , n} be a set of size n. Suppose that r1 and r2 are two top
k rankings on N . According to Rolland[11] and Fagin et al.[12], Kendall’s
distance metric is defined as dK(r1, r2) =

∑
{i,j}∈N

Ki,j(r1, r2),

where

Ki,j(r1, r2) =


0, if i and j appear in the same order in r1 and r2,

1, if i and j appear in the opposite order,

0, if i is ahead of j in r1 .

(19)

Alternatively, dK(r1, r2) is the total sum of pairwise discordances between
two k lists.
To determine the stoping criterion of the iterative methods, one assumes

that r
(m)
1 and r

(m+1)
2 are the ranks at mth and (m+1)th iterations, respec-

tively. Then, the Kendall’s distance for top k lists is expressed as

dK

(
r
(m)
1 , r

(m)
2

)
=

∑
{i,j}∈N

Ki,j

(
r
(m)
1 , r

(m+1)
2

)
.

We normalized dK , hence we obtain Kendall’s τ correlation.
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5 Numerical experimentation of stopping criteria

In this section, we evaluate the stopping criteria for ranks of linear system of
equations. We feel that it is essential to base the stopping criteria on intended
purpose, that is induced ranks rather than solution of the equation. To that ef-
fect, good evaluation framework should be carried out to ensure sound stopping
criteria for ranks. We set up the evaluations as follows:-

• Convergence of five stopping criteria.
• Quantize and ranks at different iterations.
• Kendall’s coefficient τ against number of iterations for different stopping

criteria by iterative method.
• Top-k list (100 and 300) against number of iterations by iterative method.

5.1 Convergence of stopping criterion

In this section, we present evaluation of five criteria mostly used in iterative
schemes. We performed 20-100 iterations and results presented in Table 1, and
Figure 1. The findings revealed that criterion I (1-norm of residual ‖x(m) −

Ax(m−1)‖) and criterion IV (
‖xm −Axm+1‖∞

‖b‖∞
) seem to suit convergence of

ranks of linear system, since their error tolerance were within the range as
suggested in Engström and Silvestrov [24] and Steward [26]. Also, criteria V
( c
1−c‖‖x

(m)−x(m−1)‖) is good alternative if one wishes choose any other, more

specifically for slow convergence scheme. While criterion II and III performed
badly because they rather have faster convergence than expected.

Method Error by criterion No. of Iteration

20 40 60 100
(×10−3) (×10−4) (×10−6) (×10−9)

I 38.8 15.0 58.0 86.8

Power series
II 6.0 2.25 8.70 1.30

and
III 15.6 3.26 7.75 5.51

Jacobi
IV 38.8 15.0 58.0 86.8

V 219.6 85 328.0 492.0

I 37.1 14.0 48.9 64.68

SOR
II 5.7 2.07 7.34 9.68

III 14.7 2.87 6.36 3.96

IV 37.1 14.0 48.9 64.68

V 210.5 77.0 277.6 366.0

Table 1. Error tolerance and stopping criteria by iterative methods.
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Fig. 1. Convergence of the 5 criteria using Power Series /Jacobi iterative method
(left) and SOR (right)

The behavior of error around 10−15 could probably be due to machine
precision being similar. In Matlab software, double precision in IEEE format
can store up to 16 digits only.

5.2 Quantiles

The quantiles (10%, 25%, 50%, 75% and 90%) of solutions for the iterative
methods on four sets of iteration were performed and results presented in Table
2. Criterion I was used a stopping requirement because it is simple and found to
be better as noted earlier. We found that no significant difference in solutions
at different quantiles points. Further, lower ranks seem to converge much faster
than higher ranks, see Table 2.

When the numbers of iteration was increased to 60, we noted that ranks
seem to have stabilized. To get a better picture, we gave a plot in Figure 1. It
can be clearly seen that in the early states of iterations ranks were unstable;
however after at least 50 iterations most ranks achieved their limiting values.
Moreover, the iterative scheme had converge already in at most 30 iterations.
Hence, the scheme had converged before the ranks.

5.3 Kendall correlation coefficient as stopping criterion

Further, we explored the use of Kendall correlation coefficient, τ as a stopping
criterion. We first assumed that the exact solution vector is known, then we
determined its correlation at different iteration points. To avoid heavy com-
putation, the top 100 and 300 list were considered for analysis of correlation.
Taking an interval of 10 and considering the 10th iterations as the starting
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No. of Iteration

Method Quartiles 40 60

solution solution

10% 3.5630 3.5637

Power series
25% 4.6043 4.6051

and
50% 5.4261 5.4273

Jacobi
75% 5.9494 5.9515

90% 6.2534 6.2565

10% 3.5630 3.5637

SOR
25% 4.6045 4.6051

50% 5.4263 5.4273

75% 5.9497 5.9516

90% 6.2539 6.2565

Table 2. Quartiles, number of iterations and solutions using stopping criterion I &
II

Fig. 2. Index of first 100 top ranks and error (criterion I) against iteration number
using power series method

point and ending at 220th iterations. The followings were observed:- the first
time convergence of rank was at about 60th iterations shown in Figure 3. This
has been revealed by both iterative methods and this could be the stopping
point which match with the finding using criterion I and II.

Secondly, we observed that a proper rank can be achieved at a particular
iteration and lost as iteration progresses. This seem to be pronounced in SOR as
compared to Jacobi or power series methods, particularly with Top-100 ranks.
However, for Top-300 ranks it seems to achieve their convergence once and this
can be seen in Figure 3. Based on this results, determining convergence rate of
ranks using Kendall, τ coefficient seem to be an effective technique as compared
the others, in particular, when two Top-k lists are compared and where they
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Fig. 3. Convergence of Top-100 and Top-300 ranks using Kendall’s τ correlation
coefficient with Jacobi (left) and SOR (right) iterative schemes

coupled is the best stopping point. We evaluated this argument using Top-100
and Top-300, in all cases the results were promising. The number of iterations
required were 85 and 69 for Jacobi and SOR methods respectively as presented
in Figure 3.

6 Conclusions

Stopping criterion of ranks for linear system of equations is of practical sig-
nificance, particularly if ranking is to be meaningful and applicable in areas
like search engine, financial networks, bioinformatics and many others. In this
paper, we evaluated several criteria and the findings revealed that Kendall’s τ
method seem to be an effective stopping criterion for ranks of linear system of
equations as compared to the others. It was found that this technique which is
based on correlation coefficient between successive iterates of solution vectors
together with two Top-k lists ( for example, Top-100 & 300) has good conver-
gence, we named it Kendall’s τ 2 Top-k list method. Comparing the method
with other stopping criteria, it was observed that stopping point can easily be
identified as shown in Figure 3.

Further, criterion I and IV were found to competitor with Kendall’s τ 2
Top-k list method while criterion V seem to be relevant for slow convergence
linear system problem. We think that the contribution of this paper should
play a complementary role when the purpose is to determine ranks in linear
system of equations.
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Abstract. This paper is focused on the stability conditions of the multiserver queue-
ing system with heterogeneous servers and a regenerative input flow X(t). The main
idea is constructing an auxiliary service process Y (t) which is also a regenerative flow
and defining the common points of regeneration for the both processes X(t) and Y (t).
Then the traffic rate of the system is defined in terms of the mean of the increments
of these processes on the common regeneration period. It allows to use well-known
results from the renewal theory to find the instability and stability conditions. The
possibilities of the proposed approach are demonstrated by examples.
Keywords: regenerative flow, synchronization, stability condition, service discipline.

1 Introduction

Studying of queueing models is an appealing part of applied mathematics be-
cause queues are familiar and intuitively clear and they can be need to model
many real systems. This paper deals with the study of stability conditions for
a heterogeneous multiserver queueing system with a regenerative input flow.

We consider queueing systes with regenerative input flow for three reasons.
Firstly, a process describing the system under some natural conditions turns
out to be a classical regenerative process [see Asmussen [4], Thorisson [28]]
and the renewal theory gives very effective tools for asymptotic analysis of the
system. Secondly, the class of regenerative flows is rather wide and includes
fundamental flows from queueing theory. Finally, a regenerative flow has some
useful properties that allow us to investigate various applied models.

The main objective of our study is to determine conditions under which the
process describing the performance of the system is a stochastically bounded
one and therefore under some additional assumptions a stable process.

Let us note that stability results for the classical homogeneous multiserver
queue are very well known. We refer to the works of Kiefer and Wolfowitz [18]
for the GI|GI|m system and the general ergodicity results of Loynes [19]. As
it was shown in Sadowsky [24] the proposed approach could not be applied
for heterogeneous systems. Instead, in the work of Sadowski [24] the stability
is examined from the point of view of Harris recurrent Markov chain theory.
Basing on the works of Malyshev [20], Meyn and Tweedy [21], Georgiadis and

17thASMDA Conference Proceedings, 6 – 9 June 2017, London, UK

c© 2017 ISAST
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Szpankowski [15], Szapankowski [26] the author obtained two results concerning
the irreducibility and positive Harris recurrence of the corresponding process.

The heterogeneous multiserver queueing system with a regenerative flow
was investigated in the paper of Afanasyeva and Tkachenko [3]. Under some
assumptions necessary and sufficient stability condition was obtained there.
Here we study more general model with a regenerative input flow X(t) and
an auxiliary service process Y (t) that is the number of customers which can
be served during the interval [0, t) under the assumption that there are always
customers for service. We consider the discrete-time as well as continuous-time
models assuming that Y (t) is a regenerative flow not depending on the input
flow X(t).

The basic idea is constructing the common points of regeneration for the
both processes X(t) and Y (t). Then we define the traffic rate of the system
in terms of the first moments of increments of these processes on the common
regeneration period. Under some conditions we estimate the increments of the
real service process Ỹ (t) (that is the number of customers really served at the
system up to time t) with the help of increments of an auxiliary process Y (t).
It allows us to prove instability results and to find conditions of stochastic
boundedness of the number of customers Q(t) at the system at time t as t →
∞. One may think that our conditions are too restrictive to be useful in
applications therfore we consider three models with service interruptions as
examples. In particular, in Section 6 a discrete-time heterogeneous multiserver
queueing system with a regenerative input flow and interruptions of the service
which are described by independent renewal processes for various servers, is
discussed. It is shown that the traffic rate ρ is not expressed in terms of the
first moments of the random variables defining the model for the preemptive
repeat service discipline (see Gaver [14]). We also prove that Q(t) → ∞ as
t→∞ when ρ ≥ 1 and Q(t) is a stochastically bounded process when ρ < 1.

Let us note that the model with service interruptions occurs in numerous
applications including manufactoring process, multi-processor computer net-
works, telecommunicating networks and various types of service counters. Ser-
vice interruptions occur from resource sharing or service breakdowns, priority
assignment, some external events and others. Queueing models with service
interruptions have been investigated by many authors, in continuous as well as
in discrete-time.

White anf Christie [29] were the first to study queueing systems with in-
terruptions. Those authors investigated the M |M |1 model with preemptive
resume priority discipline. Their results were later extended by Avi-Itzhak and
Naor [5] and Thiruvengadam [27] who study queues with general service times.
Gaver [14] studied single-server queues with batch Poisson arrivals and gen-
erally distributed service times. Assuming that a breakage of the server may
appear only when it is busy by service this author introduced a notion ”com-
pletion time” which turns out to be very efficient since it allows to reduce the
analysis of the system with interruptions to a classiscal model M |G|1. So far
there is extensive literuture concerning queueing systems with interruptions.
There are some review papers that cover most of the literature in this sphere.
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Some of important papers on the single-server case are presented in the work
of Fiems and Bruneel [12].

The most extensive literature survey on systems with interruptions both
for single-server and multiserver cases is given by Krishnamoorthy et al [17].
This paper also covers some non-Markovian multichannel systems with homo-
geneous servers. There are some other articles with extensive literature survey
as well, see e.g. Pechinkin et al [23], Morozov et al [22]. To the best of our
knowledge, there are no papers that study stability problem for multichannel
queueing systems with heterogeneous servers in non-Markovian case with gen-
eral input flow and service times. Synchronization method combined with the
regenerative theory is one of the powerful approaches to obtain stability con-
ditions for such systems. Basing on this method Morozov et al [22] considered
the multichannel queueing system with identically distributed service times by
different servers, renewal input flow, alternating renewal-type servers’ interrup-
tions in the discrete-time case. Authors established some sufficient conditions
of stability for preemeptive repeat different and preemptive resume service dis-
ciplines but for preemptive resume service discipline the obtained condition is
not necessary.

Let us also mention the fluid approximation approach as an alternative
to the synchronization approach followed here. Such an approach has lent to
significant progress in stability analysis of multiclass queueing networks (see
Dai [10], Chen [8], Chen and Yao [9]). See also Foss and Konstantopoulos
[13] for a survey of various approaches to stability of queueing systems with a
focus on the fluid approach. Nevertheless, this paper does not rely on a fluid
approach since to the best of our opinion, the synchronization method with
regard to regenerative structure of the processes turns out to be suitable to
obtain complete ana transporent proofs as well as natural stability conditions
for the model at hand.

The paper is organized as follows. In the next section the queueing system
under consideration is described in detail and basic notions are given. In Scetion
3 instability results are obtained. Section 4 is devoted to the conditions of the
stochastic boundedness. In the rest sections we give examples of systems with
service interruotions and use obtained results to asymptotical analysis of these
systems.

2 Model description

We consider a queueing system with n servers and a regenerative input flow
X(t) (see Afanasyeva and Bashtova [1], Thorisson [28]). Suppose an integer-
valued stochastic process {X(t), t ≥ 0} be defined on the probability space
(Ω,F , P ). Assume that X(t) has non-decreasing right-continuous sample
paths and X(0) = 0. There exists filtrarion {FX

≤t}t≥0, (FX
≤t ∈ F for all t ≥ 0)

such that X(t) is measurable with respect to {FX
≤t}t≥0.

Definition 1. The stochastic flow X(t) is called regenerative one if there is an

increasing sequence of Markov moments {θ(1)j , j ≥ 0}(θ(1)0 = 0) with respect to
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{FX
≤t, t ≥ 0} such that the sequence

{κj}∞j=1 = {X(θ
(1)
j−1 + t)−X(θ

(1)
j−1), θ

(1)
j − θ

(1)
j−1, t ∈ (0, θ

(1)
j − θ

(1)
j−1]}∞j=1

consists of independent identically distributed (iid) random elements on (Ω,F , P ).

The random variable θ
(1)
i is said to be the ith regeneration point of X(t) and

τi = θ
(1)
i − θ

(1)
i−1 is the ith regeneration period (i = 1, 2, . . .). Let ξ

(1)
j =

X(θ
(1)
j )−X(θ

(1)
j−1) be the number of customers arrived during the ith regener-

ation period. Assume that Eτ
(1)
1 < ∞,Eξ(1)1 < ∞. The limit λX = lim

t→∞
X(t)
t

with probability 1 (w.p.1) is called the rate of X(t). It is easy to prove that
λX = Eξ1

Eτ
(1)
1

(see Smith [25], Thorisson [28]). The class of regenerative flows con-

tains most of fundamental flows that are exploited in the queueing theory. First
of all, the doubly stochastic Poisson process(see Grandell [16]) with stochastic
regenerative intensity is a regenerative flow. There are many other examples of
the regenerative flows, for instance, semi-Markovian, Markov-arrival, Markov-
modulated and other processes, (see Afanasyeva et al [2]). Define an auxiliary
process Y (t) as the number of customers that can be served during the interval
[0, t) under assumption that there are always customers for service during this
interval.

We consider the discrete-time queueing systems as well as continuous-time(see
Avi-Itzhak and Naor [5]). In the first case time divided into fixed length in-
tervals or slots and all arrivals and departures are synchronized with respect
to slot boundaries. Moreover, in the case of some events synchronization at
one slot these events are ordered as follows: arrival and departure. System is
observed at the end of a slot. For the discrete and continuous-time cases we
assume that an auxiliary process Y (t) is a regenerative flow with regeneration

points {θ(2)n }∞n=1 (θ
(2)
0 = 0). We also need additional assumptions.

Condition 1 For the continuous-time case Y (t) is the strongly regenerative

flow not depending on X(t) with the sequence {θ(2)n }∞n=1(θ
(2)
0 = 0) as points of

regeneration.

We call the regenerative flow Y (t) strongly regenerative if the regeneration

period τ
(2)
n = θ

(2)
n − θ(2)n−1 has a form

τ (2)n = v(1)n + v(2)n (1)

where P (v
(1)
n > x) = e−δx(δ ∈ (0,∞)), v

(1)
n and v

(2)
n are independent random

variables and Y (θ
(2)
n−1 + v

(1)
n ) = Y (θ

(2)
n−1).

Condition 2 for the discrete-time case processes X(t) and Y (t) are indepen-
dent regenerative aperiodic flows. As usually, aperiodicity means that the great-
est common divisor(GCD)

GCD{k : P (θ
(i)
1 = k) > 0} = 1, i = 1, 2.
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Then we may determine common points of regeneration {Tn}∞n=1 for the
both processes X(t) and Y (t) putting in the discrete-time case

Tn = min

{
θ
(1)
j > Tn−1 :

∞⋃
l=1

{θ(1)j = θ
(2)
l }

}
, T0 = 0 (2)

and in the continuous-time case

Tn = min {θ(1)j > Tn−1 :
∞⋃
l=1

θ
(2)
l−1 < θ

(1)
j ≤ θ

(2)
l−1 + ν

(1)
l }, T0 = 0. (3)

Lemma 1. Let for the continuous-time (discrete-time) Condition 1 (Condition
2) be fulfilled. Then the sequence {Tn}∞n=1 consists of common regeneration
points for X(t) and Y (t) and

E(Tn − Tn−1) = ET1 = δEτ (1)n Eτ (2)n <∞ (4)

for the continuous-time case,

ET1 = Eθ
(1)
1 Eθ

(2)
1 <∞ (5)

for the discrete-time case.

Proof. Since the proof (4) is similar for the proof (5) we consider the discrete-
time case only. Let

νk = min

{
j > νk−1 :

∞⋃
l=1

{θ(1)j = θ
(2)
l }

}
, ν0 = 0,

so that Tk = θ
(1)
νk . Then {νk−νk−1}∞k=1 is a sequence of iid random variables and

in accordance with Wald’s identity ET1 = Eθ
(1)
1 Eν1(see Feller [11]). Therefore,

we need to prove the finiteness of Eν1. Denote by h2(t)(h(t)) the mean number

of renewals up to time t for the renewal process {θ(2)n }∞n=0 ({νk}∞k=0) so that

h2(t) =

∞∑
l=0

P (θ
(2)
l = t)

and

h(t) =
∞∑
k=0

P (νk = t).

Taking into account Condition 2 we derive from Blackwell’s theorem (see Tho-
risson [28])

h2(t) −−−→
t→∞

1

Eθ
(2)
1

, h(t) −−−→
t→∞

1

Eν1

if Eν1 <∞ and h(j)→ 0 as j →∞ if Eν1 =∞.
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In view of X(t) and Y (t) independence

h(j) = P (
∞⋃
l=0

{θ(1)j = θ
(2)
l }) = E

( ∞∑
l=0

P (θ
(1)
j = θ

(2)
l |θ

(1)
j )

)
= Eh2(θ

(1)
j ).

Since θ
(1)
j −−−→

j→∞
∞ w.p.1, then h2(θ

(1)
j ) −−−→

j→∞
1

Eθ
(2)
1

w.p.1. Therefore, from

Lebesgue;s dominated convergence theorem we obtain Eν1 = Eθ
(2)
1 <∞.

Later we consider the both cases (discrete-time and continuous-time) to-
gether. One only has to take Condition 2 instead of Condition 1.

Let

∆Y (n) = Y (Tn)− Y (Tn−1),

∆X(n) = X(Tn)−X(Tn−1).

Then

λX =
E∆X(n)

E(Tn − Tn−1)
, λY =

E∆Y (n)

E(Tn − Tn−1)
.

We define the traffic rate as follows.

ρ =
λX
λY

=
E∆X(n)

E∆Y (n)
. (6)

We think of λX and λY as the arrival and service rate respectively. Intu-
itively, it is clear that the traffic rate of the system is given by (6). The main
stability result of the paper consists of the formal proof of this fact.

We define the stochastic flow Ỹ (t) as the number of customers really served
at the system during time interval [0, t).

Condition 3 The following stochastic inequalities take place

∆̃Y (n) = Ỹ (Tn)− Ỹ (Tn−1) ≤ ∆Y (n), (n = 1, 2, ...).

Let Q(t) be the number of customers at the system including the customers
on the srvers at time t so that

Q(t) = Q(0) +X(t)− Ỹ (t).

Condition 4 There are two possible cases:

(i) Q(t) is a stochastically bounded process, i.e.

lim
x→∞

lim inf
t→∞

P (Q(t) ≤ x) = 1;

(ii) Q(t)
P−−−→

t→∞
∞.

Let us define the event

An = {Q(t) ≥ m for all t ∈ [Tn, Tn+1]}.

Condition 5 If Condition 4(ii) takes place then for any ε > 0 there is nε such
for n > nε

E∆̃Y (n)I(An) ≥ E∆Y (n)− ε. (7)

Here I(An) is an indicator function of the event An.
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3 Instability results for the case ρ ≥ 1

Theorem 1. Let Condition 3 and Condition 1(2) for the continuous-time (for
the discrete-time) case be fulfilled. If ρ ≥ 1 then

Q(t)
P−−−→

t→∞
∞. (8)

Proof. The statement of the Theorem is almost evident for the case ρ > 1.
Consistent with Condition 3 we have the stochastic inequality

Q(Tn) ≥ X(Tn)− Y (Tn) +Q(0). (9)

Since w.p.1
lim
n→∞

T−1n (X(Tn)− Y (Tn)) = λX − λY > 0

then Q(Tn)
P−−−−→

n→∞
0 and therefore (8) holds. For the case ρ = 1 consider

the embedded process Qn = Q(Tn) and denote by Zk =
k∑
j=1

(∆X(j) −∆Y (j))

(Z0 = 0). Define the auxiliary sequence {Q̂k}∞k=0 by the recursion

Q̂k = max[0, Q̂k−1 +∆X(k)−∆Y (k)], Q̂0 = 0.

Because of the equality Qk = Qk−1 +∆X(k)− ∆̃Y (k) and Condition 3 we
get the stochastic inequality Qk ≥ Q̂k. It is well-known(see Feller [11]) that in
distribution

Q̂k = max
0≤j≤k

Zj .

For ρ = 1 the sequence {Zj}j≥0 is a random walk with zero drift. Hence,
except when ∆X(1) = ∆Y (1) = c (c is a constant), max

0≤j≤k
Zj −−−−→

k→∞
∞ (w.p.1)

(see Feller [11]) that completes the proof.

4 Stochastic boundedness for the case ρ < 1

Our objective here is to establish stochastic boundedness of the process Q(t)
when the traffic rate ρ < 1. Under some additinal assumptions providing the
regenerative structure of the process Q(t) this property has a consequence its
stability.

Theorem 2. Let Conditions 4 and 5 and Condition 1(2) for the continuous-
time (for the discrete-time) case be fulfilled. If ρ < 1 then Q(t) is a stochasti-
cally bounded process.

Proof. Because of Condition 4 there are two possible cases: Qn is either stochas-

tically bounded or Qn
P−−−−→

n→∞
∞. Assume that the second case takes place and

ρ < 1. For 0 < ε < E∆Y (1)−∆X(1)
2 we take nε such that for n > nε

E∆Y (n)I(An) < ε.
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Because of Condition 5 there is ñε such that for n > max(ñε, nε)

EQn+1 = EQn + E∆X(1)− E∆̃Y (n) ≤
≤ EQn + E∆X(1)− E∆Y (n)I(An) + ε ≤

≤ EQn + E∆X(1)− E∆Y (1) + 2ε ≤ EQn

that contradicts our assumption that Qn
P−−−−→

n→∞
∞.

In the next sections we discuss some examples to verify our results and to
compare them with previous works.

5 Queueing system with unreliable servers

We consider a continuous-time queueing system with a regenerative input flow
X(t) and m heterogeneous servers which may be not available for operation
from time to time. We also propose that the velocity of the service may be
dependent on the state of the server. Assume that for the ith server a stochastic

process ni(t) with state space (0; r
(i)
1 ; . . . ; r

(i)
ki

), r
(i)
j > 0, j = 1, ki is defined. If

ni(t) = 0 then the ith server is in unavailable state, for instance it is broken, if

ni(t) = r
(i)
j then the ith server is working with the velocity r

(i)
j (j = 1, ki, i =

1,m). Service times of customers by the ith server in the case when the velocity
of the service is equal to one constitute a sequence {ηin}∞n=1 of iid random
variables that does not depend on the input flow and service times by other
servers, bi = Eηin <∞, Bi(x) = P (ηin ≤ x), i = 1,m.

It is possible that an unavailable period starts while a customer is receiving
service. Then service of the customer is immediately interrupted. There are
various disciplines for continuation of the service after restotation (see Gaver
[14]). Here we consider the preemptive resume service discipline assuming that
interrupted service continues when the server returns from a blocked period
and the service velocity is the next state of the process ni(t).

Condition 6 The stochastic process −→n (t) = (n1(t), . . . , nm(t)) is a strongly

regenerative one with regeneration points {θ(2)n }∞n=1 (θ
(2)
0 = 0), τ

(2)
n = θ

(2)
n −

θ
(2)
n−1, Eτ

(2)
n <∞ with an exponential phase v

(1)
n so that τ

(2)
n = v

(1)
n + v

(2)
n . We

also assume that ni(θ
(2)
n−1 + t) = 0 for t ∈ [0, v

(1)
n ], i = 1,m.

It follows from the Condition 6 and Smith Theorem [25] that there exist
the limits

lim
t→∞

P (−→n (t) = (j1, . . . , jm)) = πj1,...,jm > 0

and

lim
t→∞

P (ni(t) = j) = π
(i)
j ,

where ji takes values 0, r
(i)
1 , . . . , r

(i)
ki

, i = 1,m.
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To define an auxiliary process Yi(t) for the ith server we introduce a counting
process

Ki(t) = max{j :
∞∑
l=1

ηil ≤ t}.

Then

Yi(t) = Ki(

∫ t

0

ni(y)dy) (10)

and

Y (t) =
m∑
i=1

Yi(t).

Condition 7 Service times have the first exponential phase, i.e.

ηin = η
(1)
in + η

(2)
in

where η
(1)
in and η

(2)
in are independent random variables and P (η

(1)
in ≤ x) =

e−αix (αi ∈ (0,∞)).

As regeneration points for Y (t) we take subsequence {θ(2)nk }∞k=1 of the se-

quence {θ(2)n }∞n=1 such that at time θ
(2)
nk interrupted services for processes Yi(t)

(i = 1,m) were in the exponential phase. Because of the Conditions 6 and 7
Y (t) is a strongly regenerative flow and we may define the common sequence
{Tn}∞n=1 of regeneration points for the both processes X(t) and Y (t) with the

help of formula (3). We need only to take {θ(2)nk }∞k=1 instead of {θ(2)n }∞n=1.
Because of (10) we can easily obtain from the renewal theory the formula

for the rate of the auxiliary process

λY =
m∑
i=1

b−1i

ki∑
j=1

r
(i)
j π

(i)
j . (11)

Now we may calculate the traffic rate ρ and under some assumptions we
get the necessary and sufficient stability condition for the system , basing on
Theorems 1 and 2. As an example, we consider the famous case (see Morozov

et al [22]) when r
(j)
i = 1, j = 1, ki, i = 1,m, i.e. a server may be in an available

or unavailable state. Let {s(2)i,n}∞n=1 be moments of break-downs and {s(1)i,n}∞n=1

be moments of restorations for the ith server. Here

0 = s
(2)
i,0 < s

(1)
i,1 < s

(2)
i,1 < . . . . (12)

Then u
(1)
i,n = s

(1)
i,n− s

(2)
i,n−1 and u

(2)
i,n = s

(2)
i,n− s

(1)
i,n denote the length of the nth

blocked and the nth available period of the ith server respectively (i = 1,m).

The sequence {u(1)i,n, u
(2)
i,n}∞n=1 consists of iid random vectors (for all (i = 1,m))

that do not depend on the input flow X(t) and service times. Let ui,n =

u
(1)
i,n + u

(2)
i,n be the length of the nth cycle for the server i. A cycle consists of a

blocked period followed by an available period. We assume that Eu
(1)
i,n = a

(1)
i <
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∞, Eu(2)i,n = a
(2)
i < ∞, ai = a

(1)
i + a

(2)
i (i = 1,m). We put ni(t) = 0 if the ith

server is in an unavailable state at time t and ni(t) = 1 otherwise (i = 1,m).

If a blocked period u
(1)
i,n has an exponential phase i.e. u

(1)
i,n = v

(1)
i,n + v

(2)
i,n where

v
(1)
i,n and v

(2)
i,n are independent random variables and v

(1)
i,n has an exponential

distribution with a parameter αi then we may define the sequence {θ(2)n }∞n=1

of regeneration points for the regenerative process −→n (t) = (n1(t), . . . , nm(t))
as above. Therefore, Condition 6 holds. Under Condition 7 the auxiliary
process Y (t) is also regenerative one and we can construct the common points
of regeneration {Tn}∞n=1 for X(t) and Y (t) and apply Theorems 1 and 2 for
this model. Since

πi = lim
t→∞

P (ni(t) = 1) =
a
(2)
i

ai

we have from (11)

ρ =
λX

∞∑
i=1

b−1i
a
(2)
i

ai

.

If bi = b then we get the same stability condition as obtained in Morozov
et al [22] for a queueing system GI|G|m with a common distribution function
of service times for all servers.

Corollary 1. For a queueing system with r
(i)
j = 1, j = 1, ki, i = 1,m

Q(t)
P−−−→

t→∞
∞

if ρ > 1.
Under Condition 4 the process is stochastically bounded if ρ < 1.

Proof. Let, as before, Ỹi(t) be the number of customers really served on the
ith server up to time t. It is evident that stochasic inequality

Yi(t) ≥ Ỹi(t), i = 1,m

for t ≥ 0 takes place and hence

Q(t) = Q(0) +X(t)− Ỹ (t) ≥ Q(0) +X(t)− Y (t).

Since ρ > 1, then Q(t)
P−−−→

t→∞
∞.

To prove the second statement we firstly assume that Conditions 6 and 7
hold. Then Condition 1 for the process Y (t) takes place. We also may organize
the performance of the system in such a way that inequaity (7) is realized

when Q(t)
P−−−→

t→∞
∞. Thus, Conditions 1, 4 and 5 are satisfied and because of

Theorem 2 the process Q(t) is stochastically bounded.
If Conditions 6 and 7 (or one of them) do not hold, we construct a system

Sδ satisfying Conditions 6 and 7 and majorising our system S, so that in
distribution

Q(t) ≤ Qδ(t) +m. (13)
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Here Qδ(t) is the number of customers in the system Sδ at instant t. Let
us introduce independent sequences {{νi,n}n≥1, {γi,n}n≥1}mi=1 of iid random
variables with exponential distribution with a rate δ. Assume that repair time

ũ
(1)
i,n in the system Sδ has a form ũ

(1)
i,n = ν

(1)
i,n + u

(1)
i,n and service time η̃i,n by the

ith server has a form η̃i,n = ηi,n + γi,n.

Then Sδ satisfies Conditions 6 and 7. Since ρδ = λX(
m∑
i=1

δ
1+δbi

a
(2)
i δ

1+δai
)−1 and

ρ = ρδ < 1 we may choose δ so that ρδ < 1.
The proof (13) is based on so-called one probability space method (see

Belorusov [6]).
Let us note that Condition 4 may be provided in various ways. For instance,

assume that blocked (or available) period has an exponential phase and

B1(x) > 0 for all x > 0. (14)

Then Q(t) is a regenerative process with points of regeneration {θ(1)nk }∞k=1

that is a subsequence of the sequence {θ(1)n }∞n=1 such that Q(θ
(1)
nk−) = 0 and

all servers are in the exponential phase of their blocked (or available) periods.
Now Condition 4 follows directly from Theorem 1 in Afanasyeva and Tkachenko
[3]. We also note that in this case Q(t) is a stable process if ρ < 1. If only
assumption (14) takes place by defining the majorising system Sδ we obtain
the stochastic boundedness Q(t) when ρ < 1.

6 Discrete-time queueing system with interruptions and
preemptive repeat different service discipline

Here we consider the system with interruptions described in the end of the pre-

vious section for the discrete-time case. The moments of breakdowns {s(2)i,n}∞n=1

and moments of restorations {s(1)i,n}∞n=1 for the ith server satisfy (12). The input
flow X(t) is an aperiodic discrete-time regenerative flow with rate λX .

We consider the preemptive repeat different service discipline that means
that the service is repeated from the start after restoration of the server and
the new service time is independent of the original service time (see Gaver [14]).

To define the auxiliary processes Yi(t) for the ith server we introduce the

collection
{
{η(j)i,n}∞n=1

}∞
j=1

of independent sequences {η(j)i,n}∞n=1 consisting of iid

random variables with distribution function Bi(x). Let Ki,j(t) be the count-

ing process associated with the sequence {η(j)i,n}∞n=1 i.e. Ki,j(t) = max{k :
k∑

n=1
η
(j)
i,n ≤ t}, (Ki,j(0) = 0) and µi(t) be the number of cycles for the ith server

during [0, t], i.e. µi(t) = max{j :
j∑

n=1
ηi,n ≤ t}, (µi(0) = 0). Then the process

Yi(t) is defined be the relation

Yi(t) =

µi(t)∑
j=1

Ki,j(u
(2)
i,j ) + Ki,µi(t)+1(max[0, t− s(1)i,µi(t)+1]) (15)
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and Y (t) =
m∑
i=1

Yi(t). By Hi(t) we denote the renewal function for Ki,j , i.e.

Hi(t) = EKi,j(t).

Lemma 2. There exists the limit

λYi
= lim
t→∞

Yi(t)

t
=

EHi(u
(2)
i,n)

ai
w.p.1.

The proof easily follows from the evident inequalities

gi(µi(t)) ≤ Yi(t) ≤ gi(µi(t) + 1)

where gi(n) =
n∑
j=1

Ki,j(u
(2)
i,j ), the strong law of large numbers and convergence

t−1µi(t) −−−→
t→∞

a−1i w.p.1.

From Lemma 2 we have

λY = lim
t→∞

Y (t)

t
=

m∑
i=1

EHi(u
(2)
i,1 )

ai
.

We introduce the counting processes

N0(t) = max{k : θ
(1)
k ≤ t},

Ni(t) = max{k : s
(2)
i,k ≤ t}, i = 1,m

Condition 8 The counting processes N0(t) and Ni(t) (i = 1,m) are aperiodic.

Then Y (t) is a regenerative aperiodic flow with points of regeneration

θ
(2)
j = min{t > θ

(2)
j−1 :

m⋂
i=1

[Ni(t)−Ni(t− 1) > 0]}, θ(2)0 = 0.

In other words, θ
(2)
j is a point of regeneration of Y (t) if all the servers get

out of the order simultaneously at this moment. Taking into account Condition

8 we conclude from Lemma 1 that E(θ
(2)
j − θ

(2)
j−1) <∞. Now we construct the

sequence {Tn}∞n=1 of common points of regeneration for processes X(t) and
Y (t) with the hepl of (1). In view of Lemma 1 E(Tn − Tn−1) < ∞ and the
traffic rate ρ of the system is defined by (4). It is also evident that Conditions
3 and 5 are realized.

Corollary 2. Let Condition 8 be fulfilled. Then

(i) Q(t)
P−−−→

t→∞
∞ if ρ ≥ 1;

(ii) Q(t) is a stochastically bounded process if ρ < 1.
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Proof. The first statement follows from Theorem 1 since Conditions 2 and 3
are realized.

Let ρ < 1. We introduce the embedded process xn = (Qn, ζ1(n), . . . , ζm(n)) , n ≥
0, where Qn is the number of customers at the system on time Tn and ζi(n) = 1
if there is a customer on the ith server and ζi(n) = 0 otherwise. In view of the
service discipline after service restoration and properties of the synchronization
epochs {Tn}n≥0 the process {xn}n≥1 is a Markov chain with countable set of
states R =

{
{0}, (j, e1, . . . , em), j = 1,m− 1; {j}, j ≥ m

}
. Let R0 be the set of

unessential states and Rj (j = 1, r) irreducible classes of communicating states.
It follows from the condition ρ < 1 that the number of classes r <∞.

For any aperiodic class Kl of states basing on Foster’s criterion (see Meyn
And Tweedie [21]) and Condition 5 one may easily prove that this class is
ergodic. Therefore, the process Qn is stochastically bounded if Q0 ∈ Kl. It is
also true if Kl is a periodic class. Since the number of classes r <∞ we obtain
the stochastic boundedness of the process Qn and therefore Q(t).

We may obtain the upper bound of the traffic rate ρ providing the stochastic
boundedness of the process Q(t). It is known from Borovkov [7] that

Hi(t) ≥
t

bi
− 1.

Therefore
m∑
i=1

Hi(u
(2)
i,n) ≥

m∑
i=1

a
(2)
i

biai
−

m∑
i=1

1

ai

and suddicient condition of the stochastic boundedness of Q(t) has the following
form

λk +

m∑
i=1

a−1i ≤
m∑
i=1

a
(2)
i

biai
.

If bi = b then we have the same condition as obtained in Morozov et al [22]

7 Queueing system with a preemptive priority discipline

Here we study a continuous-time queueing system with two independent regen-
erative input flows X1(t) and X2(t) with intensities λ1 and λ2 and m servers.
The customers of the second type (which belong to X2(t)) have an absolute
priority with respect to customers of the first type. Service interruption for
the low priority customer occurs when a high priority customer arrives dur-
ing a low priority customer’s service time. If at an arrival time of the second
type customer there are m1 free servers, m2 servers occupied by customers of
the first type and m −m1 −m2 servers occupied by customers of the second
type, then an arriving customer randomly chooses any server from m1 + m2

servers which are not busy by customers of the second type. Service times
by the ith server for high(low) priority customers have distribution function
B0(x) (Bi(x), i = 1,m) with mean b0 (bi, i = 1,m). Therefore for high pri-
ority customers we have a system Reg|G|m with homogeneous servers and for
low priority customers a system with interruptions considered in Section 5..
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Denote by Qi(t) the number of customers of the ith type at the system

including the customers on the servers at time t (i = 1, 2). Let {θ(1)j }∞j=1 (θ
(1)
0 =

0) and {θ(2)j }∞j=1 (θ
(2)
0 = 0) be the sequences of regeneration points for X1(t)

and X2(t) respectively. Under some additional conditions, for example, when
the inequality (14) is valid for the function B0(x) (other sufficient assumptions
are given in Afanasyeva and Tkachenko [3]. the process Q2(t) is a regenerative
one with points of regeneration

S(2)
n = min{θ(2)j > S

(2)
n−1 : Q2(θ

(2)
j ) = 0}, n > 0;

S
(2)
0 = 0.

At first we also assume that Condition 7 holds for service time distribution
Bi(x), i = 1,m, i.e. service times have an exponential phase.

Stability condition for the process Q2(t) has a form [11]

ρ2 =
λ2b0
m

< 1 (16)

that is supposed to be fulfilled. We now want to get stability condition for the
process Q1(t).

We start with the definition of the process of interruptions. Let ni(t) = 0 if
at instant t the ith server is occupied by a high priority customer and ni(t) = 1
otherwise, i = 1,m. As regeneration points for −→n (t) = (n1(t), . . . , nm(t)) we

take subsequence {θ(2)kj }
∞
j=1 of the regeneration points sequence {θ(2)j }∞j=1 for

the input flow X2(t) such that Q2(θ
(2)
kj

+ 0) = m and all service times are

in the exponential phase. For simplicity we suppose that X2(t) is a strongly
regenerative flow. Then an auxiliary process Y (t) for low priority customers

defined by (10) is strongly regenerative with regeneration points {θ(2)
k̃j
}∞j=1 that

is a subsequence of the sequence {θ(2)kj }
∞
j=1 such that at time θ

(2)

k̃j
all interrupted

services of low priority customers are in the exponential phase.
To obtain the traffic rate for low priority customers we need to find πi =

lim
t→∞

P (ni(t) = 1). Because of the rule of the server choose by an arriving high

priority customer we have πi = π1 = π for all i = 1,m. To calculate π we
define for high priority customers the following processes. Let wi(t) be the
residual service time (virtual waiting time) on the ith server at instant t and
Zi(t) the total service time of customers which arrived up to time t and have
to be served on the ith server. Thus

m∑
i=1

Zi(t) =

X2(t)∑
j=1

ηj

where ηj is the service time of the jth arrived customer. Since w.p.1

lim
t→∞

Zi(t)

t
=

1

m
lim
t→∞

X2(t)∑
j=1

ηj =
λ2b0
m
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and
wi(t)

t
−−−→
t→∞

0

because of the stability Condition (16).
We note that

wi(t) = Zi(t)−
∫ t

0

(1− ni(y))dy

and

lim
t→∞

t−1
∫ t

0

(1− ni(y))dy = 1− π.

Therefore π = 1− λ2b0
m and traffic rate for low priority customers has a form

ρ1 = λ1((1− λ2b0
m

)
m∑
i=1

b−1i )−1.

We get from Corollory 1

Corollary 3. Assume that X2(t) is a strongly regenerative flow, B0(x) satisfies

the inequality (14) and ρ2 = λ2b0
m < 1. Then Q1(t)

P−−−→
t→∞

∞ if ρ1 > 1.

If additionally Bi(x) satisfies (14) and ρ1 < 1 then Q1(t) is a stochastically
bounded process.

Basing on results from Section 4 one may obtain sufficient conditions pro-
viding stability of the process Q1(t).

8 Conclusion

In this paper we considered stability problem for multiserver queues with a
regenerative input flow. Let us note that stability analysis is an essential and
challenging stage of the investigation of stochastic models. However stability
conditions may be of independent interest. In particular, the stability criterion
of the multi-server model can be used for the capacity planning of a model and
estimation of the upper bound of potential energy saving. The main contribu-
tion of this paper is an extension of the stability criterion to the model with a
regenerative input flow. The method we use has the following steps. Firstly,
we define an auxiliary process Y (t) that is the number of customers which
are served at the system if always there are customers for service. Secondly,
assuming that this process is a regenerative flow not depending on the input
flow X(t) under some additional conditions we construct the common points
of regeneration of Y (t) and X(t). This step we call synchronization of the
processes. This approach allows us to use results from the renewal theory for
the stability analysis of the systems satisfying additional conditions. One may
think that these conditions are too restrictive to be useful for the analysis of
the real models. Therefore we apply our approach to stability analysis of three
classical systems with interruptions of the service. It follows from our results
that the structure of the input flow does not effect on the stability condition.
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One has to know only the intensity of this flow to estimate the traffic rate. But
for the preemptive repeat different service discipline the distribution of the
service time plays an essential role, since the traffic rate is expressed with the
help of the renewal function corresponding to this distribution. We obtain the
upper bound for traffic rate providing the sufficient stability condition. Note,
that this condition is the same as obtained in Morozov et al [22] for the more
simple model.
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Abstract. We study the stability conditions of the multiserver system in which each
customer requires a random number of servers simultaneously. The input flow is sup-
posed to be a regenerative one and a random service time is identical at all occupied
servers. The service time has an exponential or a phase-type distribution. We define
an auxiliary service process that is the number of served customers under assumption
that always there are customers at the system. Then we construct the sequence of
common regeneration points for the regenerative input flow and the auxiliary ser-
vice process. Basing on relation between the real and auxiliary service processes we
obtain the upper and lower estimates for the mean of the really served customers
during the common regeneration period. It allows us to deduce the stability criterion
of the model under consideration. It turns out that the stability condition does not
depend on the structure of the input flow, only the rate of this process plays a role.
Nevertheless the distribution of the service time is a very important factor. We give
an example which shows that the stability condition can not be expressed in terms
of the mean of the service time.
Keywords: Stability criterion, Cluster systems, Regeneration, Queueing systems.

1 Introduction

This paper is devoted to the stability analysis of a multiserver queueing system
in which each new customer requires a random number of servers simultane-
ously and a random service time identical at all occupied servers. For this
model with a regenerative input flow we deduce stability criterion using syn-
chronization method. The most crucial attribute of the systems which provide
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a random number of servers per customer is that a customer cannot begin ser-
vice until all required servers are available. Therefore servers may be idle even
when there are customers waiting to enter service. Queueing systems belonging
to this class are found in a variety of contexts. In computer systems, buffers
and other temporary storage devices are used for programs and date of varying
dimensions. The increasing interest to multiserver systems with simultaneous
service is motivated by the modeling of high performance clusters (HPC) and
cloud/distributed computing containing a huge number of servers working in
parallel.

The class of systems with simultaneous service can be divided into two sub-
classes. The first one is class of systems with independent service (service times
of a given customer on occupied servers are independent) and the second sub-
class contains systems with concurrent service (service times of a customer on
occupied servers are identical) (see Van Dyk[23]). For the former subclass, the
stablity condition as well as some performance measures, have been obtained
in a number of papers, see Green[9], Seila[21], Federgruen and Green[11], Itti-
makin and Kao[13], Schaack and Larson[20]), Gillent and Latonche[7].

Queueing systems with concurrent service have been also considered in
a number of works. Here we refer to pioneering papers Brill and Green[6],
Whitt[24] and more late works, Rumyantsev and Morozov[19], Morozov and
Rumyantsev[15]. Detail analysis of available results in this domain of the queue-
ing theory and extensive list of references are given in the paper Rumyantsev
and Morozov[19].

Let us note that the mentioned papers (except Morozov and Rumyantsev[15]
where MAP |M |s cluster model is considered) deal with exponential distribu-
tions of inter-arrival and service times and authors use the matrix analysis of
the system.

The main contribution of the represented paper is an extension of the sta-
bility criterion to the cluster model with a regenerative input flow. The class of
these flows is very broad and includes MMP, MAP, DSPP with intensity that
is a regenerative process. The detail description of the regenerative flows and
processes one may find in Thorisson[22] and Afanaseva and Bashtova [1].

We consider two models. In the first one the service time has an exponential
distribution (system S1), in the second the service time is a summ of r inde-
pendent exponentially distributed random variables (system S2). We define an
auxiliary service process Y (t) that is the number of served customers under the
assumption that always there are customers in the system. We construct the
sequence of common regeneration points for the input flow X(t) and an aux-
iliary process Y (t). Then basing on relation between the real service process

Ỹ (t) and Y (t) we obtain the upper and lower estimates for the mean of the
served customers during the constructed regeneration period. It allows us to
deduce the stability criterion.

Let us note that the stability condition does not depend on the structure
of the regenerative input but only its intensity plays a role. Also our stability
condition for the system S1(exponentially distributed service time) is the same
as obtained by Rumyantsev and Morozov[19]. Nevertheless, as it is shown by
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pur example the distribution of the service time plays the important role in the
stability condition.

The rest of the paper is organized as follows. We describe the model in
Section 2 and define an auxiliary process Y (t) in Section 3. We also find the
rate of this process in this section. Section 4 is devoted to synchronization of the
input flow and an auxiliary service process. Basing on the relation between the
real and auxiliary service processes we proof the stability criterion in Section 5.
Next, in section 6 we give an example(the system Reg|PH|2) and show that the
stability condition depends on the service time distribution. Some concluding
comments are given in Section 7.

2 Description of the model

We consider an m−server queueing system with a regenerative input flow X(t)
with the rate λ and FCFS service discipline.

Let {θj}∞j=1 be a sequence of regeneration points of the input flow τj =
θj − θj−1, (θ0 = 0) regeneration periods and ξj = X(θj)−X(θj−1) the number

of arrived customers on the jth regeneration period, so that λ = Eξ
Eτ . For more

details on these types of flows see, for instance, Afanaseva and Bashtova[1] and
Thorisson[22].

We consider two models: S1 and S2. Customer i occupies ζi servers simul-
taneously for an exponentially distributed service time ηi with rate µ, (i ≥ 1)
for the model S1 and for the model S2

ηi = η
(1)
i + . . .+ η

(r)
i (r > 1),

where {η(n)i }rn=1 are independent identically distributed(iid) random variables

with rate µk for η
(k)
i (k = 1, r). We call η

(l)
i the lth phase of the service time. All

ζi servers occupied by customer i are simultaneously released upon completion
of their service. The sequence {ζi}∞i=1 consists of iid random variables with
given distribution

pj = P(ζ = j), j = 1, . . . m,
m∑
j=1

pj = 1.

(We omit the serial index to denote a generic element of an iid sequence.) Let
us note that for the model S2 the service time distribution has a phase type.
The probability distributions of this type (PH) have been introduced by Neuts
[16–18].

Let Q(t) be the number of customers in the system at instant t, t ≥ 0. Our
goal is the extension of the stability criterion for this process to the cluster
model with a regenerative input flow.

3 Auxiliary process and related results

In this section we define an auxiliary process Y (t) that will be used in our
analysis. We think Y (t) as the number of customers that can be served in the
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system if there are always customers for service. It means that Y (t) is defined
by sequences {ηn}∞n=1 and {ζn}∞n=1 and does not depend on the input flow
X(t).

Customer n occupies ζn servers simultaneously. We call customer n class-i
one if ζn = i. For the model S1 we introduce the stochastic process U1(t) with
state space

K1 = {
−→
k = (k1, . . . , kj , kj+1);

j∑
i=1

ki ≤ m,
j+1∑
i=1

ki > m}

and for the model S2 the stochastic process U2(t) with state space

K2 = {
−→
k = (k1, e1, . . . , kj , ej , kj+1);

j∑
i=1

ki ≤ m,
j+1∑
i=1

ki > m, ei = 1, r}

Under condition that there are always customers for service we put U1(t) =
−→
k = (k1, . . . , kj , kj+1) if there are j customers on the servers at instant t, the
ith serving customer has a class ki(i = 1, j) and the first customer in the queue
has a class kj+1. For the process U2(t) coordinates ki(i = 1, j + 1) have the
same meaning and ei is the number of the phase of the service time for the ith
customer at instant t. We note that Ui(t)(i = 1, 2) is a Markov chain with a
finite set of states and there are limits

lim
t→∞

P(Ui(t) =
−→
k ) = Pi(

−→
k ), (i = 1, 2).

The auxiliary process Yi(t)(i = 1, 2) is a regenerative flow(see, e.g. Afana-
seva and Bashtova [1]) and there exists the rate

λYi
= lim
t→∞

Yi(t)

t
w.p.1.

For the state
−→
k = (k1, . . . , kj , kj+1) of the Markov chain U1(t) define

j(
−→
k ) = j as the number of customers on the servers and for U2(t) define

g(
−→
k )(
−→
k ∈ K2) as the number of customers on the servers which are in the last

(the rth) phase of the service time, i.e.

g(
−→
k ) = g(k1, e1, . . . , kj , ej , kj+1) =

j∑
i=1

I(ei = r).

Here I(A) is an indicator function of the event A. Then the rates of the auxiliary
processes Y1(t) and Y2(t) are given by the formulas

λY1
= µ

∑
←→
k ∈K1

j(
−→
k )P1(

−→
k ), λY2

= µr
∑
−→
k ∈K2

g(
−→
k )P2(

−→
k ). (1)

Now we define the traffic rate for the system Si as follows

ρi =
λX
λYi

, (i = 1, 2). (2)
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Intuitively, it is clear that the system is stable when ρi < 1 and it is unstable
otherwise. The main stability result of the paper consists of the formal proof
of this fact. The key element of our proof is the procedure which we call the
synchronization of the processes X(t) and Yi(t)(i = 1, 2).

In order to calculate the traffic rates we need to find the limit distributions
of the control processes Ui(t)(i = 1, 2). Unfortunately, for U2(t) we could not
do it up to now but late we give an example demonstrating how it can be done.

Now consider the process U1(t). In the rest of this section we consider only
the system S1 therefore index 1 will be omitted.

Let tn be the moment of departure of the nth customer. Consider the
embedded Markov chain Un = U(tn + 0) with state space K1.

Lemma 1. There are limits

lim
n→∞

P(Un =
−→
k ) = π−→

k
= pk1 · · · · · pkj+1

. (3)

Proof. Consider another Markov chain Ũn with the state space

K = {k̃ = (k1, . . . , km), ki = 1, 2, . . . ,m}

and put

j(
−→
k ) = max{i : k1 + · · ·+ ki ≤ m}.

Transition probabilities are given by the formula

P(Ũn+1 = (k1, . . . , ki−1, ki+1, . . . , km, s)|Ũn = (k1, . . . , km)) =
ps

j(
−→
k )
.

Limit distribution
π̃−→
k

= lim
n→∞

P(Ũn =
−→
k )

satisfies the system of the equations

π̃−→
k

=

m∑
s=1

j(
−→
k ,s)∑
j=1

pkm
1

j(
−→
k , s)

π̃k1,...,ki−1,s,ki,...,km−1 .

Here
j(
−→
k , s) = max{i : s+ k1 + · · ·+ ki ≤ m}.

One may easily verify that

π̃−→
k

=

m∏
j=1

pkj .

Since for j < m

π(k1,...,kj ,kj+1) =
∑

kj+1,...,km

π̃(k1,...,kj ,kj+1,...km) =

j+1∏
i=1

pki

and π(1,...,1) = π̃(1,...,1). the Lemma is proved.
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Let

K̃i = {
−→
k : j(

−→
k ) = i}, so that K1 =

m⋃
i=1

K̃i.

Then we have from (1)

λy = lim
t→∞

Y (t)

t
= µ

m∑
j=1

j
∑
−→
k ∈K̃j

P(
−→
k ). (4)

Now we find P(
−→
k ) with the help of π−→

k
obtained in Lemma 1.

Markov chain U(t) is situated in the state
−→
k the exponentially distributed

time τ
(U)
−→
k

with mean

Eτ
(U)
−→
k

=
1

j(
−→
k )µ

.

Also the response time τ (U) in a state for the stationary process U(t) has the
mean

Eτ (U) =
1

µ

∑
−→
k ∈K1

1

j(
−→
k )
π−→
k
.

It is well known (see, e.g. Borovkov[4]) that for any
−→
k 0 ∈ K1

lim
t→∞

P(U(t) =
−→
k 0) = P(

−→
k 0) =

π−→
k 0

Eτ
(U)
−→
k 0

Eτ (U)
=

= π−→
k 0

1

j(
−→
k 0)

 ∑
−→
k ∈K1

1

j(
−→
k )
π−→
k

−1 .
Therefore we get from (4)

λY = µ

 ∑
−→
k ∈K1

1

j(
−→
k )
π−→
k

−1 .
Consider a renewal process {ζj}∞j=1 and a counting process

N(n) = max{j : Zj ≤ n}, where Zj = ζ1 + · · ·+ ζj , Z0 = 0.

Taking into account (3) we have

λY = µ

 m∑
j=1

1

j

∑
−→
k ∈K|

j+1∏
i=1

pki


−1

= µ

 m∑
j=1

1

j
P(Zj ≤ m,Zj+1 > m)

−1 =

= µ

 m∑
j=1

1

j
P(N(m) = j)

−1 = µ

(
E

1

N(m)

)−1
.

48



Now we define the traffic rate for the system S1 as follows

ρ1 =
λX
λY

=
λX
µ

E
1

N(m)
. (5)

4 Synchronization of the input flow and auxiliary service
processes

First we construct the common regeneration points for the input flow X(t) and

auxiliary process Yi(t). We fix an arbitrary state
−→
k of the Markov chain Ui(t)

assuming that Pi(
−→
k ) > 0. Let {t(

−→
k )
n }∞n=1 be the moments of hits Ui(t) into the

state
−→
k so that

t(
−→
k )
n = min{tj > t

(
−→
k )
n−1 : Ui(tj + 0) =

−→
k }, (t

(
−→
k )

0 = 0), n = 1, 2, . . .

Here {tj}∞j=1 is the sequence of the timing of each jump Ui(t). Then {t(
−→
k )
n+1 −

t
(
−→
k )
n }∞n=1 is a sequence of iid random variables and t

(
−→
k )
n is the nth regenera-

tion point of Yi(t). Moreover E(t
(
−→
k )
n+1 − t

(
−→
k )
n ) < ∞ and Yi(t) is the strongly

regenerative flow. It means that its regeneration period is of the form

t
(
−→
k )
n+1 − t(

−→
k )
n = η(

−→
k )
n + v(

−→
k )
n .

Here η
(
−→
k )
n and v

(
−→
k )
n are independent random variables and η

(
−→
k )
n is the time

which Ui(t) is in the state
−→
k . Since Ui(t) is a Markov chain, η

(
−→
k )
n has an

exponential distribution with rate j(
−→
k )µ for U1(t) and

j∑
i=1

µei for U2(t). We

note that any time within the interval [t
(
−→
k )
n , t

(
−→
k )
n + η

(
−→
k )
n ) can be considered as

a point of regeneration for Yi(t). Later the interval [t
(
−→
k )
n , t

(
−→
k )
n + η

(
−→
k )
n ) we call

the first phase of the regeneration period of Yi(t). Let us define the common

regeneration points {T (
−→
k )

n }∞n=1 for Yi(t) and X(t) with regeneration points
{θn}∞n=1 as

T (
−→
k )

n = min{θl > T
(
−→
k )

n−1 :
∞⋃
i=1

(t
(
−→
k )
j ≤ θl < t

(
−→
k )
j + η

(
−→
k )
j )}, n = 1, 2, . . . , (6)

T
(
−→
k )

0 = 0.

Lemma 2. For any state
−→
k such that Pi(

−→
k ) > 0 the sequence {T (

−→
k )

n }∞n=1

consists of regeneration points for the both flows X(t) and Yi(t) (i = 1, 2) and

E(T
(
−→
k )

n+1 − T (
−→
k )

n ) = α(
−→
k )δ−→

k
Eτ1 <∞, (7)

where

δ−→
k

= E(t
(
−→
k )
n+1 − t(

−→
k )
n ), Eτ1 = E(θj+1 − θj)
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and

α(
−→
k ) =


j(
−→
k )µ for U1(t)

j∑
i=1

µei for U2(t)
.

Remind that
−→
k = (k1, . . . , kj , kj+1) ∈ K1 for U1(t) and

−→
k = (k1, e1, . . . , kj , ej , kj+1) ∈

K2 for U2(t).

Proof. The first statement of the Lemma follows from the definition (6) of

T
(
−→
k )

n . To prove the second statement we note that δ−→
k
< ∞ since Pi(

−→
k ) > 0

and introduce the function

h−→
k

(t) = P

(∞⋃
l=0

(t ∈ [t
(
−→
k )
l , t

(
−→
k )
l + η

(
−→
k )
l ))

)
.

Let β−→
k

(t) = min(i : t
(
−→
k )
i > t) and H−→

k
(t) = Eβ−→

k
(t). Then we have

h−→
k

(t) =

∞∑
i=0

P

(
t− η(

−→
k )
i < t

(
−→
k )
i ≤ t

)
=

t∫
0

e−α(
−→
k )(t−y)dH−→

k
(y). (8)

It follows from the key renewal theorem (see e.g. Thorisson[22]) that there
exists

lim
t→∞

h−→
k

(t) =
1

δ−→
k

∞∫
0

e−α(
−→
k )ydy =

(
α(
−→
k )δ−→

k

)−1
. (9)

Denote

νn = min(i > νn−1 :
∞⋃
l=1

(θi ∈ [t
(
−→
k )
l , t

(
−→
k )
l + η

(
−→
k )
l ))), ν0 = 0.

Then {νn+1−νn}∞n=1 is a sequence of iid random variables and T
(
−→
k )

n = θνn .
In accordance with Wald’s identity we get

E(T
(
−→
k )

n+1 − T (
−→
k )

n ) = Eτ1E(ν2 − ν1).

Therefore we need to prove the finiteness of E(ν2 − ν1). Let

h(n) =
∞∑
l=0

P(νl = n)

so that h(j) is a probability that θj is in the first phase of the regeneration
period of Yi(t). From Blackwell’s Theorem (see e.g. Thorisson[22]) we have

lim
n→∞

h(n) =
1

E(ν2 − ν1)

if E(ν2 − ν1) <∞ and h(n)→ 0 otherwise.
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On the other hand in accordance with (8)

h(n) = P

(∞⋃
l=0

(θn ∈ [t
(
−→
k )
l , t

(
−→
k )
l + η

(
−→
k )
l ))

)
=

= Eh−→
k

(θn) = E

θn∫
0

e−α(
−→
k )(θn−y)dH−→

k
(y).

From (9) and Lebesgue’s dominated convergence theorem we obtain

E(ν2 − ν1) = α(
−→
k )δ−→

k
<∞.

These concludes the proof of Lemma 2.

For fix
−→
k ∈ Ki with Pi(

−→
k ) > 0(i = 1, 2) we define

∆
(
−→
k )
X (n) = X(T

(
−→
k )

n+1)−X(T (
−→
k )

n ),

and

∆
(
−→
k )
Yi

(n) = Yi(T
(
−→
k )

n+1)− Yi(T (
−→
k )

n )

n = 1, 2, . . . . Then {∆(
−→
k )
X (n)}∞n=1 and {∆(

−→
k )
Yi

(n)}∞n=1 are sequences of iid
random variables and w.p.1

λX = lim
t→∞

X(t)

t
=

E∆
(
−→
k )
X (1)

E(T
(
−→
k )

2 − T (
−→
k )

1 )
,

λYi
= lim
t→∞

Yi(t)

t
=

E∆
(
−→
k )
Yi

(1)

E(T
(
−→
k )

2 − T (
−→
k )

1 )
.

Therefore the traffic rate defined by (2) can be rewritten as follows

ρi =
E∆

(
−→
k )
X (1)

E∆
(
−→
k )
Yi

(1)
. (10)

Note that it is true for any state
−→
k ∈ Ki such that Pi(

−→
k ) = lim

t→∞
P(Ui(t) =

−→
k ) > 0(i = 1, 2).

5 Stability criterion

Theorem 1. Let Q(t) be the number of customers at the system Si(i = 1, 2)
at instant t. Then Q(t) is a stable process if and only if

ρi < 1.
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Remark 1. We call Q(t) a stable process if there is

lim
t→∞

P(Q(t) ≤ x) = F (x)

and F (x) is a distribution function which does not depend on the initial state
of the system.

Proof. Let Ỹi(t) be the number of customers really served in the system during
time interval [0, t). Note that any server may be empty time to time and

therefore Ỹi(t) is not the same as Yi(t). Denote Y
(
−→
k )

i (t) the process Yi(t)

under the condition that Ui(0) =
−→
k , (
−→
k ∈ Ki). Let

−→
k0 be the state of U1(t)

such that P1(
−→
k0) > 0 and j(

−→
k0) ≥ j(

−→
k ) for any

−→
k ∈ K1 with P1(

−→
k ) > 0. For

the process Y
(
←→
k0 )

2 (t) we additionally assume that ei = r for all i = 1, j(
−→
k0).

It is evident that
−→
k0 is an m + 1 dimensional vector (1, . . . , 1) if p1 > 0 for

Y
(
←→
k0 )

1 (t) and
−→
k0 = (1, r, . . . , 1, r, 1) for Y

(
←→
k0 )

2 (t). Then the following stochastic
inequality takes place

Ỹi(t) ≤ Y (
−→
k0)

i (t) (t ≥ 0). (11)

Let ρi > 1. Without loss of generality assume that Q(0) = 0. Because of (11)
we have

Q(t)

t
=
X(t)

t
− Ỹi(t)

t
≥ X(t)

t
− Y

(
−→
k0)

i (t)

t
.

Since λX > λYi
this inequality means that Q(t) −−−→

t→∞
∞ w.p.1. For the case

ρi = 1 note that the stochastic inequality

∆̃
(
−→
k0)
Yi

(n) ≤ ∆(
−→
k0)
Yi

(n) (12)

is fulfilled. Here

∆̃
(
−→
k0)
Yi

(n) = Ỹi(T
(
−→
k0)
n+1 )− Ỹi(T (

−→
k0)
n ).

For the sake of brevity assume that T
−→
k0
0 = 0, Ỹi(0) = 0. Consider the embedded

process

Qn = Q(T
(
−→
k0)
n+1 ) =

n∑
j=1

(
∆

(
−→
k0)
X (j)− ∆̃(

−→
k0)
Yi

(j)

)
.

Thus

Qn = Qn−1 +∆
(
−→
k0)
X (n)− ∆̃(

−→
k0)
Yi

(n).

We define the auxiliary sequence {Q̂n}∞n=1 by the recursion

Q̂n = Q̂n−1 +∆
(
−→
k0)
X (n)−∆(

−→
k0)
Yi

(n)

In view of (12) we have the stochastic inequality Q̂n ≤ Qn. Since {Q̂n}∞n=1 is
a random walk with zero drift then w.p.1

sup
n≥0

Q̂n →
n→∞

∞. (13)
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We also note that Q(t) is a regenerative process with the sequence of regen-
eration points {θns

}∞s=1 that is a subsequence of the sequence {θn}∞n=1 such
that

Q(θns − 0) = 0.

It follows from Theorem 1 in Afanaseva, Tkachenko[2] that there are two pos-

sible cases: Q(t) is a stable process or Q(t)
P→

t→∞
∞. Because of (13) the second

case takes place when ρi = 1.

Consider the case ρi < 1. Let
−→
k1 be the state U1(t) such that

j(
−→
k1) ≤ j(

−→
k )

for any
−→
k ∈ K1 with P1(

−→
k ) > 0. For Y

(
−→
k1)

2 (t) we additionally assume that

el = 1 for all l = 1, j(
−→
k1). It is clear that

−→
k1 = (m,m) when pm > 0 for U1(t)

and
−→
k1 = (m, 1,m) for U2(t).

Assume that Q(t) is an unstable process. Then in the case under consider-
ation

Q(t)
P→

t→∞
∞. (14)

We define the event

An = {Q(t) > m for any t ∈ [T (
−→
k1)
n ;T (

−→
k1)
n )}.

In view of (14) and finiteness of E∆
(
−→
k1)
Yi

(n) there exists nδ such that for n > nδ

E∆
(
−→
k1)
Yi

(n)I(An) < δ =
1− ρ

2ρ
E∆

(
−→
k1)
X (n). (15)

Taking into account the choice
−→
k1 and distribution of the service time we have

the stochastic inequality

∆
(
−→
k1)
Yi

(n)I(An) ≤ ∆̃(
−→
k1)
Yi

(n)I(An). (16)

Now estimate

Q
(
−→
k1)
n+1 = Q(T (

−→
k1)
n ) = Q(

−→
k1)
n +∆

(
−→
k1)
X (n)− ∆̃(

−→
k1)
Yi

(n) ≤

≤ Q(
−→
k1)
n +∆

(
−→
k1)
X (n)− ∆̃(

−→
k1)
Yi

(n)I(An) ≤

≤ Q(
−→
k1)
n +∆

(
−→
k1)
X (n)−∆(

−→
k1)
Yi

(n)I(An)−∆(
−→
k1)
Yi

(n)I(An) +∆
(
−→
k1)
Yi

(n)I(An).

In view of (14) we have for n > nδ

EQ
(
−→
k1)
n+1 ≤ EQ(

−→
k1)
n + E∆

(
−→
k1)
X (n)− E∆

(
−→
k1)
Yi

(n) + δ =

= EQ(
−→
k1)
n − 1− ρi

ρi
E∆

(
−→
k1)
X (n) + δ < EQ(

−→
k1)
n

that contradicts (13).
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6 Example. Queueing systems with two servers

Here we consider the systems S1 and S2 with two servers and two-phase dis-
tribution of the service time in S2. Thus, the service time η in S2 has a form
η = η(1) + η(2) where η(1) and η(1) are independent exponentially distributed
random variables with rates µ1 and µ2 respectively. The service time in S1 has
an exponential distribution with the same mean µ−1 = 1

µ1
+ 1

µ2
= 1+δ

µ2
where

δ = µ2

µ1
. We shall compare traffic rates for these systems and show that ρ2 > ρ1

if 0 < δ <∞. For S1 we get from (5)

ρ1 = λX
(1 + δ)(2− p21)

2µ2
(17)

where p1 = P(ζ = 1).

To obtain ρ2 we have to calculate the limit distribution P2(
−→
k ) = lim

t→∞
P(U2(t) =

−→
k ). As the state space for U2(t) we take the set K2 = {(2, e1), (1, e1, 1, e2),
(1, e1), ei = 1, 2}. The state (2, e1) means that there is one serving customer
which occupies two servers and ei is the phase of the service time. The inter-
pretation of the residual states is evident. Let us enumerate the states by such
a way

{1} = (2, 1); {2} = (2, 2); {3} = (1, 1, 1, 1); {4} = (1, 2, 1, 2);

{5} = (1, 2, 1, 1); {6} = (1, 1); {7} = (1, 2).

Then infinitesimal generator R has a form

R =



−µ1 µ1 0 0 0 0 0
(1− p1)µ2 −µ2 p21µ2 0 0 p1(1− p1)µ2 0

0 0 −2µ1 0 2µ1 0 0
0 0 0 −2µ2 2µ2p1 0 2µ2(1− p1)
0 0 µ2p1 µ1 −(µ1 + µ2) (1− p1)µ2 0
0 0 0 0 0 −µ1 µ1

(1− p1)µ2 0 p21µ2 0 0 p1(1− p1)µ2 −µ2


.

Let xi = lim
t→∞

P(U2(t) = i)(i = 1, 7) and −→x = (x1, . . . , x7). Then we have the

system of equations

−→x R = 0,
7∑
i=1

xi = 1.

One may easy verify that

x1 =
2δ(1 + δ)(1− p1)

(2− p21)(1 + 2δ) + 2δ2
, x2 =

x1
δ
, x3 =

(1 + δ − p1)p21
2(1 + δ)(1− p1)

x1,

x4 =
p21

(1 + δ)(1− p1)
x1, x5 =

p21
2δ(1 + δ)(1− p1)

x1,

x6 =
p1(1 + δ − p1)

1 + δ
x1, x7 =

p1
δ
x1
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and

λY2
= µ2(x2 + 2x4 + x5 + x7) = 2µ2

1 + δ

(2− p21)(1 + δ)2 − p21δ(1− p1)
.

Therefore, the traffic rate

ρ2 = ρ1

(
1− δp21(1− p1)

(2− p21)(1 + δ)2

)
.

We see that ρ2=ρ1 in the four cases: 1) p1 = 0; 2) p1 = 1; 3) δ = 0; 4) δ =∞.
In the first case we have a classical model Reg|G|2, in the second case the

system Reg|G|1 and in the rest cases service time in the system S2 has an
exponential distribution. In the rest cases the traffic rate ρ2 is less then ρ1. We
also note that ρ2(δ) takes the maximum value when δ = 1, that is µ2 = µ1.

7 Concluding comments

In this paper, a multiserver queueing system in which each customer requires
a random number of servers simultaneously and a random but identical service
time at all occupied servers is considered. The input flow is assumed to be
regenerative one and service time has an exponential or a phase-type distribu-
tion. By means of the synchronization method we establish stability criterion
of such systems. The main contribution of this paper is an extension of the sta-
bility criterion to the model with a regenerative input flow. Note that the class
of regenerative flows is broad and includes MAP, doubly stochastic Poisson
process with a regenerative process as intensity, MMP, and others. It turns out
that the stability condition depends only on the intensity of the input flow and
the structure of this flow does not play any role. The flow has to be regenera-
tive with finite means of the regeneration period and the number of customers
arrived during this period.

But the distribution of the service time plays the important role in stability
condition. We give an example which shows that stability condition can not
be expresses in terms of the mean of the service time.
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Abstract: The goal of the work is the study of the ability to choose the proper 

models for the time series generated by SARIMA processes with different 

parameter values and to analyze the accuracy of the forecasts based on the 

selected models. The work is based on the simulation study. For this purpose a 

new automatic SARIMA modelling method is proposed and used. Also the 

other competing automatic SARIMA modelling procedures are applied and the 

results are compared. The important question to which the reference should be 

made is the relation of the magnitude of the SARIMA process parameters i. e. 

the size of the systematic part of the process and the ability to select a proper 

model. Another addressed problem is the relationship between the quality of the 

selected model and the accuracy of forecasts achieved by its application. The 

simulation study leads to the results that can be generalized to most empirical 

analyses in various research areas. 

Keyword: SARIMA, forecast, simulation, automatic identification 

 

 

1 Introduction 
 

The principle of the SARIMA time series modeling has been well known for 

many years. Its practical applications can be found in many areas where 

empirical analyses are needed and it has become the basis for modern 

econometric analysis of time series. The crucial phase of the practical 

application of the Box-Jenkins methodology is the identification and the 

verification of the suitable model. There are two approaches to the process of 

finding a suitable SARIMA model. The first, classical “manual” approach is 

difficult and subjective, and it depends on the person who has built the model. 

Important is the knowledge of the method, as well as training in empirical 

statistical analysis and good knowledge of the field of application in addition to 

experience of using specialized statistical or econometric software. The 

development of the computer technology and software, these are the main 
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reasons which justified the attempts to develop the second, automatic SARIMA 

modelling and forecasting approach.  

The goal of this article is to identify the time series for which it is relatively 

easy to find the proper model and the time series for which it is difficult, 

regardless of which approach, manual or automatic, is chosen. Another goal is 

to analyze the forecasting abilities of the SARIMA models for different kinds of 

time series. A convenient way to verify the aforementioned is the simulation 

study with the application of the automatic SARIMA modelling approach. 

The article is divided into four sections (excluding the Introduction). In the 

first section the SARIMA models are briefly described. In the second section, 

the simulation study as well as the Auto.SARIMA and Auto.AIC procedures for 

the automatic model selection are explained. The results of the simulation study 

are the subject of the third section. The fourth section contains the conclusion, 

along with the summary of the work. 

 

2 SARIMA Modeling and Forecasting 
 

The ARMA(p, q) proces (Auto-Regressive-Moving-Average proces of 

orderes p, q) is defined as (B)yt = c + (B)at, where B (B
 j

yt = yt-j) is the 

backshift operator and (B) and (B) are the polynomials of the order p and q 

respectively. It is stationary, if the roots of the autoregressive polynomial (B) 

lie outside of the unit circle and it is invertible if the roots of the moving average 

polynomial (B) lie outside of the unit circle. 

The SARMA(p, q)(P, Q) proces (Seasonal ARMA process of orders p, q, P, 

Q) can be written in the form (B)(B
s
)yt = c + (B)(B

s
)at, where s is the 

number of seasons (usually 4 or 12) and (B
s
) and (B

s
) are seasonal 

polynomials of the order P and Q respectively. It is denoted as 

SARMA(p,q)(P,Q). If the roots of all polynomials lie outside of the unit circle, 

the proces is stationary and invertible. 

The special form of the nonstationary proces is the so called integrated 

process („I“ in acronym). Such a proces is stationary after some degree of 

differencing. The SARIMA(p,d,q)(P,D,Q) proces is the general form of the 

integrated proces and can be written as (B)(B
s
)ds

D
yt = c + (B)(B

s
)at, 

where d
 = (1 – B)

d
 is the nonseasonal difference of the order d and s

D
 = (1 –

 B
s
)

D
 is the seasonal difference of the order D. 

The forecasting of the future values of the time series is an important role of 

the SARIMA modelling. The optimal forecast, i. e., the forecast with the 

minimum mean square error, is the conditional mean of the future random 

variable, which is conditioned on the historical information available in the 

observed values of the applied time series. The computing of the SARIMA 

forecasts is based on the recursive principle. If the model with the estimated 

parameters is used, the recursion leads to the point, and to the interval forecasts 
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(the point and the interval estimates of the conditional means of the future 

random variables). 

The SARIMA time series modelling methodology has been well known for 

many years and there exists a vast amount literature devoted to this topic, inter 

alia, Box, Jenkins, Reinsel and Ljung [2], Brockwell and Davis [3], Wei [16], 

Hamilton [8], Enders [6], Pesaran [14]. 

 

 

Simulation study 

 

The goal of the simulation study is to analyze the relationship of the 

magnitude of the SARIMA process parameters; i. e., the size of the systematic 

part of the process, which is used for time series generation and the ability to 

select the proper model for the generated time series. This question is general in 

scope, and the qualified and substantiated answers can be important for the 

empirical analyses in the different fields of the research. Another goal is to 

analyze the quality of the forecasts for the time series generated by the processes 

with different systematic parts. Important is also the analysis of the ability to 

select suitable model and reach the relatively accurate forecasts for the time 

series generated by the near nonstationary and the nonstationary processes. 

In the simulation study the results of the two automatic procedures for 

SARIMA model selection and forecasting are compared. The first one is based 

on the classic model selection process, i.e. the model identification, the 

parameters estimation, the diagnostic controll. The second one is based on the 

minimazitation of the AIC criterion (Akaike [1]). Both procedures were created 

in the R software. 

 

3.1 Procedure Auto.SARIMA 

The Auto.SARIMA is fully automated procedure, whose goal is to find the 

best model with respect to predefined parameters for the analyzed time series. In 

the first stage, the order of the nonseasonal and the seasonal differencing i. e. the 

numbers d and D, after which the analyzed time series is stationary, has been 

found. For the nonseasonal unit root testing, the ADF (Dickey and Fuller [5]), 

the PP (Phillips and Perron [15]) and the KPSS (Kwiatovski, Phillips, Schmidt 

and Shin [11]) tests are used. The seasonal unit root is tested by the CH (Canova 

and Hansen [4]) test. 

The procedure will analyze the quality of the SARIMA(p,d,q)(P,D,Q) 

models for the given order of the nonseasonal differencing d, as well as the 

seasonal differencing D, and for all possible combinations of values p, q, P, Q. 

It is therefore possible to skip the identification stage and to estimate the 

parameters for all the possible model forms. After the parameters estimation, the 

procedure continues with the diagnostic checking, which is mainly based on 

residual analysis. The statistical significance of the parameter estimates is 

verified by the standard t-tests. The autocorrelation is assessed by the residual 
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autocorrelation function, and the Ljung-Box test (Ljung and Box [12]). In order 

to test the seasonal autocorrelation, the heuristic function called the Big_ACF 

was designed, which is in the fact the modification of the statistical tolerance 

limits. The conditional heteroscedasticity is tested by the ARCH test (Engle [7]). 

The normality is tested by the Jarque-Bera test (Jarque and Bera [10]). 

If the parameter estimates are statistically significant and the hypotheses of 

no autocorrelation, no conditional heteroscedasticity and normality are accepted, 

than the value 1 is assigned to the particular property (autocorrelation, 

heteroscedasticity, normality, parameter significance). Otherwise, the value 0 is 

assigned. The suitability criterion of the model is computed as the weighted 

average of the results of the individual tests. The weighting system is set so that 

the two models with the different test results have to have different values of 

suitability criterion. The final value of each model is computed as a function of 

the value of the model suitability criterion and the value of the AIC criterion. 

 

3.2 Procedure Auto.AIC 

The model selection on the basis of the AIC criterion is the content of the 

Auto.AIC procedure. The course of the procedure can be divided into four steps. 

In the first step, the stationarity of the time series is analyzed. The order of 

differencing is determined by the same methods as in the Auto.SARIMA 

procedure (see part 3.1). After the determination of the order of differencing and 

on the basis of the SARIMA model maximal orders, the set of the possible 

models is generated. Furthermore, the optimization criterion is set to such value 

which the AIC criterion cannot reach. In the third step, adjustments are made so 

that all the models lead to the same number of residuals. On the basis of the 

adjusted time series, the model parameters are estimated, and the value of the 

AIC criterion is computed. In the following step, the actual value of the AIC 

criterion is compared with the value of the optimalization criterion. If the model 

is better that the last one, i. e. if its value of the AIC criterion is smaller than the 

value of the optimalization criterion, than it is denoted as the optimal and the 

value of the optimization criterion is updated. Thus, there are checked the whole 

set of possible models. 

 

3.3 Data generation 

In the simulation study, the time series generated by the SARIMA proces of 

the first order are analyzed. This process has the following form 

(1 - 1B)(1 - 1B
12

)yt = (1 - 1B)(1 - 1B
12

)at. 

The basic elements for the simulations are the time series generated by the 

normal white noise process with the variance a
2
 = 1. The parameters 1, 1, 1, 

1 take the all possible combinations of the following values: 0.0, 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0  When 1 = 1, the process is nonseasonally 

nonstationary, when 1 = 1, the process is seasonally nonstationary, when 

1 = 1 and 1 = 1, the process is both non-seasonally and seasonally 
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nonstationary. When 1 = 1, the process is seasonally noninvertible, when 

1 = 1, it is seasonally noninvertible or both, when 1 = 1 and 1 = 1. Overall, 

the time series from 14 641 different generating processes are analyzed. Each 

process generates 100 time series with a length of 150 values. The time series 

generator was created in the R software. 

 

4 Results  
 

The results of the simulation study are presented in a two-dimensional spece, 

whose structure is shown in Table 1. The rows of table represent an ordered 

combination of values of the seasonal parameters 1 and 1 and the columns of 

table represent an ordered combination of values of the nonseasonal parameters 

1 and 1. In this way the whole set of the all possible generating processes is 

arranged.  

The table is conditionally formatted to be able to visually evaluate the results 

and the success of the individual automatic procedures when comparing their 

ability to find a suitable model. This feature is referred to as the quality 

criterion. The quality criterion can take the values in the interval from 0 to 100 

and it represents the percentage success rate of the selection of the correct model 

by the given procedure.  

The forecasts are computed as the point estimates of the conditional 

expectations of the future random variables. The analyzed time series with a 

length of 150 values, which is about 24 observations longer than the series used 

for model selection, is the input of this function. In the first step, the forecasts 

with the horizon h = 24 values are computed on the basis of the model estimated 

from the first 126 values. In the second step, the RMSE criterion is computed. 

The resulting RMSE value is computed as the average from the all partial 

RMSE values of 100 time series forecasts with a horizon of 24 values. This 

criterion is presented in the same way as the quality criterion. 

 
Tab. 1. The Detail of Arrangement of Values in Table 

 
Source: own calculations 

 

4.1 Quality of the selected model 
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First, in the simulation study, the Auto.SARIMA and the Auto.AIC 

procedures were compared from the point of view of the quality criterion. The 

results with the percentage quantifications are shown in Figure 1.  

It is seen that the Auto.AIC is better than the Auto.SARIMA in 75.38% of 

cases. The Auto.SARIMA achieves better results in 23.03% of cases. Identical 

results are found in 1.58% of cases. But it is clear that there is a general group of 

the generating processes for which the Auto.SARIMA is better than the 

Auto.AIC. They are mainly the seasonal and the non-seasonal non-stationary 

(integrated) processes, and those processes that do not contain the non-seasonal 

and the seasonal autoregressive parts (AR respectively SAR). Furthermore, this 

procedure is superior to the processes that partly do not contain the nonseasonal 

and the seasonal moving average parts (MA, SMA). All these processes can be 

denoted as marginal. The results show that, mainly there, the “classical” model 

identification analysis represented by the Auto.SARIMA procedure (unit root 

testing, residual autocorrelation testing, normality and conditional 

heteroscedasticity testing and parameters estimate testing) has considerable 

importance. 

 

 
 

 

 
Fig. 1. Quality Comparison of AIC, SARIMA Fig. 2: The Quality – Auto.SARIMA 

Source: own calculations 

 

The Figure 2 shows the quality criterion (the percentage of the correct model 

selections) for the Auto.SARIMA procedure. It can be seen that this procedure 

has problems with the near nonseasonal and the near seasonal nonstationary 

processes; i. e., for the processes with the parameters 1 = 0.9 and 1 = 0.9. In 

the first case, the success rate is 29.05%, and in the second it is 22.49%. The 

processes with the low values of the parameters; i. e., when the parameters 1 

and 1 lie between 0.1 and 0.2 together with the parameters 1, and 1 between 

0 and 0.2, while on the contrary, the seasonally nonstationary processes, when 

1 = 1, create more problem areas. For the proceses with parameters 1 and 1 

between 0.3 and 0.7, the Auto.SARIMA gives good results regardless of the 
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values of 1 and 1. The success rate in this area is 66.14%. The average overall 

success rate of this procedure is 50.64%.  

Figure 3 shows the quality criterion for the Auto.AIC procedure. Also, this 

procedure has problems with the near nonseasonal and the near seasonal 

nonstationary processes. In the case of 1 = 0.9, the success rate is 37.76%, and 

when 1 = 0.9, the rate is 34.03%. The problematic areas are also for 1 = 0 and 

1 = 1, and 1 = 0 and 1 = 1, together with practically any values of 

parameters 1 and 1. For the processes with parameters 1 and 1 between 0.1 

and 0.8, the Auto.AIC gives good results regardless of the values of 1 and 1. 

The success rate in this area is 82.75%. The average overall success rate of this 

procedure is 66.68%. In comparison with the Auto.SARIMA, the Auto.AIC 

procedure is better. 

 

  
Fig. 3. The Quality – Auto.AIC Fig. 4. RMSE – 1% tolerance 

Source: own calculations 

 

4.2 Forecasts 

The forecasts RMSE criterion is presented in the same way as the quality 

criterion. For each generating process, the procedure, which gives the the 

minimal value of the forecast RMSE, has been selected.  

As the differences in the RMSE for the Auto.AIC and the Auto.SARIMA 

procedures are often very small, and the forecasts are very similar, it is suitable 

to compare them based on the tolerance limit of 1.0%. It means that the 

forecasts which are different in the RMSE up to 1.0% will be considered to be 

the same. Figure 4 ilustrates the results according which that the Auto.SARIMA 

procedure gives the best forecasts in 5.02% of cases; the Auto.AIC in 36.66% 

cases. There are similar forecasts by both procedures in 58.32% cases. The 

Auto.AIC is better mainly for the nonseasonally nonstationary processes and the 

Auto.SARIMA for the near nonseasonally nonstationary processes. 
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Fig. 5: RMSE - Auto.AIC Fig 6: RMSE – Auto.SARIMA 

Source: own calculations 

 

Figure 5 shows the RMSE of the forecasts computed by the Auto.AIC 

procedure for the individual processes. It can be seen that along with the 

growing parameter values, the RMSE grows also. The best results are either for 

the processes with zero, or small, values of the parameters. The worst results are 

for the nonseasonal nonstationary processes. It is interesting that the seasonal 

nonstationarity does not have such a strong influence on the forecasts from the 

RMSE like the nonseasonal nonstationarity. Figure 6 contains the RMSE of the 

forecasts computed by the Auto.SARIMA. The pattern is similar to that in Fig. 

5. 

 

 

4.3 Forecasting of the nearly integrated time series 

 

Figure 7 depicts the forecasting success of the nonseasonal integrated model 

of the SARIMA(0,1,1)(1,0,1) type for the integrated and nearly integrated, but 

still stationary, processes, irrespective of the forecasting procedure. It can be 

seen that even for the non-seasonally stationary processes with 1 from 0.90 to 

0.95, the integrated model is more suitable for forecasting than the correct 

stationary model. This result is consistent with the result for the example of 

Medel and Pincheira [13]. The possible explanation is that the estimates of the 

parameters of the correct models for the time series generated by the nearly 

nonstationary processes have greater variability and are thus less accurate. 
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Fig. 7: The Forecasting Success of SARIMA(0,1,1)(1,0,1) 

Source: own calculations 

 

5 Conclusion 
 

The goal of the simulation study was to analyze the relationship of the size 

of the systematic part of the process, which is used for time series generation 

and the ability to select the proper model for the generated time series. The 

second goal was to analyze the quality of the forecasts for the time series 

generated by the processes with different systematic parts. In this connection it 

was important also the analysis of the ability to select suitable model and reach 

the relatively accurate forecasts for the time series generated by the near 

nonstationary and the nonstationary processes. 

As a results of the simulation study, these interesting facts have been found:  

1. The Auto.AIC procedure is better for the selection of models for the time 

series generated by the stationary and invertibe processes. The 

Auto.SARIMA procedure is better for the modelling the time series from so 

called marginal processes; i. e., mainly from the nonstationary processes and 

the processes that do not contain the non-seasonal and the seasonal 

autoregressive parts.  

2. For both procedures it is difficult to find the correct model for the time series 

generated by processes with low values of the autoregressive parameters, 

and by the near nonstationary processes. In the first case, the systematic part 

in the data is very weak and the property which we are looking for does not 

show sufficient transparency, so it is possible to overlook it. In the second 

case, the two different and incompatible situations have the same, or very 

similar phenomanal effects, so it is difficult to distinguish between them. 

3. The Auto.AIC procedure leads to the better forecasts, but for near to 

nonstationary processes the Auto.SARIMA procedure is more suitable. The 

differences in accuracy between the Auto.SARIMA and Auto.AIC 

procedures are relatively small. With the growing magnitude of parameters, 

the accuracy of forecasts decreases in both procedures.  
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4. For the forecasting of the time series generated by the nonseasonally nearly 

integrated processes, the nonseasonally integrated models are more suitable 

than the correct stationary ones. 
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Nuovo, 1, Università di Milano-Bicocca, Milano, Italy
(E-mail: sonia.migliorati@unimib.it; andrea.ongaro@unimib.it)

Abstract. Compositional data are prevalent in many fields (e.g. environmetrics,
economics, biology, etc.). They are composed by positive vectors subject to a unit-
sum constraint (i.e. they are defined on the simplex ), proportions being an example
of this kind of data. A very common distribution on the simplex is the Dirichlet,
but its poor parametrization and its inability to model many dependence concepts
make it unsatisfactory for modeling compositional data. A feasible alternative to
the Dirichlet distribution is the Flexible Dirichlet (FD), introduced by Ongaro and
Migliorati [14]. The FD is a generalization of the Dirichlet that enables considerable
flexibility in modeling dependence as well as various independence concepts, though
retaining many good mathematical properties of the Dirichlet. More recently, the
Extended Flexible Dirichlet (EFD, [15]) distribution has been proposed in order to
generalize the FD. The EFD preserves a finite mixture structure as the FD, but
it exhibits some relevant advantages over the FD, such as a more flexible cluster
structure and a (even strong) positive dependence for some pairs of variables. The
aim of this contribution is twofold. First we propose and investigate sophisticated EM
algorithms for parameters estimation, with particular emphasis on the initialization
problem, which is a crucial issue. Furthermore, we devise a simulation study to
evaluate the performances of the MLE of the parameters as well as of a procedure
proposed to compute their standard errors.
Keywords: Compositional Data, Dirichlet Mixture, EM algorithm.

1 Introduction

In many fields (e.g. environmetrics, economics, biology, etc.) data consist of
vector of proportions and thus are constrained to unit-sum and non-negative
constraints. Their support is the simplex, defined as:

SD =

{
x ∈ RD : xi > 0, i = 1, . . . , D,

D∑
i=1

xi = 1

}
.

In order to model these “compositional data”, an appropriate distribution built
on this particular subset of RD is required. The Dirichlet is the most known
simplex distribution: it has several mathematical properties and it is character-
ized by an intuitive interpretation of parameters, but it is often unsatisfactory
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in fitting real compositional data due to its poor parametrization and its im-
plied strict forms of independence.

In the literature there are different proposals for managing such type of data
[1,2,7,10,11,16]. Recently Ongaro and Migliorati [14] proposed a new proba-
bilistic model, called Flexible Dirichlet (FD). This model not only preserves
the properties of the Dirichlet distribution, but it also enables considerable
flexibility in modeling covariance among components of the composition. A
useful particularity of the FD is that it can be represented as a finite mixture
of specific Dirichlet distributions; it follows that this new model allows for mul-
timodality. A generalization of the FD was introduced recently, namely the
Extended Flexible Dirichlet (EFD) [15]. This new simplex distribution allows
for positive dependence among components of the composition and it removes
the symmetry constraints on the cluster means displayed by the FD.

Some inferential issues in the EFD model have already been tackled in [12],
where a standard EM estimation procedure has been adopted. In the current
paper, we propose new ad hoc initialization strategies for the EM algorithm and
we introduce a stochastic version of the EM procedure aimed at weakening the
dependence of the maxima on the starting points. The performances of these
estimation procedures are evaluated via simulation. Furthermore, we provide
an efficient procedure to derive MLE standard errors. A further simulation
study has been implemented in order to assess the behavior of MLE and of the
proposed standard errors under different settings of parameters and different
configurations of clusters.

2 The Flexible Dirichlet Distribution

The Flexible Dirichlet distribution derives from the normalization of a partic-
ular basis Y = (Y1, . . . , YD). Each element of this vector is obtained as:

Yi = Wi + Zi U i = 1, . . . , D,

where Wi ∼ Gamma(αi, β) are independent r.v., U ∼ Gamma(τ, β) is an
additional independent r.v. and Z = (Z1, . . . , ZD) ∼ Multinomial(1,p) is
independent of Wi’s and U . A realization of Z is the vector ei with probability
pi, where ei is the vector whose elements are equal to 0 except for the ith

element which is equal to 1. Then, the normalized vector X = Y/Y + is FD
distributed and its density function is:

fFD(x;α, τ,p) =
Γ (α+ + τ)∏D
r=1 Γ (αr)

(
D∏
r=1

xαr−1
r

)
D∑
i=1

pi
Γ (αi)

Γ (αi + τ)
xτi ,

where x ∈ SD =
{
x : xi > 0, i = 1, . . . , D,

∑D
i=1 xi = 1

}
, α+ =

∑D
i=1 αi, α =

(α1, . . . , αD), αi > 0, τ > 0, 0 ≤ pi < 1 and
∑D
i=1 pi = 1. An attractive aspect

of the FD is that its distribution function can be written as a finite mixture,
where each cluster is characterized by a particular Dirichlet component:

FD(x;α, τ,p) =
D∑
i=1

piD(x;αi),
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where D(x;α) is the distribution function of a D-dimensional Dirichlet with
parameter α and αi = α+τei. It follows that the density of the FD can assume
various shapes, including a number k ≤ D of different modes. The parameter
τ regulates the distance of each cluster mean from the common barycenter
α/α+. Since all the cluster means have the same distance from the barycenter,
the density function of the FD shows a sort of symmetry. It can be proved
that the FD coincides with a Dirichlet distribution if τ = 1 and pi = αi/α

+,
∀i = 1, . . . , D.

Finally, the additional parameters introduced in this model (i.e. the weights
p and τ) allow for a more flexible modeling of the covariance matrix. In par-
ticular, unlike the Dirichlet, it allows to have components with equal means
but different variances. Moreover, covariances may not be proportional to the
product of the means. However, all the covariances are negative: this is partly
due to the unit-sum constraint but it may be a limitation in real data problems
where positive correlation between some of the components occurs.

3 The Extended Flexible Dirichlet Distribution

A further generalization of the FD has been introduced in order to relax the
independence/dependence assumptions induced by the Dirichlet model: the
Extended Flexible Dirichlet (EFD). This new model is generated by the nor-
malization of a basis that is similar to the FD’s one:

Yi = Wi + Zi Ui,

where Ui ∼ Gamma(τi, β) are independent random variables and independent
of W = (W1, . . . ,WD) and Z = (Z1, . . . , ZD), which are defined as in the
FD. The new vector τ = (τ1, . . . , τD) is composed by positive elements. It is
immediately observable that when τ1 = τ2 = · · · = τD = τ , the EFD coincides
with the FD. Once again, the distribution function of this random vector can
be written as mixture of Dirichlet components:

EFD(x;α, τ ,p) =
D∑
i=1

piD(x;αi),

where αi = α + τiei. This finite mixture structure leads to the following
mixture density function:

fEFD(x;α, τ ,p) =
1∏D

r=1 Γ (αr)

(
D∏
r=1

xαr−1
r

)
D∑
i=1

Γ (αi)Γ (α+ + τi)

Γ (αi + τi)
xτii pi.

Thanks to the mixture representation, it is straightforward to compute joint
moments of the EFD:

E

[
D∏
i=1

Xni
i

]
=

D∏
i=1

α
[ni]
i

D∑
i=1

(αr + τr)
[nr]

α
[nr]
r (α+ + τr)[n

+]
,
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where ni are arbitrary nonnegative integers, n+ =
∑D
i=1 ni, x

[n] = x(x +
1) . . . (x + n − 1) and x[0] = 1. The richer parametrization of the EFD com-
pared to the FD has two important consequences. The first one is an even
larger flexibility in modeling the implied cluster structure: with different τi’s,
this model allows to have clusters with different distances from the common
barycenter. In particular, each τi has an effect only on µi, the mean vector of
the generic ith cluster:

µi =
α + τiei
α+ + τi

=

(
α+

α+ + τi

)
α

α+
+

(
τi

α+ + τi

)
ei.

The cluster mean is a weighted average of the common barycenter α/α+

and ei: the higher τi is, the closer the ith cluster is to the ith vertex of the
simplex. In order to understand the effect of the τi’s, we graphically compare
two EFD models with equal α and p but with different τ (Fig. 1 and Fig.
2): the first model has τ = (20, 20, 20) (i.e. it coincides with a FD model with
parameter τ = 20) and the second one has τ = (10, 30, 100). It is easy to see
that in the first scenario there is a common distance between each cluster mean
and the common barycenter α/α+, whereas in the second case these distances
are different.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2
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0.6

0.8

1.0

Fig. 1. EFD density (left) and contour plots (right) with α = (15, 15, 15), p =
(1/3, 1/3, 1/3) and τ = (20, 20, 20)

The second consequence of the richer parametrization of the EFD is that
it allows for a more flexible modeling of the covariance matrix; in particular
it allows to have a positive correlation among components of the composition
[12].

4 Maximum Likelihood Estimation via the EM
algorithm

4.1 EM Type Algorithm

Given the mixture structure of the EFD model, Migliorati and Ongaro [12]
proposed an EM algorithm for maximizing the likelihood function [8]. Suppose
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Fig. 2. EFD density (left) and contour plots (right) with α = (15, 15, 15), p =
(1/3, 1/3, 1/3) and τ = (10, 30, 100)

to have a sample of n independent observations x = (x1, . . . ,xn) from an
EFD distribution; the true log-likelihood can be thought as originated from
the following complete-data log-likelihood [12]:

logLC(α, τ ,p) =
n∑
j=1

D∑
i=1

zji {log pi + log fD(xj ;αi)} , (1)

where zji is equal to 1 if the jth observation has arisen from the ith cluster of
the mixture and 0 otherwise; fD(xj ;αi) is the density function of a Dirichlet
with parameter αi = α + τiei evaluated in the data point xj . We can apply
the EM algorithm if we think of the vector zj = (zj1, . . . , zjn), j = 1, . . . , n, as
the missing component-labels.

The generic (k + 1)th step of this iterative method is composed as follows:

• E-step: Given (α(k), τ (k),p(k)) (the parameter estimates obtained at step
k), compute the conditional expectation of the complete-data log-likelihood
given x as:

D∑
i=1

n∑
j=1

wi

(
xj ;α

(k), τ (k),p(k)
){

log p
(k)
i + log fD

(
xj ;α

(k) + τ
(k)
i ei

)}
,

where:

wi

(
xj ;α

(k), τ (k),p(k)
)

=
p
(k)
i fD(xj ;α

(k)
i )∑D

h=1 p
(k)
h fD(xj ;α

(k)
h )

, i = 1, . . . , D (2)

is the “posterior” probability that xj belongs to the ith cluster of the mix-
ture given (α(k), τ (k),p(k)).

• M-step: Maximize the above conditional expectation to update the max-
imum likelihood estimates of the parameters. In order to obtain new
values of α̂(k+1) and τ̂ (k+1) we require a numeric maximization method
(e.g. Newton-Raphson), whereas a closed-form expression of p̂i

(k+1) exists:

p̂i
(k+1) = 1

n

∑n
j=1 wi

(
xj ;α

(k), τ (k),p(k)
)
, i = 1, . . . , D − 1.
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The E-step and the M-step alternate each other until a convergence cri-
terion is reached (e.g. the algorithm can be stopped when there is a small
difference between the log-likelihood of two consecutive steps or d is lower than
a threshold, where d =

∣∣α(k+1) −α(k)
∣∣+
∣∣τ (k+1) − τ (k)

∣∣+
∣∣p(k+1) − p(k)

∣∣).
Unfortunately, the EM algorithm typically leads to solutions highly depen-

dent on the starting point; this means that the algorithm often gets trapped
in a local maximum close to the starting point. In order to weaken this de-
pendence, we introduce a Stochastic EM (SEM) algorithm [3,5,6]. This is a
modified version of the classic EM which is likely to explore a large region of
the parameter space. We therefore implement a SEM algorithm followed by
an EM one: the results of SEM are used as starting points of a proper EM
algorithm, which is very precise in finding maxima close to initial values.

In SEM, after the E step, a new partition of data into D groups {G1, . . . ,GD}
is generated, with a draw from the current conditional distribution of zj (j =
1, . . . , n) given the observed data (it coincides with a draw from a multinomial
distribution with parameters equal to the current estimates of the conditional
probabilities wi (·) given by (2), i = 1, . . . , D). In this way, we give the al-
gorithm a chance to escape from a path of convergence to a local maximizer.
Finally, the M step of the SEM consists in updating the weights p as the rela-
tive number of observations in each cluster. Updatings of α and τ are obtained
maximizing the classified likelihood (i.e. the likelihood computed by assuming
knowledge of which mixture component each observation comes from):

D∏
i=1

∏
j∈Ai

fD(xj ;αi),

where Ai = {j : xj ∈ Gi}. This maximization problem can be approached
numerically (i.e. with Quasi-Newton optimization algorithms [4]).

4.2 Initialization Issues

The speed of convergence of the EM algorithm can be influenced by the initial
values required for the first steps of the algorithm. In general this choice can
even influence the ability to locate the global maximum of the log-likelihood
function. To address these critical issues, we develop suitable ad hoc initializa-
tion strategies.

Usually, the first step of the initialization is to obtain a partition of the
n observations into D clusters by means of a clustering method (e.g. the k-
means algorithm). Here, following results presented in [13], we shall adopt two
different type of clustering. The first one, called barycenter method, is based
on the peculiar cluster structure of the EFD: observation xj is assigned to
group i if xji/xjh > Bi/Bj , ∀h = 1, . . . , D, h 6= i, where B = (B1, . . . , BD) is a
data barycenter (e.g. mean or median). The second method applies a k-means
algorithm to a regular simplicial transformation of data. The latter is a linear
transformation which is particularly suitable for compositional data (see [13] for
more details). Since the k-means algorithm assigns the group labels randomly,
we relabel the groups on the basis of the structure imposed by the EFD model:
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group i will show the largest mean of component i. In case a single group
shows two or more components with maximum sample means, we consider
permutations of labels compatible with the largest sample mean positions and
choose the one that maximizes the corresponding likelihood. Then, given this
partition, a possible value for pi is the proportion of observations that are
assigned to cluster i.

An open problem regards the initialization of α and τ . For this problem, we
consider the initialization method used for the FD model and two new ad hoc
strategies. We thus compare the performances of the following three methods:

1) The procedure used for the FD in [13], where initialization values for α
and τ were obtained using the method of moments: in the EFD context we
thus initialize τ = (τ, τ, . . . , τ). This method imposes the cluster means’
symmetry and therefore can be expected to produce inaccurate results if
data do not show this symmetry.

2) Given a partition, we can compute the sample mean of each cluster: x̄h =
(x̄h1, . . . , x̄hD), h = 1, . . . , D, where x̄hi =

∑n
j=1 zhjxji. We can obtain

values of α and τ minimizing the distance between x̄h and µh:

arg min
α,τ

D∑
h=1

δh(µh − x̄h)′(µh − x̄h),

where δh are suitable weights (e.g. the size of each group). Let α̃ = α/α+

and τ̃ = τ/α+ be the “relative” counterparts of α and τ , then:

µh =
α̃

1 + τ̃h
+

τ̃h
1 + τ̃h

eh.

Since the constraints
∑D
h=1 α̃h = 1, α̃h > 0, τ̃h > 0. h = 1. . . . , D should

hold, this is a constrained minimization problem and could be fulfilled
numerically with a Quasi-Newton algorithm [4].

3) The above constrained minimization can be approached analytically. Set-
ting the partial derivatives of the target function (with respect to α̃h and
τ̃h) equal to zero one obtains:

α̃h

[
D∑
l=1

δl
(1 + τ̃l)2

]
=

D∑
l=1

x̄lh
δl

(1 + τ̃l)
− τ̃hδh

(1 + τ̃l)2
(3)

and

τ̃h =


bh
ch

if bh > 0

0 otherwise
(4)

where bh = (x̄h − α̃)′(eh − α̃) and ch =
D∑
r=1

α̃rx̄hr + 1− α̃h − x̄hh (ch is

always positive). It can be immediatly observed that the solutions for the
α̃h’s depend on the τ̃h’s and viceversa. The final algorithm is:
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• initialize the α̃h’s (i.e. initializing α∗ with the FD method and com-

puting α̃∗ = α∗/
∑D
k=1 α

∗
k)

• calculate the τ̃h’s on the basis of (4)
• calculate the α̃h’s on the basis of (3)
• repeat until a convergence criterion is satisfied

Methods 2 and 3 have some technical issues: whereas the constraint
∑D
h=1 α̃h =

1 is automatically satisfied, other constraints could be violated:

• τ̃h could be equal to 0. In this case we set τ̃h equal to a very small positive
quantity (e.g. 0.00001).
• α̃h could be negative: if this happens, we set α̃h equal to a very small

positive quantity and re-normalize the remaining α̃h’s.

Note that methods 2 and 3 only allow for initialization of the relative quan-
tities α̃ and τ̃ : in order to initialize α+ one can resort to the variances:

Var(Xk|Gh) = σ2
hk =

µhk(1− µhk)

α+ + τh + 1

where Gh indicates group h (h = 1, . . . , D). We can estimate each σ2
hk with

s2hk, the sample variance of component k among group h. With some algebra,
we can obtain:

̂α+ + τh =
1−

∑D
k=1 x̄

2
hk∑D

k=1 s
2
hk

− 1, h = 1, . . . , D.

The sum of variances in the denominator permits to have stable estimates
whenever some s2hk is close to zero. We can use these estimates to obtain
several estimates of α+:

α̂+
(h) =

̂α+ + τh
1 + τ̃h

, h = 1, . . . , D

where τ̃h was obtained with one of the above methods. Finally, we can aggre-

gate the α̂+
(h)’s using a weighted mean.

4.3 MLE Covariance Matrix

A well known result from statistical theory is that the asymptotic covariance
matrix of the ML Estimator θ̂ of θ = (α, τ ,p) can be approximated, under

regularity conditions, by the inverse of the observed information matrix I(θ̂;x).
In order to compute this matrix, the second-order derivatives of the incomplete
log-likelihood are required; unfortunately, their evaluation is quite complicated.
We then generalize the method adopted by Migliorati, Ongaro and Monti [13]

to the EFD: an evaluation of I(θ̂;x) can be obtained via decomposition of
complete-data into observed and missing ones, so that we can write:

I(θ̂;x) = {Eθ [Ic(θ;Xc)|x]}θ=θ̂ −
{
Eθ

[
Sc(θ;Xc)S

T
c (θ;Xc)|x

]}
θ=θ̂

(5)
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where Sc(θ;Xc) is the complete-data score statistics and Ic(θ;Xc) is the neg-
ative of the Hessian matrix of the complete-data log-likelihood (1). Evaluation
of the conditional expected value in (5) can be based on conditional bootstrap
[9], noting that, conditionally on x, the random vectors Zj , j = 1, . . . , n are
distributed as independent multinomials with parameters (p∗j1, . . . , p

∗
jD), where

p∗ji = wi(xj ; θ̂) is given by (2). Consequently we can approximate the condi-
tional expectations by averaging over B independent bootstrap samples zjb
from Zj (j = 1, . . . , n; b = 1, . . . , B) for a sufficiently high value of B.

5 The Simulation Study

Two simulation studies have been set up. The first one is aimed at investigating
the behavior of the initialization procedures proposed in sections 4.1 and 4.2,
whereas the second one is aimed at evaluating the performance of the Maximum
Likelihood Estimator and its variance estimate.

In order to implement these studies, 21 parameter configurations were in-
vestigated. More precisely, the following values were chosen: for the αi’s and
τi’s 5, 10, 15, 20, 25, 30, 40, 45, 50, 70, 80, 100 and for the pi’s 0.05, 0.1, 0.15, 0.2,
1/3, 0.35, 0.6, 0.65, 0.75. The chosen parameter configurations allow to cover
a great variety of cases, including well-separated as well as overlapped clusters,
according to the Symmetrized Kullback-Leibler divergence. This metric is of
the form:

dSKL(f1, f2) = dKL(f1, f2) + dKL(f2, f1),

where:

dKL(f1, f2) =

∫
f1(x) ln

f1(x)

f2(x)
dx,

with f1 and f2 two arbitrary density functions. In our case, f1 and f2 are the
densities of the Dirichlet components and:

ln
fD(x;αi)

fD(x;αh)
= lnCi,h + τi lnxi − τh lnxh,

where Ci,h = Γ (α++τi)
Γ (α++τh)

Γ (αi)
Γ (αh)

Γ (αh+τh)
Γ (αi+τi)

and αi = α + τiei. Remember that if

X ∼ Dir(α1, . . . , αD), then E [lnXi] = ψ(αi) − ψ(
∑
k αk), where ψ(·) denotes

the digamma function. With some algebra one can then show that:

dKL(fD(x;αi), fD(x;αh)) = τi
[
ψ(αi + τi)− ψ(α+ + τi)

]
+

− τh
[
ψ(αh)− ψ(α+ + τi)

]
+ lnCi,h.

Then:

dSKL(fD(x;αi), fD(x;αh)) = τi [ψ(αi + τi)− ψ(αi)] + τh [ψ(αh + τh)− ψ(αh)] +

+ (τi − τh)
[
ψ(α+ + τh)− ψ(α+ + τi)

]
.

Graphical investigation shows that values of dSKL larger than 15 entail well-
separated clusters. For space constraints, we report only the results of five
representative configurations, shown in Table 1.
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ID α1 α2 α3 τ1 τ2 τ3 p1 p2 p3 dSKL(1, 2) dSKL(1, 3) dSKL(2, 3)

1 15 15 15 20 20 20 1/3 1/3 1/3 34.666 34.666 34.666

2 10 40 80 5 30 25 1/3 1/3 1/3 14.801 6.176 23.627

3 50 50 50 5 30 25 0.2 0.6 0.2 10.945 8.267 24.292

4 15 15 15 10 20 15 1/3 1/3 1/3 20.892 15.456 27.581

5 5 30 70 10 25 15 0.1 0.75 0.15 25.180 14.400 17.472

Table 1. Configurations of parameters

5.1 Initialization Method Simulation

In order to evaluate which of the three methods described in subsection 4.2
provides the best initialization, we simulated K = 100 datasets for each param-
eter configuration and applied to them both the clustering methods described
in subection 4.2, selecting each time the one which is performing better. Given
the resulting data partition, an initial estimate for p is obtained (subsection
4.2). Then we applied to each dataset the three methods devised for initial-
izing α and τ . With these initializations, we started a SEM+EM procedure
obtaining the final estimates for α and τ . Table 2 shows the results of these
simulations for each initialization method (rows):

• the first column “Perc.” reports the percentage of times that the EFD
likelihood evaluated at the initial values is the highest one; the second
column “Perc” reports the percentage of times that the final estimates
maximize the likelihood function
• columns “Lik. mean” represent the mean of the likelihoods evaluated at

the initial values and at the final estimates
• columns “d2 mean” represent the mean of the euclidean distances between

the initial values (or the final estimates) and the true parameter values.

Method 3 generally provides the best starting points, with method 2 dis-
playing only slightly worse performances. On the contrary, method 1 behaves
rather poorly compared to the other two, except in the symmetric case 1, as
expected. Remarkably, after the SEM+EM step the differences between the
three methods are not significant. This evidentiates a strong robustness of the
SEM phase with respect to the choice of the initial value. In the following, we
shall employ method 3, which is also the one converging faster.

5.2 MLE and Standard Error Simulation

In this section we show the results of a simulation study whose purpose is the
evaluation of the performance of the MLE and its estimated variance. For
each of the 21 parameter configurations used in subsection 5.1 we simulated
K = 1000 samples of size n = 100. After every estimation procedure, a boot-
strap algorithm has been launched (with B = 3000 bootstrap samples), in
order to have an estimate of the standard errors that can be used to compute
confidence intervals as well (based on the asymptotic normal distribution of
the ML estimator). In Table 3 we can see the results of the simulations. Rows
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Case 1: α = (15, 15, 15), τ = (20, 20, 20), p = (1/3, 1/3, 1/3)

Initial Values Final Estimates

Meth. Perc. Lik. mean d2 mean Perc. Lik. mean d2 mean

1 0.02 209.76901 5.14892 0.32 211.06737 5.61060
2 0.38 210.86665 6.10219 0.35 211.06731 5.61591
3 0.60 210.90500 5.51940 0.33 211.06734 5.61096

Case 2: α = (10, 40, 80), τ = (5, 30, 25), p = (1/3, 1/3, 1/3)

Initial Values Final Estimates

Meth. Perc. Lik. mean d2 mean Perc. Lik. mean d2 mean

1 0.00 285.82046 23.34352 0.38 349.49176 13.41457
2 0.61 347.33590 12.47437 0.33 349.49008 13.19208
3 0.39 347.26455 11.93005 0.29 349.49127 13.08968

Case 3: α = (50, 50, 50), τ = (5, 30, 25), p = (0.2, 0.6, 0.2)

Initial Values Final Estimates

Meth. Perc. Lik. mean d2 mean Perc. Lik. mean d2 mean

1 0.00 300.47035 27.26236 0.34 325.76015 11.90573
2 0.00 316.19300 19.01524 0.38 325.76017 11.92682
3 1.00 316.81200 15.52419 0.28 325.76004 11.76126

Case 4: α = (15, 15, 15), τ = (10, 20, 15), p = (1/3, 1/3, 1/3)

Initial Values Final Estimates

Meth. Perc. Lik. mean d2 mean Perc. Lik. mean d2 mean

1 0.00 194.93455 9.05571 0.34 204.83934 5.15334
2 0.11 204.18551 5.88219 0.35 204.83930 5.14925
3 0.89 204.29076 5.30722 0.31 204.83936 5.11252

Case 5: α = (5, 30, 70), τ = (10, 25, 15), p = (0.1, 0.75, 0.15)

Initial Values Final Estimates

Meth. Perc. Lik. mean d2 mean Perc. Lik. mean d2 mean

1 0 323.9595 23.94387 0.25 376.7433 11.61793
2 0.05 337.6969 23.48097 0.37 376.7447 11.42953
3 0.95 339.0964 21.73839 0.38 376.7442 11.51620

Table 2. Simulation results: initialization

“MLE mean” and “MLE sd” represent the simulated mean and standard de-
viation of the ML estimator (namely, the Monte Carlo approximation of its
expected value and standard error). The quantity “se mean” shows the mean
of the bootstrap based simulated standard errors and the row “arb” represents
its absolute relative bias (i.e. the mean of the absolute deviations between such
standard errors’ estimates and the simulated standard deviation - row “MLE
sd” - divided by this last quantity). Lastly, “coverage” reports the simulated
coverage levels of confidence intervals against a 95% nominal one.

Despite the mixture nature of the EFD model and the relatively small sam-
ple size, the performance of the MLE appears rather satisfactory: in most
scenarios we considered, small bias and standard deviation are obtained. Fur-
thermore, the bootstrap estimates of the standard errors are remarkably close
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Case 1 p1 p2 α1 α2 α3 τ1 τ2 τ3
True 1/3 1/3 15 15 15 20 20 20

MLE Mean 0.333 0.332 15.561 15.549 15.6 20.757 20.841 20.828
MLE sd 0.047 0.047 1.655 1.674 1.673 2.793 2.784 2.798
se mean 0.047 0.047 1.618 1.617 1.623 2.744 2.753 2.749

arb 0.028 0.029 0.080 0.083 0.083 0.080 0.079 0.080
coverage 0.951 0.952 0.946 0.943 0.942 0.944 0.947 0.951

Case 2 p1 p2 α1 α2 α3 τ1 τ2 τ3
True 1/3 1/3 10 40 80 5 30 25

MLE Mean 0.336 0.331 10.491 41.982 83.890 5.388 31.506 26.901
MLE sd 0.073 0.051 1.259 5.166 10.007 1.461 4.545 6.742
se mean 0.07 0.05 1.228 5.006 9.834 1.376 4.500 6.491

arb 0.168 0.048 0.083 0.080 0.078 0.135 0.075 0.105
coverage 0.919 0.936 0.939 0.942 0.950 0.935 0.947 0.931

Case 3 p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.2 0.6 50 50 50 5 30 25

MLE Mean 0.201 0.595 52.496 52.643 52.555 5.808 31.499 26.607
MLE sd 0.058 0.057 6.091 6.458 6.211 3.814 4.539 5.080
se mean 0.056 0.054 5.900 6.155 5.907 3.750 4.437 4.966

arb 0.166 0.076 0.085 0.088 0.088 0.198 0.087 0.112
coverage 0.922 0.933 0.946 0.943 0.937 0.962 0.941 0.930

Case 4 p1 p2 α1 α2 α3 τ1 τ2 τ3
True 1/3 1/3 15 15 15 10 20 15

MLE Mean 0.333 0.333 15.626 15.624 15.626 10.408 20.935 15.700
MLE sd 0.050 0.047 1.702 1.695 1.718 1.991 2.914 2.454
se mean 0.050 0.048 1.691 1.700 1.694 1.941 2.876 2.411

arb 0.044 0.038 0.078 0.075 0.079 0.078 0.077 0.076
coverage 0.950 0.944 0.958 0.949 0.943 0.952 0.950 0.95

Case 5 p1 p2 α1 α2 α3 τ1 τ2 τ3
True 0.1 0.75 5 30 70 10 25 15

MLE Mean 0.100 0.750 5.212 31.598 73.177 10.531 25.942 16.764
MLE sd 0.031 0.045 0.582 4.021 8.177 2.193 3.820 8.670
se mean 0.032 0.045 0.555 3.827 7.878 2.048 3.761 8.232

arb 0.132 0.059 0.090 0.098 0.086 0.164 0.086 0.147
coverage 0.936 0.936 0.943 0.940 0.945 0.928 0.957 0.941

Table 3. Simulation results: MLE

to the Monte Carlo approximations and the coverage levels of the confidence
intervals are fairly precise. It is also worth noting that the results relative to
the other parameter configurations not included in the paper are similar to the
reported ones. As a consequence, we can conclude that the proposed estimation
procedure appears to be both accurate and reliable.
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Abstract. The Escalator Boxcar Train (EBT) is one of the most popular numerical
methods used to study the dynamics of physiologically structured population models.
The original EBT-model accumulates an increasing system of ODEs to solve for each
time step. In this project, we propose a merging procedure to overcome computational
disadvantageous of the EBT method, the merging is done as an automatic feature.
In particular we apply the model including merging to a colony of Daphnia Pulex.
Keywords: Escalator Boxcar Train, physiologically structured population models,
Daphnia, merging.

1 Introduction

Physiologically structured population models (PSPMs) describe the dynamics
of an arbitrary number of biological populations. The basic idea of the EBT-
technique is to group individuals of similar state into cohorts, in which the
dynamics is prescribed by ODEs which are tracked throughout their entire
life history. The individual population dynamics in physiologically structured
population models are given by birth rates, death rates, and growth rates,
which are dependent of the environment and their physiological state. These
states can describe any data of individual physiology, for example; length, size,
age, height or weight (Metz and Diekmann[8]).
In this paper, we will for convenience work with a one-dimensional state space
describing an individual’s length. In the PSPMs, the death rate, the growth
rate and the birth rate of the individuals are assumed to have the form µ(x,Et),
g(x,Et) and b(x,Et) respectively, where x is the length of the individual at
time t and Et is the environment. Furthermore, offspring are assumed to have
the same birth size xb. With these assumptions, one can show (see, e.g., de
Roos[2]) that the density u(x, t) of individuals of state x at time t satisfies
the first order, nonlinear, nonlocal hyperbolic partial differential equation with
_________________ 
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nonlocal boundary condition

∂

∂t
u(x, t) +

∂

∂x

(
g(x,Et)u(x, t)

)
= −µ(x,Et)u(x, t), (1a)

g(xb, Et)u(xb, t) =

∫ ∞

xb

b(ξ, Et)u(ξ, t)dξ, (1b)

u(x, 0) = u0(x), (1c)

where xb ≤ x <∞ and t ≥ 0.
The EBT method, developed by de Roos[3], solves these kind of partial dif-
ferential equations, using an increasing system of ODEs. In this article, we
propose a procedure of merging internal cohorts in order to reduce the system
of ordinary differential equations. We show that this merging procedure does
not affect the properties of the solution and in addition, the computation time
decreases from polynomial to linear time when the EBT of Daphnia is simu-
lated.
The convergence of the Escalator Boxcar Train has been established in a series
of papers, see for example; de Roos and Mets[4], Brännström et al.[1], and
Carrillo et al.[7]. This report consists of four parts. The first part consists of
concept, definitions and formulations of the EBT model in Section 2. In the
second part, Section 3, Daphnia’s model specifications is described. The third
part, Section 4, presents a mathematical proof of convergence. And, in the
last part, Section 5, we present results from simulations of the Daphnia model,
with and without merging.

2 The Escalator Boxcar Train

The Escalator Boxcar Train is a numerical method for solving physiologically
structured population models (PSPMs). This method is widely used in theo-
retical biology since the components of the numerical scheme can be given a
biological interpretation. To study the dynamics of a PSPMs numerically, the
structured population is subdivided into distinct groups of individuals that are
similar, these groups are called cohorts.
The cohorts are separated into internal cohorts and a boundary cohort, where
the latter has the unique property that the numbers of individuals may be
growing because of newborn individuals. The newly born individuals are as-
sumed to have the same physiological properties and are accumulated in the
boundary cohort. The remaining cohorts are called internal cohorts. We set
the index of the boundary cohort to be zero and the internal cohorts are in-
dexed by i = 1, 2, . . . , N .
The number of individuals in the ith cohort is denoted by Ni(t). As the sizes
of the individuals in each cohort are similar, the mean individual state will be
used and is denoted by Xi(t).
We consider the numerical solution of the one-dimensional PSPM with a sin-
gle birth state xb defined by Equation (1). The EBT method approximates
the measure induced by the solution rather than approximating the solution
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directly. The approximation is given by linear combination of Dirac measures,
and the approximated measured-value solution ζNt to the PSPMs is

ζNt =
N∑
i=0

Ni(t)δXi(t). (2)

We biologically interpret each of the terms in the approximation as a cohort
composed of Ni individuals with average individual state Xi at time t (see
for example Brännström et al[1]). The environment Et is often directly or
in-directly dependent of the solution ζNt .

2.1 The dynamics of internal cohorts

The internal cohorts can be characterized by the number of individuals and by
a representative size for these individuals. We will adopt the mean length as the
characteristic measure of body size, since even within a cohort the individuals
are not completely identical. The dynamics of the size in the internal cohorts
follows the differential equation

dXi

dt
= g(Ni, Et), (3)

which is simply the growth equation for an individual.
The dynamics of the number (density) of individuals in the internal cohort is
defined by:

dNi

dt
= −µ(Xi, Et)Ni. (4)

2.2 The dynamics of the boundary cohort

The boundary cohort is characterized by the number of individuals it contains
and by a representative size measure. The number of individuals and length
of individuals in the boundary cohort are denoted by N0(t) and X0(t), respec-
tively. If there is no reproduction at all, the boundary cohort could be identical
to all other cohorts as the dynamics N0(t) and X0(t) is described by

dN0

dt
= −µ(X0, Et)N0,

dX0

dt
= g(X0, Et).

If reproduction does occur, the contribution is summed for the offspring in all
cohorts, where the offspring, produced in cohort i, equals b(Xi, Et)Ni. Thus

the total population fecundity will be
∑N

i=0 b(X
t
i , Et)N

t
i .

This total population birth rate is represented by the newborn individuals
which are all accumulated into the current boundary cohort. Hence the dy-
namics of the number of individuals in the boundary cohort become:

dN0

dt
= −µ(X0, Et)N0 +

N∑
i=0

b(Xi, Et)Ni,
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which depends upon the one hand for the mortality process of the individuals
that have recently been born and on the other hand for the addition of off-
spring.
The dynamics of the size X0(t) in the boundary cohort, follow the same equa-
tion as the dynamics of the size in the internal cohort, i.e.,

dX0

dt
= g(X0, Et).

This dynamics was introduced in [1], and have been shown to have the same
convergence rate as the original dynamics in [3], see [12].

2.3 Process of internalizing the boundary cohort

In the course of time, both the number and size of individuals in the boundary
cohort change according to the reproduction of individuals and the environ-
ment. If the size of the boundary cohort grows to large, it will produce an
inapplicable large approximation error. Therefore, the boundary cohort must
be internalized sufficiently often.
At each time step, we check if the current boundary cohort’s density is zero (no
reproduction has occurred), in this case we reset the size of individuals in the
boundary cohort to xb, otherwise, we will introduce a new boundary cohort.
Whenever a new boundary cohort is introduced, the old boundary cohort is
transformed into an internal cohort. For this reason, the number of internal
cohorts will be increased due to internalization. This will be inconvenient for
computational purposes, (see Table 5.1). To overcome the growing number of
internal cohorts, we apply a merging procedure for internal cohorts containing
a small number of individuals.

2.4 Process of merging internal cohorts

If the number of individuals in an internal cohort falls below a certain threshold,
and that the size of the internal cohort closest to this one, is close enough, then
we merge the two cohorts together. We do this in such a way that the expected
number of offspring stays the same, compared to if we had not merged the
cohorts. The reason why the two merging cohorts must have similar size is
explained in the proof of convergence given in Section 4.

3 The Daphnia’s model specifications

To illustrate that the solution when merging cohorts converges, we will exem-
plify this with an EBT-model applied to the water flea, Daphnia pulex, which
is the structured population in the model. The Daphnia pulex feeds on the
algae Chlamydomonas reinhardtii, which specify the amount of food, the envi-
ronment in the model. Biologists have been studying the behaviour of Daphina
extensively (see for example Hebert[13], Ebert[6]), and hence, the biological in-
formation is vast, we will therefore introduce a simple size-structured model for
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Symbol Value Unit Interpretation

ν 0.007 mgC/mm2 maximum ingestion rate per surface area

fh 0.164 mgC/L half saturation food density

xb 0.6 mm length at birth

xj 1.4 mm length at maturity

lmax 3.5 mm maximum length

rg 0.11 d−1 growth rate

rmax 1.0 mm2 maximum reproduction rate

µ 0.05 d−1 mortality rate

ρ 0.5 d−1 resource regrowth rate

k 0.25 mgC/L maximum resource density

Table 3.1. Interpretation of constants used for the Daphnia’s life history model was
presented by De Roos in (de Roos and Persson et al.[5]). The values are developed
from practical experiments. Milligram of carbon (mgC), millimeter (mm), liter(L),
and day (d) are used in units.

the life history of individual Daphnia. We will use the EBT-model, with the
constants in the simulation, as given in Table 3.1. The length of the Daphnia
depends on the environment, i.e., the amount of food available. More specifi-
cally, larger individuals have higher food consumption, basal metabolism and
reproduction rate (Diekmann et al.[10]). If they can’t get enough food, their
growth rate will decelerate and they may even decrease in size. In particular,
this implies that the mature Daphnia individuals can shrink under particular
conditions (de Roos and Persson[5]) to a juvenile state, in which they do not
produce any offspring.
We denote the length of an individual Daphnia by X. The reproduction of
adult Daphnia is directly proportional to food ingestion. The reproduction is
described by the function

b(X,F ) =

{
rmaxX

2 F
fh+F if X > xj ,

0 if X 6 xj ,
(5)

where b(X,F ) denotes the birth rate of adult Daphnia per unit of time, fh is
the half-saturation food density F (the environment) and rmax is the maximum
reproduction rate per unit of surface area.
For the growth rate of Daphnia, the von Bertalanffy growth equation (see von
Bertalanffy[9]) will be applied. This growth rate is represented by:

dX

dt
= rg(lmax

F

fh + F
−X), (6)

where rg is growth rate constant and lmax can be interpreted as the maximum
length of Daphnia reaches under actual food condition. Note that the value
of the growth rate can be negative when the value of F is small. This reflects
that individuals can shrink under low food apply, as mentioned above.
We assume that all Daphnia individuals have the same risk for mortality rate,
µ(X,F ), that will be defined by a constant.

µ(X,F ) = µ. (7)
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4 Error bounds when merging two cohorts

In this section, we present a proof of convergence to the general solution when
merging two cohorts, sufficiently close together, i.e., we prove that the reduced
system of ODEs will not give rise to large changes in the general solution.
We consider two cohorts (Xa, Na) and (Xb, Nb), where N denotes the number
of individuals in a cohort and X the mean size.
In a small time step, ∆t, the food available in the system is assumed to be con-
stant, which implies that the growth rate and fecundity rate are both constant
in the time interval 0 ≤ t ≤ ∆t. In this model, the death rate, µ is constant,
see Equation (7).
For notational purpose, we assume that Xb ≥ Xa at time t = 0. At the
start of the time step, we denote the initial data with a sub-index zero, e.g.,
Xa0

= Xa(0), Na0
= Na(0) and so on. The difference, ∆x0 = Xb0 − Xa0

,
between the sizes of these cohorts is assumed to be sufficiently small.
With the above assumptions, the dynamics of the internal cohorts become
simplified. From Equation (4) we get

N ′(t) = −µN(t), (8)

and from Equation (6) we get

X ′(t) = c1

(
1− X(t)

K

)
, (9)

with parameters K = lmax
F

fh+F and c1 = rK.
When we consider the reproduction from the two cohorts, without merging, we
get from Equation (5) the contribution to the boundary cohort as

bw(t) = c2Na(t)X2
a(t) + c2Nb(t)X

2
b (t), (10)

where c2 = rmax
F

fh+F .

When merging the two cohorts (Xa, Na) and (Xb, Nb) into one merged cohort
(Xm, Nm), we naturally add the number of individuals in both cohorts, i.e.,

Nm0
= (Na0

+Nb0) (11)

and, in view of Equation (10), we initialize the merged cohort size to

Xm0 =

√
Na0Xa0

2 +Nb0Xb0
2

Na0 +Nb0

, (12)

since this formula best preserves the expected number of offspring. In the case
when we merge the two cohorts, we get the dynamics of the fecundity, Equation
(5), as

bm(t) = c2Nm(t)X2
m(t). (13)

We will now show that the general solution of the merged cohort converges to
the general solution without any merging, this is the main result of the paper.
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Theorem 1. Under the above assumptions we get

bm(∆t) = bw(∆t) + O(∆x0 ·∆t)

Proof. For non-merging cohort, we get an expression for the newborn individ-
uals, bw, by using Maclaurin expansion in ∆t

bw(∆t) = bw0
+ b′w0

∆t+O(∆t2)

= c2(Na0X
2
a0

+Nb0X
2
b0)

+ c2(N ′
a0
X2

a0
+ 2Na0

Xa0
X ′

a0
+N ′

b0X
2
b0 + 2Nb0Xb0X

′
b0)∆t

+O(∆t2)

Where we used Equation (10) and its derivative in the last equality. To proceed,
we substitute Equation (8) and Equation (9) in the above equation. Thus

bw(∆t) = c2(Na0
X2

a0
+Nb0X

2
b0)

+c2

(
−µNa0

X2
a0

+ 2Na0
Xa0

c1

(
1− Xa0

K

)
−µNb0X

2
b0 + 2Nb0Xb0c1

(
1− Xb0

K

))
∆t

+O(∆t2)

= c2
(
Na0X

2
a0

+Nb0X
2
b0

)
− µc2

(
Na0X

2
a0

+Nb0X
2
b0

)
∆t

+ 2c1c2 (Na0Xa0 +Nb0Xb0)∆t− 2c1c2
K

(
Na0X

2
a0

+Nb0X
2
b0

)
∆t

+O(∆t2)

In the case when we merge cohorts, we get an expression for the newborn
individuals, using similar calculations as above

bm(∆t) = bm0
+ b′m0

∆t+O(∆t2)

= c2Nm0X
2
m0

+ c2(N ′
m0
X2

m0
+ 2Nm0Xm0X

′
m0

)∆t

+O(∆t2)

We substitute equations (8), (9), (11), and (13) in the above equation.

bm(∆t) = c2(Na0 +Nb0)
Na0

X2
a0

+Nb0X
2
b0

Na0
+Nb0

+c2

(
−µNm0

Na0X
2
a0

+Nb0X
2
b0

Na0 +Nb0

+ 2(Na0 +Nb0)Xm0c1

(
1− Xm0

K

))
∆t

+O(∆t2)

= c2
(
Na0

X2
a0

+Nb0X
2
b0

)
+c2

(
−µ
(
Na0

X2
a0

+Nb0X
2
b0

)
+ 2c1(Na0

+Nb0)Xm0
− 2c1(Na0

+Nb0)
X2

m0

K

)
∆t

+O(∆t2)
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bm(∆t) = c2
(
Na0

X2
a0

+Nb0X
2
b0

)
− µc2

(
Na0

X2
a0

+Nb0X
2
b0

)
∆t

+ 2c1c2(Na0
+Nb0)

√
Na0

X2
a0

+Nb0X
2
b0

Na0
+Nb0

∆t

− 2c1c2
K

(Na0
+Nb0)

Na0
X2

a0
+Nb0X

2
b0

Na0
+Nb0

∆t+O(∆t2)

= c2
(
Na0X

2
a0

+Nb0X
2
b0

)
− µc2

(
Na0X

2
a0

+Nb0X
2
b0

)
∆t

+2c1c2Na0

√
Na0X

2
a0

+Nb0X
2
b0

Na0
+Nb0

∆t+ 2c1c2Nb0

√
Na0X

2
a0

+Nb0X
2
b0

Na0
+Nb0

∆t

− 2c1c2
K

(
Na0

X2
a0

+Nb0X
2
b0

)
∆t+O(∆t2).

Subtracting the equation for bm from the equation for bw gives

bw − bm = 2c1c2 (Na0
Xa0

+Nb0Xb0)∆t

−2c1c2Na0

√
Na0

X2
a0

+Nb0X
2
b0

Na0
+Nb0

∆t− 2c1c2Nb0

√
Na0

X2
a0

+Nb0X
2
b0

Na0
+Nb0

∆t

+O(∆t2).

Finally, using the continuity of the square root function, we get that both

Xa0 =

√
Na0X

2
a0

+Nb0X
2
b0

Na0
+Nb0

+O(∆x0)

and

Xb0 =

√
Na0

X2
a0

+Nb0X
2
b0

Na0
+Nb0

+O(∆x0)

Thus, the number of newborn individuals for merging cohorts converges to
the number of newborn individuals for non-merging cohort when the difference
between the size of individuals for these two cohorts and that the time step
goes to zero. Which completes the proof.

5 Simulation of the EBT and Daphnia model

The EBT of the Daphnia’s life model was simulated using MATLAB. To solve
the system of ODEs in each time step, we use the function ode45 because of
its accuracy and speed.
In this section, we present the behavior of a solution to the model with merging
in Fig.5.1. In Table 5.1 we present simulation times, both for merging respec-
tively non-merging of cohorts. In the simulation, at the beginning of each time
step, we introduce a new boundary cohort, and internalize the old boundary
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cohort. We used a least square method to fit the best monomial for the sim-
ulation time depending on the number of time steps. We found that when
we simulated without merging, the power was close to 1.7, whereas, when the
simulations was done with merging of cohorts, the power was close to one, i.e.,
the relationship between the simulation time and the number of time steps was
linear.
In addition, as a consequence of Theorem 1, we see that the biomass of juve-
niles and adults for merging cohorts converges to the corresponding values for
the non-merging simulations as ∆t approaches to zero.

Time
Span(days)

Merging Elapsed
Time(seconds)

Internal
Cohorts

j(mgC/L) m(mgC/L) v(mgC/L)

2 Yes 14 45 0.3088 0.0330 0.3418

1 Yes 26 57 0.3072 0.0326 0.3398

1/2 Yes 47 72 0.3137 0.0382 0.3518

1/4 Yes 95 120 0.3132 0.0391 0.3523

2 No 21 749 0.3088 0.0330 0.3418

1 No 53 1367 0.3062 0.0335 0.3398

1/2 No 128 1681 0.3137 0.0382 0.3519

1/4 No 467 3165 0.3132 0.0392 0.3523

Table 5.1. Data for merging and non-merging of cohorts. The column, Elapsed
Time, shows the running time for simulations, and the column, Internal Cohorts, the
total number of internal cohorts for merging respectively non-merging cohorts. We
also represent the value of the biomass of juvenile, j , mature, m, and the value of
the total biomass of juvenile and mature, v.
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Fig. 5.1. A graphical representation of a simulation with merging of cohorts. While
(a) and (b) show juvenile and mature biomass, (c) represents total biomass of juvenile
and adult. In addition, the moving average of figures (a), (b), and (c) is presented in
(d) to compare for all these biomass, the moving average was taken over 250 days

Conclusion and Future work

Physiologically structured population models are used to study biological sys-
tems. The Escalator Boxcar Train method is one of the commonly used numer-
ical methods to find solutions to PSPMs but there are computational disadvan-
tageous of the EBT method. In this project, we have shown how to overcome
the problem of the increment of ODEs over time. The main objective for this
project is to present a way of how to merge cohorts in order to stabilize the
number of ODEs to solve in each time step. We also constructed an EBT-solver
that reduces the number of ODEs by an automatic feature of merging cohorts,
in which we showed that we get a linear relationship between the number of
time steps and the execution time.
The Escalator Boxcar Train method was first published in 1988 by A. de
Roos[3], and a first proof of convergence appeared in 2013 by Å. Brännström,
L. Carlsson, and D. Simpson[1]. The important reason for merging cohorts is
that the maximum number of cohorts can be held under a certain level to make
the simulation run faster. In this project, we compare the number of newborn
individuals between merging and non-merging of cohorts, where we also prove
that the number of newborn individuals for merging cohorts converges to the
number of newborn individuals for non-merging cohorts.
Furthermore, this project uses MATLAB to simulate the Daphnia model and
present graphs for the biomass of mature and juvenile.
In the future work, we want to establish EBT-solver which includes the auto-
matic feature of merging and splitting cohorts, not only for the Daphnia model,
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but for more general models as well, where we also aim to prove convergence
for the merging and splitting of cohorts.
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Abstract. We consider a large class of semiparametric models for recurrent events
based on virtual ages. Modeling recurrent events lifetime data using virtual age mod-
els has a long history, this rich class of model contains standard model families as non
homogeneous Poisson processes and renewal processes and may include covariates or
random effects (see for instance Peña (2006) for a large overview on these models).
In many non- or semi-parametric works the virtual age function is supposed to be
known, this weakness can be overcome by parametrizing the virtual age function (see
for instance Doyen and Gaudoin, 2004). Then the model consists of an unknown
hazard rate function, the infinite-dimensional parameter of the model, and a para-
metrically specified virtual age (or effective) function. Recently Beutner et al. (2016)
derived conditions on the family of effective age functions under which the profile
likelihood inference method for the finite-dimensional parameter of the model leads
to inconsistent estimates. Here we show how to overcome the failure of the profile
likelihood method by smoothing the pseudo-estimator of the infinite-dimensional pa-
rameter of the model, by adapting a method proposed by Zeng and Lin (2007) for
the accelerated failure time model.
Keywords: Recurrent events, Virtual age, Semiparametric, Consistency.

1 Introduction

Virtual age models are useful to understand the dynamic of recurrent events in
reliability (for instance). The strength of theses models is their ability to ac-
count both dependency between inter-arrival times of successive events as well
as the evolution of the inter-arrival times distributions with easy interpreta-
tion. Virtual age models have been introduced by Kijima et al. (1988), Kijima
(1989) and basically they assume that the intensity at time t of a counting
process N(t) =

∑
j≥1 1{Xj≤t}, where X0 = 0 < X1 < X2 < · · · are the event

times, can be written (λ ◦ ε)(t) where λ is a deterministic function and ε is
a random function depending (at least) on the history of the process. When
ε(t) ≡ t, the process N is a non homogeneous Poisson process with intensity λ,
while if ε(t) = t−XN(t−), the process N is a renewal process. As a consequence
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we see that the function ε specifies a virtual age just after an event which has
to reflect the efficiency of maintenance action in industry. However, genrally
this effect is unknown, and even we may want to measure it. To succeed in
it Doyen and Gaudoin (2004) introduced some parametrized versions εθ of the
effective age function ε where the Euclidean parameter θ measure the efficiency
of a an industrial maintenance policy.

In the semiparametric or nonparametric setting all the existing results as-
sume that the virtual age function is known. For instance Dorado et al. (1997)
proposed an estimator of Λ for general (but known) effective age function and
studied its asymptotic properties. During the last two decades this class of
virtual age models has been enriched by adding covariates effects and frailties.
One of the most complex version of these models has been proposed by Peña
(2006) and recent semiparametric estimation and asymptotic results based on
the profiled likelihood estimation method have been obtained by Adekpedjou
and Stocker (2015) and Peña (2016). However, as we mentioned previously,
considering that the effective age function is known impedes a large applica-
tion of these models. One way to overcome this difficulty is therefore to either
consider virtual age models for which both the virtual age function and λ are
parametric and then applying the usual maximum likelihood approach, or con-
sider parametric virtual age functions with nonparametric assumption on λ.
Unfortunately it is especially difficult to fit the later class of models. Indeed,
Beutner et al. (2016) recently shown that the usual profile likelihood method
fails to lead to consistent estimators. This phenomena has even been observed
for the semiparametric accelerated failure time model where the profile like-
lihood function does not depend on the unknown Euclidean parameter. To
overcome this difficulty, Zeng and Lin (2007) shown that profiling out with a
smoothed version of the pseudo-estimator of the unknown baseline hazard rate
function is enough to restore the consistency and efficiency of the profile likeli-
hood estimator at the price of adding a new parameter required to define the
level of regularization. These authors generalized their approach to the case of
recurrent events in Zeng and Lin (2010).

In this paper we show that the expected consistency property is recovered
by smoothing the profiled log-likelihood function. These results are obtained
for a large class of models including most of the relevant virtual age models of
the literature like for instance the Doyen and Gaudoin (2004) Arithmetic Re-
duction of Age (ARA) models that include Kijima (1989) Type–I and Type–II
models. Up to our knowledge all the asymptotic results obtained for these mod-
els are based on adaptation of martingale methods. This adaptation is due to
the necessity of switching from the calendar time scale to the effective age scale
following an idea introduced by Selke and Siegmund (1983) and where the mar-
tingale properties are no longer true (see e.g. Peña et al. 2001). In addition
to overcome the limitation of known effective age functions our approach also
show that empirical processes tools may be an efficient alternative to martingale
methods to study the asymptotic properties of these inference methods. Basi-
cally our empirical processes are based on independent and identically copies
of Z = (T ,X) with probability distribution P where T is a right censoring
time and X = (X1, X2, . . . ) is the non decreasing sequence of event times. The
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right censored counting process N is defined by N(t) =
∑
j≥1 1{Xj≤t∧T } for

t ∈ [0, s] where [0, s] is the period of study. Then defining the class of functions
Hs = {z = (τ, x1, x2, . . . ) 7→ ht(z) =

∑
j≥1 1{xj≤t∧τ}; t ∈ [0, s]} and using the

usual empirical processes notations (see van der Vaart and Wellner 1996, or
van der Vaart 1998) we can identify (N(t))t∈[0,s] and (δZh)h∈Hs where δZ is
the Dirac measure at the random (infinite dimentional) point Z.

2 Model and estimators

Let X be the set of non decreasing sequences of non negative real numbers
without accumulation point, thus x in X is defined by x = (xn)n∈N with
xn ∈ [0,+∞) for all n ∈ N = {1, 2, . . . } and 0 ≤ x1 < x2 < · · · . In addition we
set x0 = 0. Let Z = R+ × X , then z ∈ Z means z = (τ,x) with τ ∈ R+ and
x ∈ X .

Let X = (X1, X2, . . . ) be a sequence of non decreasing event times and
T is a censoring time. Thus Z = (T ,X) is a random element on Z such
that Z ∼ P where P is a probability measure on a probability space (Ω,F).
Here we consider recurrent event time models for which the counting process
N , defined by N(t) =

∑
j≥1 1{Xj≤t∧T } for t ≥ 0 has compensator A(t) =∫ t

0
Y (u)λ(εθ(u))du with respect to the natural flitration, where Y (u) = 1{T ≥u}

is predictable, where the virtual age function u 7→ εθ(u) is predictable and
defined up to an unknown Euclidean θ ∈ Θ and where λ ∈ Γ the set of hazard
rate functions on R+. The restriction of εθ to (Xj−1, Xj ] is denoted by εθj−1
for j ≥ 2 and εθ0 is defined on [0, X1] (we note X0 = 0). Note that εθj−1(t) may
depend on X1, . . . , Xj−1.

We assume that εθ0 is the identity function and that P–almost surely t 7→
εθj−1(t, ω) is continuous on (Xj−1(ω), Xj(ω)], differentiable on (Xj−1(ω), Xj(ω))
with derivative equal to 1 for all j ≥ 2.

Let us fix the period of study to [0, s]. We know that M(t) = N(t) −∫ t
0
Y (u)λ(εθ(u))du is a square integrable martingale with respect to the natural

filtration. Under the previous assumptions, by a change in variables (see for
instance Peña (2006)) the above martingale process M can be transformed into
the following doubly indexed process

Mθ(s, t) = Nθ(s, t)−
∫ t

0

Y θ(s, u)λ(u)du

where Nθ(s, t) = fθ,t(Z) and Y θ(s, t) = gθ,t(Z) are defined by

fθ,t(z) =
∑
j≥1

1{εθj−1(xj)≤t;xj≤s∧τ}

and

gθ,t(z) = 1{t≤x1∧s∧τ} +
∑
j≥2

1{εθj−1(xj−1+)<t≤εθj−1(xj∧s∧τ);xj−1<s∧τ}.
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Although it has moment properties comparable to those of martingales (in
particular PMθ(s, t) = 0 if θ = θ0), the process t 7→ Mθ(s, t) is no longer
a martingale, making the study of estimators based on t 7→ Mθ(s, t) rather
complicated (see e.g. Dorado et al. (1997) or Peña (2014)).

Now we consider Zn = {Z1, . . . ,Zn} where the Zi = (Ti,Xi) are n > 1
independent and identically distributed copies of Z = (T ,X). We write Xi =
(Xi,j)j≥1 and Xi,0 = 0.

Because s is a constant we omit to indicate that both f and g depend on
s. Let Pn = 1

n

∑n
i=1 δZi we write

N̄θ
n(s, t) = Pnfθ,t =

1

n

n∑
i=1

Nθ
i (s, t) and Ȳ θn (s, t) = Pngθ,t =

1

n

n∑
i=1

Y θi (s, t),

where Nθ
i (s, t) = fθ,t(Zi) and Y θi (s, t) = gθ,t(Zi).

Since the process

t 7→ N̄θ
n(s, t)−

∫ t

0

Ȳ θn (s, u)λ(u)du

is centered, a ”method-of-moment” type estimator for Λ(t) =
∫ t
0
λ(u)du is

defined by

Λθn(s, t) =

∫ t

0

N̄θ
n(s, du)

Ȳ θn (s, u)
.

Here we call Λθn(s, t) a pseudo–NPMLE of Λ since for θ known it is a NPMLE
of Λ as proved in Beutner et al. (2016).

Let us define for t ∈ [0, s]

λθn(s, t) =
1

bn

∫
R
κ

(
t− u
bn

)
Λθn(s, du),

where Λθn(s, du) ≡ 0 on (s,∞), κ is a kernel function (here a probability density
function) and bn is a bandwidth such that bn → 0 and nbn → ∞. Then
introducing

`n,s(θ) =

∫ M

0

log(λθn(s, t))N̄θ
n(s, dt),

we estimate θ and Λ(t) by θn = arg maxθ∈Θ `n,s(θ) and Λn(s, t) = Λθnn (s, t) re-
spectively. We show that the resulting estimators are asymptotically consistent
and their behavior for finite sample size is illustrated by a simulation study.

3 Arithmetic Reduction of Age models

Arithmetic Reduction of Age (ARA) models has been introduced by Doyen
and Gaudoin (2004). These models simply assume that an event effect adds a
certain quantity to the virtual age, also called effective age. For ARA models
εθ0 is the identity function on [x0, x1] (where x0 = 0, thus εθ0(x0+) = 0) and
for j ∈ N and t ∈ (xj , xj+1], εθj (t) = t − xj + εθj (xj+). A specific ARA
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model is thus characterized by the j–th event effect, that is by the rejuvenation
εθj−1(xj) − εθj (xj+) just after time xj . As we said in the introduction ARA
models propose several parametrization with θ ∈ [0, 1] of Kijima [7] effective
age functions. For instance a Kijima Type–I effect at the j–th event corresponds
to a reduction proportional to the supplement of age accumulated since the last
event: εθj−1(xj)− εθj (xj+) = θ(εθj−1(xj)− εθj−1(xj−1+)). That amounts to an

ARA1 model verifying εθj (t) = t − θxj . A Kijima Type–II effect corresponds
to a reduction proportional to the value of the effective age at the last event
time: εθj−1(xj) − εθj (xj+) = θεθj−1(xj). That amounts to an ARA∞ model

verifying εθj (t) = t − θ
∑j−1
i=0 (1 − θ)ixj−i. More generally ARAm models, for

m ∈ N ≡ N ∪ {+∞}, integrate both previous models by assuming that the
effective age functions verifies

εθj (t) = t− θ
(j−1)∧(m−1)∑

i=0

(1− θ)ixj−i,

with the convention that
∑b
i=a · = 0 for a > b. Thus, for any j ≥ 1 and

t ∈ (xj , xj+1], the function θ 7→ εθj (t) is non increasing, it means that the greater
θ is, the less aged the system is. As a consequence the parameter θ ∈ [0, 1]
represents the efficiency of events effects. Indeed notice that θ = 0 corresponds
to the well known “as bad as old” situation in reliability applications, for which
events have no effects on the effective age since ε0j (xj+) = xj , while θ = 1
corresponds to the “as good as new” situation, for which each event renews the
system since the effective age verifies ε1j (xj+) = 0. The corresponding random
processes are respectively a non homogeneous Poisson process and a renewal
process.

Let us now index the true model parameters by 0 (the true values of the
unknown parameters θ, Λ, etc. are thus noted θ0, Λ0, etc.) and introduce the
assumptions under which our main result is obtained.

A. Assumptions on the functional parameter
The baseline hazard rate λ0 is non constant, upper and lower bounded
with non null lower bounds on [0,M ] for some constant M > 0 (defined in
Assumption C below). In addition, the corresponding probability density
function f0 is continuous and bounded on R+ and BV[0,s](f0) < ∞ and
the associated survival function S0 verifies S0(s) > 0.

B. Technical assumptions on the kernel and the bandwidth

(i) The bandwidth (bn)n∈N verifies bn = cn−d for d ∈ (0, 1/2) and a
fixed real number c > 0.

(ii) The kernel function κ is a pdf with support in [−1, 1] and BV[−1,1](κ)
is finite.

Theorem 1. Suppose that Assumptions A and B are satisfied, that the ef-
fective age function satisfies an ARAm models for one m ∈ N, and that T is
a positive random variable, independent of X, with pdf fT bounded on [0, s],
survival function ST such that ST (s) > 0, and for all c ∈ [0, s] and ε > 0,
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P (T ∈ [c− ε, c+ ε] ∩ [0, s]) > 0. Then with probability one

θn → θ0 and sup
t∈[0,s]

|Λn(t)− Λ0(t)| → 0.

4 Numerical illustration
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Fig. 1. Empirical mean (red dashed line) and standard deviation (green dotted line)
of N = 1000 estimates of θ0 varying in [0.1, 0.9] (black solid line) for an ARA1 model
(left) and an ARA∞ model (right) with sample size n = 100, Type–I censoring with
τ = s = 7 and bandwidth b = 0.5.
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Fig. 2. Empirical mean (red dashed line) and standard deviation (green dotted line)
of N = 1000 estimates of θ0 varying in [0.1, 0.9] (black solid line) for an ARA1 model
(left) and an ARA∞ model (right) with sample size n = 400, Type–I censoring with
τ = s = 7 and bandwidth b = 0.5.

The first objective of this section is to give a numerical illustration of our
consistency results for ARAm models focalizing on the estimation of θ0. Indeed
due to a wide range of situations to illustrate (e.g. sample size effect, censoring
effect, bandwidth effect, s effect, m and θ effects for ARAm models) we focus
on the estimation of parametric effective age functions which is the main inno-
vation of the paper. In our simulations the baseline hazard rate function λ0 is
Weibull and defined by λ0(t) = 0.1× t2 which does not verify the assumption
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inf [0,s] λ0 > 0 required in Theorem 1. All the simulation results are based on
N = 1000 simulated samples. We consider two types of censoring schemes:
Type-I censoring for which Ti = τ for all 1 ≤ i ≤ n where τ is a constant,
and Type-II censoring for which Ti = Xi,k for all 1 ≤ i ≤ n where k is a con-
stant integer. Indeed we can show that Theorem 1 still holds for these types
of censoring schemes.
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Fig. 3. Empirical mean (red dashed line) and standard deviation (green dotted line)
of N = 1000 estimates of θ0 varying in [0.1, 0.9] (black solid line) for an ARA1 model
(left) and an ARA∞ model (right) with sample size n = 100, Type–II censoring with
k = 3 and bandwidth b = 0.5.
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Fig. 4. Empirical mean (red dashed line) and standard deviation (green dotted line)
of N = 1000 estimates of θ0 varying in [0.1, 0.9] (black solid line) for an ARA1 model
(left) and an ARA∞ model (right) with sample size n = 400, Type–II censoring with
k = 3 and bandwidth b = 0.5.

Consistency results are illustrated for both ARA1 and ARA∞ models, for
two sample sizes n ∈ {100, 400} and two censoring schemes i.e. Type–I censor-
ing with s = τ = 7 and Type–II censoring with k = 3. The combination of 2
models × 2 sample sizes × 2 censoring schemes leads to the 8 graphs given in
Figures 1–4.
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5 Concluding remarks

There are many perspectives to this work. The first one is theoretical, it
concerns the study of the central limit behavior of estimators and the way to
derive confidence intervals and bands for the unknown parameters of the model.
The second one is both computational and theoretical since the simulation
study has shown that even if the consistency can be illustrated numerically, the
finite sample behavior of the estimators depends on several tuning parameters
(especially s and the bandwidth b), for which a data-driven selection criterium
should be provided. An additional perspective we want to mention is the
possibility to extend the model by adding covariates at several places in the
model.
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Abstract. This paper concerns a Multivariate Latent Markov Model recently in-
troduced in the literature for estimating latent traits in social sciences. Based on
its ability of simultaneously dealing with longitudinal and spacial data, the model
is proposed when the latent response variable is expected to have a time and space
dynamic of its own, as an innovative alternative to popular methodologies such as
the construction of composite indicators and structural equation modeling. The po-
tentials of the proposed model and the added value with respect to the traditional
weighted composition methodology, are illustrated via an empirical Gender Statistics
exercise, focused on gender gap as the latent status to be measured and based on
supranational official statistics for 30 European countries in the period 2010-2015.

Keywords: Latent clustering, Longitudinal data, Spatial ordering, Gender Gap.

1 Introduction

Composite indicators have the advantage of synthesizing a latent, multidimen-
sional construct in a single number, usually included in the interval (0; 1).
They can be derived as a weighted sum of simple indexes, as it is often the case
in social statistics, specially when the set of indexes needs to stay unchanged
in several geographic areas and/or time periods. In complex settings, the syn-
thetic indicator is conceivable as a latent variable, typically estimated applying
Structural Equation Models (SEM) in order to obtain a single measure.
When the latent variable is thought to have a time and-or space dynamic of
its own, Multivariate Latent Markov Models (LMMs) may represent a valuable
innovation to the construction of composite indicators. LMMs are a particular
class of statistical models for the analysis of longitudinal data which assume the
existence of a latent process affecting the distribution of the response variables
[2] for a review). The rationale of this methodology considers the latent pro-
cess as fully explained by the observable behaviour of some items, together with
available covariates. The main assumption is conditional independence of the
response variables given the latent process, which follow a first order discrete
Markov chain with a finite number of states. The model is composed of two
parts, analogously to SEM: the measurement model, concerning the conditional
distribution of the response variables given the latent process, and the latent
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model, pertaining the distribution of the latent process. LMMs can account for
measurement errors or unobserved heterogeneity between areas in the analysis.
LMMs main advantage is that the unobservable variable is allowed to have
its own dynamics and it is not constrained to be time constant. In addition,
when the latent states are identified as different subpopulations, LMMs can
identify a latent clustering of the population of interest, with areas in the same
subpopulation having a common distribution for the response variables. Un-
der this respect, a LMM may be seen as an extension of the latent class (LC)
model, in which areas are allowed to move between the latent classes during
the observational period. Available covariates can be included in the latent
model and then they may affect the initial and transition probabilities of the
Markov chain. When covariates are included in the measurement model, the
latent variables are used to account for the unobserved heterogeneity and the
main interest is on a latent variable which is measured through the observable
response variables (e.g., health status or gender inequalities) and on the evalu-
ation of this latent variable depending on covariates. We focus on an extended
model of the second type, as we are interested in ordinal latent states.
Very recently, Markov models for latent variables have contributed to in-depth
investigations in highly specific and therefore narrow topics [?]. Extensive anal-
yses of LMMs, both methodological and applicative, have been performed in
the case of small area estimation, taking also into account several points in
time [?]. Our viewpoint aims to adjust the LMMs approach to a wider area of
synthetic social indicators in different geographical areas and in time, namely
for national gender gap between countries. Gender statistics are defined as
statistics that adequately reflect differences and inequalities in the situation of
women and men in all areas of life [8]. Composite gender indicators are usually
computed as weighted sum of simple indexes reflecting the multidimensionality
of the phenomena and they are periodically released by supranational agencies
(see for instance [6] for a comparative review.
We focus on gender gap as the latent status, since this construct is actually
a latent trait, measurable only indirectly through a collection of observable
variables and indicators purposively selected as micro-aspects that contribute
to the latent macrodimension, aiming to add sensitiveness and discrimination
power with respect to current indicators.

2 The proposed model

In this paper we use an extension of LMM proposed by Bertarelli [?]. The
existence of two process is assumed: an observed process ca be expressed as:

Yjit, j = 1, . . . , J, i = 1, . . . , n and t = 1, . . . , T (1)

where Yitj denote the response variable j for unit i at time t, and an unobserv-
able finite-state first-order Markov Chain

Uit, i = 1, . . . , n and t = 1, . . . , T with state space {1, . . . ,m}. (2)

We assume that the distribution of Yjit depends only on Uit; specifically the
Yjit are conditionally independent given Uit.
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We also denote by Ũ it = {Ujt, j ∈ G〉}, where Gi is the set of the neighbours,
the latent states realisations in the neighborhood units.

In the measurement model we consider two Gaussian state-dependent dis-
tributions:

Y1it|Uit ∼ N(µ1, ν1),

Y2it|Uit ∼ N(µ2, ν2).
(3)

The set of parameters of the structural model, corresponding to the latent
Markov chain, includes the vector of initial probabilities

π = (π1, . . . , πu, . . . , πm)
′
, (4)

where
πu = P (Ui1 = u)

is the probability of being in state u at the initial time for u = 1, . . . ,m and
the elements of the transition probability matrix

Π = {πu|ū, ū, u = 1, . . . ,m}, (5)

where
πu|ū = P (Uit = u|Ui,t−1 = ū)

is the probability that unit i visits state u at time t given that at time t− 1 it
was in state ū.

Considering spatial dependence is a crucial point in our field of application
[?]. As in [?], we propose to handle spatial dependence introducing a covariate
in the structural model based on the information from a neighboring matrix and
depending on the latent structure itself. In this way, the influence of spatial
structure depends on the latent process, therefore it is not fixed during the
observation period.

For each unit i we know the number of neighbouring units, gi and their
corresponding labels which are collected in the sets Gi. Let Ũ it be the vector
of latent states at occasion t for the neighbours of unit i. We suppose to handle
ordinal latent states in order to model the severity of the gender gap. Let us
consider a function η(·) that maps the gi-dimensional vector Ũ it onto a d−
dimensional covariate, the choice of η depending on the nature of latent states
(ordinal or not). Due to our application context, we decide to work with the
mean of neighbourhood latent states. Then, this time-varying covariate affects
the initial and transition probabilities through the following multinomial logit
parametrization:

log
p(Ui1 = u|Ũ i1 = ũi1)

p(Ui1 = 1|Ũ i1 = ũi1)
= β0u + η(ũi1)′β1u for u ≥ 2, (6)

log
p(Uit = u|Ui,t−1 = ū, Ũ it = ũit)

p(Uit = ū|Ui,t−1 = ū, Ũ it = ũit)
= γ0uū + η(ũit)

′γ1uū,

for t ≥ 2 and u 6= ū,

(7)
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where βu = (β0u,β
′

1u)′ and γuū = (γ0uū,γ
′

1uū)′ are vectors of parameters to
be estimated. An individual covariate has been introduced, accordingly both
the assumptions of local independence and of a first order latent process still
hold.

3 Estimation and Inference

To estimate the proposed model. we adopt the principle of data augmentation
(Tanner et al, 1987) in which the latent states are introduced as missing data
and augmented to the state of the sampler [?]. In this way we can simplify
the process of sampling from the posterior distribution: we can use a Gibbs
sampler for the parameters of the measurement model and we can estimate the
initial and the transition probabilities by means of a Random Walk Metropolis-
Hastings step. We then need to introduce a system of priors for the unknown
model parameters. In particular, a system of Dirichlet priors is set on the
initial and on the transition probabilities, while for the vectors βu and γuū
we assume that they are a priori independent with distribution N(0, σ2

βI) and

N(0, σ2
γI), respectively. The choice for σ2

β and σ2
γ depends on the context of

the application, typically 5 ≤ σ2
β = σ2

γ ≤ 10. The prior distribution for the
parameters of the measurement model depends on the distribution assumed for
the state-dependent distribution. We choose a Gaussian distribution for the
priors of µ1 and µ2 and inverse gamma distributions for the variances ν1 and
ν2.

The choice of the number of latent states of the unobserved Markov chain,
underlying the observed data, is part of the model selection procedure and
is a very important step of the estimation process. We adopt the Bayesian
information criterion (BIC) [?] among a restricted set of models (m = 3, 4, 5).

4 LMMs Composite Indicators. A Gender Statistics
exercise

Gender inequality - both in space and time - is indirectly measurable through a
collection of observable variables. Gender composite indicators are commonly
constructed as statistics indicators, i.e. linear combinations of a collection of
simple indexes, such as means and proportions, which represent observable
items, aggregated by means of a weighing system. The choice of both indexes
and weight introduce a certain level of arbitrariness. Their case-specific tech-
nical limitations [12],[6] often lead to internal inconsistency since the ranking
of a single country can vary in relation to the indicator considered. Moreover,
few simple indexes, as well as the weighing system, can outweigh the overall
results..
LMMs is liable to offer a sound methodology for estimating the latent trait,
i.e. the gender gap, in time and in space, resulting in a synthetic indicator. We
move from existing source, namely from supranational official statistics, pro-
viding different indicators for all nations worldwide. In particular, we take into
account the Gender Inequality Index (GII)[9] and the Global Gender Gap Index
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(GGGI)[10]. The GII was introduced by UNDP in 2010 and it measures gen-
der inequalities in three aspects of human development: reproductive health,
empowerment and economic status. It focus on inequality, therefore a balanced
women/man situation is represented by a zero value. The Global Gender Gap
Index (GGGI)was introduced by the World Economic Forum in 2006 with the
aim of capturing the magnitude of gender-based disparities. It comprises four
dimensions: economic participation and opportunity, educational attainment,
health and survival, political empowerment. Perfect parity leads to the value
1. Our applicative viewpoint intends to adapt the LMM approach to Gender
synthetic index. Gender Inequality Index (GII) and Global Gender Gap Index
(GGGI) are composite indicators which aim to capture differences between
man and woman in several areas of life. In our case, we focus on gender gap
as the latent status, both in space and time. The gap is in fact a latent trait,
namely only indirectly measurable through a collection of observable variables
and indicators purposively selected as micro-aspects contributing to the latent
macro-dimension. To make the interpretation of results easier and more ac-
cessible to non-statisticians, we transformed the value of βu = (β0u,β

′

1u)′ and
γuū = (γ0uū,γ

′

1uū)′ in order to obtain an unique set of initial and transition
probabilities for all the countries and time occasion. That is, our values repre-
sent a cross-national, inter-temporal synthesis.
Applying LMMs to n = 30 European countries, with respect to T = 6 time
points (from 2010 to 2015), we investigate the unobservable latent gender gap
summarizing the GGGI and GII information in a single value and rearranging
two distinct and rather different ranking into a single one, as the multivariate
latent Markov model identifies latent statuses of countries. The model selects
k = 4 latent states, allowing us to organize countries in 4 ordinal latent statuses
through the proposed multivariate spatial Latent Markov model with multino-
mial logit parametrization, where 1 reflects a situation relatively closest to
equality and 4 denotes the highest level of Gender Gap severity. The vector of
estimated initial probabilities of latent states at the first measurement occasion
is

π = (0.212, 0.483, 0.139, 0.167).

These values can be interpreted as sort of relative frequency [1] in the first
year of observation. On the whole, European countries under consideration are
more likely to be in latent status 1 and 2, with a relatively low gender gap, with
initial probability status of 0.212 and 0.483 respectively. The higher imparity
condition, present in status 3 and 4 is less common, accounting for slightly
more then 20%, i.e. 0.139 and 0.167 jointly considered.
The Transition Probabilities matrix Π for geographical areas is the following,
where the identified latent status are denoted S1 · · ·S4

to S1 to S2 to S3 to S4
from S1 0.98 0.02 0 0
from S2 0.1 0.9 0 0
from S3 0 0.14 0.85 0.01
from S4 0 0.3 0.2 0.4

(8)
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It is noticeable that we obtained a matrix close to diagonality, with more sub-
diagonal elements than over-diagonal. Such a matrix implies that on the whole
countries did not undergo relevant changes in the ten-year observational peri-
ods. Probabilities of improving or worsening with respect to the gender gap are
low, except for latent status 4, whose diagonal value is equal to 0.4, meaning
that 60% or countries improved their gender gap since 2010. When moving, it
is often to a better condition, the probability of joining a worse latent status
being limited to the shift from latent status 1 to 2, with probability 0.02, and
from latent status 2 to 3, with probability 0.02. This reflects, on the one side, a
relatively high starting point in gender equality, under the constitutional rights
perspective and under aspects such as educational opportunities. On the other
side, in so called developed countries, gender disparities tend to stay, when not
to worsen, even in the most advanced countries. To this respect, some remarks
can be posed on the basis of spacial results.

Figure 1 shows the geography of latent gap in Europe in 2010 and 2015 (at
the beginning and at the end of the observational time period we considered
for our exercise). The 4 latent statuses identified by our models are represented
in darkening shades of gray from status S1 to S4, meaning a worsened gender
gap situation.

In 2010 we obtain the following distribution: (i) Latent status 4: Bulgaria,
Greece, Hungary, Italy, Malta, Turkey; (ii) Latent status 3: Ireland, Roma-
nia, Spain; (iii) Latent status 2: Austria, Cyprus, Croatia, Czech Republic,
Germany, Estonia, France, Latvia, Lithuania, Luxembourg, Poland, Portugal,
Slovenia; (iv) Latent status 1: Belgium, Finland, Island, Netherlands, Norway,
Sweden, Switzerland, United Kingdom.
Despite the almost diagonal transition matrix, some changes in latent status
structure are highlighted in 2015: (i) Latent status 4: Bulgaria, Hungary,
Malta; (ii) Latent status 3: Romania, Turkey; (iii) Latent status 2: Aus-
tria, Cyprus, Croatia, Czech Republic, Estonia, France, Greece, Ireland, Italy,
Latvia, Lithuania, Luxembourg, Poland, Portugal, Spain, United Kingdom;
(iv) Latent status 1: Belgium, Finland, Germany, Island, Netherlands, Nor-
way, Slovenia, Sweden, Swiss.
Latent status 2 becomes the most crowded. The ten-year span appears to have
allowed some countries, like Italy, Greece, Spain, to narrow the gap especially
in the educational and, to a lesser extent, in political representation. In the
case of Slovenia, the upward shift was impressive. The downward shift exper-
imented by the United Kingdom seems to reflect a general trend in economic
conditions that cuts across all European countries, even the ones that are re-
garded as the most socially fair, like Norway, for instance. The overall change
in time signals this aspect in a more concise and sharp form by the transition
matrix in time, as discussed below.
Under a spacial point of view, then, a first relevant LMMs contribution can be
identified in the synthetic single ranking from the information in two different
preexisting ones, GGGI and GII respectively. The LMMs ranking establishes
relations of equivalence and order that make a complex situation more acces-
sible and readable to the public. For instance, with reference to 2015, the first
latent status establishes that the relative best situation in terms of gender par-
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(a) 2010

(b) 2015

Fig. 1. Latent Gender Gap Classification in 2010 and 2015

ity is reached with GGGI values in the interval [0.861; 0.947] and GII values in
[0.044; 0.076]. Within this general framework, we gain a better understanding
of individual countries changes or stability. As aforementioned, Slovenia up-
ward shift from latent status 2 in 2010 to latent status 1 in 2015 relates to a
remarkable increase in GGGI, from .698 to .874, as well as in GI, from .139 to
.057. Table 1 shows values for countries that changed their ordinal clustering
ranking in the five-year period.

Official statistics provide the two measure annually. With reference to time
latent states, LMMs estimation showed an overall stability of the gender gap
in the observational time, since the indicators transitional matrix (8) is almost
diagonal. On the first hand, the widespread, general access to education and
health has been experimented with different times and speed. Therefore, at
the initial time point of our investigation (2010) some countries see slower,
if not almost nonexistent, progress rates after 2010. On the other hand, GII
has being decreasing far more slowly since 2010 not only in countries with a
longer record of low GII values, like Switzerland, but also for countries that
reached these goals more recently, like Greece. Furthermore, GGGI trend is
generally very modest (fig.2) and it has often come to a halt after 2008 in
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Country 2010 GGGI 2010 GII 2015 GGGI 2015 GII 2010 status 2015 status
Germany 0,7449 0,117 0,7790 0,073 2 1
Greece 0,6662 0,179 0,6850 0,121 4 2
Ireland 0,7597 0,192 0,8070 0,135 3 2
Italy 0,6798 0,175 0,7260 0,085 4 2
Slovenia 0,6982 0,139 0,7840 0,057 x 1
Spain 0,7345 0,118 0,7420 0,087 3 2
Turkey 0,5828 0,564 0,6240 0,340 4 3
United Kingdom 0,7402 0,206 0,7580 0,149 1 2

Table 1. GGGI, GII and latent status for countries with an upward shift in ordinal
clustering

a specific dimension, Economic Opportunity and Political Empowerment, as
signalled by the World Economic Forum’s Global Gender Gap Report 2016,
that states that the gap in the economic pillar is currently larger since 2008
[11]. Besides the disparities in opportunities and salary, a major critical issue is
posed by the perspective need for women to acquire Stem (Science, Technology,
Engineering and Mathematics) skills, with several implications for everyday
social and personal lives.

Fig. 2. GGGI trend from 2010 to 2016 in some European countries

5 Conclusion

LMMS have been recently applied to estimate latent traits in time and/or space
in social sciences, mainly to highly specific research areas that did not respond
adequately to other techniques. Adapting the model in [?] to a wider con-
text of social sciences, our proposal consist in the application of LMMS to a
more extensive and explored field, Gender Statistics. By means of an empiri-
cal exercise, we showed how these models can provide a relevant contribution,
since they produced a latent ordinal classification of gender gap between 30
European countries from 2010 to 2015 using two different social composite in-
dicators. They allowed us to obtain synthetic information from the transition
matrix that, when diagonal, expresses absence of change. In our exercise, the
matrix was nearly diagonal, with reduced margins of improvement for several
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countries and in time, especially in the economic sector.
Given the complexity and the multidimensionality of social phenomena, LMMs
can contribute highly to a unitarian view. Their latent approach, both in space
and in time, can summarise information from different sources. As a matter of
fact, both space and time components proved valuable in our application. As
far as the former component is concerned, LMMs allowed to identify at a glance
areas that are homogeneous or different with respect to gender equality and,
in case of differences, permitted to set and order of such a divergence. With
respect to the time component, LMMS returned a valuable, concise measure
the trend to stagnation that gender parity is experimenting in western coun-
tries, due to the rigidness of the economic sector, in particular of the labour
market. These models provided also information of national changes in time,
i.e. if, how fast and how well some countries were able to set women and men
more equal.
Further developments can focus on covariates, especially when expressing op-
portunities in everyday routines. The persistence of disparities in economic
treatment, in fact, can rarely be attributed to explicit law discriminations in
western countries, but they can be more often retrieved in availability and in
simplification of services to the person and to parenthood, as well as in customs
and in mental habits.
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Abstract. PageRank was initially defined by S. Brin and L. Page for the purpose
of ranking homepages (nodes) based on the structure of links between these pages.
Studies has shown that PageRank of a graph changes with changes in the structure of
the graph. In this article we examine how the PageRank changes when two or more
outside nodes are connected to a line directed graph. We also look at the PageRank
of a graph resulting from connecting a line graph to two complete graphs. In this
paper we demonstrate that both the probability (or random walk on a graph) and
blockwise matrix inversion approaches can be used to determine explicit formulas for
the PageRanks of simple networks.
Keywords: Graph, PageRank, Random walk.

1 Introduction

PageRank was first introduced by Brin and Page [1] to rank homepages (nodes)
on the Internet, based on the structure of links between these pages. When
a person is interested in getting a certain information from the internet, he is
most likely going to use a search engine (eg. Google search engine) to look for
such information. Moreover, he will be interested in getting the most relevant
ones. What PageRank aims to do, is to sort out and place the most relevant
pages first in the list of all information displayed after the search.

It is known that the number of pages on the internet is very large and keeps
on increasing over time. For this reason, the PageRank algorithm need to be
very fast to accommodate the increasing number of pages and at the same time
retaining the requirement for quality of the ranking results as one carries out
an internet search [1].

Algorithms similar to PageRank are available, for instance, EigenTrust al-
gorithm, by Kamvar et al.[2], applied to reputation management in peer-to-peer
networks, and DeptRank algorithm, which is used to evaluate risk in financial
networks (Battiston et al.[10]). These imply that PageRank concept can be
adopted to various networks problem.

Usually PageRank is calculated using power method. The method has been
found to be efficient for both small and large systems. The convergence speed
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of the method on a webpage structure depends on the parameter c, where c is
a real number such that 0 ≤ c ≤ 1 (Haveliwala and Kamvar[12]), and the prob-
lem is well conditioned unless c is very close to 1 (Kamvar and Haveliwala[4]).
However, many methods have been developed for speeding up the calculations
of PageRank in order to meet the increasing number of pages on the inter-
net. Some of these methods include aggregating webpages that are close and
are expected to have similar PageRank (Ishii et al.[7]), partitioning the graph
into components as in (Engström and Silvestrov[14]), removing the dangling
nodes before computing PageRank and then calculate their ranks at the end or
use a power series formulation of PageRank (Anderson and Silvestrov[8]), and
not computing the PageRank of pages that have already converged in every
iteration as suggested by Sepander et al.[13].

There are also studies on a large scale using PageRank and other measure
in order to learn more about the Web. One of them is looking at the theoretical
and experimental perspective of the distribution of PageRank as by Dyani et
al.[11].

The theory behind PageRank is built from Perron-Frobenius theory (Berman
and Plemmons[9]) and the study of Markov chains (Norris [3]). But how PageR-
ank changes with changes in the system or parameters is not well known. En-
gström and Silvestrov[5,6] investigated the changes of PageRank of the nodes
in the system consisting of a line of nodes and an outside node and/or a com-
plete graph connected to the line of nodes in different ways. In this article, we
will extend their work by looking at a line graph connected to multiple out-
sides nodes, and a line graph connected to two complete graphs. For instance,
we will consider what happens when two or more nodes are linked to a line
graph. Like in (Engström and Silvestrov[5]), we will consider PageRank as the
solution to a linear system of equations as well as probabilities of a random
walk through the graph. In the similar way, non-normalized PageRank will be
considered.

2 Preliminaries

This section describes important notations and definitions. We start by giving
some notations and thereafter essential definitions that are used throughout
the article.

• SG: The system of nodes and links for which we want to calculate PageR-
ank. It contains both the system matrix AG and a weight vector vG. A
subindex G can be either a capital letter or a number in the case of multiple
systems.
• nG: The number of nodes in system SG.
• AG: A system matrix of size nG × nG where an element aij = 0 means

there is no link from node i to node j. Non-zero elements are equal to 1/ri
where ri is the number of links from node i.
• uG: Non-negative weight vector, not necessary with sum one. Its size is
nG × 1.
• c: A parameter 0 < c < 1 for calculating PageRank, usually c = 0.85.
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• gG: A vector with elements equal to one for dangling nodes and zero oth-
erwise in SG. Its size is nG × 1.
• MG: Modified system matrix, MG = c(AG + gGu

>
G)> + (1− c)uGe

> used
to calculate PageRank, where e is the unit vector. Size nG × nG.
• S: Global system made up of multiple disjoint subsystems S = S1∪S2 . . .∪
SN , where N is the number of subsystems.

In the cases where there is only one possible system the subindex G is omitted.
For the systems making up S we define disjoint systems in the following way.

Definition 1. Two systems S1, S2 are disjoint if there are no paths from any
nodes in S1 to S2 or from any nodes in S2 to S1.

PageRank can be defined in various versions, for instance in [5] where two
versions were presented. However, in this paper we will use the non-normalized
PageRank, denoted as Rj for node j, and it is defined as

Definition 2. RG for system SG is defined as RG = (I−cA>G)−1nGuG, where
I is an identity matrix of same size as AG.

Definition 3. Consider a random walk on a graph described by AG, which is
the adjacency matrix weighted such that the sum over every non-zero row is
equal to one. In each step with probability c ∈ (0, 1), move to a new vertex
from the current vertex by traversing a random outgoing edge from the current
vertex with probability equal to the weight on the corresponding edge weight.
With probability 1− c or if the current vertex have no outgoing edges, we stop
the random walk. The PageRank R for a single vertex vj can be written as

Rj =

 ∑
vi∈V,vi 6=vj

wiPij + wj

( ∞∑
k=0

(Pjj)
k

)
, (1)

where Pij is the probability to hit node vj in a random walk starting in node
vi described as above. This can be seen as the expected number of visits to
vj if we do multiple random walks, starting in every node once and weighting
each of these random walks by w [5].

Next, let us define graph-structures we will encounter in the section that follows.

Definition 4. A simple line is a graph with nL nodes where node nL links to
node nL−1 which in turn links to node nL−2 all the way until node n2 link to
node n1.

Definition 5. A complete graph is a group of nodes in which all nodes in the
group links to all other nodes in the group.

The following well known lemma for blockwise inversion will be used in this
article. A proof can be found, for example in Bernstein [15].

Lemma 1.[
B C
D E

]−1
=

[
(B− CE−1D)−1 −(B− CE−1D)−1CE−1

−E−1D(B− CE−1D)−1 E−1 + E−1D(B− CE−1D)−1CE−1

]
(2)

where B,E is square and E, (B− CE−1D) are nonsingular.
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3 Changes in PageRank when connecting the simple line
graph with multiple outside nodes

In this section, we presents four graphs and associated PageRanks lemma and
theorem. We will start with a lemma from where explicit PageRank for each
vertex of the graph considered can be determined.

3.1 Connecting the simple line with multiple links from m outside
nodes to one node in the line

Consider a simple line graph that has L vertices. Suppose vertex nj , j ∈ [1, L]
is linked to m outside vertices as shown in Figure 1. It can be seen that if
j = 1, then the node is said to be an authority node.

n1 n2 n3 nj .. nk .. nL

ν1

ν2

νm

Fig. 1. A simple line directed graph with m outside vertices

Lemma 2. The PageRank of a node ei belonging to the line in a system con-
taining a simple line with m outside nodes linking to one node j in the line
when using uniform weight vector u can be expressed as

Ri =

nL−i∑
k=0

ck + bij =
1− cnL−i+1

1− c
+ bij

bij =

{
mcj−i+1, if i ≤ j

0, if i > j

(3)

where m ≥ 1 and nL is the number of nodes in the line. The new nodes each
have rank 1.

Proof. Applying the notion of probability, the PageRank for a node when a
uniform u is used can be written in the form Equation (1). Let ei and ej be
the nodes on the line. Suppose that Pji is the probability of hitting node ei
starting at node ej . Considering a random walk on a graph described by cAG,
i.e. we walk to the new node with probability c and stop with probability 1−c,
therefore Pji becomes

Pji = cj−i, j > i

and zero, otherwise. It follows that the expected numbers of visits to ei if
multiple random walks is performed starting at any node ej , for j > i is
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expressed as

∑
allj:ej 6=ei

Pji + 1 =

nL∑
j=i+1

cj−i + 1 =
1− cnL−i+1

1− c
,

where nL is the number of nodes in the line. Next we show that the m outside
nodes linking to node ej on the line adds bij = mcj−i+1 for j ≥ i. The proof
of this part is similar to Theorem 2 in [14], only that we need to show that it
is generally true for m nodes. By induction; for m = 1, it is exactly the same
as in [14]. Next, assume that it is true for m = k, then

bij(k) = cj−i+1 + cj−i+1 + · · ·+ cj−i+1︸ ︷︷ ︸
k times

= kcj−i+1.

It follows that for m = k + 1,

bij(k + 1) = bij(k) + cj−i+1 = (k + 1)cj−i+1.

Finally, it is obvious that the PageRank of the m nodes is 1 each since no node
links to each of the nodes.

Remark It is essential to note that we are dealing with simple line graph as
given in Definition 4 thus it is not possible to hit node i from the left, that is.,
i− 1 if one takes a random walk from any node j such that j < i as shown in
Figure 1.

3.2 Connecting a simple line with multiple links from multiple
outside nodes to the line

Assume that the nodes n1, n2, · · · , n5 on the line are linked to outside nodes
m1,m2, · · · ,m5 respectively, where mj ≥ 0 (the number of outside nodes linked
to node j on the line graph). Suppose mj = 1 for all j ∈ {1, 2, · · · , 5} as
shown in the Figure 2. To gain a better understanding of how to obtain the

n1 n2 n3 n4 n5

m1 m2 m3 m4 m5

Fig. 2. A simple line graph with one outside vertex linked to one vertex on the line

PageRanks of Figure 2, let us have a look at R4 and R5 on the line graph which
correspond to nodes n4 and n5 respectively. Using Definition 2, the Pagerank
R5 = 1 + m5c. Similarly, we get R4 = 1 + m4c + cR5 and substituting for R5

yields R4 = 1−c2
1−c + m4c + m5c

2 = 1−c2
1−c +

∑5
j=4 mjc

j−3. In overall PageRank
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RSL
on the line graph before substituting for mj is
R1

R2

R3

R4

R5

 =


1 + c + c2 + c3 + c4 + m1c + m2c

2 + m3c
3 + m4c

4 + m5c
5

1 + c + c2 + c3 + m2c + m3c
2 + m4c

3 + m5c
4

1 + c + c2 + m3c + m4c
2 + m5c

3

1 + c + m4c + m5c
2

1 + m5c


(4)

and the PageRank of each of the outside node is equal to 1.
It can be seen that a better approach to find the PageRank would be to start
with R5, R4 and so on, that is, recursively then generalization can easily be
made. In the theorem that follows, the PageRanks for such general network is
proposed for mj ≥ 0.

Theorem 1. The PageRank of a node ei belonging to the line in a system
containing a simple line with multiple outside nodes, m1,m2, · · · ,mi, · · · ,mL

linking to every nodes n1, n2, · · · , ni, · · · , nL in that order respectively in the
line when using uniform weight vector u can be written as

Ri =
1− cnL−i+1

1− c
+ bi, where

bi =

{∑nL

j=i mjc
j−i+1, if j ≥ i

0 if i < j.
,

(5)

The outside nodes each have rank 1.

Proof. We start by calculating the PageRank of the nodes i on the directed line
graph, we have partially shown how to achieve this in Lemma 2. However, the
Pagerank Ri on the line graph is obtained by dividing the overall nodes of the
graph into two: along the line and outside. Then writing the PageRank using

Definition 3 while taking into account the weight wi = 1. Hence,
1− cnL−i+1

1− c
is the expected number of visit to node i when arbitrary random walks are
performed starting from any node j. The term bi is the expected number of
visits to node i starting from each outside nodes ej , for j ≥ i. Recall that if
you are along the line, you can hit node L− 1 while starting from node L but
not the vice verse. Now, without loss of generality, take the node L on the line,
then

RL = 1 + mLc =
1− c

1− c
+ mLc =

1− cL−L+1

1− c
+ mLc

L−L+1,

=
1− cL−L+1

1− c
+

L∑
j=L

mjc
j−L+1.

(6)

This proves that the formula is correct for the last node L in the line.
Next we prove that if the formula is correct for Rk then it is correct for

Rk−1 as well, which by induction proves that it is correct for all vertices in the
line.
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Now, assume that its true for k node on the line whose rank is Rk, then

Rk =
1− cnL−k+1

1− c
+

nL∑
j=k

mjc
j−k+1.

Thus to find Rk−1, we add the weight wk−1 = 1, the influence of PageRank
Rk due to one-step probability, cRk and the expected number of visits to node
k−1 starting from each outside nodes eL−1, mk−1c . Therefore Rk−1 becomes

Rk−1 = 1 + cRk + mk−1c,

= 1 + c

(
1− cnL−k+1

1− c

)
+ c

nL∑
j=k

mjc
j−k+1 + mk−1c.

(7)

Combining the first two terms and rewriting the last two gives

Rk−1 =
1− c + c− cnL−k+2

1− c
+

nL∑
j=k

mjc
j−(k−1)+1 + mk−1c

k−1−(k−1)+1.

Finally moving the last term into the sum and simplifying, we get

Rk−1 =
1− cnL−(k−1)+1

1− c
+

nL∑
j=k−1

mjc
j−(k−1)+1.

For the outside nodes, each has PageRank equal to 1.

3.3 Connecting the simple line with two links from two outside
nodes to the line.

In this graph we let two vertices nj and nk for k > j, be linked to two outsides
vertices as shown in Figure 3. It worth mentioning that this graph is one of
the types presented in the previous subsection where two of the outside nodes
are non-zero and the rest are zeros. Hence, it can be proved using Theorem
1. But to avoid repetition, we show that the PageRanks of such graph can be
obtained using matrix approach in Lemma 1.

n1 n2 n3 nj .. nk .. nL

e1 e2

Fig. 3. A simple line directed graph with two outside vertices linked to the line
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Proposition 1. The PageRank of a node ei belonging to the line in a system
containing a simple line with two outside nodes linking to two arbitrary nodes,
j and k with j < k, respectively in the line when using uniform weight vector
u can be written as

Ri =
1− cnL−i+1

1− c
+ bik for i ≥ k

bik =

{
c, if i = k

0, if i > k
,

(8)

Ri =
1− cnL−i+1

1− c
+ ck−i+1 + bij for j ≤ i < k

bij =

{
c, if i = j

0, if i > j

(9)

Ri =
1− cnL−i+1

1− c
+ c1−i

(
cj + ck

)
, for i < j, (10)

where nL is the number of nodes in the line. The new nodes each have rank 1.

Proof. Let B be part of the matrix (I − cAT
G) corresponding to the nodes in

the line such that

(I − cAT
G) =

[
B C
D E

]
. (11)

It follows that, B is an nL × nL matrix of the form

B =


1 −c 0 · · · 0

0 1 −c
...

...
. . .

. . . −c
0 · · · · · · · · · 1


and C is an nL × 2 matrix of the form

C =



0 0
... −c
−c 0

0
...

0 0

 .

The non-zero entries of C correspond to the positions j and k in the line at
which the two outsides nodes link to. The matrix D is a 2 × nL zero matrix,
and E is an identity matrix of order 2. From (11), we write

(I − cAT
G)−1 =

[
Binv C inv

Dinv Einv

]
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and using Lemma 1 for blockwise inversion, we have

Binv = (B − CE−1D)−1 = B−1.

Since B is the matrix for the simple line, we get

Binv =


1 c c2 · · · cnL−1

0 1 c · · · cnL−2

0 0 1 · · · cnL−3

...
...

. . .
. . .

...
0 0 · · · 0 1

 . (12)

Also, using Lemma 1,

C inv = −BinvCE−1 = −BinvC =



ck cj

ck−1 cj−1

ck−2
...

... c
c 0
0 0
...

...
0 0


since E−1 = I. Note also that Dinv = O. Since the weight vector u is uniform
we get the PageRank of a node as the sum of corresponding row in (I−cAT

G)−1

as given by (8), (9) and (10).

3.4 Connecting the simple line with two links from the line to two
outside nodes

Suppose we consider a graph where two nodes in the line link to two outside
nodes as in Figure 4. We formulate the following to obtain the pageRank

n1 n2 n3 nj .. nk .. nL

e1 e2

Fig. 4. A simple line with two links from the line to two outside nodes

Theorem 2. The PageRank Ri of a node ei belonging to the line in a system
containing a simple line with two outside nodes, e1 and e2, whose links are
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from node j and k, j < k, respectively in the line when using uniform weight
vector u can be expressed as

Ri =

nL∑
m=i

cm−i =
1− cnL−i+1

1− c
, for i ≥ k, (13)

Ri =
k∑

m=i+1

cm−i−1 +
1

2

nL∑
m=k

cm−i

=
2− ck−i

(
1 + cnL−k+1

)
2(1− c)

, for j ≤ i < k, (14)

Ri =

j∑
m=i+1

cm−i−1 +
1

2

k−1∑
m=j

cm−i +
1

4

nL∑
m=k

cm−i, for i < j

=
4− ck−i − cj−i

(
2 + cnL−j+1

)
4(1− c)

, (15)

where nL is the number of nodes in the line. The PageRank of the new nodes
e1 and e2 are respectively,

Re1 = 1 +
1

2
c

(
1− ck−j

1− c

)
+

1

4
ck−j+1

(
1− cnL−k+1

1− c

)
(16)

and

Re2 = 1 +
1

2
c

(
1− cnL−k+1

1− c

)
. (17)

Proof. Consider nodes vj and vk, k > j on the line graph GL. The PageRank,
for the node i ≥ k can be found in the same way as the PageRank on directed
line graph. By Theorem 1 and using the fact that u is the uniform vector. The
probability of hitting node ei starting at node ej in the line is

Pji, j > i

Then, the overall PageRank, Ri if i ≥ k is determined by summing over all
nodes for which i ≥ k is true.

Ri =
∑

em∈S,em 6=ei

Pmi + 1,

=

nL∑
m=i+1

cm−i + 1 =
1− cnL−i+1

1− c
.

This ends the proof of the first part (Equation (13)).
To find the PageRank in the line graph for which j ≤ i < k. We observe

that

Pkk−1 =
1

2
cRk,
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where Rk is the PageRank at the node labeled k. Using this argument, the
overall PageRank for j ≤ i < k is 1

2c
k−iRk plus the PageRank of a directed

line graph between j and k, i.e.

1− ck−i

1− c
.

Adding and simplifying the two terms

Ri =
1− ck−i

1− c
+

1

2
ck−iRk,

=
2− ck−i

(
1 + cnL−k+1

)
2(1− c)

, for j ≤ i < k.

Further, to obtain the PageRank for i < j, we first look at the probability of
the nodes labeled j and k hitting its neighboring nodes on the line, say ei.
These can be presented as

Pki =
1

4
ck−i and Pji =

1

2
cj−i,

respectively. Also, we need to consider the PageRank on the nodes n1 to nj−1
for the portion of directed line graph. This is essentially equal to

j∑
m=i+1

cm−i−1 + 1 =
1− cj−i

1− c
.

The overall Ri for i < j, is

Ri =

j∑
m=i+1

cm−i−1 +
k−1∑
m=j

Pmi +

nL∑
l=k

Pli,

where

Pmi =
1

2
cm−i and Pli =

1

4
cl−i.

Substitute and simplify to obtain

Ri =

j∑
m=i+1

cm−i−1 +
1

2

k−1∑
m=j

cm−i +
1

4

nL∑
l=k

cl−i,

=
4− ck−i − cj−i

(
2 + cnL−j+1

)
4(1− c)

.

Finally, the PageRank of Re2 is equal to

Pk1 + 1 = 1 +
1

2
cRk, therefore Rk =

1− cnL−k+1

1− c
.
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Similarly,

Re1 = Pj1 + 1,

=
1

2
cRj + 1,

= 1 +
1

2
c

(
1− ck−j

1− c

)
+

1

4
ck−j+1

(
1− cnL−k+1

1− c

)
and this completes the proof.

4 Connecting the simple line with two links from the
line to two complete graphs

Consider a network S in which a directed line graph GL is connected to two
complete graphs SG1 and SG2 such that S = SL ∪ SG1 ∪ SG2 . Assume that
subgraph SG1

and SG2
is linked to nodes j and k respectively as shown in

Figure 5.

n1 n2 n3 nj .. nk .. nL

ng11 ng21

ng12 nG1

ng13 ..

ng22 nG2

ng23 ..

Fig. 5. A simple line with two links from the line to two complete graphs

Theorem 3. Let S be a system made up of three systems: a simple line SL

with nL nodes, two complete graphs, SG1
and SG2

, with nG1
and nG2

nodes,
respectively. We add two links from nodes j and k, j < k in the line to nodes gj
and gk in the first and second complete graph, respectively. Assuming uniform
weight vector u, we get the PageRank RL,i, where SG = SG1 ∪ SG2 , for the
nodes in the line after the new links, RG1,i for the nodes in the first complete
graph SG1

and RG2,i for the nodes in the second complete graph SG2
as:

RL,i =

nL∑
m=i

cm−i =
1− cnL−i+1

1− c
, for i ≥ k, (18)

RL,i =
k∑

m=i+1

cm−i−1 +
1

2

nL∑
m=k

cm−i, for j ≤ i < k

=
2− ck−i

(
1 + cnL−k+1

)
2(1− c)

, for j ≤ i < k, (19)
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RL,i =

j∑
m=i+1

cm−i−1 +
1

2

k−1∑
m=j

cm−i +
1

4

nL∑
m=k

cm−i, for i < j

=
4− ck−i − cj−i

(
2 + cnL−j+1

)
4(1− c)

, (20)

where nL is the number of nodes in the line. The PageRank of the nodes in the
complete graphs are given by

RG2,gk =
c

2

(
1− cnL−k+1

1− c

)(
(nG2

− 1)− c(nG2
− 2)

(nG2
− 1)− c(nG2

− 2)− c2

)
+

1

1− c
(21)

RG2,i =

(
c2(1− cnL−k+1)

2(1− c)

)(
1

(nG2
− 1)− c(nG2

− 2)− c2

)
+

1

1− c
(22)

RG1,gj =

[
2c− ck−j+1 − cnL−j+2

4(1− c)

] [
(nG1 − 1)− c(nG1 − 2)

(nG1
− 1)− c(nG1

− 2)− c2

]
+

1

1− c
(23)

RG1,i =

[
2c2 − ck−j+2 − cnL−j+3

4(1− c)

] [
1

(nG1
− 1)− c(nG1

− 2)− c2

]
+

1

1− c
(24)

where RG1,gj is the PageRank for the node in the complete graph SG1 linked
by the line and RG1,i is the PageRank of the other nodes in SG1 . Similarly,
RG2,gk is the PageRank for the node in the complete graph SG2

linked by the
line and RG2,i is the PageRank of the other nodes in SG2

.

Proof. The prove of Equations (18), (19) and (20) can be done in the similar
way as in Theorem 2 parts (13) and (14).

In addition, the proofs of Equations (21), (22), (23) and (24) are similarly
done using Theorem 2 and blockwise inversion of line and complete graphs as
in Engström and Silvestrov[5].

5 Conclusions

We have observed that these simple construction of networks can be used to un-
derstand common graph such as star, complete graph and many others. Their
PageRanks are determined with minimum numerical consideration and this is
advantageous for visual identification of important nodes in a simple directed
networks. We have noted that probability approach to determine the PageR-
ank of simple graphs seem to be straight forward compared to blockwise matrix
inversion approach, particularly to line directed graphs with multiple outside
nodes and complete graphs.
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Abstract. The multistate approach to cascading effect modeling in critical infrastructure 
(CI) networks is proposed. Describing cascading effects in CI networks both the 

dependencies between subnetworks of this network and between their assets are 

considered. Proposed theoretical models are applied to the safety analysis of the 

exemplary network of transmission lines regarding dependencies of its lines and 
subnetworks. For presented exemplary network, the intensities of departure from the 

safety state subsets of transmission lines are estimated for arbitrarily assumed values of 

the network mean lifetimes. 

Keywords: multistate approach, ageing network, cascading effects, dependency model. 

 
 

 

1  Introduction 
 

In the paper we describe and analyse local load sharing (LLS) model of 

dependency for a series network, equal load sharing (ELS) model of 

dependency for a parallel network and mixed load sharing (MLS) rule for a 

parallel-series network. In such networks, taking into account dependencies 

between assets and subnetworks, after changing the safety state subset by some 

of assets or subnetworks to the worse safety state subset, the lifetimes of 

remaining assets, respectively subnetworks, in the safety state subsets decrease. 

Models of dependency and behavior of components can differ depending on the 

structural and material properties of the network, operational conditions and 

many other factors, as for example natural hazards. According to the equal load 

sharing rule [15], [16], after changing the safety state subset by some of assets 

to the worse safety state subset, the lifetimes of remaining assets in the safety 

state subsets decrease equally depending, inter alia, on the number of these 

assets that have left the safety state subset [3], [4], [6]. In the local load sharing 

model of dependency [8], [9], after departure from the safety state subset by one 
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of assets the safety parameters of remaining assets are changing dependently of 

the coefficients of the network load growth [1], [5], [6]. These coefficients are 

concerned with the distance from the asset that has got out of the safety state 

subset and can be interpreted in the metric sense as well as in the sense of 

relationships in the functioning of the network. Apart from the dependency of 

assets’ departures from the safety states subsets, the dependencies between 

subnetworks are also taken into account in this paper [5]-[7]. 

 

2  Multistate series CI network with dependent assets 
 

Describing cascading effects in a series network we can consider a network 

composed of n ageing assets denoted by Ei, i = 1,…,n. We assume all assets and 

a CI network have the safety state set {0,1,...,z}, z ≥ 1, where the safety state 0 is 

the worst and the safety state z is the best [11], [12]. Further, we assume that 

after changing the safety state subset by one of assets in a network to the worse 

safety state subset, the lifetimes of remaining assets in the safety state subsets 

decrease dependently of the distance from the asset that has left the safety state 

subset. More exactly, we assume that these lifetimes decrease mostly for 

neighbour components in first line, then less for neighbour components in 

second line and so on and we call this rule of components dependency a local 

load sharing (LLS) rule. The local load sharing rule for a multistate series 

network is described in [5], [7]. 

We denote by E[Ti(u)] and E[Ti/j(u)], i = 1,2,...,n, j = 1,2,...,n, u = 1,2,…,z, the 

mean values of components’ lifetimes Ti(u) and Ti/j(u), respectively, before and 

after departure of one fixed component Ej, j = 1,…,n, from the safety state 

subset {u,u+1,…,z}, u = 1,2,…,z.  With this notation, in considered LLS rule, 

the mean values of components lifetimes in the safety state subset {υ,υ+1,…,z}, 

υ = u,u-1,…,1, u = 1,2,…,z, are decreasing according to the following formula: 

 

),(),()(/  iijji TdqT   )],([),()]([ /  iijji TEdqTE    

i = 1,…,n, j = 1,…,n, ,1,,1,  uu                                                               (1) 

 

where the coefficients of the network load growth ),,( ijdq   ,1),(0  ijdq   i 

= 1,…,n, j = 1,…,n, and q(υ,0) = 1 for υ = u,u-1,…,1, u = 1,2,…,z-1, are 

functions of components’ distance jid ij   from the component that has got 

out of the safety state subset {u,u+1,…,z}, u = 1,2,…,z. The distance between 

network assets can be interpreted in the metric sense as well as in the sense of 

relationships in the functioning of the network components.  

The safety function of a multistate series network with assets dependent 

according to LLS rule is given in [7] and in case of assets with exponential 

safety functions the results can be found in [5]. In [5] the safety analysis of a 

multistate series network with dependent subnetworks and of a multistate series 

network with dependent assets of its subnetworks is also presented. 

We consider a multistate series network composed of assets having identical 
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exponential safety functions 

 

)],,(,),1,(,1[),( ztStStS  ,0t                                                                     (2) 

 

with the coordinates 

 

,0)(,0 ],)(exp[),(  uttuutS  ,,,2,1 zu                                            (3) 

 

where λ(u), u = 1,2,…,z, are components’ intensities of departure from the 

safety state subset {u,u+1,…,z}, u = 1,2,…,z. Then, the intensities λi/j(υ), i = 

1,…,n, j = 1,…,n, υ = u,u-1,…,1, of components’ departure from this safety 

state subset after the departure of the jth component Ej, j = 1,…,n, from (1), are 

given by 
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dq 


  .1,,1,  uu                                                                 (4) 

 

In this case from results presented in [7] we can obtain the following 

proposition. 

Proposition 1. If in a multistate series network assets are dependent according to 

the local load sharing rule and have identical exponential safety functions (2)-

(3), then its safety function is given by the vector 

 

)],,(,),1,(,1[),( zttt LLSLLSLLS SSS  ,0t                                                    (5) 

 

with the coordinates 
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].)(exp[),( tznztLLS S                                                                                  (7) 

 

From Proposition 1, we immediately obtain a corollary concerned with the 

mean values and standard deviations of the lifetimes in the safety state subsets 

of a multistate series network. 

Corollary 1. If in a multistate series network components are dependent 

according to the local load sharing rule and have identical exponential safety 

functions (2)-(3), then its mean lifetime in the safety state subset {u,u+1,…,z}, u 

= 1,2,…,z, is given by 
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and the standard deviation of the network sojourn time in the safety state subset 

{u,u+1,…,z}, u = 1,2,…,z, is given by  

 

,)]([)()( 2uunu LLSLLSLLS   ,1,,2,1  zu                                            (10) 
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and 
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Further, knowing the mean lifetimes )(uLLS  in the safety state subsets 

{u,u+1,…,z}, u = 1,2,…,z, of a multistate series network, using formulae (8)-

(9), we can determine the intensities ),(u  u = 1,2,…,z, of assets’ departure 

from the safety state subset {u,u+1,…,z}. Namely, from (9) we can estimate the 

intensity )(z  

 

,
)(

1
)(

zn
z

LLS
                                                                                              (13) 

 

and substituting it into formula (8) for u = z-1 we get 
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(14) 

 

Next, from formula (14), for assumed values of the coefficients of the network 

load growth ),,1( ijdzq    we can estimate the intensity ).1( z  Similarly, 

using (8) for u = z-2,…,1, we can estimate the intensities ).1(),...,2(  z  

Then, according to the well known relationship between the lifetime mean value 

in this safety state subset and the intensity of departure from this safety state 

subset we can determine the mean values of assets’ lifetimes in the safety state 

subsets {u,u+1,…,z}, u = 1,2,…,z.  

  

3  Multistate parallel CI network with dependent assets  
 

For a parallel network composed of n assets we assume that after decreasing the 

safety state by one of the assets the increased load can be shared equally among 

the remaining assets. More generally, we assume that after leaving the safety 

state subset by some of assets, the lifetimes of remaining assets decrease equally 

depending on the number of these assets that have left the safety state subset. 

Additionally these changes are influenced by the component stress 

proportionality correction coefficient, concerned with features of particular 

network and its assets. More exactly, if ,1,,2,1,0,  n  assets are out of 

the safety state subset {u,u+1,...,z}, the mean values of the lifetimes )(' uTi  in 

the safety state subset {u,u+1,...,z} of the remaining assets become less 

according to the formula 

 

)],([)()]('[ uTE
n

n
ucuTE ii


 ,,,2,1 ni  ,,,2,1 zu                                  (15) 

 

where c(u) is the component stress proportionality correction coefficient for 

each u, ,,,2,1 zu   [4], [6].  

Hence, for case of network with dependent assets having identical exponential 

safety functions (2)-(3), we get following formula for intensities of departure 

from the safety state subset {u,u+1,...,z}, of remaining assets 
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Proposition 2. If in a multistate parallel network assets are dependent according 

to the equal load sharing rule and have identical exponential safety functions 
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(2)-(3), then its safety function is given by the vector 

 

)],,(,),1,(,1[),( zttt ELSELSELS SSS  ,0t                                                 (17) 

 

with the coordinates 
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Corollary 2. If in a multistate parallel network assets are dependent according to 

the equal load sharing rule and have identical exponential safety function given 

by (2)-(3), then the system lifetime in the safety state subset {u,u+1,…,z}, u = 

1,2,…,z, has Erlang distribution with the shape parameter n and the scale 

parameter nλ(u)/c(u), u = 1,2,…,z. 

Corollary 3. If in a homogeneous multistate parallel system components are 

dependent according to the equal load sharing rule and have identical 

exponential safety functions (2)-(3), then its mean lifetime in the safety state 

subset {u,u+1,…,z} is given by 
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  ,,,2,1 zu                                                                            (19) 

 

and the standard deviation of the networks sojourn time in the safety state subset 

{u,u+1,…,z} is given by  
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4 Multistate parallel-series network with dependent 

subnetworks and dependent assets of these subnetworks  
 

Considering cascading effects in networks with more complex structures we can 

link the results of safety analysis for previously described dependency models. 

Then, apart from the dependency of subnetworks’ departures from the safety 

states subsets we can take into account the dependencies between assets in 

subnetworks. This way we can proceed with parallel-series network assuming 

the dependence between its parallel subnetworks according to the local load 

sharing rule and the dependence between their assets in subnetworks according 

to the equal load sharing rule. Further, such model of dependency we will call a 

mixed load sharing (MLS) model [6], [7].  
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In this section, we propose MLS model of dependency between subnetworks 

and between assets in these subnetworks. We consider a multistate parallel-

series network composed of k parallel subnetworks Ni, i = 1,2,…,k, connected in 

series, illustrated in Figure 1. Further, by Eij, i = 1,2,…,k, j = 1,2,…,l, we denote 

the jth asset being in the ith subnetwork Ni, and we assume that all assets have 

identical exponential safety functions, given by (2)-(3). 
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Figure 1. The scheme of a regular parallel-series system. 

 

In each parallel subnetwork we consider dependency of its l assets according to 

ELS model, presented in Section 3. Then, after departure from the safety state 

subset {u,u+1,…,z}, u = 1,2,…,z, by ,1,,2,1,0,  l  assets of the 

subnetwork, the intensities of departure from this safety state subset of the 

remaining assets in the subnetwork from (16) are given by  
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Further, between these subnetworks, linked in series, we assume LLS model of 

dependency, presented in Section 2. Then, we assume that after departure from 

the safety state subset {u,u+1,…,z}, u = 1,2,…,z, by the subnetwork Ng, g = 

1,2,…,k, the safety parameters of assets of remaining subnetworks are changing 

dependently of the distance from the subnetwork that has got out of the safety 

state subset {u,u+1,…,z}, u = 1,2,…,z, expressed by index d. However, within a 

single subnetwork the changes of the safety parameters for all of its assets are 

on the same level according to the equal load sharing rule. The meaning of the 

distance d in MLS model is illustrated in Figure 1. 

We denote by E[Ti,j(u)] and E[Ti/g,j(u)], i = 1,2,...,k, g = 1,2,...,k, j = 1,2,...,l, u = 

1,2,…,z, the mean values of the lifetimes of ith subnetwork assets Ti,j(u) and 

Ti/g,j(u), respectively, before and after departure of one fixed subnetwork Ng, g = 

1,…,k, from the safety state subset {u,u+1,…,z}, u = 1,2,…,z. With this 

notation, in LLS model used between subnetworks, the mean values of their 

components lifetimes in the safety state subset {υ,υ+1,…,z}, υ = u,u-1,…,1, u = 

1,2,…,z, are decreasing, using (1), according to the following formula 

 

)],([),()]([ ,,/  jiigjgi TEdqTE   i = 1,2,...,k, g = 1,2,...,k, j = 1,2,...,l,        (22) 
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where the coefficients of the network load growth q(υ,dig) for υ = u,u-1,…,1,     

u = 1,2,…,z-1, are functions of subnetworks’ distance dig = |i - g| from the 

subnetwork Ng that has got out of the safety state subset {u,u+1,…,z}, u = 1,2, 

…,z.  

Considering Corollary 2 and results given in [6], concerned with Erlang 

distribution of network lifetime in the safety state subset {u,u+1,…,z}, u = 

1,2,…,z, in case assets of parallel network are dependent according to ELS rule, 

and linking this result with the safety function of a series network with assets 

dependent according to LLS rule and having Erlang safety functions, presented 

in [6], we can obtain the safety function of a multistate parallel-series network 

with mixed model of dependency.  

Proposition 3. If in a multistate parallel-series netowork, there are k parallel 

subnetworks dependent according to the local load sharing rule and assets of 

these parallel subnetworks are dependent according to the equal load sharing 

rule and have exponential safety functions (2)-(3), then its safety function is 

given by the vector  

 

)],,(,),1,(,1[),( zttt MLSMLSMLS SSS  ,0t                                               (23) 
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where )1,(
~

uaf g  is given by 
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and 
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Further, knowing the mean lifetimes )(uMLS  in the safety state subsets 

{u,u+1,…,z}, u = 1,2,…,z, of a multistate parallel-series network, from (13)-

(14), we can estimate the intensities ),(u
iN  u = 1,2,…,z, of departure from the 

safety state subset {u,u+1,…,z} of subnetworks Ni, i = 1,2,…,k. 

 

Namely, from (13) we get )(z
iN  given by 
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and ),(u
iN  u = z-1, z-2,…,1, can be estimated from  
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Then, for each parallel subnetwork with assets dependent according to ELS rule, 

from Corollary 2 about Erlang distribution of the subnetwork lifetime, we can 

obtain the intensities ),(u  u = 1,2,…,z, of this subnetwork assets’ departures. 

The intensity of departure from the state z, using (27), is 

 

)(

)(
)(

zkl

zc
z

MLS



                                                                                           (29) 

 

and the intensities of departure from the state subsets {u,u+1,…,z}, u = z-1, z-2, 

…,1, are given by 
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where )(u
iN  can be estimated from (28). 

 

4  Application – Exemplary CI Network 
 

As an example of a critical infrastructure network [2] we consider a network of 

transmission lines between distribution substations. Authors in [10] present 

reliability and risk analysis of power systems including cascading interruptions. 

Here, we analyze safety of a network N of transmission lines between eight 

substations (k = 8). We assume that subsystems Ni, i = 1,2,…,8, of lines between 

substations form a series safety structure and are dependent according to LLS 

rule. Each to substations are connected by two or three transmission lines in 

parallel safety structure and we assume ELS model of dependency between 

them. In first case we assume that there are two lines in operation between each 

two substations i.e. l = 2. Thus, we can conclude that an exemplary CI network 

can be analyzed as a parallel-series network under MLS model of dependency, 

described in Section 3. 

We assume that the network N is a 5-state system (z = 4) and we arbitrarily 

distinguish the following four safety states of the network and its assets: 

 a safety state 4 – the transmission line is new and fully effective, the network 

operation is fully effective,  

 a safety state 3 – the transmission line is not new but fully effective and the 

network operation is fully effective,  

 a safety state 2 – the transmission line is in operation, but it is suitable for 

further use, the network operation is less effective because of ageing,  
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 a safety state 1 – advanced ageing processes in the transmission lines and 

there is a high risk of failure, the network operation is less effective and does 

not provide sufficient transmission capacity,  

 a safety state 0 – the network or transmission line is destroyed. 

Further, knowing the mean lifetimes ),1(MLS ),2(MLS ),3(MLS ),4(MLS  of 

a network N, respectively in the safety state subsets {1,2,3,4}, {2,3,4}, {3,4}, 

{4}, from (27)-(28), we can estimate the intensities ),1(
iN  ),2(

iN  ),3(
iN  

),4(
iN  of departure from these subsets of subnetworks Ni, i = 1,2,…,8. We 

arbitrarily assume that 

 

,5)1( MLS ,4)2( MLS ,3)3( MLS 1)4( MLS  years.                         (31) 

 

Namely, from (27) the intensity )4(
iN  takes value 
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And substituting (31) and (32) into (28), we get 
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We assume LLS model of dependency between subnetworks Ni, i = 1,2,…,8, 

with following coefficients of load growth 
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where dig denotes the distance between subnetwork Ni, i = 1,2,…,8, and the 

subnetwork Ng, g = 1,2,…,8, that has got out of the safety state subset.  

From (33) and using (34) we can estimate the intensity )3(
iN  of subnetworks’ 

departure from the subset {3,4} 

 

.0230.0)3( 
iN                                                                                               (35) 

 

Similarly, applying (28) and substituting (31), (32), (34), (35), the intensities of 

subnetworks’ departure from the subset {2,3,4} and {1,2,3,4}, respectively 

account 
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,0112.0)2( 
iN .0071.0)1( 

iN                                                                   (36) 

 

Next, using (31) and the results (32), (35), (36), for assumed ELS model of 

dependency between transmission lines in subnetworks we can estimate the 

intensities of departure from the safety state subsets of transmission lines. 

Namely, from (29), the intensity of departure from the state 4 is 
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                                                                                            (37) 

 

For the component stress proportionality correction coefficient c(u) = 1, u = 1, 

2,3,4, it takes value 

 

,0625.0)4(                                                                                                    

(38) 

 

and the intensities of departure from the subsets {3,4}, {2,3,4} and {1,2,3,4}, 

from (30), are given by 

 

,0115.0)3(  ,0056.0)2(  .00355.0)1(                                                 (39) 

 

In second case, considering also transmission lines under construction, we 

assume that there are three lines between each two substations i.e. l = 3. Then, 

the intensities of departure from the safety state subsets of transmission lines are  

 

,04167.0)4(  ,00767.0)3(  ,00373.0)2(  .00237.0)1(                 (40) 

 

The failure coefficients of AC power lines by type of structure can be found, for 

example, in [14]. 

 

Conclusions 
 

In this paper a multistate approach [11], [12], [17], [18] to safety analysis of 

series, parallel and parallel-series ageing networks with different models of 

dependency is presented. Estimation of intensities of assets’ departures from the 

safety state subsets for predefined safety level can be helpful in designing of CI 

networks. As an application a network of transmission lines is considered 

assuming dependencies between its subnetworks and between lines in these 

subnetworks. Components of transmission and distribution networks require 

constant maintenance and their insulation properties degrade over time. Thus, 

multistate approach to the safety analysis of such a network seems to be 

reasonable. Further, such approach can help to capture the critical points and 

critical operations that can cause voltage collapse of the whole network. 
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Abstract. Considering the operation process of oil port terminal the paper 

focuses on processes related to the cargo movement inside the pipeline system. 

Technical parameters during all stages of crude oil transfer process are 

described. Processes of crude oil loading, discharging and internal recirculation 

are described. Analyzing the crude oil transfer process and its influence on the 

oil port terminal and operating environment safety, potential threats of oil spill 

during oil transfer are identified. The accidental events that can cause oil spill in 

the terminal are in the paper classified with distinction of internal and external 

as well as root and contributing causes. Finally, the discussion on protection of 

marine facilities against hydraulic transient pressure surges that can occur 

during crude transfer is performed. Some recommendations, including safety 

culture recommendation, are given.  

Keywords: oil port terminal, oil transfer, operation process, oil spill, pressure 

upsurge.  
 

1  Introduction 
 

In the Baltic Sea region, there are many oil terminals, which perform 

transshipment of crude oil and refined petroleum products. Oil terminals are a 

key element of the petroleum supply logistics of crude oil to refineries and oil 

transit. The accident in the oil terminal during unloading/loading of tankers may 

have a long or short-term consequences for the work of the terminal, that may 

be associated with the socioeconomic losses and environmental costs 

consequences. 

One of important causes of oil spill, is pressure upsurge inside the pipelines as a 

hydraulic hammer’s consequence. These pressure surges can be generated by 

anything that causes the liquid velocity in a line to change quickly e.g., valve 
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closure, pump trip, Emergency Shut Down (ESD) closure occurs and 

subsequently packing pressure. In the paper the particular attention is paid to the 

pressure upsurge inside the pipelines caused by sudden valve closure on the oil 

reloading installation in port terminal. 

 

2  Processes related to the crude oil transfer inside the pipeline 

system 
 

The operation process of the crude oil transfer has an influence on oil terminal 

safety and environment safety. Considering system composed of a single 

pipeline we can distinguish following operational states during its operation 

process:  

z1 − loading cargo with initially slow rate, 

z2 − laboratory tests of exported crude oil, 

z3 − loading cargo with full rate,  

z4 − loading cargo with reduced rate,  

z5 − unloading cargo with initially slow rate, 

z6 − unloading cargo with full rate,  

z7 − unloading cargo with reduced rate,  

z8 − terminal idle mode, there is no transfer of cargo, 

z9 − internal recirculation process. 

We describe below all listed operational states of crude oil transfer process 

specifying technical parameters. 

First, a tanker vessel arriving at oil terminal have to be properly moored for 

cargo handling process and its position has to be continuously controlled during 

the unloading/loading time. Moreover the ship’s and the terminal’s 

representatives have to discuss all technical issues and procedures before the 

transhipment process may begin.  

 

 
Fig. 1. Loading arms for loading/unloading tankers in the oil terminal [6] 
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To start the crude oil loading process a piping system line up agreement 

between tank farm and terminal and between vessel and terminal have to be set. 

Before tanker loading cargo from the oil terminal, the vessel marine loading 

arms are connected, for crude oil usually 3 or 4 arms are connected (Fig. 1). 

Next the line is set by choosing dedicated tanks and pumps ashore and by 

opening or closing relevant line’s valves. Marine terminal leaves per one valve 

closed on each loading arm. After receiving readiness confirmation for starting 

loading process from the vessel, the last valves on marine loading arms are 

opened and the process of crude oil loading with initially slow rate begin (state 

z1). Cargo starts to flow due to gravity, if needed the pumps start to obtain 

agreed initial rate.  

Technical parameters (pinpoint loading parameters) during initial state of crude 

oil loading include inter alia: 

− initial rate (usually abt. 1000 cbm/h), 

− pressure 0,1 – 0,5 Mpa, 

− temperature max 35°C. 

After some laboratory tests of exported crude oil (state z2) and relevant checks 

on cargo tanks and lines against leakages and aberrations, the terminal receive 

agreement from the vessel to increase loading rate to agreed maximum rate and 

the process of loading crude oil with full rate start (state z3). During loading the 

parameters and infrastructure integrity have to be inspected on a regular basis 

and tanker receives cargo from the terminal in accordance with agreed 

parameters (pressure, temperature, rate).  

Below there are given technical parameters of crude oil loading process during 

state z3: 

− maximum loading rate (usually approx. 10000 cbm/h), 

− pressure 0,3 – 0,4 Mpa, 

− temperature max 35°C. 

Tanker’s tanks are loaded usually to their 95-98% capacities. Final stage of each 

tank’s filling is named “topping”. On this stage, for oil spill avoidance reasons, 

loading rate is decreased to approx. 1000 cbm/h (state z4). When one tank is 

already full other tank goes to open position to let the cargo pass inside, then the 

full tank is closed. When the last cargo tank is topped up, tanker asks terminal 

for pump stoppage and valve closure. When this happens, terminal gives 

confirmation regarding stoppage and the ships manifold valves are closed. 

When tankers and terminal’s valves on loading lines are closed, the terminal 

goes into idle mode (state z8).  

Technical parameters in the final stage of crude oil loading process are: 
− topping rate (usually 1000 cbm/h), 

− pressure 0,1 – 0,2 Mpa, 

− temperature max 35°C. 

Parameters of planned cargo operations stoppages (ex. Line Displacement; One 

Foot Sample) are: 

− maximum pressure limits 1 Mpa, 

− cargo temperature limits 1 – 35°C. 
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The process of crude oil discharging is similar. Before staring the unloading 

process, a piping system line up agreement between tank farm and terminal and 

an agreement between vessel and terminal have to be set. Then, the vessel 

marine loading arms are connected; during unloading process for crude oil 

usually 3 loading arms are connected. The line has to be set by choosing 

dedicated tanks and pumps on vessel and by opening or closing relevant line’s 

valves. After fixing the readiness notice between vessel, marine terminal and 

tank farm, the loading process from the tank farm starts. The last valves on 

marine loading arms are opened and the pumps on vessel start with initial rate 

(state z5). If there are no aberrations, after obtained from the vessel agreement to 

increase discharging rate to agreed maximum rate, the unloading cargo starts 

with full rate (state z6). During discharging the parameters and infrastructure 

integrity have to be inspected on a regular basis. In a simplistic way, in the final 

stage the unloading cargo with reduced rate takes place and tanker finishes 

discharging cargo, by stripping all cargo tanks (state z7). At the end of the 

transshipment we are dealing with the process of washing tankers from the 

sediment COW (Crude Oil Washing). Then the pumps stop, relevant valves are 

closed and the loading arms are disconnected. 

Below there are given technical parameters of crude oil discharging process. 

During the state z5: 

− initial rate (usually 1000 cbm/h), 

− pressure 0,1 – 0,5 Mpa, 

− temperature max 35°C, 

during the state z6: 

− maximum discharging rate (usually approx. 10000 cbm/h), 

− pressure 0,3 – 0,5 Mpa, 

− temperature max 35°C, 

planned cargo operations stoppages (ex. Line Displacement) in the state z7: 

− maximum pressure limits 1 Mpa, 

− cargo temperature limits 1 – 35°C. 

To start the internal recirculation process (state z9) a piping system line up 

agreement between tank farm and terminal has to be set. Relevant valves are 

opened or closed; one valve on each tank has to be still closed. After confirming 

readiness of both sides, i.e. terminal and tank farm, the valves on dedicated 

tanks are opened and the recirculation by gravity commences. Next, relevant 

checks against line integrity and aberrations are made and cargo pumps start. 

During recirculation the parameters and infrastructure integrity have to be also 

inspected on a regular basis. When the process of  recirculation is finished the 

pumps stop and the line valves are closed. 

Technical parameters of internal recirculation of crude oil are: 

− recirculation rate 5000 cbm/h, 

− maximum pressure limits 1 Mpa, 

− cargo temperature limits 1 – 35°C. 

In terminal idle mode, there is no transfer of cargo, however cargo is still inside 

shore pipelines. 
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3  Scenarios and classification of accidents during crude oil 

transfer process  
 

For this article needs, we divided oil related incidents into three types. These are 

oil leakage, overflow and most dangerous oil spill. Types of accidents are 

concerned with the volume of oil spilled and are strictly related to the states of 

the operational process (Fig. 2): 

− oil leakage – minor incident, that may occur during the state z1, z2, z5, z8 and 

z9, 

− oil overflow – medium incident something between leakage and spill, that 

may occur during the state z4 and z7, 

− oil spill – major incident, that may occur during the state z3 and z6. 

Most of oil related incidents are not very serious and they are connected to 

leakages group, however serious accidents also occur.  

 

 

z1 z2 z5 z8 z9 z4 z7 z3 z6 

Oil leakage Oil overflow Oil spill 

 
Fig. 2. Spill incidences in terms of oil transfer operational states. 

 

The main causes of oil leakage include:  

− Disconnecting the ship's manifold from the loading arm during the 

transshipment due to technical drawbacks or human error (defect) in 

connecting the arm to the manifold; 

− Hydraulic impact due to a sudden valve closure on the ship in case of 

loading, or a valve closure at the terminal in case of unloading from the ship. 

For example, PDVSA, oil company in Venezuela, confirmed that a crude spill 

occurred from a pipeline, on March 28
th
, 2017. The crude oil leak was a result of 

a break in the line running from a crude terminal to a single buoy mooring, but it 

did not affect terminal operations though [9]. 

Oil overflow may be the result of no stopping loading onto the ship at the right 

time. Then, the overflowing of tanks and oil spills with P/V valves or mastraiser 

may occur. As a consequence of inadequate level monitoring the gasoline tank 

was overfilled in Buncefield, UK, in 2005. The overflow occurred due to the 

defect of the system that should detect a high level and shut-off the inflow. 

During that incident more than 250,000 l of gasoline was spilled from an 
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atmospheric pressure storage tank [4]. Oil overflow on shore storage tank can 

happen also during ship discharging. 

Oil spill on board of the ship or on terminal pipeline infrastructure may occur 

during transfer cargo with full rate, but uncontrolled oil leakage can also result 

in oil spill and pollution of marine ecosystems. For example, the bunker tanker 

spilled about 70 tons of fuel at the ATB Vitol oil terminal in Malaysia on 

August 24, 2016. The spill occurred as the result of a leaking hose during 

bunkering of the vessel [5].  

According to “Oil Tanker Spill Statistics 2016”, oil spills during loading and 

discharging account for 40% of all small sized spills (below 7 tonnes), classified 

by operation at time of incident, in 1974-2016. In medium sized spills (7-700 

tonnes), 29% occurred during loading and discharging operations. Large spills 

during oil transfer operations are less frequent and account for 9% of all incident 

recorded in 1970-2016. Considering these large spills in terms of cause, it can 

be noticed that 31% are caused by fire or explosion, 26% by equipment failure 

and 19% by other causes that include heavy weather damage and human error 

[3]. 

 

5  Oil spill threats related to crude oil transfer in the terminal  
 

Considering the causes and circumstances of oil spills during oil transfer 

operations we propose in this paper classification for internal and external 

reasons.  

Internal causes may include: 

− technical conditions of oil terminal's infrastructure, 

− technical conditions of equipment on tanker vessels, 

− human error made by vessel or terminal workers involved in the 

transshipment process. 

Causes associated with technical conditions of oil terminal's infrastructure may 

include failure of different systems: main oil line, flow line, arms, hoses, hose 

joints, flange joints, block valves. They can depend on various factors, such as, 

insufficient maintenance level of pipes, devices, technological appliances and 

sensors, carried out hot works in sensitive areas. Among human errors we can 

mention errors made during technological process, maintenance and other 

activities, abstractedness or measurement errors, errors in setting valves or 

errors related to insufficient technological knowledge. 

Sometimes oil spills during the crude oil transfer can be caused by both human 

error and mechanical damage. Pressure upsurge inside the pipelines as a 

hydraulic hammer’s consequence can be caused by: 

Pump startup – a starting pump can generate high pressures; 

Pump power failure – it can cause a pressure upsurge on the suction side and a 

pressure down-surge on the discharge side; 

Valve opening and closing – sudden valve closure changes the velocity quickly 

and results in a pressure surge. The pressure surge resulting from a sudden valve 

opening is usually not as excessive. Closing a valve at the downstream end of a 
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pipeline creates a pressure wave that the moves back toward the reservoir; 

improper operation or incorrect design of surge protection devices [2]. 

Accidents may also occur during the crude oil transfer process due to following 

external causes: 

− technical conditions of oil terminal's infrastructure, associated with abrupt 

temperature changeover within arrangement: pipeline-liquid-ambient, 

damage caused by other objects operating in the vicinity of pipelines 

(ashore/sea), damage to installation and technological appliances due to 

external forces, 

− human factor including terrorism, 

− weather condition such as thunderstorm, winds, icing, very high or low 

temperatures. 

Causes of oil spills can be also divided into two other categories. These are 

generic failures associated with mechanical component of the facility or 

terminal and specific operating failures prime cause of which is human error. 

Specific operating failures can include also accidents. 

Causes of oil spills in investigation reports are often classified as root causes 

and contributing causes or factors. Contributing factors can be associated with 

environment, equipment, safety policy and management, work practice, 

supervision, training. Contributing factors can be also classified as behavioral, 

medical, task errors and other. Root causes can be also grouped to immediate 

causes (unsafe acts, unsafe conditions and miscellaneous causes) and 

contributing caused (safety management performance, mental and physical 

condition of worker) [7]. Scheme of different classifications of oil spill causes is 

presented in Figure 3. 

The effects of accidents, which occur at time of oil transfer, can be divided in 

following categories: 

− damage to oil terminal’s infrastructure and/or ship, 

− short or long term breaks in the functioning of the oil terminal, 

− endanger  to human health and life,  

− environmental pollution that is the most important and financially significant 

for the polluter. 
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Fig. 3. Types of oil spill causes. 
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6 Prevention of pressure upsurge inside the pipelines  
 

One of important causes of oil spill, mentioned before, is pressure upsurge 

inside a pipeline generated by an abrupt change in the rate of flow of liquid in 

the line i.e. as a hydraulic hammer’s consequence. A hydraulic hammer can be 

caused by the ship’s breakaway couplings when the ship disconnects or from an 

Emergency Shut Down (ESD) valve closure. Both can cause damage to loading 

hoses or arms, loading buoys, and feed pipework. Sudden valve closure on the 

reloading installation may occur e.g. on a ship that has all the cargo tanks full. 

Such situation may take place when there is no space to accept additional 

volumes of crude oil and there is not able to pass the terminal to stop the 

transshipment for example by communication errors. In this case, if there is an 

emergency system to stop handling, not to cause overflow tanks and bottling, 

the ship decides to close the valve connecting it to the mainland, resulting in the 

so-called "hammering" resulting in discontinuity of installation and spill [2].  

The pressure surge in the pipeline may result in pressure stresses or 

displacement stresses, and as a consequence it may cause a rupture leading to an 

extensive oil spill. According to [10], a pressure surge during tanker loading can 

occur as a result of: 

− closure of an automatic shut down valve, 

− slamming shut of a shore non-return valve, 

− slamming shut of a butterfly type valve, 

− rapid closure of a power operated valve. 

To protect terminal from the potential damage that can be caused by pressure 

surges, some pressure relief systems are often used. Excessive surge pressures 

result from a sudden change in fluid velocity and, without surge relief, they can 

damage pipes, other piping components, equipment and personnel. These 

pressure surges can be generated by anything that causes the liquid velocity in a 

line to change quickly (e.g., valve closure, pump trip, ESD closure occurs) and 

subsequently packing pressure. The task of crude oil surge-relief system is to 

protect marine facilities against hydraulic transient pressure surges that can 

occur during loading and unloading of crude oil to and from vessels. Such 

system should be able to open very quickly high capacity valves to remove 

surge pressures from the line and then return to the normal state. Typical tank 

and pressure vessel systems are required to release pressure without passing 

large volumes of liquid.  These valves are often fully open to allow the entire 

stream flowing. Closing of these valves should also be done quickly but without 

causing additional pressure surge. To prevent hydraulic shock and secondary 

surge during a valve closing, some surge relief systems include damping or 

slowing systems on valve closing [1]. 

Investigation reports after oil spills in ports or terminals indicate also a problem 

of organizational and safety culture. We also analyzed the investigation report 

on a refinery explosion caused by a raffinate splitter tower overflow. 

In order to prevent oil spills accidents following recommendations can be given: 

− adequately addressed controlling major hazard risk, 

− creating an effective reporting and learning culture after oil spill incidents, 
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− incorporating human factor considerations in its training, staffing, and work 

schedule for operations personnel, 

− training courses including abnormal and emergency situations and procedures 

of reaction in such situations, 

− proper communication (eliminating problems associated with 

communication) between operators from the vessel and terminal responsible 

for oil transfer, 

− providing effective safety culture leadership and oversight, 

− providing adequate resources to prevent major accidents, 

− avoiding excessive cost-cutting. 

 

Conclusions 
 

The paper describes operations during oil transfer process in a terminal and 

associated with them threats and potential oil spill accidents. Various 

classifications of causes of oil spill accidents have been proposed in the paper, 

which may help to identify oil spill threats. Determining the causes of oil spill 

accidents and identification of potential spill sources can help to avoid or 

mitigate the effects of potential spills during oil transfer in a terminal in the 

future. As a continuation of the outlined problem, recommendations and 

procedures to prevent oil spill accidents will be given. In this scope, training on 

recognizing and handling abnormal situations during oil transfer will be 

proposed. 
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Abstract. The statistical methods such as the method of moments, the maximum 

likelihood method and the chi-square goodness-of-fit test are applied to the identification 

of the process of initiating events generated either by the critical infrastructure accident 
or by its loss of required safety critical level. The unknown parameters of this process are 

evaluated on the basis of statistical data coming from its realizations. 
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1  Introduction 
 

Some kinds of critical infrastructure accidents concerned with its safety level 

decrease may occur during its operation Kołowrocki[5], Kołowrocki and 

Soszyńska-Budny[6]. Those accidents may bring various dangerous 

consequences for the environment and have disastrous influence on the human 

health and activity. Each critical infrastructure accident can generate the 

initiating event causing dangerous situations in the critical infrastructure 

operating surroundings. The process of those initiating events can result in this 

environment threats and lead to the environment dangerous degradations (Fig. 

1).  

 

S

threat
states

E

initiating
events

R

degradation
effects

 
Fig. 1. Interrelations of the critical infrastructure accident consequences  

general model 
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To involve the interactions between the initiating events, the environment 

threats and environment degradation effects, semi-Markov general model of a 

critical infrastructure accident consequences was built by Bogalecka and 

Kołowrocki[1].  

This paper is concerned with the identification of the first one of those three 

processes.The process of initiating events and its states are defined. The 

unknown parameters of semi-Markov model of the process of initiating events 

are estimated. Next, based on the statistical data of ship accidents at world seas 

11-years-observation, the vectors of initial probabilities of the process of 

initiating events staying at its particular states, the matrix of probabilities of this 

process transitions between its particular states are estimated. Next, the 

parameters of the process of initiating events conditional sojourn times at 

particular states were evaluating and forms of their distributions fixed. Finally, 

the mean values of the process conditional sojourn times at its particular states 

are estimated. 

 

 

2  Process of initiating events modelling 
 

We assume, that the process of initiating events is taking ,   N, different 

initiating events states e
1
,e

2
,…,e


. Next, we mark by E(t), t  <0,), the process 

of initiating events, that is a function of a continuous variable t, taking discrete 

values in the set {e
1
,e

2
,…,e


} of the initiating events states. We assume a semi-

Markov model Grabski[2], Kołowrocki[3-4], Kołowrocki and Soszyńska[7], 

Limnios and Oprisan[8], Macci[9], Mercier[10] of the process of initiating 

events E(t), and we mark by θ
lj
 its random conditional sojourn times at the 

initiating events states e
l
, when its next state is e

j
, l, j  1,2,…,, l  j. 

Under these assumption, the unknown parameters of the process of initiating 

events semi-Markov model are:  

 the vector [p
l
(0)]1x of probabilities of the process of initiating events staying 

at the particular initiating events states at the initial moment t  0,  

 the matrix [p
lj
(t)]x of probabilities of transitions between the initiating 

events states  

 the matrix [H
lj
(t)]x of the distribution functions of the conditional sojourn 

times θ
lj
 of the process E(t) at the initiating events states or equivalently by the 

matrix [h
lj
(t)]x of the density functions of the conditional sojourn times θ

lj
,  

l, j  1,2,…,, l  j, of the process of initiating events at the initiating events 

states, 

 the mean values M
lj
, of the conditional sojourn times θ

lj
, l, j  1,2,…,16, l  j.  

The marine traffic across the world and the ship accidents were observed and 

analysed. Based on that analysis and the maritime authorities classification of 

the initial events caused by sea accidents, seven initiating events that generate 

dangerous situations for the sea environment were distinguished. These initial 

events are marked by Ei, i  1,2,…,7, and defined as follows: E1 – collision (a 

ship striking another ship), E2 – grounding (a ship striking the sea bottom, shore 
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or underwater wreck), E3 – contact (a ship striking an external object e.g. pier or 

floating object), E4 – fire or explosion on board, E5 – shipping without control 

(drifting of ship) or missing of ship, E6 – capsizing or listing of ship, E7 – 

movement of cargo in the ship. 

Further, we introduce the set of vectors 

}},1,0{],,...,,[:{ 721  ieeeeeeE  

where 






occurs, event  initiating  theif ,1

occur,not    does event  initiating  theif ,0
i

i
i

E
E

e  

for i  1,2,…,7. 

Next, we distinguish   16 following states of the process of initiating events 

E(t): 

e
1 
= [0,0,0,0,0,0,0], e

2 
= [1,0,0,0,0,0,0], e

3 
= [0,1,0,0,0,0,0], e

4 
= [0,0,1,0,0,0,0],  

e
5 
= [0,0,0,1,0,0,0], e

6 
= [0,0,0,0,1,0,0], e

7
 = [0,0,0,0,0,1,0], e

8
 = [0,0,0,0,0,0,1],  

e
9 
= [0,1,0,1,0,0,0], e

10 
= [0,0,0,1,1,0,0], e

11 
= [0,0,0,0,1,1,0],  

e
12 

= [0,0,0,1,0,0,1], e
13 

= [0,0,0,0,0,1,1], e
14 

= [0,0,0,1,1,1,0],  

e
15 

= [0,0,0,0,1,1,1], e
16 

= [0,0,0,1,0,1,0]. 

Moreover, it is assumed that there are possible the transitions between all states 

of the process of initiating events. 

 

 

3  Statistical identification of the process of initiating event 
 

The experiment was performed across the world seas and oceans in the years 

2004-2014. The number of the observed ship accidents that generated the 

distinguished states of the process of initiating events was n(0)  1630. The 

initial moment t = 0 of the process of initiating event for each ship was fixed at 

the moment when the ship after an accident generated one of the distinguished 

states. 

 

3.1  Data collection for estimating unknown parameters of the 

process of initiating events 

 

To identify unknown parameters of the process of initiating events, described in 

Section 2, the statistical data coming from the process E(t) realization are used: 

 the process of initiating observation/experiment time   11 years (2004-

2014); 

 the vector of realizations n
l
(0), l  1,2,…,16, of the numbers of the process 

E(t) of initiating events staying at the particular states e
l
 at the initial moment  

t  0 

[n
l
(0)]1x16  [1630, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; 
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 the number of the process of initiating events realizations at the moment t = 0 

 1630. = 0 + 0 + ... + 0 + 0163)0()0(
16

1


l

lnn  

The collected statistical data necessary for evaluating the probabilities of 

transitions between initiating events states are: 

 the matrix of realizations n
lj
, l, j  1,2,…,16, of the numbers of the process 

E(t) transitions from the state e
l
 into the state e

j
 during the experimental time 

(the numbers of transitions that are not equal to 0 are presented only): 

n
1 2

  401, n
1 3

  369, n
1 4

  123, n
1 5

  268, n
1 6

  234, n
1 7

  205, n
1 8

  30; 

n
2 1 
 237, n

2 3 
 125, n

2 4
  3, n

2 5
  4, n

2 6 
 22, n

2 7
  40, n

2 10
  2, n

2 11
  1;  

n
3 1

  753, n
3 2

  2, n
3 6

  4, n
3 9 
 1; 

n
4 1

  111, n
4 2

  3, n
4 3

  13, n
4 6

  9, n
4 7

  13;  

n
5 1

  210, n
5 9

  18, n
5 10 

 39, n
5 12 

 1, n
5 16

  5; 

n
6 1

  127, n
6 2

  28, n
6 3

  88, n
6 4

  22, n
6 10

  4, n
6 11

  14;  

n
7 1

  107, n
7 3

  141, n
7 4

  1, n
7 8

  3, n
7 11

  3, n
7 13

  5; 

n
8 1

  28, n
8 13 

 4; 

n
9 1

  19; 

n
10 1

  22, n
10 6

  15, n
10 14

  1; 

n
11 1

  8, n
11 3

  10; 

n
12 1

  1; 

n
13 1

  4, n
13 3

  3, n
13 15 

 2;  

n
14 1

  1; 

n
15 3 

 2; 

n
16 1

  2, n
16 3

  2, n
16 7

  1;  

 the vector of realisations of total numbers of the process E(t) departures from 

the state e
l
, l  1,2,…,16, during the experimental time 

[n
l
]  [1630, 434, 760, 149, 273, 283, 260, 32, 19, 38, 18, 1, 9, 1, 2, 5]. 

The collected statistical data necessary to evaluate the unknown parameters of 

the distributions of the conditional sojourn times lj
 at the states of the processes 

of initiating events are as follows: 

 the numbers n
lj
, l, j  1,2,…,16, l  j, of the realizations 

lj
,   1,2,…, n

lj 
of 

the conditional sojourn times lj
 of the process of initiating events state e

l
 

when the next transition is to the initial events process state e
j
 during the 

experimental time; 

 the realizations 
lj
,   1,2,…,n

lj 
of the conditional sojourn times lj

 of the 

process of initiating events state e
l
 when the next transition is to the initial 

events process state e
j
 during the experimental time. 

For instance, the collected statistical data for the sojourn time 27
 are as follows: 

 the number of realizations n
27 
 40; 
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 the realizations 
27

,   1,2,…,40: 1, 10, 30, 60, 10, 1, 10, 10, 10, 15, 1, 1, 10, 

1, 1, 1, 5, 1, 1, 1, 10, 1, 5, 10, 1, 1, 1, 1, 1, 1, 1, 60, 1, 1, 1, 1, 1, 10, 1, 1. 

 

3.2  Estimating parameters of the process of initiating events 

 

On the basis of the statistical data from Section 3.1, using the formulae given in 

Section 4.2.3 in Kołowrocki and Soszyńska-Budny[7], it is possible to evaluate 

the following unknown basic parameters of the process of initiating events: 

 the vector  

[p(0)]1x16  [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 

of the initial probabilities p
l
(0), l  1,2,…,16 of the process of initiating events 

at the particular states e
l
 at the moment t  0; 

 the matrix [p
lj
], l, j  1,2,…,16, of the probabilities of transitions of the 

process E(t) from the state e
l
 into the state e

j
 during the experimental time (the 

probabilities of transitions that are not equal to 0 are presented only): 

p
1 2 
 0.2460, p

1 3 
 0.2264, p

1 4
  0.0754, p

1 5
  0.1644, p

1 6 
 0.1436,  

p
1 7

  0.1258, p
1 8

  0.0184; 

p
2 1 
 0.5461, p

2 3 
 0.2880, p

2 4
  0.0069, p

2 5
  0.0092, p

2 6 
 0.0507,  

p
2 7

  0.0922, p
2 10

  0.0046, p
2 11

  0.0023;  

p
3 1

  0.9908, p
3 2

  0.0026, p
3 6

  0.0053, p
3 9 
 0.0013; 

p
4 1

  0.7450, p
4 2

  0.0201, p
4 3

  0.0872, p
4 6

  0.0604, p
4 7

  0.0873;  

p
5 1

  0.7692, p
5 9

  0.0659, p
5 10 

 0.1429, p
5 12 

 0.0037, p
5 16

  0.0183; 

p
6 1

  0.4488, p
6 2

  0.0989, p
6 3

  0.3110, p
6 4

  0.0777, p
6 10

  0.0141,  

p
6 11

  0.0495;  

p
7 1

  0.4115, p
7 3

  0.5423, p
7 4

  0.0038, p
7 8

  0.0116, p
7 11

  0.0116,  

p
7 13

  0.0192; 

p
8 1

  0.8750, p
8 13 

 0.1250; 

p
9 1

  1; 

p
10 1

  0.5790, p
10 6

  0.3947, p
10 14

  0.0263; 

p
11 1

  0.4444, p
11 3

  0.5556; 

p
12 1

  1; 

p
13 1

  0.4445, p
13 3

  0.3333, p
13 15 

 0.2222;  

p
14 1

  1; 

p
15 3 

 1; 

p
16 1

  0.4000, p
16 3

  0.4000, p
16 7

  0.2000. 

The values of some probabilities existing in the vectors [p(0)] and in the matrix 

[p
lj
], besides of those standing on the main diagonal, equal to zero do not mean 

that the events they are concerned with, cannot appear. They are evaluated on 
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the basis of real statistical data and their values may change and become more 

precise if the duration of the experiment is longer. 

 

3.3  Estimating parameters of distributions of the process of 

initiating events 

 
On the basis of the statistical data presented in Section 3.1, using the procedure 

and the formulae given in Chapter 4.2.3 from Kołowrocki and Soszyńska-

Budny[7], it is possible to determine the empirical parameters of the conditional 

sojourn times lj
 of the initiating events process at the particular initiating events 

states. To illustrate the application of this procedure and these formulae, we 

perform it for the conditional sojourn time 27
, using their realizations presented 

in Section 3.1 are as follows. 

The realization 27
 of mean value of the conditional sojourn time 27

 of the 

initial events process state e
2
 when the next transition is to the initial events 

process state e
7
 is 

 


40

1

2727 .25.7
40

1




 
 

The number 
27r  of the disjoint intervals ),, 2727

zzz baI   ,,...,2,1 27rz   that 

include the realizations 
27

,   1,2,…,40 of the conditional sojourn time  
27

 of 

the initial events process state e
2
 when the next transition is to the initial events 

process state e
7
 

.64027 r  

The length d
27

 of the intervals ),, 2727
zzz baI   z  1,2,…,6, that after 

considering 

,59160minmax 27

401

27

401

27 








R  

is 

.8.11
5

59

127

27
27 




r

R
d  

The ends az
27

, bz
27

, of the intervals ),, 2727
zzz baI   z  1,2,…,6, that after 

considering 

,9.5
2

8.11
1

2
min

27
27

401




d



  

are  

0}0,9.5max{27
1 a  ,8.118.1108.1127

1
27
1  ab  

,8.1127
1

27
2  ba   ,6.236.2308.11227

1
27
2  ab  
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,6.2327
2

27
3  ba  ,4.354.3508.11327

1
27
3  ab  

,4.3527
3

27
4  ba   ,2.472.4708.11427

1
27
4  ab  

,2.4727
4

27
5  ba   ,595908.11527

1
27
5  ab  

,5927
5

27
6  ba   .8.708.7008.11627

1
27
6  ab  

The numbers nz
27

 of the realizations 
27

 
in particular intervals ),, 2727

zzz baI    

z  1,2,…,6,  

,3627
1 n  ,127

2 n  ,127
3 n  ,027

4 n  ,027
5 n  .227

6 n  

 

3.4  Identifying distribution functions of initiating events 

conditional sojourn times at states 
 

Using the procedure given in Section 4.2.4 in Kołowrocki and Soszyńska-

Budny[7] and the results partly presented in Section 3.3, we verify the 

hypotheses on the distributions of the process of initiating events conditional 

sojourn times lj
, l, j  1,2,…,16, l  j, at particular states. To make the 

procedure familiar to the reader, we perform it for the conditional sojourn time 

for  
27

 preliminary analyzed in Section 3.3. 

The realization h
27

(t) of the histogram of the process of initiating events 

conditional sojourn time  
27

 defined by  

lj

lj
zn

n

n
th

lj

)(  for ,  zIt  

is presented in Table 1 and illustrated in Figure 2.  

 
Table 1. The realization of the histogram of the process initiating events conditional 

sojourn time  27. 
 

Histogram of the conditional sojourn time  
27

 

), 2727
zzz baI   0-11.8 11.8-23.6 23.6-35.4 35.4-47.2 47.2-59 59-70.8 

27
zn  36 1 1 0 0 2 

272727 /)( nnth z  36/40 1/40 1/40 0/40 0/40 2/40 
 

 
Fig. 2. The graph of the histogram of the process of initiating events  

conditional sojourn time  27 

159



 

After analyzing and comparing the realization h
27

(t) of the histogram with the 

graphs of the density functions h
27

(t) of the previously distinguished in Chapter 

2 from Kołowrocki and Soszyńska-Budny[7] distributions, we formulate the 

null hypothesis H0 in the following form. 

H0: the process of initiating events conditional sojourn time  
27

 at the state e
2
 

when the next transition is to the operation state e
7
, has the chimney distribution 

with the density function of the form 

)(27 th































.         ,0

        ,

    ,

        ,

      ,0

27

2727
227

2
27

27

27
2

27
127

1
27
2

27

27
1

27

2727
1

27

27

yt

ytz
zy

D

ztz
zz

C

ztx
xz

A

xt

 (1) 

Since, according to (4.16)-(4.17) from Kołowrocki and Soszyńska-Budny[7] we 

have  

36}max{ 27

111

27 


z
z

nn


 and ,362727
1  nn


 

then i  1 is the number of interval including the largest number of realizations. 

Moreover, by (4.19) in Kołowrocki and Soszyńska-Budny[7] we get  

,127
2 n  and .3

1

36
27
2

27
1 

n

n
 

Therefore, we estimate the unknown parameters of the density function of the 

hypothetical chimney distribution using the formulae (4.15) and (4.18) from 

Kołowrocki and Soszyńska-Budny[7] and we obtain the following results  

,027
1

27  ax   

,8.708.116027272727  drxy  

,08.11)11(0)1( 272727
1  dixz   

,8.118.1110272727
2  idxz  

,027 A  ,
40

36
27

27
127 

n

n
C   

.
40

4

40

20011...
27

27
6

27
3

27
227 







n

nnn
D  
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Substituting the above results into (1), we get completely defined the 

hypothetical density function in the form  

)(27 th























8.70         ,0

8.708.11     ,
8.118.70

40/4

8.110      ,
08.11

40/36
0         ,0

t

t

t

t

















8.70            ,0
8.708.11     ,001694915.0

8.110 ,076271186.0
0            ,0

t
t

t
t

 (2) 

Hence the hypothetical distribution function H
27

(t) of the conditional sojourn 

time  
27

, after taking the integral of the hypothetical density function h
27

(t) 

given by (2), takes the following form  


t

dtthtH
0

2727 )()(
















8.70                                       ,1
8.708.11    ,879999995.0 001694915.0

8.110                         , 076271186.0
0                                      ,0

t
tt

tt
t

 

Next, we join the intervals defined in the realization of the histogram h
27

(t) that 

have the numbers nz
27

, of realizations less than 4 into new intervals and we 

perform the following steps: 

 we fix the new number of intervals  

;227 r  

 we determine the new intervals  

),8.11,01 I  );8.70,8.112 I   

 we fix the numbers of realizations in the new intervals  

,3627
1 n  ;427

2 n   

 we calculate, using (4.46) from Kołowrocki and Soszyńska-Budny[7], the 

hypothetical probabilities that the variable 27
 takes values from the new 

intervals  

)8.110()( 27
1

27
1   PIPp )8.11(27H )0(27H  0.9  0 = 0.9,  

)8.708.11()( 27
2

27
2   PIPp )8.70(27H )8.11(27H   

 1  0.9 = 0.1;  

 we calculate, using (4.47) from Kołowrocki and Soszyńska-Budny[7], the 

realization of the 2
 (chi-square)-Pearson’s statistics  







2

1
27

22727

27

)(

z z

zz

pn

pnn
u

900.040

)900.04036( 2






100.040

)100.0404( 2




 ;000   

 we assume the significance level   0.05; 

 we fix the number of degrees of freedom 

;1102127  jr   
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 we read from the Tables of the 2
 – Pearson’s distribution the value u for the 

fixed values of the significance level   0.05 and the number of degrees of 

freedom  

,1127  jr   

such that, according to (4.48) from Kołowrocki and Soszyńska-Budny[7], the 

following equality holds 

05.0)( 27  uUP   

that amounts to u  3.84 and we determine the critical domain in the form of 

the interval (3.84,+) and the acceptance domain in the form of the interval 

<3.84,+) (Fig. 3);  

 we compare the obtained value u27  0 of the realization of the statistics U27 

with the read from the Tables critical value u  3.84 of the chi-square 

random variable and since the value u27  0 does not belong to the critical 

domain, i.e.  

,84.3027  uu  

then we do not reject the hypothesis H0 that the sojourn time 27
 has the 

chimney distribution with the density function given by (2). 

 

 

Fig. 3. The graphical interpretation of the critical interval  

and the acceptance interval for the chi-square goodness-of-fit test 

 

Thus, after applying the formula (2.19) in Kołowrocki and Soszyńska-Budny[7] 

it is possible to find the mean value:  

][ 27
27 EM  )]()()([

2

1 2727
2

2727
2

27
1

2727
1

2727 yzDzzCzxA   

)]8.708.11(1.0)8.110(9.0)00(0[
2

1
 .44.9  

For the remaining cases, when the realizations of conditional sojourn times lj
 

are more than 28, proceedings afterwards in analogous way as in the case of the 

conditional sojourn time  
27

, we can get the following results: 

 the conditional sojourn time  
18 

has the
 
exponential distribution with density 

function 

  

1  α 

3.84 

f2(t) 

0                                     
 
uα  3.84                     t 

 

  Critical domain  

u27  0 
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)(18 th







0    ], 0000000151.0exp[0000000151.0
0                                              ,0

tt
t

 

 the conditional sojourn time  
23 

has the
 
chimney distribution with density 

function 

)(23 th















8.921            ,0
8.9218.83      ,000066826.0

8.830  ,011264916.0
0             ,0

t
t

t
t

 

 the conditional sojourn time  
51 

has the
 
chimney distribution with density 

function 

)(51 th














625.18221           ,0
625.18221625.2024    ,000001403.0

625.20240    ,000482693.0
0          ,0

t
t

t
t

 

 the conditional sojourn time  
510 

has the
 
chimney distribution with density 

function 

)(10 5 th














8.142           ,0
8.1428.23     ,000646412.0

8.230 ,038784745.0
0          ,0

t
t

t
t

 

 the conditional sojourn time  
62 

has the
 
chimney distribution with density 

function 

)(62 th














25.286             ,0
25.28625.57      ,000935745.0

25.570  ,013724267.0
0          ,0

t
t

t
t

 

 the conditional sojourn time  
63 

has the
 
chimney distribution with density 

function 

)(63 th














75.45357            ,0
75.4535775.5039    ,0000005637.0

75.50390  ,000193913.0
0           ,0

t
t

t
t

 

 the conditional sojourn time  
73 

has the
 
chimney distribution with density 

function 

)(73 th














68.4711           ,0
68.471164.392     ,000016421.0

64.3920     ,002366234.0
0          ,0

t
t

t
t

 

In the case when as a result of the experiment, limited data coming from 

experts, we only have the number of realizations of the process of initiating 

events lifetimes in the states and its all realizations are equal to an approximate 
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value, we assume that this conditional sojourn times have the uniform 

distribution in the interval from this value minus its half to this value plus its 

half. For instance, the process initiating events the conditional sojourn time 21
 

assumed n
21

  237 values equal to 1, we assume that it has the density function 

given by  

)(21 th















,5.1,0

5.15.0,1

5.0,0

t

t

t

 

and the distribution function given by  

)(21 tH















.5.1,1

5.15.0,

5.0,0

t

tt

t

 

In the case when as a result of the experiment, coming from experts, there are 

not any suitable distribution presented in Chapter 2 from Kołowrocki and 

Soszyńska-Budny[7] to describe the process of initiating events or we have less 

than 28 realizations of the process of initiating events, we assume that this time 

has the empirical distribution. For instance, the process initiating events 

conditional time 47
 assumed n

47
  13 values. The order sample realizations 47

 

is: 1, 1, 1, 1, 1, 1, 1, 5, 5, 10, 10, 10, 15. Thus, we assume that conditional 

sojourn time  
47

 has the density function given by  

)(7 4 th

























.t

,t

,t

,t

,t

15               ,0

1510      ,13/12

105        ,13/9

51        ,13/7

1              ,0

 

and the distribution function given by  

)(7 4 tH

























.t

,t

,t

,t

,t

15               ,1

1510      ,13/12

105        ,13/9

51        ,13/7

1              ,0

 

We can proceeding with the remaining conditional times in the states of the 

process of initiating events in the same way and approximately fix they 

distribution. 

For the distributions identified in this section, by application either the general 

formulae for the mean value or particular formulae given respectively by (2.12) 

and (2.13-2.19) in Kołowrocki and Soszyńska-Budny[7], the mean values  

M
lj
  E[θ

lj
], l, j  1,2,…,16, l  j, of the process of initiating events conditional 

sojourn times at particular states can be determined and they amount to: 

M
18

  6622516.56, M
23

  69.55, M
27

  9.44, M
2 11

  1.00, M
39

  45.00,  
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M
51

  1073.05, M
510

  17.61, M
5 12

  15.00, M
61

  804.66, M
62

  58.68,  

M
63

  2973.45, M
71

  1808.15, M
73

  361.23, M
74

  5.00, M
81

  365.00,  

M
10 14

  60.00, M
12 1

  30.00, M
14 1

  120.00, M
16 7

  60.00. 

In the remaining cases, when the distributions cannot be identified, it is possible 

to find the approximate empirical values of the mean values M
lj
  E[θ

lj
] of the 

conditional sojourn times at particular states that are as follows: 

M
12

  8745800.5, M
13

  11095287.8, M
14

  9005707.32, M
15

  11267059.7,  

M
16

  10655753.85, M
17

  12392622.44, M
21

  1.00, M
24

  15.33, M
25

  5.25,  

M
26

  1.86, M
2 10

  3.00, M
31

  4500.64, M
32

  65.00, M
36

  6.50, M
41

  1.00,  

M
42

  13.33, M
43

  79.31, M
46

  28.56, M
47

  4.77, M
59

  1071.67,  

M
5 16

  33.00, M
64

  25.91, M
6 10

  41.25, M
6 11

  53.36, M
78

  12.00,  

M
7 11

  4.00, M
7 13

  7.40, M
8 13

  4.25, M
91

  162.63, M
10 1

  1254.77,  

M
10 6

  143.67, M
11 1

  502.5, M
11 3

  54.00, M
13 1

  85.00, M
13 3

  103.33,  

M
13 15

  15.00, M
15 3

  140.00, M
16 1

  75.00, M
16 3

  90.00. 

 

 

Conclusions 
 

The results presented in the paper will be used in the prediction of the 

considered process of initiating events generated by a ship operating at the sea 

waters as well as in the prediction of the entire process of the critical 

infrastructure accident consequences including the process of initiating events, 

the proces of environment threats and the process of environment degradation. 
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Abstract. The probabilistic general model of critical infrastructure accident 

consequences includes the process of initiating events, the process of environment threats 

and the process of environment degradation models. The statistical identification of the 
unknown parameters of the process of environment threats, i.e. estimating the 

probabilities of this process of staying at the states at the initial moment, the probabilities 

of this process transitions between its states and the distributions of this process 

conditional sojourn times at the particular states is performed. 
Keywords: critical infrastructure, sea accident, potential consequences, environment 

threats. 
 
 

 

1  Introduction 
 

The risk analysis of chemical spills at sea and their consequences is proposed to 

be based on the general model of mutual interactions between three processes: 

the process of the sea accident initiating events, the process of the sea 

environment threats and the process of the sea environment degradation, 

Bogalecka and Kołowrocki [1]. This paper is concerned with the identification 

of the second one of these three processes.  

To construct the general model of the environment threats caused by the process 

of the initiating events generated by critical infrastructure loss of required safety 

critical level, we distinguish the set of n2, n2  N, kinds of threats as the 

consequences of initiating events that may cause the sea environment 

degradation and denote them by  

.,...,,
221 nHHH   
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We also distinguish n3, n3  N, environment sub-regions  

,,...,,
321 nDDD   

of the considered critical infrastructure operating environment region  

,...
321 nDDDD    

that may be degraded by the environment threats Hi, i  1,2,…,n2. Moreover, we 

assume that the scale of the threat Hi, i  1,2,…,n2, influence on region D 

depends on the range of its parameter value and for particular parameter f
i
,  

i  1,2,…,n2, we distinguish li ranges iilii fff ,...,, 21
 of its values. 

After that, we introduce the set of vectors 

]},,...,,[:{ 221 n
fffssS   (1) 

where 












,,...,2,1 ,range theat isparameter   its  and        

 region   at the appears threat a if  ,

,region   at theappear not  does  threat aif0,

iij
i

ij
i

i

ljf

DHf

DH

f  

for i  1,2,…,n2.  

We call vectors (1) the environment threat state of the region D. 

Simultaneously, we proceed for the particular sub-regions Dk, k  1,2,…,n3.  

The vector 

],,...,,[ 2

)(
1

)(
1

)()(
n
kkkk fffs   k  1,2,…,n3, (2) 

where 













,,...,2,1,rangethein isparameter its           

and region -sub at the appears threata if,

,region -sub at theappear notdoes threata if    0,

)(

)()(

i
ij
k

ki
ij
k

ki
i
k

ljf

DHf

DH

f  (3) 

for i  1,2,…,n2, k  1,2,…,n3, 

is called the environment threat state of the sub-region Dk. 

From the above definition, the maximum number of the environment threat 

states for the sub-region Dk, k  1,2,…,n3, is equalled to 

),1(),...,1(),1( 2

)(
2

)(
1

)( 
n
kkkk lll  k  1,2,…,n3. 

Further, we number the sub-region environment threat states defined by (2) and 

(3) and mark them by 


)(ks  for   1,2,…,k, k  1,2,…,n3, 

and form the set 

},,...,2,1   ,{ )()( kkk sS    k  1,2,…,n3, 

where 
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j
k

i
k ss )()(   for i  j, }.,...,2,1{, kji   

The set S(k), k  1,2,…,n3, is called the set of the environment threat states of the 

sub-region Dk, k  1,2,…,n3, while a number k is called the number of the 

environment threat states of this sub-region. 

A function 

S(k)(t), k  1,2,…,n3, 

defined on the time interval ),,0 t  and having values in the environment 

threat states set 

S(k), k  1,2,…,n3, 

is called the sub-process of the environment threats of the sub-region Dk,  

k  1,2,…,n3.  

Next, to involve the sub-process of environment threats of the sub-region with 

the process of initiating events, we introduced the function 

S(k/l)(t), k  1,2,…,n3, l  1,2,…,,  

defined on the time interval ),,0 t  depending on the states e
l
, l  1,2,…,, 

of the process of initiating events E(t) and taking its values in the set of the 

environment threat states set S(k), k  1,2,…,n3. This function is called the 

conditional sub-process of the environment threats in the sub-region Dk,  

k  1,2,…,n3, while the process of initiating events E(t) is at the state e
l
,  

l  1,2,…,. 

 

 

2  Process of environment threats modelling 
 

We assume a semi-Markov model Grabski[3], Kołowrocki[4-5], Kołowrocki 

and Soszyńska[6], Limnios and Oprisan[7], Macci[8], Mercier[9] of the sub-

process of environment threats S(k/l)(t), k  1,2,…,n3, l  1,2,…,, and denote by 

,)/(
ij

lk  i, j  1,2,…,k, i  j, k  1,2,…,n3, l  1,2,…,, 

its random conditional sojourn times at the state s
i
(k) while its next transition will 

be done to the state s
j
(k). This sub-process is defined by:  

 the vector of probabilities of its initial states at the moment t  0 

,)]0([
1)/(

kx
i

lkp   

 the matrix of probabilities of transitions between the states  

,][ )/( kk x
ij

lkp   

 the matrix of the distribution functions of the conditional sojourn times  

,)]([ )/( kk x
ij

lk tH 
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or equivalently by the matrix of the density functions of the conditional 

sojourn times 

,)]([ )/( kk x
ij

lk th   

 the mean values of the conditional sojourn times 

.)/(
ij

lkM  

We divided the maritime environment into k  5 sub-regions Dk, and defined as 

follows: D1 – air, D2 – water surface, D3 – water column, D4 – sea floor, D5 – 

coast (shoreline). Next, we distinguished n2  6 possible environment threats 

that may cause degradation in the neighbourhood region of the ship accident 

area as follows: H1 – explosion of the chemical substance in the accident area, 

H2 – fire of the chemical substance in the accident area, H3 – toxic chemical 

substance presence in the accident area, H4 – corrosive chemical substance 

presence in the accident area, H5 – bioaccumulative substance presence in the 

accident area, H6 – other dangerous chemical substances presence in the 

accident area. The procedure of defining states of the sea environment threats 

process generated by hazardous chemicals is presented in Bogalecka and 

Kołowrocki[2]. The number of this process states for each sub-region 1  35, 

2  33, 3  29, 4  29, 5  29 are fixed and the environment threats states 

s
i
(k), i  1,2,…,k, are defined in Bogalecka and Kołowrocki[1]. Additionally, we 

involve the process of initiating events E(t) with each sub-process of 

environment threats. Thus, we fix environment threats states s
i
(k/l), i  1,2,…,k, 

k  1,2,…,n3, l  1,2,…,, for a particular sub-region according to the initiating 

event e
l
, l  1,2,…,, that causes the environment threats state. Moreover, it is 

assumed that there are possible transitions between all states of the sub-process 

of environment threats. 

 

 

3  Statistical identification of the process of environment 

threats 
 

The experiment was performed across the world seas and oceans in the years 

2004-2014. The initial moment t = 0 of the process of environment threat was 

fixed at the moment when the initiating event causing ship accident generated 

one of the distinguished environment threat states. 

 

 

3.1  Data collection for estimating unknown parameters of the 

process of environment threats 
 

To identify unknown parameters of the sub-process of environment threats, 

described in Section 2, the statistical data coming from the sub-process of 

environment threats S(k/l)(t), k  1,2,...,n3, l  1,2,...,, realization are used: 
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 the process of environment threats observation/experiment time   11 years 

(2004-2014); 

 the vectors of realizations [n
i
(k/l)(0)]1xk, k  1,2,...,5, l  1,2,...,16, 1  35,  

2  33, 3  29, 4  29, 5  29, of the environment threats sub-processes 

staying at the particular states s
i
(k/l) at the initial moment t  0. For instance, 

the vectors of realizations for the sub-region D1 are as follows: 

[n
i
(1/1)(0)]1x35 = [1630, 0,..., 0],  [n

i
(1/2)(0)]1x35 = [434, 0,..., 0], 

[n
i
(1/3)(0)]1x35 = [760, 0,..., 0],  [n

i
(1/4)(0)]1x35 = [149, 0,..., 0],  

[n
i
(1/5)(0)]1x35 = [273, 0,...,0],  [n

i
(1/6)(0)]1x35 = [284, 0,..., 0],  

[n
i
(1/7)(0)]1x35 = [260, 0,..., 0],  [n

i
(1/8)(0)]1x35 = [38, 0,..., 0],  

[n
i
(1/9)(0)]1x35 = [19, 0,..., 0],  [n

i
(1/10)(0)]1x35 = [45, 0,..., 0],  

[n
i
(1/11)(0)]1x35 = [18, 0,..., 0],  [n

i
(1/12)(0)]1x35 = [1, 0,..., 0], 

[n
i
(1/13)(0)]1x35 = [9, 0,..., 0],  [n

i
(1/14)(0)]1x35 = [1, 0,..., 0],  

[n
i
(1/15)(0)]1x35 = [2, 0,..., 0],  [n

i
(1/16)(0)]1x35 = [5, 0,..., 0]; 

 the number of the environment threats sub-process realizations at the moment 

t = 0 

n(k/1)(0) = 1630, n(k/2)(0) = 434, n(k/3)(0) = 760, n(k/4)(0) = 149, n(k/5)(0) = 273,  

n(k/6)(0) = 284, n(k/7)(0) = 260, n(k/8)(0) = 38, n(k/9)(0) = 19, n(k/10)(0) = 45,  

n(k/11)(0) = 18, n(k/12)(0) = 1, n(k/13)(0) = 9, n(k/14)(0) = 1, n(k/15)(0) = 2,  

n(k/16)(0) = 5, k = 1,2…,5. 

The collected statistical data necessary for evaluating the probabilities of 

transitions between environment threats states are: 

 the matrices of realizations n
ij

(k/l), i, j  1,2,…,k, k  1,2,...,5, l  1,2,...,16,  

1  35, 2  33, 3  29, 4  29, 5  29, of the numbers of the process 

S(k/l)(t) transitions from the state s
i
(k/l) into the state s

j
(k/l) during the 

experimental time. For instance, the matrices of realizations for the sub-region 

D1 are as follows (the numbers of transitions that are not equal to 0 are 

presented only): 

72  1
)2/1(n

 
= 43, 1  7

)2/1(n
 
= 1, 1  27

)2/1(n  = 42, 7  27
)2/1(n  = 1; 

32  1
)3/1(n

 
= 1, 72  1

)3/1(n
 
= 40, 03  1

)3/1(n
 
= 2, 1  32

)3/1(n
 
= 1, 1  27

)3/1(n  = 40, 1  03
)3/1(n  = 2;  

31  1
)4/1(n

 
= 1, 72  1

)4/1(n
 
= 16, 53  1

)4/1(n
 
= 1, 1  5

)4/1(n
 
= 1, 1  31

)4/1(n  = 1, 1  27
)4/1(n  = 16,  

5  53
)4/1(n  = 1; 

3  1
)5/1(n  = 1, 4  1

)5/1(n  = 3, 72  1
)5/1(n  = 5, 43  1

)5/1(n  = 1, 17  3
)5/1(n  = 1, 1  4

)5/1(n  = 4,  

1  7
)5/1(n  = 1, 7  71

)5/1(n  = 1, 1  72
)5/1(n  = 5, 4  43

)5/1(n  = 1; 
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72  1
)6/1(n  = 2, 1  72

)6/1(n  = 2; 

72  1
)7/1(n  = 7, 03  1

)7/1(n  = 1, 1  72
)7/1(n  = 7, 1  03

)7/1(n  = 1; 

3  1
)8/1(n

 
= 1, 6  1

)8/1(n
 
= 3, 7  1

)8/1(n  = 1, 8  1
)8/1(n  = 1, 72  1

)8/1(n  = 11, 1  3
)8/1(n

 
= 1, 

1  6

)8/1(n  
= 3,  

12  7
)8/1(n  = 1, 1  8

)8/1(n  = 1, 1  12
)8/1(n = 1, 1  72

)8/1(n  = 11; 

 the vectors of realisation of the total numbers of the sub-process S(k/l)(t) 

transitions from the state s
i
(k/l), i  1,2,...,k, k  1,2,...,5, l  1,2,...,16, 1  35, 

2  33, 3  29, 4  29, 5  29, during the experimental time. For instance, 

the vectors of realizations for the sub-region D1 are as follows: 

[n
i
(1/2)]1x35 = [43, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  

                       0, 43, 0, 0, 0, 0, 0, 0, 0, 0], 

[n
i
(1/3)]1x35 = [43, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,  

                       0, 40, 0, 0, 2, 0, 0, 0, 0, 0], 

[n
i
(1/4)]1x35 = [18, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  

                       0, 16, 0, 0, 0, 0, 0, 0, 0, 1], 

[n
i
(1/5)]1x35 = [10, 0, 1, 4, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,  

                       0, 5, 0, 0, 0, 0, 0, 0, 1, 0], 

[n
i
(1/6)]1x35 = [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  

                     2, 0, 0, 0, 0, 0, 0, 0, 0], 

[n
i
(1/7)]1x35 = [8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  

                     7, 0, 0, 1, 0, 0, 0, 0, 0], 

[n
i
(1/8)]1x35 = [17, 0, 1, 0, 0, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,  

                       0, 11, 0, 0, 0, 0, 0, 0, 0, 0], 

[n
i
(1/1)]1x35 = [n

i
(1/9)]1x35 = [n

i
(1/10)]1x35 = [n

i
(1/11)]1x35 = [n

i
(1/12)]1x35 = [n

i
(1/13)]1x35  

= [n
i
(1/14)]1x35 = n

i
(1/15)]1x35 = [n

i
(1/16)]1x35 = [0, 0,…, 0]. 

The collected statistical data necessary to evaluate the unknown parameters of 

the distributions of the conditional sojourn times ij
(k/l) at the states of the sub-

process of environment threats are as follows: 

 the numbers n
ij

(k/l), i, j  1,2,...,k, i  j, k  1,2,...,5, l  1,2,...,16, 1  35,  

2  33, 3  29, 4  29, 5  29, of the realizations ij
(k/l),   1,2,...,n

ij
(k/l)

 
of 

the conditional sojourn times ij
(k/l) of the sub-process of environment threats 

state s
i
(k/l), when the next transition is to the state s

j
(k/l) during the experimental 

time; 
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 the realizations ij
(k/l),   1,2,...,n

ij
(k/l)

 
i, j  1,2,...,k, i  j, k  1,2,...,5,  

l  1,2,...,16, 1  35, 2  33, 3  29, 4  29, 5  29, of the conditional 

sojourn times ij
(k/l) of the sub-process of environment threats state s

i
(k/l), when 

the next transition is to the state s
j
(k/l) during the experimental time.  

 

3.2  Estimating parameters of the process of environment 

threats 
 

On the basis of the statistical data from Section 3.1, using the formulae given in 

Section 4.2.3 in Kołowrocki and Soszyńska-Budny[6], it is possible to evaluate 

the following unknown basic parameters of the process of environment threats: 

 the vectors of the initial probabilities p
i
(k/l)(0), i  1,2,...,k, k  1,2,...,5,  

l  1,2,...,16, 1  35, 2  33, 3  29, 4  29, 5  29, of the environment 

threats sub-process at the particular states at the moment t = 0. For instance, 

the vectors of initial probabilities for the sub-region D1 are as follows: 

[p(1/l)(0)]1x35 = [1,0,…,0], l  1,2,...,16; 

 the matrices [p
ij

(k/l)], i, j  1,2,...,k, k  1,2,...,5, l  1,2,...,16, 1  35, 2  33, 

3  29, 4  29, 5  29, of probabilities of transitions of the sub-process 

S(k/l)(t) from the state s
i
(k/l) into the state s

j
(k/l) during the experimental time. For 

instance, the matrices of probabilities of transitions for the sub-region D1 are 

as follows (the probabilities of transitions that are not equal to 0 are presented 

only): 

72  1
)2/1(p

 
= 1, 1  7

)2/1(p
 
= 1, 1  27

)2/1(p  = 0.977, 7  27
)2/1(p  = 0.023;  

32  1
)3/1(p

 
= 0.023, 72  1

)3/1(p
 
= 0.931, 03  1

)3/1(p
 
= 0.046, 1  32

)3/1(p
 
= 1, 1  27

)3/1(p  = 1,  

1  03
)3/1(p  = 1; 

13  1
)4/1(p  = 0.055, 72  1

)4/1(p  = 0.890, 53  1
)4/1(p  = 0.055, 1  5

)4/1(p
 
= 1, 1  31

)4/1(p  = 1,  

1  27
)4/1(p  = 1, 5  53

)4/1(p  = 1;  

3  1
)5/1(p  = 0.1, 4  1

)5/1(p  = 0.3, 72  1
)5/1(p  = 0.5, 43  1

)5/1(p  = 0.1, 17  3
)5/1(p

 
= 1, 1  4

)5/1(p  = 1,  

1  7
)5/1(p  = 1, 7  71

)5/1(p  = 1, 1  72
)5/1(p  = 1, 4  43

)5/1(p  = 1; 

72  1
)6/1(p  = 1, 1  72

)6/1(p  = 1;  

72  1
)7/1(p  = 0.875, 03  1

)7/1(p  = 0.125, 1  72
)7/1(p  = 1, 1  03

)7/1(p  = 1;  

3  1
)8/1(p

 
= 0.059, 6  1

)8/1(p
 
= 0.176, 7  1

)8/1(p  = 0.059, 8  1
)8/1(p  = 0.059, 72  1

)8/1(p  = 0.647, 

1  3
)8/1(p

 
= 1, 1  6

)8/1(p
 
= 1, 12  7

)8/1(p  = 1, 1  8
)8/1(p  = 1, 1  12

)8/1(p  = 1, 1  72
)8/1(p  = 1. 

The values of some probabilities existing in the vectors [p(k/l)(0)] and in the 

matrix [p
ij

(k/l)], besides of those standing on the main diagonal, equal to zero do 
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not mean that the events they are concerned with, cannot appear. They are 

evaluated on the basis of real statistical data and their values may change and 

become more precise if the duration of the experiment is longer. 

 

 

3.3  Estimating parameters of distributions of the process of 

environment threats 

 
On the basis of the statistical data presented in Section 3.1, using the procedure 

and the formulae given in Kołowrocki and Soszyńska-Budny[6], it is possible to 

determine the empirical parameters of the conditional sojourn times ij
(k/l) of the 

sub-process of environment threats at the particular environment threats states. 

The application of this procedure and these formulae is similar to the one 

presented in Part 1 of the paper, than we omit it. 

 

 

3.4  Identifying distribution functions of environment threats 

conditional sojourn times at states 
 

Using the procedure given in Section 4.2.4 in Kołowrocki and Soszyńska-

Budny[6] and proceedings in analogous way as in Section 3.4 of Part 1 of the 

paper, we identified the forms of the particular density function h
ij

(k/l)(t) and 

distribution functions H
ij

(k/l)(t) of the sub-process of environment threats 

conditional sojourn times ij
(k/l), i, j  1,2,...,k, i  j, k  1,2,...,5, l  1,2,...,16,  

1  35, 2  33, 3  29, 4  29, 5  29, having sufficiently numerous set of 

their realizations at particular states. We have got the following results: 

 the
 
quasi-trapezium distribution function for the conditional sojourn time  

27 1
(1/2) 

)(1  72
)2/1( tH

























,6840,0
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double trapezium distribution function for the conditional sojourn time 
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In the case when as a result of the experiment, limited data coming from 

experts, we only have the number of realizations of the process of environment 

threats lifetimes in the states and its all realizations are equal to an approximate 

value, we assume that this conditional sojourn times have the uniform 

distribution in the interval from this value minus its half to this value plus its 

half. On the other hand, in the case when as a result of the experiment, coming 

from experts, we have less than 28 realizations of the sub-process of 

environment threats, we assume that this time has the empirical distribution 

function. Then we proceeds in analogous way as in Section 3.4 of Part 1 of the 

paper. 
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For the distributions identified in this section, by application either the general 

formulae for the mean value or particular formulae given respectively by (2.12) 

and (2.13-2.19) in Kołowrocki and Soszyńska-Budny[6], the mean values  

M
 ij

(k/l)  E[ij
(k/l)], i, j  1,2,...,k, i  j, k  1,2,...,5, l  1,2,...,16, 1  35,  

2  33, 3  29, 4  29, 5  29, of the sub-process of environment threats 

conditional sojourn times at particular states can be determined and they amount 

to: 

27  1
)2/1(M 1, 1  7

)2/1(M 240, 1  72
)2/1(M 3685.1, 23  1

)3/1(M 1, 72  1
)3/1(M 165.485,  

03  1
)3/1(M 1, 1  23

)3/1(M 240, 1  72
)3/1(M 3596.51, 1  03

)3/1(M 240, 13  1
)4/1(M 1,  

72  1
)4/1(M 1, 53  1

)4/1(M 1, 1  5
)4/1(M 300, 1  31

)4/1(M 120, 5  53
)4/1(M 120, 3  1

)5/1(M 1,  

4  1
)5/1(M 1, 72  1

)5/1(M 1, 34  1
)5/1(M 1, 71  3

)5/1(M 1, 1  7
)5/1(M 5, 7  71

)5/1(M 300,  

4  43
)5/1(M 15, 72  1

)6/1(M 1, 1  72
)6/1(M  5760, 72  1

)7/1(M 1, 03  1
)7/1(M 1, 1  03

)7/1(M 240,  

3  1
)8/1(M 1, 6  1

)8/1(M 1, 7  1
)8/1(M 1, 8  1

)8/1(M 1, 72  1
)8/1(M 1, 1  3

)8/1(M 40,  

12  7
)8/1(M 15, 1  8

)8/1(M 240, 1  12
)8/1(M 5, 33  1

)2/2(M 1, 1  2
)2/2(M 280800,  

1  33
)2/2(M  24171.84, 2  33

)2/2(M 2880, 71  1
)3/2(M 1, 81  1

)3/2(M 1, 33  1
)3/2(M 161.17,  

1  81
)3/2(M 43200, 1  33

)3/2(M 11135.86, 33  1
)4/2(M 1, 33  1

)5/2(M 1, 33  1
)6/2(M 1,  

71  1
)7/2(M 1, 33  1

)7/2(M 1, 1  71
)7/2(M 1440, 2  1

)8/2(M 1, 4  1
)8/2(M 1, 5  1

)8/2(M 1,  

33  1
)8/2(M 1, 1  2

)8/2(M 7200, 1  4
)8/2(M 1440, 1  5

)8/2(M 1440, 42  1
)2/3(M 1,  

1  2
)2/3(M 280800, 1  42

)2/3(M   24171.84, 2  24
)2/3(M 2880, 41  1

)3/3(M 1, 51  1
)3/3(M 1,  

42  1
)3/3(M   161.17, 1  15

)3/3(M  43200, 1  42
)3/3(M   12398.05, 42  1

)4/3(M 1, 42  1
)5/3(M 1,  

42  1
)6/3(M 1, 41  1

)7/3(M 1, 42  1
)7/3(M 1, 1  41

)7/3(M 1440, 2  1
)8/3(M 1, 3  1

)8/3(M 1,  

4  1
)8/3(M 1, 42  1

)8/3(M 1, 1  2
)8/3(M 7200, 1  3

)8/3(M 1440, 1  4
)8/3(M 1440,  

2  1
)2/4(M 1, 1  2

)2/4(M 280800, 41  1
)3/4(M 1, 51  1

)3/4(M 1, 1  51
)3/4(M 43200,  

42  1
)4/4(M 1, 42  1

)5/4(M 1, 41  1
)7/4(M 1, 1  14

)7/4(M 1440, 2  1
)8/4(M 1, 4  1

)8/4(M 1,  

24  1
)8/4(M 1, 1  2

)8/4(M 7200, 1  4
)8/4(M 1440, 51  1

)3/5(M 1, 1  15
)3/5(M 43200,  

42  1
)4/5(M 1, 42  1

)5/5(M 1, 1  24
)5/5(M 172800, 24  1

)6/5(M 1440, 1  24
)6/5(M 17280,  

42  1
)7/5(M 1, 42  1

)8/5(M 1. 
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In the remaining cases, when the distributions cannot be identified, it is possible 

to find the approximate empirical values of the mean values M
 ij

(k/l)  E[ij
(k/l)],  

i, j  1,2,…,k, i  j, k  1,2,…,5, l  1,2,…,16, 1  35, 2  33, 3  29,  

4  29, 5  29, of the conditional sojourn times at particular states that are as 

follows: 

7  27
)2/1(M 240, 1  27

)4/1(M 2546.25, 1  4
)5/1(M 1147.50, 1  72

)5/1(M 1488,  

1  72
)7/1(M 2185.8, 1  6

)8/1(M 1100, 1  72
)8/1(M 2648.4, 1  71

)3/2(M 24480,  

1  33
)4/2(M 31050, 1  33

)5/2(M 38016, 1  33
)6/2(M 12240, 1  33

)7/2(M 8640,  

1  33
)8/2(M 12133.63, 1  41

)3/3(M 24480, 1  42
)4/3(M 31050, 1  42

)5/3(M 38016,  

1  42
)6/3(M 12240, 1  42

)7/3(M 8640, 1  42
)8/3(M 10497.27, 42  1

)2/4(M 549.33,  

1  24
)2/4(M 35382.86, 42  1

)3/4(M 440.78, 1  41
)3/4(M 24480, 1  42

)3/4(M 32230.59,  

1  42
)4/4(M 70765.71, 1  42

)5/4(M 91440, 42  1
)6/4(M 720.5, 1  42

)6/4(M 20880,  

42  1
)7/4(M 90.75, 1  42

)7/4(M 18630, 1  24
)8/4(M 34560, 24  1

)2/5(M 351.32,  

1  24
)2/5(M 26441.05, 24  1

)3/5(M 288.87, 1  24
)3/5(M 22368, 1  24

)4/5(M 64260,  

1  24
)7/5(M 11520, 1  24

)8/5(M 87480. 

 

 

Conclusions 
 

The results presented in the paper will be used in the prediction of the 

considered process of environment threats generated by the sea accident 

initiating events as well as in the prediction of the entire process of the critical 

infrastructure accident consequences including the process of initiating events, 

the proces of environment threats and the process of environment degradation. 
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Abstract. The risk analysis of chemical spills at sea and their consequences is proposed 

to be based on the general model of mutual interactions between three processes: the 

process of the sea accident initiating events, the process of the sea environment threats 
and the process of the sea environment degradation. The statistical identification of the 

unknown parameters of the process of environment degradation, i.e. estimating the 

probabilities of this process of staying at the states at the initial moment, the probabilities 

of this process transitions between its states and the distributions of this process 
conditional sojourn times at the particular states is performed. 

Keywords: critical infrastructure, sea accident, potential consequences, environment 

degradation. 

 
 

 

1  Introduction 
 

The probabilistic general model of critical infrastructure accident consequences 

includes the process of initiating events, the process of environment threats and 

the process of environment degradation models, Bogalecka and Kołowrocki[1]. 

This paper is concerned with the identification of the third one of these three 

processes.  

The particular states of the process of the environment threats S(k)(t) of the sub-

region Dk, k  1,2,…,n3, described in Part 2 of the paper, may lead to dangerous 

effects degrading the environment at this sub-region. Thus, we assume that there 

are mk different dangerous degradation effects for the environment sub-region 

Dk, k  1,2,…,n3, and we mark them by 

.,...,, )(
2

)(
1

)(
km

kkk RRR   
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This way the set 

},,...,,{ )(
2

)(
1

)()(
km

kkkk RRRR   k  1,2,…,n3, 

is the set of degradation effects for the environment of the sub-region Dk. 

These degradation effects may attain different levels. Namely, the degradation 

effect 

,)(
m
kR  ,,...,2,1 kmm    

may reach 
m
k )(  levels 

,,...,, )(

)(
2
)(

1
)(

m
km

k
m
k

m
k RRR


 m  1,2,…,mk, 

that are called the states of this degradation effect. 

The set 

},,...,,{ )(

)(
2
)(

1
)()(

m
km

k
m
k

m
k

m
k RRRR


  m  1,2,…,mk, 

is called the set of states of the degradation effect ,)(
m
kR  m  1,2,…,mk,  

k  1,2,…,n3 for the environment of the sub-region Dk, k  1,2,…,n3. 

Under the above assumptions, we can introduce the environment sub-region 

degradation process as a vector 

)],(),...,(),([)( )(
2

)(
1

)()( tRtRtRtR km
kkkk   ),,0 t  

where 

),()( tRm
k  ),,0 t  m  1,2,…,mk, k  1,2,…,n3, 

are the processes of degradation effects for the environment of the sub-region 

Dk, defined on the time interval ),,0 t  and having their values in the 

degradation effect state sets 

,)(
m
kR  m  1,2,…,mk, k  1,2,…,n3, 

is called the degradation process of the environment of the sub-region Dk. 

The vector 

],,...,,[ )(
2

)(
1

)()(
km

kkk
m
k dddr   k  1,2,…,n3, (1) 

where 

















,,...,2,1,  toequel is level its             

 and region -sub at the             

 appearseffectn degradatio a if,

,region -sub at the             

appear notdoeseffectn degradatio a if      0,

)()(

)()(

)(

)(

m
k

jm
k

k

m
k

jm
k

k

m
k

m
k

jR

D

RR

D

R

d



 (2) 

for m  1,2,…,mk, k  1,2,…,n3, 
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is called the degradation state of the sub-region Dk. 

From the above definition, the maximum number of the environment 

degradation states for the sub-region Dk, k  1,2,…,n3, is equalled to 

),1(),...,1(),1( )(
2

)(
1

)(  km
kkkk   k  1,2,…,n3. 

Further, we number the sub-region Dk, k  1,2,…,n3, degradation states defined 

by (1) and (2) and mark them by 


)(kr  for ,,...,2,1 k   k  1,2,…,n3, 

and form the set of degradation states  

},,...,2,1   ,{ )()( kkk rR    k  1,2,…,n3, 

where 

j
k

i
k rr )()(   for i  j, }.,...,2,1{, kji   

The set R(k), k  1,2,…,n3, is called the set of the environment degradation states 

of the sub-region Dk, k  1,2,…,n3, while a number k  is called the number of 

the environment degradation states of this sub-region. 

A function 

R(k)(t), k  1,2,…,n3, 

defined on the time interval ),,0 t  and having values in the environment 

degradation states set 

R(k), k  1,2,…,n3, 

is called the sub-process of the environment degradation of the sub-region Dk,  

k  1,2,…,n3.  

Next, to involve the environment sub-region Dk, k  1,2,…,n3, degradation 

process with the process of the environment threats, we define the conditional 

environment sub-region degradation process while the process of the 

environment threats S(k)(t) of the sub-region Dk, is in the state 


)(ks    1,2,…,k, 

as a vector  

)],(),...,(),([)( )/(
2

)/(
1

)/()/( tRtRtRtR km
kkkk    ),,0 t  (3) 

where  

),()/( tRm
k   ),,0 t  m  1,2,…,mk, k  1,2,…,n3,   1,2,…,k, 

defined on the time interval ),,0 t  and having values in the degradation 

effect states set ,)(
m
kR  m  1,2,…,mk, k  1,2,…,n3. 

The above definition means that the conditional environment sub-region 

degradation process R(k/)(t), ),,0 t  also takes the degradation states from 
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the set R(k) of the unconditional sub-region degradation process R(k)(t), 

),,0 t  defined by (3).  

 

 

2  Process of environment degradation modelling 
 

We assume a semi-Markov model Grabski[2], Kołowrocki[3-4], Kołowrocki 

and Soszyńska[5], Limnios and Oprisan[6], Macci[7], Mercier[8] of the sub-

process of environment degradation R(k/)(t), k  1,2,…,n3,   1,2,…,k, and 

denote by 

,)/(
ij
k   ,,...,2,1, kji   i  j, k  1,2,…,n3,   1,2,…,k 

its random conditional sojourn times in the state r
i
(k) while its next transition will 

be done to the state r
j
(k). This sub-process is defined by:  

 the vector of probabilities of its initial states at the moment t  0 

,)]0([
1)/(

kx
i
kq   

 the matrix of probabilities of transitions between the states  

,][ )/( kk x
ij
kq   

 the matrix of the distribution functions of the conditional sojourn times  

,)]([ )/( kk x
ij
k tG   

or equivalently by the matrix of the density functions of the conditional 

sojourn times 

,)]([ )/( kk x
ij
k tg   

 the mean values of the conditional sojourn times 

.)/(
ij
kM   

We distinguished m  5 possible environment degradations in the 

neighbourhood sub-regions Dk, k  5, of a critical infrastructure (a ship) accident 

area that may be caused by threats coming from chemical substance released 

into the marine environment as a result of a sea accident as follows: R
1
 – the 

increase of the air and water temperature in the accident area, R
2
 – the decrease 

of oxygen concentration of the air and water of the accident area, R
3
 – the 

disturbance of air and water pH regime in the accident area, R
4
 – the aesthetic 

nuisance (caused by smells, litter, discoloration etc.) in the accident area, R
5
 – 

the pollution of air and water in the accident area. Each of the environment 

degradation effect may attain different levels. Next, we distinguished states of 

the environment degradation process for particular sub-regions. The number of 

this process states for each sub-region 1  30, 2  28, 3  28, 4  31,  

5  23, are fixed and the environment degradation states r
i
(k), ,,...,2,1 ki    
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k  1,2,…,n3, are defined in Bogalecka and Kołowrocki[1]. Additionally, we 

involve the process of environment threats S(k/l)(t), with each sub-process of 

environment degradation. Thus, we fix environment degradation states r
i
(k/), 

,,...,2,1 ki   k  1,2,…,n3,   1,2,…,k, for a particular sub-region according 

to the environment threat that cause the environment degradation effects state. 

Moreover, it is assumed that there are possible the transitions between all states 

of the sub-process of environment degradation. 

 

 

3  Identification of the process of environment degradation 
 

The experiment was performed across the world seas and oceans in the years 

2004-2014. The initial moment t = 0 of the process of environment degradation 

was fixed at the moment when the threat caused by ship accident generated one 

of the distinguished degradation effects states. 

 

 

3.1  Parameters of the process of environment degradation 
 

On the basis of the statistical data coming from experiment, it is possible to 

evaluate the following unknown basic parameters of the process of environment 

degradation: 

 the vectors of the initial probabilities q
i
(k/)(0), ,,...,2,1 ki   k  1,2,...,5,  

  1,2,…,k, 1  35, 2  33, 3  29, 4  29, 5  29, 1 30, 2 28, 

3 28, 4 31, 5 23, of the environment degradation sub-process at 

the particular states at the moment t = 0. For instance, the vectors of initial 

probabilities for the sub-region D1 are as follows: 

[q(1/1)(0)]1x30 = [1,0,…,0], [q(1/2)(0)]1x30 = [0,0,…,0], 

[q(1/3)(0)]1x30 = [1,0,…,0], [q(1/4)(0)]1x30 = [1,0,…,0], 

[q(1/5)(0)]1x30 = [1,0,…,0], [q(1/6)(0)]1x30 = [1,0,…,0], 

[q(1/7)(0)]1x30 = [1,0,…,0], [q(1/8)(0)]1x30 = [1,0,…,0], 

[q(1/9)(0)]1x30 = [0,0,…,0], [q(1/10)(0)]1x30 = [0,0,…,0], 

[q(1/11)(0)]1x30 = [0,0,…,0], [q(1/12)(0)]1x30 = [0,0,…,0], 

[q(1/13)(0)]1x30 = [1,0,…,0], [q(1/14)(0)]1x30 = [0,0,…,0], 

[q(1/15)(0)]1x30 = [0,0,…,0], [q(1/16)(0)]1x30 = [0,0,…,0], 

[q(1/17)(0)]1x30 = [1,0,…,0], [q(1/18)(0)]1x30 = [0,0,…,0], 

[q(1/19)(0)]1x30 = [0,0,…,0], [q(1/20)(0)]1x30 = [0,0,…,0], 

[q(1/21)(0)]1x30 = [1,0,…,0], [q(1/22)(0)]1x30 = [0,0,…,0], 

[q(1/23)(0)]1x30 = [1,0,…,0], [q(1/24)(0)]1x30 = [0,0,…,0], 

[q(1/25)(0)]1x30 = [0,0,…,0], [q(1/26)(0)]1x30 = [0,0,…,0], 

[q(1/27)(0)]1x30 = [1,0,…,0], [q(1/28)(0)]1x30 = [0,0,…,0], 
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[q(1/29)(0)]1x30 = [0,0,…,0], [q(1/30)(0)]1x30 = [1,0,…,0], 

[q(1/31)(0)]1x30 = [0,0,…,0], [q(1/32)(0)]1x30 = [0,0,…,0], 

[q(1/33)(0)]1x30 = [0,0,…,0], [q(1/34)(0)]1x30 = [1,0,…,0], 

[q(1/35)(0)]1x30 = [1,0,…,0]; 

 the matrices [q
ij

(k/)], ,,...,2,1, kji   k  1,2,...,5,   1,2,…,k, 1  35,  

2  33, 3  29, 4  29, 5  29, 1 30, 2 28, 3 28, 4 31, 

5 23, of probabilities of transitions of the sub-process R(k/)(t) from the 

state r
i
(k/) into the state r

j
(k/) during the experimental time. For instance, the 

matrices of probabilities of transitions for the sub-region D1 are as follows 

(the probabilities of transitions that are not equal to 0 are presented only): 

 82  1
)3/1(q

 
= 1,  1  6

)3/1(q
 
= 1,  6  22

)3/1(q  = 1,  22  52
)3/1(q

 
= 1, 

 25  28
)3/1(q  = 1; 

27  1
)4/1(q  

= 0.75, 
30  1

)4/1(q  
= 0.25, 

1  02
)4/1(q  

= 1, 
 1  12
)4/1(q  

= 1, 
21  24
)4/1(q  = 1, 

24  72
)4/1(q  

= 1,  

20  29
)4/1(q  = 1, 

29  03
)4/1(q  

= 1; 

26  1
)5/1(q  

= 1, 
1  02
)5/1(q  

= 1, 
20  23
)5/1(q  = 1, 

23  26
)5/1(q  

= 1;  

2  1
)6/1(q  

= 0.667, 
19  1

)6/1(q  
= 0.333, 

1  2
)6/1(q  

= 1, 
1  71

)6/1(q  = 1, 
 17  81

)6/1(q  
= 1, 

18  91
)6/1(q  = 1; 

2  1
)7/1(q  

= 0.5, 
10  1

)7/1(q  
= 0.5, 

1  2
)7/1(q  

= 1, 
1  6

)7/1(q  = 1, 
6  8

)7/1(q  
= 1, 

8  01
)7/1(q  = 1; 

15  1
)8/1(q  = 1, 

1  31
)8/1(q  = 1, 

13  41
)8/1(q  

= 1, 
14  51

)8/1(q  = 1; 

6  1
)13/1(q  

= 1, 
1  6

)13/1(q  
= 1; 

28  1
)17/1(q  

= 1, 
1  6

)17/1(q  
= 1, 

6  22
)17/1(q  = 1, 

22  25
)17/1(q  

= 1, 
25  28

)17/1(q  = 1; 

20  1
)21/1(q  

= 1, 
1  02

)21/1(q  
= 1;  

2  1
)23/1(q  = 1, 

1  2
)23/1(q  = 1; 

6  1
)27/1(q  

= 1, 
1  6

)27/1(q  
= 1; 

11  1
)30/1(q  = 1, 

1  11
)30/1(q  = 1;  

26  1
)35/1(q  = 1, 

1  20
)35/1(q  = 1, 

20  32
)35/1(q  

= 1, 
23   26

)35/1(q  = 1. 

The values of some probabilities existing in the vectors [q(k/)(0)] and in the 

matrix [q
ij

(k/)], besides of those standing on the main diagonal, equal to zero do 

not mean that the events they are concerned with, cannot appear. They are 

evaluated on the basis of real statistical data and their values may change and 

become more precise if the duration of the experiment is longer. 
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3.2  Distribution functions of environment degradation 

conditional sojourn times at states 
 

Using the procedure given in Section 4.2.4 in Kołowrocki and Soszyńska-

Budny[5] and proceedings in analogous way as in Section 3.4 of Part 1 of the 

paper, we identified the forms of the particular density function g
ij

(k/)(t) and 

distribution functions G
ij

(k/)(t) of the sub-process of environment degradation 

conditional sojourn times ij
(k/), ,,...,2,1, kji   i  j, k  1,2,...,5,   1,2,…,k, 

1  35, 2  33, 3  29, 4  29, 5  29, 1 30, 2 28, 3 28, 

4 31, 5 23, having sufficiently numerous set of their realizations at 

particular states. We have got the following results: 
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In the case when as a result of the experiment, limited data coming from 

experts, we only have the number of realizations of the process of environment 

degradation lifetimes in the states and its all realizations are equal to an 

approximate value, we assume that this conditional sojourn times have the 

uniform distribution in the interval from this value minus its half to this value 

plus its half. On the other hand, in the case when as a result of the experiment, 

coming from experts, there are not any suitable distribution presented in Chapter 

2 in Kołowrocki and Soszyńska-Budny[5], to describe the process environment 

degradation or we have less than 28 realizations of the sub-process of 
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environment degradation, we assume that this time has the empirical distribution 

function. Then we proceeds in analogous way as in Section 3.4 of Part 1 of the 

paper. 

For the distributions identified in this section, by application either the general 

formulae for the mean value or particular formulae given respectively by (2.12) 

and (2.13-2.19) in Kołowrocki and Soszyńska-Budny[5], the mean values  

M
ij

(k/)  E[ij
(k/)], ,,...,2,1, kji   i  j, k  1,2,...,5,   1,2,…,k, 1  35,  

2  33, 3  29, 4  29, 5  29, 1 30, 2 28, 3 28, 4 31, 

5 23, of the sub-process of environment degradation conditional sojourn 

times at particular states can be determined and they amount to: 

28  1
)3/1(M 1, 1  6

)3/1(M 180, 6  22
)3/1(M 120, 22  25

)3/1(M 120, 25  28
)3/1(M 300,  

27  1
)4/1(M 1, 30  1

)4/1(M 1, 1  20
)4/1(M 20, 20  29

)4/1(M 20, 29  30
)4/1(M 40, 26  1

)5/1(M 1,  

1  20
)5/1(M 30, 20  23

)5/1(M 60, 23  26
)5/1(M 360, 2  1

)6/1(M 1, 19  1
)6/1(M 1, 1  17

)6/1(M 30,  

17  18
)6/1(M 30, 18  19

)6/1(M 180, 2  1
)7/1(M 1, 10  1

)7/1(M 1, 1  2
)7/1(M 15, 1  6

)7/1(M 180,  

6  8
)7/1(M 120, 8  10

)7/1(M 420, 15  1
)8/1(M 1, 1  13

)8/1(M 60, 13  14
)8/1(M 60,  

14  15
)8/1(M 120, 6  1

)13/1(M 1, 1  6
)13/1(M 120, 28  1

)17/1(M 1, 1  6
)17/1(M 180,  

6  22
)17/1(M 120, 22  25

)17/1(M 120, 25  28
)17/1(M 300, 20  1

)21/1(M 1, 1  20
)21/1(M 10,  

2  1
)23/1(M 1, 1  2

)23/1(M 240, 6  1
)27/1(M 1, 1  6

)27/1(M 1, 11  1
)30/1(M 1, 26  1

)35/1(M 1,  

1  20
)35/1(M 30, 20  23

)35/1(M 60, 23  26
)35/1(M 360, 5  1

)1/2(M 1, 1  5
)1/2(M 600,  

2  1
)2/2(M 1, 1  2

)2/2(M 2880, 2  1
)4/2(M 1, 1  2

)4/2(M 1440, 18  1
)5/2(M 1,  

1  13
)5/2(M 780, 13  14

)5/2(M 360, 14  18
)5/2(M 300, 25  1

)17/2(M 1, 27  1
)17/2(M 1,  

11  1
)18/2(M 1, 1  6

)18/2(M 10080, 6  9
)18/2(M 11520, 9  11

)18/2(M 21600, 6  1
)33/2(M 1,  

9  1
)33/2(M 1, 11  1

)33/2(M 1, 23  1
)33/2(M 1, 1  2

)33/2(M 246240, 1  6
)33/2(M 33935.21,  

6  9
)33/2(M 5709.65, 9  11

)33/2(M 5051.25, 2  12
)33/2(M 14400, 12  15

)33/2(M 7200,  

15  20
)33/2(M 10080, 20  22

)33/2(M 1440, 22  23
)33/2(M 1440, 2  1

)2/3(M 1, 1  2
)2/3(M 2880,  

2  1
)3/3(M 1, 1  2

)3/3(M 1440, 18  1
)4/3(M 1, 1  13

)4/3(M 780, 13  14
)4/3(M 360,  

14  18
)4/3(M 300, 25  1

)14/3(M 1, 27  1
)14/3(M 1, 11  1

)15/3(M 1, 1  6
)15/3(M 10080,  

6  9
)15/3(M 11520, 9  11

)15/3(M 21600, 6  1
)24/3(M 1, 9  1

)24/3(M 1, 11  1
)24/3(M 1,  
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23  1
)24/3(M 1, 1  2

)24/3(M 246240, 1  6
)24/3(M 16687.31, 6  9

)24/3(M 11018.72,  

2  12
)24/3(M 14400, 12  15

)24/3(M 7200, 15  20
)24/3(M 10080, 20  22

)24/3(M 1440,  

22  23
)24/3(M 1440, 2  1

)2/4(M 1, 1  2
)2/4(M 2880, 18  1

)4/4(M 1, 1  13
)4/4(M 780,  

13  14
)4/4(M 360, 14  18

)4/4(M 300, 28  1
)14/4(M 1, 30  1

)14/4(M 1, 11  1
)15/4(M 1,  

1  6
)15/4(M 10080, 6  9

)15/4(M 11520, 9  11
)15/4(M 21600, 6  1

)24/4(M 928.66,  

9  1
)24/4(M 1, 11  1

)24/4(M 1, 1  6
)24/4(M 37664.56, 9  6

)24/4(M 1749.73,  

24  6
)24/4(M 4320, 6  9

)24/4(M 10614.81, 24  25
)24/4(M 30240, 25  26

)24/4(M 10080,  

5  1
)1/5(M 1, 1  5

)1/5(M 600, 11  1
)15/5(M 1, 1  6

)15/5(M 10080, 6  9
)15/5(M 11520,  

9  11
)15/5(M 21600, 6  1

)24/5(M 564.28, 9  1
)24/5(M 1, 11  1

)24/5(M 1,  

1  6
)24/5(M  29741.18, 6  9

)24/5(M 13659.52. 

In the remaining cases, when the distributions cannot be identified, it is possible 

to find the approximate empirical values of the mean values M
ij

(k/)  E[ij
(k/)], 

,,...,2,1, kji   i  j, k  1,2,...,5,   1,2,…,k, 1  35, 2  33, 3  29,  

4  29, 5  29, 1 30, 2 28, 3 28, 4 31, 5 23, of the 

conditional sojourn times at particular states that are as follows: 

1  21
)4/1(M 680, 21  24

)4/1(M 920, 24  27
)4/1(M 2020, 1  2

)6/1(M 1560, 1  11
)30/1(M 260,  

1  12
)17/2(M 2640, 12  16

)17/2(M 2145, 16  21
)17/2(M 1530, 21  25

)17/2(M 255, 25  27
)17/2(M 270,  

1  12
)14/3(M 2640, 12  16

)14/3(M 2145, 16  21
)14/3(M 1530, 21  25

)14/3(M 255, 25  27
)14/3(M 270,  

9  6
)24/3(M 2448, 11  9

)24/3(M 3780, 9  11
)24/3(M 8177.14, 1  12

)14/4(M 2640,  

12  16
)14/4(M 2145, 16  21

)14/4(M 1530, 21  28
)14/4(M 300, 28  30

)14/4(M 270, 11  9
)24/4(M 2010,  

25  9
)24/4(M 7080, 9  11

)24/4(M 6189.6, 26  11
)24/4(M 5160, 6  24

)24/4(M 5760,  

6  25
)24/4(M 15120, 9  26

)24/4(M 30763.64, 9  6
)24/5(M 1418.18, 11  9

)24/5(M 1483.64,  

9  11
)24/5(M 27552. 

 

 

Conclusions 
 

The results presented in the paper will be used in the prediction of the 

considered process of environment degradation generated by the threat caused 
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by ship accident as well as in the prediction of the entire process of the critical 

infrastructure accident consequences including the process of initiating events, 

the proces of environment threats and the process of environment degradation. 
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Abstract. The aim of the paper is to discuss some problems arising in insurance,
finance and other applications of probability theory. To this end we consider two
insurance models (one continuous-time and one discrete-time). The first one is a dual
insurance model with dividends. The main attention is paid to investigation of a new
strategy of dividends payment. The second model deals with short-term credit policy
in discrete-time case. We focus here on system optimization in the framework of cost
approach.
Keywords: Insurance models, Cost approach, Dividends.

1 Introduction

It is well known to all researchers dealing with applications that it is desir-
able to construct the mathematical model of a real-life process (or system) for
its investigation. There can exist a lot of models describing the system with
different degrees of accuracy. Moreover, the same model can arise in various
research fields. Thus, methods applied in one domain can be useful in others.

The models considered in such applications of probability theory as insur-
ance, finance, queueing, reliability, inventory, dams, transport networks, popu-
lation dynamics and many others are of input-output type. In order to describe
these models, see, e.g., Bulinskaya[9], one has to ascertain input and output
processes (or flows) and time horizon. To evaluate the system performance
one needs an objective function (target, valuation criterium, risk measure).
It is also necessary to introduce a set of feasible controls and carry out the
optimization.

The most widely used approaches are reliability and cost ones, see, e.g., Bu-
linskaya[6], Afanasyeva and Bulinskaya[1]. Thus, objective functions considered
by researchers are either survival probability of the system under consideration
and its life-time until failure or costs (losses and profits) associated with the
system functioning, see, e.g., Bulinskaya[7].

The paper is organized as follows. In Section 2 we consider a discrete-time
model with short-term credit. On the contrary, the model treated in Section 3
is a continuous-time dual model with dividends. The Section 4 contains con-
clusions and further research directions.
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2 Short-term credits

We consider a discrete-time insurance system (or other organization) which is
interested in short-term credits (or bank loans). It is supposed that at the
beginning of each period (year, month or week) it is possible to apply to a
bank in order to obtain a credit card valid for a fixed number of periods. The
card is provided immediately. The upper limit z of the credit is chosen by
the applicant who pays bank at once the amount cz where c is the interest
rate. The aim of loan is to satisfy the claims flow described by a sequence of
nonnegative i.i.d. random variables {ξn}n≥1. We assume that each claim ξ
has a known distribution function F (t) possessing a density ϕ(t) > 0 for t > 0
and a finite expectation. If a claim amount ξ is larger than the cash amount
u available for payment then another loan is obtained at the interest rate p,
p > c, its size is ξ−u. The amount u− ξ, not used for payment before the card
expiration term, is lost. Moreover, in this case the financial loss of applicant
is equal to k(u − ξ). Let x be the initial cash amount of applicant. Our aim
is to determine the optimal n-period strategy of applicant. Optimality means
the minimization of expected discounted costs entailed by the n-step credit
strategy.

2.1 One-period credit

Assume, at first, that the credit is valid for one period only. That means, the
money not used for payment during the period cannot be used later. Denote by
fn(x) the minimal expected discounted costs incurred by the implementation of
n-period credit strategy. Here x is the cash amount available initially for claims
payment if x > 0 and |x| is the debt amount if x < 0. Put H1(y) = cy + L(y)
with L(y) = p

∫∞
y

(s− y)ϕ(s) ds+ k
∫ y
0

(y − s)ϕ(s) ds and y = x+ z where z is
the credit limit. Then the following statements are valid.

Lemma 1.
f1(x) = −cx+ min

y≥x
H1(y). (1)

If p > c then, for any x, there exists the critical level x̄1 defined by the relation

F (x̄1) = (p− c)(p+ k)−1 (2)

such that optimal credit limit is given by z1(x) = max(0, x̄1− x). The function
f1(x) is twice differentiable and convex, whereas

f ′1(x) =

{
−c, x ≤ x̄1,
L′(x), x ≥ x̄1.

(3)

Proof. Obviously, cz = c(y − x) is the interest which is paid for obtaining the
credit. Moreover, L(y) is the expected cost amount incurred by insufficiency or
superfluity of one-period credit. Therefore relation (1) holds. It easily follows
from the expression of L(y) that L′(y) = −p + (p + k)F (y) and H ′1(y) =
c− p+ (p+ k)F (y). Thus, H ′′1 (y) = (p+ k)ϕ(y) ≥ 0 for any y and H ′1(x̄1) = 0
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for x̄1 defined by (2). That means, the function H1(y) is convex and attains the
minimum at the point x̄1. Hence, f1(x) = H1(y1(x)) for y1(x) = max(x, x̄1)
and z1(x) = y1(x) − x has the desired form, whereas f ′1(x) is defined by (3).
Thus, f ′′1 (x) = 0 for x < x̄1 and f ′′1 (x) = L′′(x) > 0 for x > x̄1. So, the function
f1(x) is convex and the proof is completed. �

Turning to multi-period case we introduce a discount factor α ∈ (0, 1) and
establish the following results.

Theorem 1. The function fn(x) specified by

fn(x) = −cx+ min
y≥x

Hn(y), (4)

where Hn(y) has the form

Hn(y) = H1(y) + αfn−1(0)F (y) + α

∫ ∞
y

fn−1(y − s)ϕ(s) ds, (5)

is twice differentiable and convex for all n > 1. There exists x̄ > x̄1 such that
the optimal credit limit zn(x) = max(0, x̄−x) for any x and n > 1. The critical
level x̄ is defined by the relation F (x̄) = (p− c(1− α))(p+ k + αc)−1.

Proof. Clearly, the n-period costs entailed by bank loans consist of the first
period costs and costs arising during the following n− 1 periods. Since a first
loan can be used during the first period only, at the beginning of the second
period the insurance company either will have no cash available for future
payments (that corresponds to the case ξ1 < y) or its debt will be equal to
ξ1 − y (that corresponds to the case ξ1 > y). According to Bellman optimality
principle (see, e.g., Bellman[4]) it is possible to conclude that equations (4) and
(5) are valid.

Further proof is carried out by induction. Consider at first n = 2 and use
the fact that f ′1(x) = −c for x ≤ 0. Then,

H ′2(y) = H ′1(y) + α

∫ ∞
y

f ′1(y − s)ϕ(s) ds = c+ L′(y)− αc
∫ ∞
y

ϕ(s) ds.

Now it is obvious that the right-hand side of the last equality is c(1−α)− p+
(p + k + αc)F (y), hence, H ′2(x̄) = 0. So, for n = 2 the credit limit z2(x) has
the form mentioned in the theorem statement. In other words,

f2(x) = −cx+

{
H2(x̄), x ≤ x̄,
H2(x), x ≥ x̄

and

f ′2(x) = −c+

{
0, x ≤ x̄,
H ′2(x), x ≥ x̄.

Since H ′′2 (y) = (p + k + αc)ϕ(y) ≥ 0 for y > x̄ and equals zero otherwise,
it follows immediately that f ′′2 (x) ≥ 0. Thus, the theorem statement is valid
for n = 2. Assuming that it is true as well for n − 1 we easily get H ′n(y) =
H ′1(y)−αc

∫∞
y
ϕ(s) ds = H ′2(y). That means, the critical number for all n > 1

is equal to x̄.
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Obviously x̄ > x̄1, since

p− c(1− α)

p+ k + αc
>
p− c
p+ k

. �

Thus, we have established that for any n > 1 the optimal credit strategy is
determined by a single critical number x̄ whereas for n = 1 one has to use
x̄1 instead of x̄. It is not difficult to prove the following results clarifying the
dependence of critical levels on the cost parameters.

Corollary 1. Critical level x̄1 is increasing function of p and decreasing func-
tion of c and k, whereas x̄ increases in p and α and decreases in c and k.

Proof is based on explicit form of partial derivatives of critical levels with
respect to parameters. Thus,

∂x̄1
∂p

=
k + c

ϕ(x̄1)(p+ k)2
,

∂x̄1
∂c

= − 1

ϕ(x̄1)(p+ k)
,

∂x̄1
∂k

= − p− c
ϕ(x̄1)(p+ k)2

.

On the other hand,

∂x̄

∂p
=

k + c

ϕ(x̄)(p+ k + αc)2
,

∂x̄

∂α
=

c(k + c)

ϕ(x̄)(p+ k + αc)2
,

∂x̄

∂c
= − k(1− α) + p

ϕ(x̄)(p+ k + αc)2
,

∂x̄

∂k
= − p− c(1− α)

ϕ(x̄)(p+ k + αc)2
.

Since all the cost parameters are positive, as well as density ϕ(x) for x > 0,
and α < 1, p > c, the desired results are obvious. �

2.2 Two-period credit

Now, let the credit be available for two periods. We begin by writing the
one-step objective function

G1(z, x) = cz + p

∫ ∞
x+z

(s− x− z)ϕ(s) ds+ k

∫ x

0

(x− s)ϕ(s) ds. (6)

If, as previously, we denote by f1(x) the minimal one-period additional expected
costs entailed be the credit then

f1(x) = min
z≥0

G1(z, x).

It is possible to prove the following results.

Lemma 2. The optimal one-step limit of credit z1(x) has the following form

z1(x) =

{
x1 − x, x ≤ x1,
0, x ≥ x1.

(7)

Here F (x1) = p−1(p− c). The function f1(x) is convex twice-differentiable and

f ′1(x) =

{
−c+ kF (x), x ≤ x1,
−p+ (p+ k)F (x), x ≥ x1.

(8)
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Proof. It is clear that, for a fixed x, minimum of G1(z, x) in z is attained either
on the boundary z = 0 or at the point z1(x) being the root of the equation

∂G1

∂z
(z, x) = 0. (9)

Due to (6), one immediately gets F (x + z1(x)) = p−1(p − c) from (9). Since
p > c, there exists such x1 that the form (7) of z1(x) is true.

Obviously, f1(x) = G1(z1(x), x), therefore

f1(x) =

{
c(x1 − x) + k

∫ x
0

(x− s)ϕ(s) ds+ p
∫∞
x1

(s− x1)ϕ(s) ds, x ≤ x1,
k
∫ x
0

(x− s)ϕ(s) ds+ p
∫∞
x

(s− x)ϕ(s) ds, x ≥ x1,

whence (8) follows immediately. It is clear that f ′1(x) is continuous, moreover,

f ′′1 (x) =

{
kϕ(x), x < x1,
(k + p)ϕ(x), x > x1.

In view of f ′′1 (x) ≥ 0, function f1(x) is convex. �
Turning to n-step case one can write, for n > 1, using the Bellman opti-

mality principle, see, e.g., Bellman[4],

fn(x) = min
z≥0

Gn(z, x)

where

Gn(z, x) = G1(z, x) + αfn−1(z)F (x) + α

∫ ∞
x

fn−1(x+ z − s)ϕ(s) ds (10)

and α ∈ (0, 1) is a discount factor as in previous subsection.

Theorem 2. For any n > 1, the function fn(x) is convex and twice differen-
tiable. Moreover, there exists the optimal credit level zn(x) ≥ 0 possessing the
following properties

−1 ≤ z′n(x) ≤ 0, z′n(x) = −1 for x ≤ 0, and zn(x) = 0 for x ≥ x0,
(11)

where F (x0) = p−1(p− c(1− α)) and fn(x) = Gn(zn(x), x).

Proof is based on Lemma 2 and carried out by induction. Assume that all the
statements are proved for the number of steps up to n−1. Using (10) we obtain

∂Gn
∂z

(z, x) = c−p
∫ ∞
x+z

ϕ(s) ds+αf ′n−1(z)F (x) +α

∫ ∞
x

f ′n−1(x+z−s)ϕ(s) ds.

The solution of the equation ∂Gn(zn(x), x)/∂z = 0 is a differentiable implicit
function zn(x) and

z′n(x) = −
pϕ(x+ zn(x)) + α

∫∞
x
f ′′n−1(x+ zn(x)− s)ϕ(s) ds

pϕ(x+ zn(x)) + α
∫∞
x
f ′′n−1(x+ zn(x)− s)ϕ(s) ds+ αf ′′n−1(zn(x))F (x)

.

(12)
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It is clear from (12) that properties (11) are true. Since zn(x) is decreasing, we
can find such xn that zn(xn) = 0. It has to satisfy the following relation

0 =
∂Gn
∂z

(0, xn) = c− p+ (p+ αf ′n−1(0))F (xn) + α

∫ ∞
xn

f ′n−1(xn − s)ϕ(s) ds.

Due to the form of f ′n−1(x) = −p+ pF (x+ zn−1(x)) + kF (x) +α
∫∞
x
f ′n−2(x+

zn−1(x) − s)ϕ(s) ds, for x ≤ xn−1 (valid for n > 2) it is not difficult to check
that f ′n−1(x) = −c for x ≤ 0 and pF (xn) = p − c(1 − α). Hence it follows
immediately that xn = x0. For n = 2 the same reasoning can be carried out,
because we need only convexity of fn−1(x) and equality f ′n−1(x) = −c for x ≤ 0
which is true for f1(x). Thus, the base of induction is valid along with its steps.
�

Remark. If we suppose additionally that k ≤ c then it is possible to
establish that z2(x) ≥ z1(x) for all x.

3 Dual insurance model

To emphasize the fruitfulness of cost approach, below we investigate the model
with dividend payments, dual to the classical Sparre Andersen insurance model.
That means, the company surplus (or capital) X(t) at time t, without divi-
dends, is described by the following relation

X(t) = x− ct+ S(t).

Here x is the initial surplus, c is the expenses rate and the last term S(t) =∑N(t)
n=1 Yn represents the company profit. It is supposed that N(t) is a renewal

process generated by a sequence of independent identically distributed non-
negative random variables {Tn}n≥1. The sequence {Yn}n≥1 does not depend
on N(t) and also consists of nonnegative i.i.d. r.v.’s. A particular case of
this model corresponding to assumption that N(t) is a Poisson process, that
is, interarrival times Tn, n ≥ 1, are exponentially distributed, is called a dual
Cramér-Lundberg model. There exist many possible interpretations for this
model. For example, one can treat the surplus as amount of the capital of a
business engaged in research and development, see, e.g. Avanzi et al.[3]. The
company pays continuously expenses for research, and occasional profit of ran-
dom amounts (such as the award of a patent or a sudden increase in sales) arises
according to a Poisson process. A similar model was used in Bayraktar and
Egami[5] to model the functioning of a venture capital investment company.

It was already mentioned that the object of investigation is a dual Sparre
Andersen model with dividends. So, it is necessary to introduce the strategy
of dividends payment. If the dividend strategy with a constant barrier level
b > 0 is applied, the surplus and aggregate dividends have the form depicted by
Figure 1. In other words, whenever the surplus exceeds the barrier the excess
is paid out immediately as a dividend.

Expected discounted dividends paid until ruin time T (the first time when

surplus becomes negative) are given by V (x; b) = E(
∫ T
0
e−δtdD(t)). Here D(t)
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Fig. 1. Surplus and dividends under barrier strategy

is the aggregate dividends paid up to time t and δ > 0 is a constant discount
rate.

It was established in Avanzi et al.[3] that a simple barrier strategy is optimal
for the model under consideration and it is possible to calculate the optimal
barrier for some particular cases. However such a strategy leads almost surely
to ruin, moreover, sometimes the company shareholders would like to get divi-
dends as soon as possible setting a barrier lower than optimal. So, we are going
to prove that in this case a step-function barrier introduced in Muromskaya[15]
for insurance models of Cramér-Lundberg type is more advantageous.

At first, turn to the case of two barriers b2 ≥ b1 and denote by V (x; b1, b2)
the expected discounted dividends until the ruin. It is supposed that barrier
level b1 is used only up to time T1 whereas b2 is set afterwards, see Figure 2.

Theorem 3. For the case of one change of barrier level the relation

V (x; b1, b2) ≥ V (x; b1)

is valid if V (x; b1) ≤ V (x; b2) for any x ≤ b1 ≤ b2.

Proof. If the initial state x > b1 then V (x; b1, b2) = x−b1 +V (b1; b1, b2). So
further on suppose that x ≤ b1. Hence, it is possible to write V (x; b1, b2) as a
sum of expected dividends V[0,T1](x, b1) obtained as a result of the first gain at
time T1 and the results of further gains for which one applies the new barrier
level b2. It is necessary to emphasize that for T1 > (x/c) the company does not
obtain any dividends being ruined earlier. Thus, using the total expectation
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Fig. 2. Surplus under two-level barrier strategy

formula one gets

V (x; b1, b2) =

x/c∫
0

e−δtf(t)

[ b1−(x−ct)∫
0

V (x− ct+ y; b2)p(y)dy

+

∞∫
b1−(x−ct)

V (b1; b2)p(y)dy

]
dt+ V[0,T1](x, b1).

Here f(t) is the density of the first gain arrival time T1 and p(y) is the density
of the gain amount, whereas

V[0,T1](x, b1) =

x/c∫
0

e−δtf(t)

∞∫
b1−(x−ct)

(x− ct+ y − b1)p(y)dy dt

is the expected discounted dividends paid on interval [0, T1]. In fact, there are
two different situations after the first profit. Either its amount is such that the
surplus does not reach the dividends barrier b1 or after the dividends payment
the company starts from the level b1. Moreover, since V (x; b1) = V (x; b1, b1),
under the theorem assumption it is obvious that V (x; b1, b2) ≥ V (x; b1). �

Now denote by V (x; b1, . . . , bn) the expected discounted dividends for the

payment strategy using barrier level bi on interval (
∑i−1
k=1 Tk,

∑i
k=1 Tk], i > 1,

and b1 is dividend barrier for [0, T1]. The condition 0 < b1 ≤ b2 ≤ . . . ≤ bn
defines the strategy with growing barrier level, see Figure 3.

Theorem 4. Under assumption of Theorem 3 the strategy with growing barrier
level provides the higher expected discounted dividends until ruin than the strat-
egy with a constant barrier, that is V (x; b1, . . . , bk) ≥ V (x; b1) for any x ≤ b1
and n ≥ k > 1.
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Proof is carried out by induction. The base of induction is established by
Theorem 3. Next, let relation V (x; b1, . . . , bm) ≥ V (x; b1, . . . , bm−1) be fulfilled
for any 0 < b1 ≤ b2 ≤ . . . ≤ bm. Using the formula of total expectation one
can write by averaging on T1 and Y1 the following relation

V (x; b1, . . . , bm+1) =

x/c∫
0

e−δt
[ b1−(x−ct)∫

0

V (x− ct+ y; b2, . . . , bm+1)p(y)dy

+

∞∫
b1−(x−ct)

V (b1; b2, . . . , bm+1)p(y)dy

]
f(t) dt+ V[0,T1](x, b1).

In view of induction assumption we obtain the desired statement of the theorem.
�

Fig. 3. Surplus under n-level barrier strategy

Integrating by parts it is easy to obtain for any a > 0

∞∫
a

(y − a)dF (y) =

∞∫
a

F (y) dy

where F (y) = 1 − F (y) and F is a distribution function. Thus, we get the
following

Corollary 2. The expected discounted dividends with a step-function barrier
strategy can be written in the form

V (x; b1, . . . , bn) =

x/c∫
0

e−δtf(t)

 b1−x+ct∫
0

V (x− ct+ y; b2, . . . , bn) dF (y)
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+V (b1; b2, . . . , bn)F (b1 − x+ ct) +

∞∫
b1−x+ct

F (y) dy

 dt
where F (y) = P (Yn ≤ y), n ≥ 1, is the distribution function of profit amounts.

Further refinement of the obtained results is possible for the case of dual
Cramér-Lundberg model. Hence, let f(t) = λe−λt for t ≥ 0. According to
Avanzi et al.[3] the function V (x; b) satisfies the following integro-differential
equation

cV ′(x; b) + (λ+ δ)V (x; b)− λ
b−x∫
0

V (x+ y; b) dF (y)

−λ
∞∫

b−x

(x− b+ y) dF (y)− λV (b, b)F (b− x) = 0, 0 < x < b.

It is supposed further on that the condition of the positive surplus profit per
unit time is satisfied, namely, ES(1) − c > 0. Under additional assumption
that surplus jumps have also exponential distribution p(y) = βe−βy, y ≥ 0,
this integro-differential equation can be transformed into the second order dif-
ferential equation

cV ′′(x; b) + (λ+ δ − βc)V ′(x; b)− βδV (x; b) = 0 (13)

with initial condition V (0; b) = 0. It easily follows that one can obtain the
solution in explicit form

V (x; b) =
λ

β
· erx − esx

(cr + δ)erb − (cs+ δ)esb
. (14)

Here r and s are solutions of the characteristic equation corresponding to (13).
Due to (14) there exists the optimal barrier

b∗ =
1

r − s
· ln s(cs+ δ)

r(cr + δ)
. (15)

Hence, assumption of Theorems 3 and 4 is valid and choosing b1 ≤ b2 ≤ . . . ≤
bn ≤ b∗ we can state that V (x; b1) ≤ V (x; b1, . . . , bn) for all x ≤ b1.

Moreover, since the jumps distribution is exponential one easily gets

Corollary 3. The following relation is true

V (x; b1, b2) =
λe−β(b1−x)

λ+ δ + βc

(
1− e−(λ+δ+βc)(x/c)

)
[β−1 + V (b1; b2)]

+λβ

x/c∫
0

e−(λ+δ)t
b1−x+ct∫

0

V (x− ct+ y; b2)e−βy dydt.
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Thus, it is possible to calculate recursively V (x; b1, b2, . . . , bn) using Corol-
laries 2 and 3 and explicit form (14) of V (x; b).

Next step of investigation is to employ the recently introduced new notions
such as absolute and Parisian ruin or Omega model describing the company
bankruptcy. The simplest case of Parisian ruin with a fixed implementation
delay means that the company surplus cannot stay negative longer than a given
time d, see, e.g., Czarna and Palmowski[11], Loeffen et al.[14]. In relation to
our model this signifies that the company stops the functioning if its surplus
reaches the level −cd. Denote by Ṽ (x; b) expected discounted dividends paid by
the company with initial surplus x and dividend barrier b until the bankruptcy.
Hence, it is not difficult to prove the following

Proposition 1. Ṽ (x; b) = V (x+ cd; b+ cd) for −cd ≤ x ≤ b.
So, one can establish the analogues of Theorems 3 and 4, as well as Corollaries 2
and 3. Furthermore, if the gain amounts have exponential distribution the
optimal dividends barrier for the new model b̃∗ is equal to b∗ − cd where b∗ is
given by (15).

4 Conclusion

For the credit model we have considered the short-term case (one or two pe-
riods). Further research includes treatment of longer terms models and their
stability.

Summing up the investigation of the dual model we underline that under
some additional assumptions a step-function barrier strategy with growing steps
gives the higher expected discounted dividends than a simple barrier strategy.
Moreover, if the dividends expression is known for a constant barrier it is
possible to obtain the expected dividends amount for the case of step-function
with any fixed number of steps. Furthermore, proceeding as in Avanzi et al.[3],
one can get the explicit expressions for the processes with jumps having not
only exponential distribution but their mixtures as well.

It was also shown how to extend these results to the models with delay
of bankruptcy, that is, generalize the notion of ruin. In particular, using
the Parisian ruin with a deterministic delay meaning that company becomes
bankrupt only if it surplus stays negative longer than a fixed time d it is easy
to obtain the results similar to the case of usual ruin.

The other case of Parisian ruin with a stochastic implementation delay
(considered, e.g., in Landriault et al.[13] for insurance risk models) is not so
obvious for the dual model and needs a special treatment.

The same is true for Omega models with a specified intensity of default
depending on company surplus. Definition of Omega models one can find, e.g.,
in Albrecher et al.[2], Gerber et al.[12].

Thus, we have demonstrated unification of reliability and cost approaches,
since the employed objective functions include the company gains as well as its
ruin or bankruptcy times.

In order to complete the research it is necessary to carry out the sensitivity
analysis with respect to small parameters fluctuations and underlying processes
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perturbations (see, e.g., Bulinskaya[8], Bulinskaya and Gusak[10], Saltelli et
al.[16]), in other words, to establish the models stability.
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17-01-00468.
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Abstract. The exponential model is a frequently used distribution in areas such as
queueing theory, reliability and survival analysis. Therefore, testing exponentiality is
an important problem in Statistics. Many tests have been proposed in the literature
and in this paper we revisit the exact and asymptotic properties of the Jackson
exponentiality test. Using Monte Carlo computations we study and compare the
Empirical Power of the Jackson test.
Keywords: Exponential distribution; exponentiality test; monte carlo simulation;
power of a statistical test;.

1 Introduction

Let X be a continuous random variable with distribution function (df)

F (x) = P (X ≤ x) = 1− exp(−λx), x > 0. (1)

Then X has exponential distribution with parameter λ > 0 and we will use the
notation Exp(λ) to refer to this distribution. Note that if X ∼ Exp(λ), then
λX ∼ Exp(1). The exponential distribution is the adequate model for the time
between two consecutive events in a Poisson process with intensity λ. This
distribution has several useful statistical properties, summarized in Ahsanullah
and Hamedani[2], Balakrishnan[4], Johnson et al.[10], among others.

The problem of testing exponentiality against other alternatives has re-
ceived in the last decades a lot of attention from different researchers (see
Alizadeh Noughabi and Arghami[3], Brilhante[5], Doksum[7], Henze and Mein-
tanis[8], Kozubowski et al.[11], Stephens[13] and references therein). Possible
alternative models, which extend the exponential distribution, are the gamma
distribution, the Weibull distribution, the generalized Pareto distribution and
the q-exponential distribution.

In this paper we revisit the Jackson statistic used to test exponentiality
against a general alternative. In section 2 we present the Jackson statistic test
and we review several exact and asymptotic properties. Section 3 is dedicated
to a monte carlo simulation study to compute the power of the Jackson test.
Those values are then compared to the power of the Lilliefors exponentiality
test.
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2 Jackson Exponentiality Test

Suppose X1, X2,. . . , Xn are independent and identically distributed random
variables with common unknown continuous distribution. We wish to test the
null hypothesis

H0 : X ∼ Exp(λ)

for some unspecified parameter λ > 0, against H1: the distribution of X is not
exponential.

The Jackson test was introduced in Jackson [9] and discussed in Caeiro et
al.[6]. The test statistic is given by

Jn =

∑n
i=1miX(i)∑n
i=1Xi

, (2)

with X(i) the i-th ascending order statistic and mi = λE(X(i)) =
∑i
j=1(n−j+

1)−1, i = 1, . . . , n. Since this statistic test can be expressed as a function of the
scaled random variables λXi, the null distribution of Jn does not depend on
the value of the parameter λ. With some algebra, eq. (2) could be expressed in
terms of the standardized spacings Si = (n− i+ 1)(X(i)−X(i−1)), i = 1, . . . , n
with X0 ≡ 0 (Jackson[9]), that is,

Jn =

∑n
i=1 ciSi∑n
i=1 Si

,

with ci = 1 +mi−1, i = 1, . . . , n (m0 ≡ 0). The exact null df was presented in
[9] and is given by

P (Jn ≤ x) =

∑n
k=1(x− ck)nI(0,∞[(x− ck)∏n

j=1, j 6=k(cj − ck)
, 1 < x < cn, (3)

where IA denotes the indicator function on the set A (IA(x) = 1 if x ∈ A and
IA(x) = 0 otherwise). This df was implemented in R programming language
[14] and the computer code is available in Caeiro et al.[6]. Unless we use
a arbitrary precision package to compute the df in eq. (3), we can obtain
inaccurate values for n > 100, due to floating-point errors in R. In Table 1 we
provide several quantiles of probability p from the df in (3). This table extends
Table 1 in Caeiro et al.[6].

The limit distribution of
√
n(Jn − 2) is the standard normal distribution

(Jackson[9]). Since the rate of converge of
√
n(Jn− 2) to the limit distribution

is slow, Caeiro et al.[6] studied a more a accurate approximation for the df,
for finite sample sizes. The approximation, based on Edgeworth expansion
(Abramowitz and Stegun[1]), is

P (Jn ≤ x) ≈ Φ(z)− φ(z)

{
γ1
z2 − 1

6
+ (γ2 − 3)

z3 − 3z

24
+ γ21

z5 − 10z3 + 15z

72

}
where z = (x−µ)/σ, φ and Φ are the density function and the df of the standard
normal distribution and σ2 = µ2 = µ′2 − µ2, γ1 = µ3/σ

3 and γ2 = µ4/σ
4 with
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Table 1. Exact quantiles from the null distribution of the Jackson statistic.

p
n 0.005 0.01 0.025 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.975 0.99 0.995

3 1.037 1.053 1.083 1.118 1.167 1.264 1.377 1.511 1.629 1.689 1.731 1.769 1.788
4 1.092 1.116 1.158 1.199 1.251 1.346 1.468 1.600 1.727 1.801 1.859 1.918 1.952
5 1.146 1.173 1.218 1.260 1.312 1.410 1.531 1.665 1.793 1.871 1.936 2.007 2.051
6 1.192 1.220 1.266 1.308 1.361 1.458 1.579 1.712 1.840 1.920 1.988 2.066 2.115
7 1.231 1.260 1.306 1.349 1.401 1.497 1.617 1.748 1.876 1.956 2.025 2.106 2.159
8 1.264 1.294 1.340 1.382 1.435 1.530 1.647 1.777 1.904 1.983 2.053 2.135 2.190
9 1.294 1.323 1.369 1.411 1.463 1.557 1.673 1.801 1.926 2.004 2.074 2.156 2.212

10 1.320 1.349 1.395 1.437 1.488 1.581 1.694 1.820 1.943 2.021 2.090 2.172 2.229
11 1.343 1.372 1.417 1.459 1.509 1.601 1.713 1.837 1.958 2.035 2.103 2.185 2.241
12 1.364 1.393 1.438 1.479 1.529 1.619 1.729 1.851 1.970 2.046 2.114 2.195 2.251
13 1.382 1.411 1.456 1.497 1.546 1.635 1.743 1.863 1.981 2.055 2.122 2.202 2.258
14 1.400 1.428 1.473 1.513 1.561 1.649 1.756 1.874 1.989 2.063 2.129 2.208 2.263
15 1.415 1.444 1.488 1.527 1.575 1.662 1.767 1.883 1.997 2.069 2.135 2.213 2.268
16 1.430 1.458 1.501 1.541 1.588 1.674 1.778 1.892 2.004 2.075 2.139 2.217 2.271
17 1.443 1.471 1.514 1.553 1.600 1.684 1.787 1.899 2.010 2.080 2.143 2.219 2.273
18 1.456 1.484 1.526 1.564 1.611 1.694 1.795 1.906 2.015 2.084 2.146 2.222 2.274
19 1.468 1.495 1.537 1.575 1.621 1.703 1.803 1.912 2.019 2.087 2.149 2.223 2.276
20 1.478 1.506 1.547 1.585 1.630 1.711 1.810 1.918 2.023 2.090 2.151 2.225 2.276
21 1.489 1.516 1.557 1.594 1.639 1.719 1.816 1.923 2.027 2.093 2.153 2.225 2.276
22 1.498 1.525 1.566 1.603 1.647 1.726 1.822 1.927 2.030 2.095 2.155 2.226 2.276
23 1.507 1.534 1.574 1.611 1.655 1.733 1.828 1.932 2.033 2.097 2.156 2.226 2.276
24 1.516 1.542 1.582 1.619 1.662 1.740 1.833 1.935 2.035 2.099 2.157 2.226 2.276
25 1.524 1.550 1.590 1.626 1.669 1.746 1.838 1.939 2.038 2.101 2.158 2.226 2.275
30 1.559 1.584 1.622 1.657 1.698 1.771 1.858 1.954 2.047 2.106 2.160 2.224 2.270
35 1.587 1.612 1.648 1.681 1.721 1.790 1.874 1.964 2.053 2.109 2.159 2.221 2.264
40 1.611 1.634 1.669 1.701 1.739 1.806 1.886 1.972 2.056 2.110 2.158 2.216 2.258
45 1.630 1.653 1.687 1.718 1.754 1.819 1.896 1.979 2.059 2.110 2.156 2.212 2.251
50 1.647 1.669 1.702 1.732 1.767 1.830 1.904 1.983 2.061 2.110 2.154 2.207 2.245
55 1.662 1.683 1.716 1.744 1.779 1.839 1.911 1.987 2.062 2.109 2.151 2.203 2.239
60 1.675 1.696 1.727 1.755 1.789 1.847 1.916 1.991 2.063 2.108 2.149 2.198 2.233
65 1.687 1.707 1.738 1.765 1.797 1.854 1.921 1.994 2.063 2.107 2.147 2.194 2.228
70 1.697 1.717 1.747 1.773 1.805 1.860 1.926 1.996 2.063 2.106 2.144 2.190 2.223
75 1.706 1.726 1.755 1.781 1.812 1.866 1.930 1.998 2.064 2.105 2.142 2.187 2.218
80 1.715 1.734 1.763 1.788 1.818 1.871 1.933 2.000 2.064 2.104 2.140 2.183 2.214
85 1.723 1.741 1.770 1.794 1.824 1.876 1.936 2.001 2.063 2.102 2.138 2.180 2.210
90 1.730 1.748 1.776 1.800 1.829 1.880 1.939 2.003 2.063 2.101 2.136 2.177 2.206
95 1.737 1.755 1.782 1.806 1.834 1.884 1.942 2.004 2.063 2.100 2.134 2.174 2.202

100 1.743 1.761 1.787 1.811 1.839 1.887 1.944 2.005 2.063 2.099 2.132 2.171 2.198

µ3 = µ′3 − 3µµ′2 + 2µ2 and µ4 = µ′4 − 4µµ′3 + 2µ2 and

µ = µ′1 =

∑n
i=1 ci
n

, µ′2 =

∑n
i=1 c

2
i + (

∑n
i=1 ci)

2

n(n+ 1)
,

µ′3 =
2
∑n
i=1 c

3
i + 3(

∑n
i=1 ci)

∑n
i=1 c

2
i + (

∑n
i=1 ci)

3

n(n+ 1)(n+ 2)
,

µ′4 =
6
∑n
i=1 c

4
i + 8(

∑n
i=1 ci)

∑n
i=1 c

3
i + 3(

∑n
i=1 c

2
i )

2 + 6(
∑n
i=1 ci)

2
∑n
i=1 c

2
i + (

∑n
i=1 ci)

4

n(n+ 1)(n+ 2)(n+ 3)
.
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3 Power comparison and conclusions

3.1 Other test Statistic

To be able to compare the power of the Jackson exponentiality test, we also
considered the Lilliefors test, which is a Kolmogorov-Smirnov type test. The
test statistic is

Dn = sup
x
|Fn(x)− F0(x)|, (4)

with F0(x) = 1− exp(−x/x̄), x > 0 the exponential df in (1) with λ estimated
by 1/x̄, where x̄ is the sample mean and Fn(x) is the empirical distribution
function. The test statistic in (4) is equivalent to

Dn = max
{
D+
n , D

−
n

}
,

with D+
n = max1≤j≤n [i/n− Yi], D−n = max1≤j≤n [Yi − (i− 1)/n] and Yi =

1 − exp(−X(i)/X̄). Since the parameter λ of the exponential distribution is
estimated from the sample, the critical values for the Kolmogorov-Smirnov
test are no longer valid. Lilliefors[12] made a Monte Carlo simulation study,
based on 5000 runs, and computed critical values for the test statistic Dn in
(4). Since those critical values were computed from a small number of runs
and values for even sample sizes were interpolated, we also conducted a monte
carlo simulation study, based on 100000 runs, to compute critical values for the
statistic Dn in (4). In Table 2 we present the simulated critical values for Dn

for n = 3(1)20, and n = 25(5) at the significance level α = 0.20, 0.10, 0.05,
0.025, 0.02, 0.01, 0.005. The values in Table 2 were computed in R language
using the computer code:

# Function to compute critical values for Lilliefors Exponentiality test

ksexp.crit <- function(n, runs=10^5, alpha=0.05){

set.seed(1)

lambda <- 1

sim.ks <- replicate(runs, {x <- rexp(1000, rate=lambda)[1:n];

ks.test(x,"pexp",rate=1/mean(x))$statistic} )

return(quantile(sim.ks, probs=1-alpha))

}

3.2 Possible alternatives to Exponentiality

We shall consider two alternatives to the exponential distribution: the gamma
and Weibull distributions with density function given respectively by,

f(x) =
λθ xθ−1

Γ (θ)
exp(−λx), x > 0 (θ > 0, λ > 0) (5)

and
f(x) = λθ(λx)θ−1 exp{−(λx)θ}, x > 0 (θ > 0, λ > 0). (6)

When θ = 1 those models reduce to the exponential distribution. Thus testing
the exponential hypothesis is equivalent to test the null hypothesis H0 : θ = 1.
For the power study, we considered λ = 1 and θ = 0.1(0.1)2.

206



Table 2. Critical values for Dn at the significance level α and sample size n.

α 0.20 0.10 0.05 0.025 0.02 0.01 0.005

3 0.451 0.511 0.551 0.578 0.585 0.601 0.612
4 0.401 0.445 0.485 0.522 0.532 0.559 0.582
5 0.361 0.405 0.442 0.474 0.484 0.512 0.537
6 0.332 0.373 0.408 0.440 0.449 0.475 0.500
7 0.310 0.348 0.381 0.412 0.421 0.447 0.470
8 0.292 0.327 0.359 0.387 0.396 0.421 0.444
9 0.276 0.311 0.341 0.367 0.376 0.401 0.423

10 0.263 0.296 0.324 0.350 0.358 0.381 0.403
11 0.251 0.283 0.311 0.336 0.343 0.365 0.386
12 0.242 0.272 0.299 0.323 0.330 0.351 0.371
13 0.233 0.262 0.288 0.311 0.318 0.339 0.359
14 0.224 0.253 0.278 0.301 0.308 0.328 0.347
15 0.217 0.245 0.270 0.292 0.298 0.317 0.337
16 0.211 0.237 0.261 0.283 0.289 0.310 0.329
17 0.205 0.230 0.254 0.274 0.280 0.300 0.319
18 0.199 0.224 0.247 0.267 0.273 0.292 0.309
19 0.194 0.219 0.240 0.261 0.267 0.285 0.302
20 0.189 0.213 0.234 0.254 0.260 0.277 0.295
25 0.170 0.192 0.211 0.228 0.233 0.249 0.263
30 0.156 0.175 0.193 0.209 0.214 0.228 0.243
35 0.145 0.163 0.179 0.195 0.199 0.213 0.225
40 0.136 0.153 0.169 0.182 0.187 0.199 0.212
45 0.128 0.145 0.159 0.172 0.176 0.188 0.200
50 0.122 0.137 0.151 0.164 0.168 0.179 0.190
60 0.111 0.126 0.139 0.150 0.154 0.164 0.174
70 0.103 0.116 0.128 0.139 0.143 0.153 0.162
80 0.097 0.109 0.120 0.130 0.133 0.142 0.151
90 0.091 0.103 0.113 0.123 0.126 0.134 0.142

100 0.087 0.098 0.108 0.117 0.120 0.127 0.135

3.3 Results and power comparison

We present in this section the simulated Power values of the Jackson and Lil-
liefors tests. Results are based on a Monte Carlo simulation study with 100000
samples of size n = 5, 10, 20, 50 and 100 at a significance level α = 0.05. The
critical values used in the simulation study are the ones available in Tables 1
and 2. Although we considered the models in (5) and (6) we assume to have
no knowledge of the alternative distribution. Therefor the critical region for
Jackson test is two-tailed and for Lilliefors test is one-tailed.

In Figures 1 and 2 and in Tables 3 and 4 we present the simulated power
values at a significance level α = 0.05. Results for n = 5 are only available
in the tables. Both tests exhibit a similar statistical power, almost identical
when the alternative hypothesis was nearly exponential (θ close to 1). The
studied tests have a reasonable power, for sample sizes n ≥ 50. Lilliefors test is
more powerful for the gamma alternative and θ not close to 1. For the Weibull
alternative and θ > 1, Jackson test is more powerful.
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Fig. 1. Simulated Power curve for the statistic tests Jn and Dn and α = 0.05, for the
gamma model.
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Fig. 2. Simulated Power curve for the statistic tests Jn and Dn and α = 0.05, for the
Weibull model.
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Table 3. Simulated power of the tests for the gamma alternative.

n = 5 n = 10 n = 20 n = 50 n = 100
θ Jn Dn Jn Dn Jn Dn Jn Dn Jn Dn

0.1 0.736 0.770 0.943 0.985 0.998 1.000 1.000 1.000 1.000 1.000
0.2 0.518 0.499 0.762 0.853 0.949 0.991 1.000 1.000 1.000 1.000
0.3 0.357 0.316 0.556 0.627 0.800 0.906 0.987 0.999 1.000 1.000
0.4 0.247 0.202 0.383 0.414 0.597 0.707 0.909 0.980 0.995 1.000
0.5 0.173 0.134 0.254 0.257 0.405 0.471 0.722 0.855 0.935 0.990
0.6 0.122 0.093 0.166 0.159 0.254 0.280 0.480 0.595 0.744 0.883
0.7 0.090 0.068 0.108 0.098 0.151 0.155 0.272 0.327 0.453 0.581
0.8 0.067 0.055 0.076 0.067 0.091 0.088 0.138 0.151 0.214 0.260
0.9 0.058 0.052 0.058 0.054 0.061 0.058 0.071 0.071 0.088 0.093
1.0 0.049 0.050 0.051 0.052 0.049 0.051 0.050 0.050 0.050 0.050
1.1 0.047 0.051 0.051 0.054 0.053 0.056 0.062 0.067 0.078 0.082
1.2 0.049 0.057 0.055 0.061 0.068 0.072 0.102 0.110 0.158 0.176
1.3 0.050 0.062 0.065 0.076 0.091 0.100 0.163 0.181 0.283 0.322
1.4 0.055 0.069 0.077 0.088 0.121 0.132 0.245 0.269 0.433 0.499
1.5 0.062 0.078 0.095 0.107 0.158 0.171 0.336 0.374 0.584 0.670
1.6 0.066 0.084 0.110 0.125 0.197 0.211 0.433 0.478 0.715 0.804
1.7 0.075 0.095 0.129 0.144 0.238 0.255 0.527 0.584 0.819 0.895
1.8 0.080 0.102 0.152 0.168 0.286 0.306 0.622 0.682 0.894 0.950
1.9 0.090 0.113 0.174 0.191 0.333 0.357 0.701 0.765 0.940 0.979
2 0.097 0.121 0.194 0.212 0.381 0.405 0.767 0.828 0.968 0.992

Table 4. Simulated power of the tests for the Weibull alternative.

n = 5 n = 10 n = 20 n = 50 n = 100
θ Jn Dn Jn Dn Jn Dn Jn Dn Jn Dn

0.1 0.899 0.938 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.2 0.768 0.785 0.968 0.989 0.999 1.000 1.000 1.000 1.000 1.000
0.3 0.618 0.600 0.885 0.928 0.992 0.999 1.000 1.000 1.000 1.000
0.4 0.470 0.423 0.743 0.782 0.946 0.976 1.000 1.000 1.000 1.000
0.5 0.336 0.279 0.563 0.571 0.824 0.865 0.992 0.998 1.000 1.000
0.6 0.227 0.176 0.382 0.361 0.618 0.637 0.924 0.956 0.997 0.999
0.7 0.148 0.108 0.233 0.203 0.385 0.369 0.706 0.733 0.929 0.956
0.8 0.094 0.070 0.131 0.108 0.197 0.172 0.377 0.365 0.613 0.628
0.9 0.063 0.054 0.073 0.062 0.087 0.075 0.130 0.115 0.200 0.187
1.0 0.049 0.050 0.050 0.050 0.050 0.051 0.051 0.049 0.050 0.048
1.1 0.047 0.054 0.053 0.059 0.065 0.070 0.099 0.098 0.159 0.151
1.2 0.053 0.065 0.074 0.082 0.118 0.119 0.253 0.235 0.467 0.430
1.3 0.064 0.080 0.107 0.116 0.201 0.196 0.480 0.435 0.794 0.744
1.4 0.081 0.098 0.152 0.159 0.313 0.290 0.708 0.644 0.955 0.927
1.5 0.099 0.119 0.208 0.210 0.440 0.397 0.872 0.810 0.995 0.986
1.6 0.119 0.141 0.270 0.265 0.571 0.508 0.956 0.915 1.000 0.998
1.7 0.143 0.167 0.339 0.324 0.691 0.614 0.989 0.967 1.000 1.000
1.8 0.169 0.195 0.414 0.386 0.792 0.708 0.998 0.989 1.000 1.000
1.9 0.197 0.223 0.490 0.448 0.870 0.788 1.000 0.997 1.000 1.000
2.0 0.226 0.251 0.565 0.507 0.923 0.850 1.000 0.999 1.000 1.000
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Abstract. In this work, we introduce new estimators for the parameters of the Pareto
type I distribution. These new estimators are obtained through a modification of the
probability weighted moments method, in order to make the new estimators con-
sistent for any value of the shape parameter. We also compare the finite sample
behaviour of the new estimators with the most common used estimators (the mo-
ment, the maximum likelihood and the probability weighted moments estimators)
with a Monte Carlo simulation study. Some asymptotic properties for the new esti-
mators introduced in this work are also shown.
Keywords: Pareto distribution, Monte Carlo method, Maximum likelihood estima-
tor, Moment estimator, Probability weighted moments estimators, Log probability
weighted moments estimators.

1 Introduction

The Pareto [12] distribution was first introduced as a model for large incomes
and nowadays has been extensively used for modelling events in fields such
as bibliometrics, demography, insurance, or finance, among others. Although
there are several variants of this distribution, in this work we shall consider the
classic Pareto distribution also known as Pareto type I distribution. A random
variable X has a Pareto type I distribution if its distribution function (d.f.) is

FX(x) = P (X ≤ x) = 1−
( c
x

)a
, x > c, c > 0, a > 0,

where c and a are scale and shape parameters, respectively (Arnold [1], Johnson
et al.[10]). In this work we shall consider both parameters unknown. The
parameter a measures the heaviness of the right tail and is also known as the
tail index. The associated quantile function of X is obtained by inverting the
d.f. and is given by

QX(p) = F←X (p) = c(1− p)−1/a, 0 < p < 1, c > 0, a > 0,

where p denotes the lower tail probability. Estimation of the parameters a and
c has already been extensively addressed in the literature (see Caeiro et al.[3]
Lu and Tao[11], Quandt[13], Rytgaard [15], Singh and Guo[16] and references
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therein). Under a semiparametric framework, this Pareto type I distribution is
often used as an upper tail model. Under such framework, we often work with
the parameter ξ = 1/a, usually called the Extreme Value Index. Details on the
estimation of ξ for models with a Pareto upper tail can be found in (Arnold
[1], Beirlant et al.[7] and Gomes and Guillou [9]).

In section 2 of this work, we introduce new estimators for the parameters
of the Pareto distribution. These new estimators are obtained through a mod-
ification of the probability weighted moments method, in order to make the
new estimators consistent for any value of the shape parameter a. In section 3
we compare the finite sample behaviour of new estimators with the most com-
mon used estimators (the moment, the maximum likelihood and the probability
weighted moments estimators) with a Monte Carlo simulation study. In section
4 we present some asymptotic properties for the new estimators introduced in
this work.

2 Estimation of the Pareto Distribution

Here we introduce the estimators for the parameters a and c, considered in this
work.

2.1 A Brief Review of Several Popular Estimators

Let X1, X2, . . . , Xn be a sample of size n taken from a Pareto type I population.
Here we will denote the corresponding order statistics by X1:n ≤ X2:n ≤ . . . ≤
Xn:n. The most popular moment (M) estimators are the ones proposed by
Quandt[13] and given by

âM =
nX −X1:n

n(X −X1:n)
, ĉM =

(
1− 1

nâM

)
X1:n, with X =

∑n
i=1Xi

n
,

which are consistent for a > 1. To avoid the restriction a > 1 of the previous
estimators, we can use the maximum likelihood (ML) estimators

âML =

(
1

n

n∑
i=1

ln
Xi

X1:n

)−1
, ĉML = X1:n,

The probability weighted moments method (PWM), introduced in Greenwood
et al.[5] is a generalization of the classic method of moments. In this method we
work with the theoretical moments Mp,r,s = E(Xp(F (X))r(1 − F (X))s) with
p, r and s any real numbers, and with their corresponding sample moments.
The PWM estimators are obtained by equating Mp,r,s with their corresponding
sample moments, and then solving those equations in order of the parameters.
When r = s = 0, Mp,0,0 are the usual noncentral moments of order p. Hosking
et al. [8] advise the use of M1,r,s, because the relations between parameters and
moments have usually a much simpler form. Also, when r and s are integers
F (X)r(1 − F (X))s can be written as a linear combination of powers of F (X)
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or 1−F (X). Taken in account this considerations it is usual to work with one
of the two special cases:

wr = M1,0,r = E(X(1− F (X))r) or kr = M1,r,0 = E(X(F (X))r). (1)

For nonnegative integer r the unbiased estimators of wr and br in (1) are
respectively,

ŵr =
1

n

n−r∑
i=1

(
n−i
r

)(
n−1
r

)Xi:n, and k̂r =
1

n

n∑
i=r+1

(
i−1
r

)(
n−1
r

)Xi:n. (2)

For Pareto type I distribution, we have Mp,r,s=c
pB(s+ 1− p/a, r + 1), with

s− p/a > −1, r > −1, where B represents the complete beta function (Caeiro
and Gomes[2]).
In particular, wr = M1,0,r = c/(r + 1− 1/a), a > 1/(r + 1). Consequently, if
we consider the theoretical moments w0 = c/(1− 1/a) and w1 = c/(2− 1/a),
with a > 1 the PWM estimators are, respectively,

âPWM =
1

1−
(

ŵ1

ŵ0−ŵ1

) and ĉPWM = ŵ0

(
ŵ1

ŵ0 − ŵ1

)
, a > 1, (3)

where ŵ0 and ŵ1 are given in (2).

2.2 New Estimators

Since the PWM estimators in (3) use the sample mean, they are only consistent
if a > 1. In order to have consistent estimators for a > 0, we consider another
method, related to the PWM method. Let

lr = E((lnX)(1− F (X))r)

be the log probability weighted moments (LPWM) of X. For nonnegative
integer r, the unbiased estimator of lr is given by

l̂r =
1

n

n−r∑
i=1

(
n−i
r

)(
n−1
r

) lnXi:n. (4)

For the Pareto distribution we have

lr =
ln(c)

(1 + r)
+

1

a(1 + r)2
.

Hence if we consider the moments l0 = ln c + 1/a and l1 = ln c/2 + 1/4a the
LPWM estimators are respectively,

âLPWM =
1

2l̂0 − 4l̂1
and ĉLPWM = exp(4l̂1 − l̂0) (5)

where l̂0 and l̂1 are given in (4).
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3 Finite sample behaviour of the estimators

In this section we are going to evaluate the performance of the shape and scale
Pareto estimators here presented. We have implemented a Monte-Carlo simu-
lation experiment in R software environment [14], to obtain the distributional
behaviour of the estimators under study. The study is made with 20,000 sam-
ples of sizes n = 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 300 and 500 from
the Pareto distribution with parameters (a, c) = (0.5, 1) and (a, c) = (2, 2). In
Table 1 and 2 we present the simulated mean values and the root mean squared
error (RMSE), to four decimal places, of the estimators under study. In both
tables the “best” mean value and RMSE, for each sample size, are underlined.

n PWM LPWM M ML

â

10 1.1605 / 0.6889 0.5765 / 0.2547 1.0771 / 0.5897 0.6233 / 0.2659
15 1.1114 / 0.6248 0.5476 / 0.1830 1.0473 / 0.5520 0.5759 / 0.1825
20 1.0885 / 0.5971 0.5354 / 0.1513 1.0346 / 0.5370 0.5549 / 0.1446
30 1.0629 / 0.5672 0.5229 / 0.1166 1.0222 / 0.5231 0.5355 / 0.1088
40 1.0502 / 0.5530 0.5166 / 0.0983 1.0165 / 0.5171 0.5258 / 0.0900
50 1.0415 / 0.5434 0.5130 / 0.0864 1.0130 / 0.5133 0.5203 / 0.0784
75 1.0300 / 0.5310 0.5082 / 0.0690 1.0085 / 0.5086 0.5132 / 0.0618
100 1.0239 / 0.5246 0.5059 / 0.0592 1.0063 / 0.5064 0.5095 / 0.0525
150 1.0174 / 0.5177 0.5040 / 0.0478 1.0042 / 0.5043 0.5065 / 0.0421
200 1.0137 / 0.5140 0.5028 / 0.0413 1.0032 / 0.5032 0.5048 / 0.0363
300 1.0098 / 0.5100 0.5018 / 0.0332 1.0021 / 0.5021 0.5031 / 0.0291
500 1.0065 / 0.5066 0.5013 / 0.0259 1.0013 / 0.5013 0.5020 / 0.0225

ĉ

10 9.40 / 190.63 1.0835 / 0.4953 1.1307 / 0.3150 1.2477 / 0.4016
15 10.20 / 326.36 1.0513 / 0.3533 1.0797 / 0.1858 1.1534 / 0.2359
20 8.44 / 68.85 1.0372 / 0.2955 1.0568 / 0.1311 1.1106 / 0.1662
30 8.70 / 98.38 1.0239 / 0.2302 1.0363 / 0.0826 1.0713 / 0.1047
40 8.90 / 120.33 1.0172 / 0.1934 1.0271 / 0.0611 1.0530 / 0.0772
50 8.77 / 84.19 1.0137 / 0.1719 1.0212 / 0.0474 1.0418 / 0.0601
75 8.45 / 53.30 1.0084 / 0.1384 1.0140 / 0.0314 1.0276 / 0.0396
100 11.58 / 341.40 1.0064 / 0.1193 1.0103 / 0.0229 1.0204 / 0.0291
150 11.11 / 254.57 1.0039 / 0.0964 1.0068 / 0.0152 1.0135 / 0.0192
200 63.44 / 7198.00 1.0022 / 0.0824 1.0051 / 0.0115 1.0102 / 0.0145
300 34.37 / 3195.22 1.0014 / 0.0669 1.0033 / 0.0075 1.0067 / 0.0095
500 19.13 / 1149.99 1.0010 / 0.0518 1.0020 / 0.0045 1.0040 / 0.0057

Table 1. Simulated mean value / RMSE of the shape and scale estimators, for the
Pareto model with (a, c) = (0.5, 1).
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n PWM LPWM M ML

â

10 2.6095 / 1.1745 2.3062 / 1.0187 2.4325 / 0.9402 2.4933 / 1.0635
15 2.4344 / 0.8627 2.1905 / 0.7321 2.2970 / 0.6833 2.3037 / 0.7299
20 2.3511 / 0.7238 2.1414 / 0.6054 2.2327 / 0.5636 2.2196 / 0.5784
30 2.2580 / 0.5672 2.0918 / 0.4665 2.1671 / 0.4430 2.1421 / 0.4354
40 2.2073 / 0.4878 2.0662 / 0.3932 2.1312 / 0.3789 2.1034 / 0.3598
50 2.1745 / 0.4327 2.0520 / 0.3455 2.1092 / 0.3366 2.0813 / 0.3136
75 2.1285 / 0.3550 2.0328 / 0.2759 2.0785 / 0.2757 2.0527 / 0.2474
100 2.1039 / 0.3116 2.0237 / 0.2369 2.0620 / 0.2411 2.0382 / 0.2098
150 2.0776 / 0.2620 2.0160 / 0.1913 2.0458 / 0.2023 2.0259 / 0.1682
200 2.0612 / 0.2321 2.0110 / 0.1651 2.0356 / 0.1795 2.0191 / 0.1451
300 2.0451 / 0.1954 2.0071 / 0.1330 2.0258 / 0.1502 2.0125 / 0.1163
500 2.0317 / 0.1603 2.0050 / 0.1037 2.0180 / 0.1227 2.0080 / 0.0899

ĉ

10 2.0821 / 0.2573 2.0089 / 0.2040 2.0093 / 0.1085 2.1045 / 0.1515
15 2.0651 / 0.2112 2.0060 / 0.1599 2.0048 / 0.0710 2.0688 / 0.0991
20 2.0550 / 0.1875 2.0042 / 0.1370 2.0028 / 0.0522 2.0510 / 0.0731
30 2.0429 / 0.1582 2.0028 / 0.1099 2.0014 / 0.0344 2.0338 / 0.0483
40 2.0357 / 0.1413 2.0019 / 0.0938 2.0011 / 0.0259 2.0255 / 0.0363
50 2.0309 / 0.1293 2.0016 / 0.0839 2.0007 / 0.0204 2.0203 / 0.0287
75 2.0235 / 0.1114 2.0007 / 0.0681 2.0004 / 0.0137 2.0135 / 0.0192
100 2.0195 / 0.1007 2.0006 / 0.0590 2.0002 / 0.0101 2.0101 / 0.0142
150 2.0144 / 0.0868 2.0002 / 0.0479 2.0001 / 0.0067 2.0067 / 0.0095
200 2.0112 / 0.0784 1.9998 / 0.0411 2.0001 / 0.0051 2.0050 / 0.0072
300 2.0084 / 0.0672 1.9999 / 0.0334 2.0000 / 0.0033 2.0033 / 0.0047
500 2.0058 / 0.0559 2.0000 / 0.0259 2.0000 / 0.0020 2.0020 / 0.0028

Table 2. Simulated mean value / RMSE of the shape and scale estimators, for the
Pareto model with (a, c) = (2, 2).

• According to the theory the PWM and M estimators are not consistent
for a ≤ 1 and the simulated mean values and the root mean squared error
presented in Table 1 for these estimators confirms it.

• Regarding minimum absolute bias for both Pareto models here used, the
LPWM shape estimator was always the best estimator.

• Regarding RMSE, the ML shape estimator provides the minimum value.
This can be partially explained by the optimal properties of the regular
maximum likelihood estimators;

• The M scale estimator was always the best estimator regarding minimum
RMSE for the estimation of c.

4 Asymptotic results for the LPWM estimators

In this section, we study the asymptotic behavior of the LPWM estimators
introduced in (5) for a Pareto type I distribution. We can write those estimators
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using linear functions of order statistics. Indeed, we have

âLPWM =
1

2l̂0 − 4l̂1
=

1

1
n

∑n
i=1

(
4 i−1
n−1 − 2

)
lnXi:n

(6)

and

ĉLPWM = exp
{

4l̂1 − l̂0
}

= exp

{
1

n

n∑
i=1

(
3− 4

i− 1

n− 1

)
lnXi:n

}
(7)

Proposition 1. Let X1:n ≤ X2:n ≤ . . . ≤ Xn:n be the corresponding ordinal
statistics of a random sample of size n taken from a Pareto type I population.
Then,

lnXi:n
d
= ln c+

1

a
Ei:n

where a and c are respectively the shape and scale parameter of a Pareto type I
distribution and Ei:n, (1 ≤ i ≤ n) denotes the i-th ascending order statistic of
a sample of size n taken from a standard exponential population.

Proof. Let Y be a standard Pareto random variable with d.f. FY (y) = 1−1/y,
y > 1. The probability integral transformation FY (Y ) produces a standard
uniform distribution (Arnold et al.[4]). Thus, if Ui:n (1 ≤ i ≤ n) represents the
ordinal statistic of a sample of a standard uniform population, we have,

FY (Yi:n)
d
= Ui:n ⇔ 1− 1

Yi:n

d
= Ui:n.

and,

Xi:n
d
= F←X (Ui:n)

d
= F←X (1− 1

Yi:n
) = cY

1/a
i:n

Since lnY has a standard exponential distribution,

lnXi:n
d
= ln(cY

1/a
i:n ) = ln c+

1

a
ln(Yi:n)

d
= ln c+

1

a
Ei:n.

Proposition 2. For a sample of size n, from a Pareto type I population and
for âLPWM and ĉLPWM introduced in (5), we have,

√
n
(
âLPWM − a

) d−→
n→∞

N

(
0,

4a2

3

)
and

√
n(ĉLPWM − c) d−→

n→∞
N

(
0,

c2

3a2

)
.

Proof. From Proposition 1 and since
∑n

i=1

(
4 i−1
n−1 − 2

)
= 0, the denominator

of

âLPWM =
1

1
n

∑n
i=1

(
4 i−1
n−1 − 2

)
lnXi:n
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has the same distribution of

Tn =
1

n

n∑
i=1

1

a

(
4
i− 1

n− 1
− 2

)
Ei:n.

Using the asymptotic results for linear function of order statistics (Arnold et
al. [4], p.229), we know that,

√
n (Tn − µTn

)
d−→

n→∞
N
(
0, σ2

Tn

)
, (8)

where

µTn =

∫ ∞
0

x
1

a
(4(1− e−x)− 2)e−xdx =

1

a

and

σ2
Tn

=
2

a2

∫ ∞
0

dx

∫ ∞
x

(4(1− e−x)− 2)(4(1− e−y)− 2)(1− e−x)e−ydy =
4

3a2

Applying the delta method to (8), we have

√
n

(
1

Tn
− a
)

d−→
n→∞

N

(
0,

4a2

3

)
. (9)

Asymptotic results for the estimator of the scale parameter

ĉLPWM = exp

{
1

n

n∑
i=1

(
3− 4

i− 1

n− 1

)
lnXi:n

}
can be obtained with an analogous proof. Using the results from Proposition

1 and since, 1
n

∑n
i=1

(
3− 4 i−1

n−1

)
= 1,

1

n

n∑
i=1

(
3− 4

i− 1

n− 1

)
lnXi:n

d
= ln c+

1

n

n∑
i=1

1

a

(
3− 4

i− 1

n− 1

)
Ei:n

Using again the asymptotic results in (Arnold et al. [4], p.229) with the

notation Cn = 1
n

∑n
i=1

1
a

(
3− 4 i−1

n−1

)
Ei:n

√
n(Cn − µCn

)
d−→

n→∞
N
(
0, σ2

Cn

)
. (10)

where

µCn
=

∫ ∞
0

−1

a
xe−x + 4xe−2xdx = 0

and

σ2
Cn

=
2

a2

∫ ∞
0

dx

∫ ∞
x

(3− 4(1− e−x))(3− 4(1− e−y))(1− e−x)e−ydy =
1

3a2

Applying the delta method to (10) it follows that,

√
n(c expCn − c)

d−→
n→∞

N

(
0,

c2

3a2

)
. (11)
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Abstract Among other limitations, the celebrated Black-Scholes option pricing
model assumes constant volatility and constant interest rates, which is not sup-
ported by empirical studies on for example implied volatility surfaces. Studies
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1 Introduction
We consider the following risk-neutral dynamics for the underlying asset price S:

dS = rSdt +
√

V1SdW1 +
√

V2SdW2,

dV1 =

[
1
ε
(θ1−V1)−λ1V1

]
dt +

ξ1√
ε

√
V1ρ13 dW1 +

ξ1√
ε

√
V1(1−ρ2

13)dW3,

dV2 = [δ (θ2−V2)−λ2V2] dt +
√

δξ2
√

V2ρ24 dW2 +
√

δξ2

√
V2(1−ρ2

24)dW4,

dr = a(m− r)dt +σ(r) dW5.
(1)

We assume that the stochastic risk free interest rate r is of Vasicek type. The
long run mean is denoted by m, the speed of reversion to the long run mean is a
and σ(r) is a volatility of the interest rate. V1 and V2 are the variance processes
of Heston [11] type, 1

ε
, and δ are the speed of reversion for variances V1 and V2,

respectively. The long run mean for the two variances are given by θ1, and θ2,
while 1√

ε
ξ1 and

√
δξ2 represent the instantaneous volatilities. λ1 and λ2 are con-

stants that determine the market price of volatility risk and are defined more de-
tailed in Canhanga et al. [3], Canhanga et al. [4] and Chiarella and Ziveyi [6].
Wi, i = 1,2,3,4,5 are independent Wiener processes. The variance processes are
independent one from another and the correlation between the asset price and the
variance V1(V2) is given by ρ13(ρ24). ξ1 and ξ2 are constants.

In order to guarantee positive solutions for the second and the third equations
of (1), we assume that the following Feller condition (Feller [8]) hold

2θ1 ≥ ξ
2
1 and 2θ2 ≥ ξ

2
2 .

We also impose the conditions presented by Cheang et al. [5] in order to guarantee
that the variances processes will be finite, therefore

−1 < ρ13 < min
(

1,
1

ξ1
√

ε

)
and −1 < ρ24 < min

(
1,

√
δ

ξ2

)
.

We consider an European option with maturity T , strike price of K. The payoff
function is given by h(ST ) = max(ST −K,0). The task is to price the European
option using a double asymptotic expansion approach.
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2 Pricing formula for European option
It was proved by Andersen and Piterbarg [1] and Kac [13] that, given a function
Uε;δ with continuous first order derivatives with respect to variable t and continu-
ous second order derivative with respect to variables s, v1, v2,r the option price
can be given by the unique solution of a boundary value problem (BVP) which
is constructed from the system (1). To obtain the BVP we need to construct the
correlation matrix and perform some calculations.

Σ =


S
√

V1 S
√

V2 0 0 0
ξ1
√

V1ρ13√
ε

0 ξ1
√

V1(1−ρ2
13)

ε
0 0

0 ρ24ξ2
√

δV2 0 ξ2

√
δ (1−ρ2

24)V2 0
0 0 0 0 σ(r)

 ,

and the product of Σ and Σ> (the transpose of Σ) is given by

ΣΣ
> =



S2(V1 +V2)
ξ1ρ13SV1√

ε
ρ24ξ2SV2

√
δ 0

ρ13ξ1SV1√
ε

V1ξ 2
1

ε
0 0

ρ24ξ2SV2
√

δ 0 δξ 2
2 V2 0

0 0 0 (σ(r))
2


.

Let s,v1,v2,r be the values of S(t),V1(t),V2(t),r(t) at time t. With the above
matrix, let us now consider U =U(t,s,v1,v2,r) as a function that has continuous
second derivatives with respect to variables s, v1, v2 and r. As indicated above, the
European option price on the asset (1) will be given by the following BVP(

1
ε
L0 +

1√
ε
L1 +L2 +

√
δM1 +δM2

)
Uε,δ = 0,

Uε,δ (T,s,v1,v2) = h(ST ).

(2)

where
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L0 = (θ1− v1)
∂

∂v1
+

ξ 2
1 v1

2
∂ 2

∂v2
1
, L1 = ρ15sv1ξ1

∂ 2

∂ s∂v1
,

L2 =
∂

∂ t
+(r−q)s

∂

∂ s
+

1
2
(v1 + v2)s2 ∂ 2

∂ s2 − r−λ1v1
∂

∂v1
−λ2v2

∂

∂v2

+a(m− r)
∂

∂ r
+

(σ(r))
2

2
∂ 2

∂ r2 ,

M1 = ρ24sv2
∂ 2

∂ s∂v2
, M2 = (θ2− v2)

∂

∂v2
+

1
2

ξ
2
2 v2

∂ 2

∂v2
2
.

(3)

The coefficients of first order derivatives are coefficients of the dt terms in the
stochastic differential equations (1) and the coefficients of second order derivat-
ives come from ΣΣ>.

3 Regular and singular perturbation
In order to find the option price (the solution for (2)), we introduce perturbation
in the solution following the procedure presented by Fouque et al. [9] and Fouque
et al. [10]. We start by performing a regular perturbation with respect to δ , fol-
lowed by a singular perturbation with respect to ε .

We assume that the solution for (2) can be expressed in the following form

Uε,δ =Uε
0 +
√

δUε
1 +δUε

2 + · · · (4)

and using this expansion in (2) we will have

(
1
ε
L0 +

1√
ε
L1 +L2 +

√
δM1 +δM2

)
(Uε

0 +
√

δUε
1 +δUε

2 + · · ·) = 0.

Collecting terms with the same power of
√

δ , the above equation can be re-
arranged into

(
1
ε
L0 +

1√
ε
L1 +L2

)
Uε

0

+
√

δ

[(
1
ε
L0 +

1√
ε
L1 +L2

)
Uε

1 +M1Uε
0

]
+δ

[(
1
ε
L0 +

1√
ε
L1 +L2

)
Uε

2 +M1Uε
1 +M2Uε

0

]
+ · · ·= 0

(5)
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which is true only if all coefficients of δ are equal to zero and if we consider
appropriate final conditions, i.e.(

1
ε
L0 +

1√
ε
L1 +L2

)
Uε

0 = 0, Uε
0 (T,s,v1,v2,r) = h(ST );

(
1
ε
L0 +

1√
ε
L1 +L2

)
Uε

1 +M1Uε
0 = 0, Uε

1 (T,s,v1,v2,r) = 0;

(
1
ε
L0 +

1√
ε
L1 +L2

)
Uε

2 +M1Uε
1 +M2 Uε

0 Uε
1 (T,s,v1,v2,r) = 0

(6)

4 Leading term of the approximation
After the regular perturbation, we introduce a singular perturbation for each term
in (4), i.e.

Uε
0 =U0,0 +

√
εU1,0 +

√
εU2,0 + · · ·

Uε
1 =U0,1 +

√
εU1,1 +

√
εU2,1 + · · ·

Uε
2 =U0,2 +

√
εU1,2 +

√
εU2,2 + · · ·

(7)

Therefore the first order approximation is given by

Uε,δ ≈U0,0 +Uε
1,0 +Uδ

0,1 (8)

where Uε
1,0 =

√
εU1,0 and Uδ

0,1 =
√

δU0,1.
We start by computing U0,0. Equation (6) and (7) implies that

1
ε
L0U0,0 +

1√
ε
(L0U1,0 +L1U0,0)+(L0U2,0 +L1U1,0 +L2U0,0)

+
√

ε (L0U3,0 +L1U2,0 +L2U1,0)+ · · ·= 0.

which is true only if all coefficients of ε in the above equation are equal to zero,
and we consider proper boundary conditions, i.e.

L0U0,0 = 0 U0,0(T,s,v1,v2,r) = h(ST )

L0U1,0 +L1U0,0 = 0 U1,0(T,s,v1,v2,r) = 0
L0U2,0 +L1U1,0 +L2U0,0 = 0 U2,0(T,s,v1,v2,r) = 0
L0U3,0 +L1U2,0 +L2U1,0 = 0 U3,0(T,s,v1,v2,r) = 0.

(9)
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The operator L0 is a Poisson partial differential operator, therefore, the first
equation in (9) is a homogeneous Poisson equation which has constant solutions
or exponential form solutions. In order to avoid exponential growth of the option
price components, we impose that U0,0 is constant with respect to v1, which sug-
gests that we can write U0,0 as U0,0(t, s, v2,r). Another motivation of this choice
is given in [9] by the fact that we want to have the leading-order price independent
of the current value of the fast factor.

Since U0,0 does not depend on v1 and the operator L1 contains only the mixed
partial derivative with respect to the cross term of s and v1 then, L1U0,0 = 0 and
the second equation in (9) will be

L0U1,0 = 0

which implies that
U1,0 =U1,0(t, s, v2,r)

for the same reasons as we explained for U0,0.
Again, the fact that L1U1,0 = 0 implies that the third equation in (9) is trans-

formed to
L0U2,0 +L2U0,0 = 0, (10)

which is a Poisson equation for U2,0 with L2U0,0 as a source. Denote Γ as the
invariant distribution of the process V1. The solvability condition of Poisson equa-
tion (Fouque et al. [10]) implies that

〈L2U0,0〉= 0, (11)

where
〈·〉=

∫
·Γ(dv1)

denotes averaging over the invariant distribution Γ.
Since U0,0 does not depend on v1 it follows that

∂U0,0

∂ t
+ rs

∂U0,0

∂ s
−λ2v2

∂U0,0

∂v2
+

1
2

σ̄
2(v2)s2 ∂ 2U0,0

∂ s2

a(m− r)
∂U0,0

∂ r
+

(σ(r))
2

2
∂ 2U0,0

∂ r2 − rU0,0 = 0

U0,0(T,s,v2,r) = h(ST )

(12)

where σ̄2(v2) =
∫
(v1 + v2)Γ(dv1).
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By Feynman-Kac theorem we recognize the BVP (12) as the European option
pricing problem under the following risk-neutral model

dS = rSdt + σ̄(V2)dW2

dV2 =−λ2V2dt
dr = a(m− r)dt +σ(r)dW5.

(13)

This is Black-Scholes model with local volatility (time-dependent deterministic
volatility) under stochastic interest rate.

It is known that the zero coupon bond price P(r, t,T ) under the above Vasicek
short rate dynamics takes the form (Vasicek [16])

P(r, t,T ) = A(t,T )e−rB(t,T ) (14)

where

B(t,T ) =
1− e−a(T−t)

a

A(t,T ) = exp

[
(B(t,T )−T + t)(a2m−σ2

(r)/2)

a2 −
σ2
(r)B(t,T )

2

4a

]
.

For simplicity we write B = B(t,T ),P = P(r, t,T ), applying Itô lemma we
obtain the risk-neutral bond price dynamics

dP
P

= rdt +σ(r)BdW5.

Denote Q as the traditional risk-neutral measure, QT as the forward risk-
neutral measure induced by numeraire P(r, t,T ). We shall also use notations
Ŵ2,Ŵ5 for Wiener processes under the QT-measure. Denote the denominated as-
set price by Ŝ(t) := S(t)/P(r, t,T ). Using the equivalent martingale theory, the
denominated option price is given by

Û0,0 :=
U0,0(t,s,v2,r)

P(r, t,T )
= EQT

[
h
(

ŜT

)
|Ft

]
(15)

Using Girsanov theorem we can derive the QT-dynamics for S(t) and P(r, t,T )
then using Itô quotient rule we find QT-dynamics for the denominated asset price

dŜ

Ŝ
= σ̄(V2)dŴ2 +σ(r)BdŴ5 (16)
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By (15) and (16) we see that Û0,0 = Û0,0(t, ŝ,v2). This motivates the following
change of variables from (S,U0,0) to (Ŝ,Û0,0), i.e. in the BVP (12) we make the
change

s = ŝP(r, t,T ), U0,0(t,s,v2,r) = Û0,0(t, ŝ,v2)P(r, t,T ),

and using the following relationships:

∂U0,0

∂ t
= Û0,0

∂P
∂ t

+P
∂Û0,0

∂ t
− ŝ

∂Û0,0

∂ ŝ
∂P
∂ t

∂U0,0

∂ s
=

∂Û0,0

∂ ŝ
∂U0,0

∂v2
= P

∂Û0,0

∂v2

∂U0,0

∂ r
= Û0,0

∂P
∂ r
− ŝ

∂Û0,0

∂ ŝ
∂P
∂ r

∂ 2U0,0

∂ s2 =
1
P

∂Û0,0

∂ ŝ
∂ 2U0,0

∂ r2 = Û0,0
∂ 2P
∂ r2 − ŝ

∂Û0,0

∂ ŝ
∂ 2P
∂ r2 +

ŝ2

P
∂ 2Û0,0

∂ ŝ2

(
∂P
∂ r

)2

.

(17)

This allows us to transform (12) into

∂Û0,0

∂ t
+

1
2

[
σ̄

2 S2

P2 +(σ(r))
2ŝ2 1

P2

(
∂P
∂ r

)2
]

∂ 2Û0,0

∂ ŝ2

+
1
P

[
∂P
∂ t

+a(m− r)
∂P
∂ r

+
(σ(r))

2

2
∂ 2P
∂ r2 − rP

]
ŝ
∂Û0,0

∂ ŝ

+
1
P

[
∂P
∂ t

+a(m− r)
∂P
∂ r

+
(σ(r))

2

2
∂ 2P
∂ r2 − rP

]
Û0,0

−λ2v2P
∂Û0,0

∂v2
= 0.

(18)

According to Vasicek [16] the bond price P satisfies the following PDE

∂P
∂ t

+a(m− r)
∂P
∂ r

+
(σ(r))

2

2
∂ 2P
∂ r2 − rP = 0,

P(r,T,T ) = 1.
(19)
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Using (19) into (18) we obtain

∂Û0,0

∂ t
+

1
2

[
σ̄

2(v2)
S2

P2 +(σ(r))
2ŝ2 1

P2

(
∂P
∂ r

)2
]

∂ 2Û0,0

∂ ŝ2 −λ2v2P
∂Û0,0

∂v2
= 0.

(20)
As explained in the authors previous work (Ni et al. [15]), we can replace the

average effective volatility σ̄(v2) by a corrected effective average volatility σ̄∗

given by

(σ̄∗)2 =
1
τ

∫ T

t
θ1 + v2e−λ2sds = θ1 +

v2

τ

∫ T

t
e−λ2sds, τ := T − t (21)

to transform (20) into

∂Û0,0

∂ t
+

1
2
[
σ̂

2(t)
] ∂ 2Û0,0

∂ ŝ2 = 0 (22)

where

σ̂(t) =

√
(σ̄∗)2 +(σ(r))

2
(

1
P

∂P
∂ r

)2

and Û0,0(T, ŝ,v2) = h(ŜT).

Note that by (14), the quantity − 1
P

∂P
∂ r = B(t,T ) does not depend on r is there-

fore a function of t.
The solution Û0,0 of (22) can be obtained by Black–Scholes formula

Û0,0 = ŝN(d1)−KN(d2) (23)

where

d1 =

ln ŝ
k +

1
2

T∫
t

σ̂(τ)dτ√
T∫
t

σ̂2(τ)dτ

and d2 = d1−

√√√√√ T∫
t

σ̂2(τ)dτ

or

U0,0(s, t,v2,r) = sN(d∗1)−KP(r, t,T )N(d∗2) (24)

for

d∗1 =

ln S
K − lnP(r, t,T )+ 1

2

T∫
t

σ̂2(τ)dτ√
T∫
t

σ̂2(τ)dτ

and d∗2 = d∗1−

√√√√√ T∫
t

σ̂2(τ)dτ,
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with P(r, t,T ) given in (14).

Remark 1. Using the formula for bond price P(r, t,T ) (14), we can compute the
following partial derivatives

∂P
∂ t

=
∂A
∂ t

e−B(t,T )r−A
∂B
∂ t

re−B(t,T )r

∂P
∂ r

=−BAe−B(t,T )r)

∂ 2P
∂ r2 = B2Ae−B(t,T )r.

Substituting the above partial derivatives into (19) we easily see that (19) is satis-
fied. Under the J. C. Cox and Ross [12] interest rate model, the bond price takes
the same form of (14) with different A(t,T ),B(t,T ) functions. Hence the above
approach works for both the CIR model as well. If we consider CIR interest rate
model instead of the Vasicek model in our system (1), the corresponding pricing
problem can be solved in a almost identical way.

5 Fast and slow time scale correction
Now we need to find the other two terms of the approximation. The fast time scale
correction term U1,0 and the slow time correction term U0,1. We use the ideas and
detailed computation presented in Canhanga et al. [3], Canhanga et al. [4] and Ni
et al. [15] to express the two correction terms as

Uε
1,0 =−(T − t)BεU0,0 (25)

and
Uδ

0,1 = (T − t)A δU0,0. (26)

Here

Bε =−ϒ
ε(v2)D1D2, ϒ

ε(v2) =−
√

ερ13

2

〈
v1

∂φ(v1,v2)

∂v1

〉
;

A δ = Θ
δ (v2)D1

∂

∂v2
, Θ

δ (v2) =
1
2

ρ24v2
√

δ , Di = si ∂ i

∂ si ; τ = T − t.

The function φ is a smooth function that solves the following equation

L0φ(v1,v2) = v1−θ1.
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6 Approximation formula
We now summarize the asymptotical results obtained in the previous sections into
the following main theorem.

Theorem 1 Consider an asset whose price evolves according to (1) where V1
and V2 are stochastic variance processes of mean reversion type. Consider also
that the rates of reversion of the two variance processes are given by 1/ε and
δ respectively where 0 < ε << 1 and 0 < δ << 1. If h(ST ) is the payoff of an
European option on this asset with maturity time T , then the price of this option
can be approximated by Uε,δ given below.

Uε,δ =U0,0− (T − t)
[
Bε −A δ

]
U0,0.

for U0,0 defined in (24). When ε → 0 and δ → 0 the approximated option price
converges to the Black-Scholes option price.

7 Conclusion and future work
Previous studies for example from Fouque et al. [9], Fouque et al. [10], Chiarella
and Ziveyi [6], Canhanga et al. [3], Christoffersen et al. [7] improved Black–
Scholes approach by considering two stochastic volatilities models. These models
assume constant interest rate. In this paper we have presented an alternative to the
previous models by introducing stochastic interest rate (Vasicek type). By using
asymptotic expansion approach we have derived an approximating solution to the
European option pricing problem. The ideas presented in this paper can also be
applied to stochastic interest rate of CIR type. In the future we plan to make the
model calibration with real market data and introduce some numerical analysis.
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Abstract. Many countries have set up Social Security Systems which link retirement age 

and/or pension benefits to life expectancy, considering a mechanism for indexing the 

retirement age and/or pension benefits. The issue is a subject of great interest in recent 
literature; the debate outlines new directions in pension scheme developments and 

presents experiences with flexible pension schemes from various countries.  

In this context, we consider an indexing mechanism based on the residual life expectancy 

to adjust the retirement age and keep a constant Expected Pension Period Duration 
(EPPD). The motivation is to focus on the recent and spread need to create flexible 

retirement schemes for facing global ageing and the prolonging working lives.  

We implement that approach referring to  the classical Lee Carter Model (no cohort 

effect) and  Haberman and Renshaw model considering the cohort effect. We assess the 
impact of the two mortality models for the Italian male and female populations. 

Keywords: Longevity risk, mortality projections, cohort effect. 

 
 

1  Introduction 

 

For National Social Security systems, it is of growing importance to account for 

longevity risk in programming retirement schemes. Specifically, as the mean  

life expectancy is increasing, at different rates for males and females and for 

different cohorts, longevity risk should be dynamically managed over time. 

In this framework it is clear the necessity of reforming pension systems 

projected in the context of lower mortality rates and higher fertility rates. Some 

important considerations need to be made to achieve a proper reform of the 

pension system. 

The dynamics of mortality for the industrialized countries over the last fifty 

years show: 1) an increase in life expectancy at old ages (over 65 years); 2) an 

increase in the mode of the age of death distribution; 3) a decrease in mortality 

rates at old ages. As consequence in terms of the shape of the survival function 

we can observe: it tends to shift towards a rectangular shape (due to the 
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increasing concentration of deaths around the mode (at old ages) of the curve of 

deaths) and it expands to the right, i.e. the mode of the curve of deaths moves 

towards very old ages.  

From a financial point of view, rectangularization and expansion have different 

effects. The concentration of deaths around the mode reduces the variance of the 

distribution and then the related risk. The expansion phenomenon, generating 

the risk of systematic deviations of mortality from the assumed projected 

behavior, together with the accelerating trend of mortality decline at old ages, 

increases risk for the Social Security System (Visco et al, 2006). 

From these considerations emerges the need of accurate mortality projections 

based on stochastic analysis in order to provide reliable measures of mortality 

and of its uncertainty which are essential for proper pension reforms. 

In this vein, we propose a flexible retirement scheme based on the indexation of 

the retirement age to reach a prescribed Expected Pension Period Duration 

(EPPD). In particular, we test that approach considering two stochastic 

projection mortality models: the classical Lee Carter Model (no cohort effect) 

and the Renshaw-Haberman model specifying the cohort effect. We refer to 

Italian males and females population. The aim is measuring the impact of the 

mortality model selection on the retirement age settings by gender. The paper is 

organized as follows: in Section 2 we introduce the stochastic mortality models 

that will be used for our analysis. Section 3 describes the Italian pension system 

and discusses the proposal of an indexed retirement mechanism. Section 4 is 

devoted to apply our proposal to the Italian mortality experience. Concluding 

remarks on forthcoming developments end the paper.  

  

2  Stochastic Mortality Models 

 
The aim of this contribution is to compare the impact that mortality projection 

for males and females has on a flexible retirement scheme when different 

stochastic mortality models are considered. In particular, we refer to the Lee-

Carter model and the Renshaw-Haberman model, because the LC model has 

become a milestone and it is largely used in the actuarial literature, whilst the 

RH model allows us to take into account the cohort effect.  

Consider mortality rates at time t for people aged x. For age effects 
x , period 

effects 
tk , age-period modulating terms x  and cohort effects 

xt , we take 

into account the Lee and Carter (LC) model and the Renshaw and Haberman 

(RH) model, which is an extension to the first one, but with an extra  parameter  

depending on year of birth. They both are two of the selected stochastic 

mortality models belonging to the GAPC (Villegas et al 2016) class. The 

unifying design for these models prescribes a predictor 
tx, , which is related to 

mortality rates according to a log or logit link, generally. In this framework, the 

predictor structure proposed by Lee and Carter (1992) is given by: 
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,x t x x tk     

 

The LC model is widely used because of its simplicity and robustness despite  

its inability to model specific cohort effects. In 2006, Renshaw and Haberman 

proposed an extended version  of the  LC  model  with  an  extra  parameter, 

xt expressing a random cohort effect. They introduced one of  the first  

stochastic models for population mortality with a cohort effect to obtain the 

predictor:  

 

,x t x x t t xk        

 

In order to project mortality, the time index 
tk  and the extra parameter 

xt  

modelled and forecasted using ARIMA processes.  
 

3  A Flexible retirement scheme   
 

Societies across the world are ageing, with challenges for sustainable adequate 

pension systems. Governments and pension funds have largely responded by 

postponing pension ages and by discouraging early retirement. In many 

countries, for example, pension legislations has been reformed during the last 

decade, moving from Defined Benefits (DB) to Notional Defined Contributions 

(NDC) system, the last one considering particularly important the rules to take 

into account in the pension formulae life expectancies and their changes 

(Belloni, Maccheroni, 2006). The Italian pension system is composed by three 

pillars:1) Public, compulsory and unfunded pay-as-you-go system (PAYG); 2) 

The private, voluntary and collective funded system; and 3) Private, voluntary 

and individual savings related to social security schemes. The first pillar, the 

dominant one in Italy, passed through two main reforms during the nineties. The 

first reform, introduced by Law 335/95, determined a shift from DB to NDC 

scheme, in which notional accumulated contributions on individual accounts 

were converted into an annuity at retirement. Unlike the previous method, the 

latter takes into account the amount of contribution paid throughout the whole 

working life accumulated at the expected GDP (Gross Domestic Product) 

growth rate, the life expectancy of the pensioner at retirement age and the 

number of years that a survivor’s benefit will be withdrawn by any widow or 

widower, according to actuarial equivalence principle. The second reform, 

introduced by Fornero with Law 214/2011, had two directives: the rise of the 

pensionable age and the calculation of the requirements for retirement on the 

basis of the number of years of social security contributions made and no longer 

on the average salary earned in the last years before retirement. In particular, 

among the others, the reform will see the retirement age increased to 66 for both 

men and women in the public and private sector by 2018; future retirement ages 

increasing in line with life expectancy from next year. For all workers, in 

accordance with Law Number 122/2010, age and service requirements will be 
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periodically reviewed based on the actual increases in life expectancy published 

by ISTAT. Moreover, pensions calculated under the NDC system will be 

affected by the application of periodically reviewed annuity conversion factors. 

In this framework, we proposed an indexing mechanism for retirement age 

based on the period life expectancy 
 M

Cxe ,0
 at age 650 x , for selected cohorts 

and the chosen stochastic mortality models M. We consider cohorts of 

males/females born from 1952 to 2012, setting the cohort 1952 as benchmark. 

Those individuals will be aged 65 in 2017, which was the retirement age 

prescribed by law until the Fornero Reform. 

We follow an age-period approach in the sense that life expectancy is 

considered as function of the age x  and the calendar year t . Specifically, let us 

consider an individual belonging to the cohort C, aged 
0x  on the first of 

January of year 
0t , when the expected lifetime provided by a given stochastic 

mortality model M is equal to 
 M

Cxe ,0
. Let us suppose that the pension system we 

refer to foresees that 
0x is the fixed retirement age for all subsequent cohorts. 

The individual aged 
0x receives a constant monthly payment B as long as 

he/she survives. We can say that 
 M

Cxe ,0
 represents the Expected Pension Period 

Duration according to model M (EPPD
(M)

), that is the expected number of years 

during which pension payments are due. 

Then, for a fixed mortality model M and for each of the selected cohort C, we 

determine the age at which life expectancy equals the EPPD
(M)

.  For a fixed 

mortality model M and for each of the selected cohort C, we evaluate 
)(

,*0

M

Cjxe  

for j=1,2…., and we index the retirement age considering a shift 
)(M

Cs so that: 
 

  
     MM

x
j

M

C EPPDes
Cj


 ,0
min

                                                          (7) 

 

In this way, the Social Security System will be obliged for an expected number 

of years that does not exceed the fixed EPPD
(M) 

and will keep pension costs to 

budgeted level. 

 

4  Application: Italian dataset  
As aforementioned, we consider cohorts of individuals born from 1952 to 2012 

for ages from 55 up to 89 years. The data are downloaded from the Human 

Mortality Database (Human Mortality Database 2014) by single calendar year 

and by single year of age. We focus on ages 55 to 89 since we are interested in 

mortality dynamics at old ages. The numerical application is performed 

considering the LC and RH mortality models according to the following steps: 

we fit the selected models, assess goodness of fit, forecast mortality and 

calculate the  indexed  retirement age both for males and females. 
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The goodness-of-fit of mortality models is typically analyzed by inspecting the 

residuals of the fitted model. 

 

 
 

 
Fig.1.  Scatter plots of deviance residuals for LC and RH models fitted to the Italian male 

population for ages 55-89 and the period 1952 to 2012. 
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Fig. 2. Scatter plots of deviance residuals for LC and RH models fitted to the Italian 

female population for ages 55-89 and the period 1952 to 2012. 

 

 

 

In fig.1 and fig. 2 scatter plots of residuals by age, period and cohort for both 

males and females in case of LC and RH model are reported. As well known, 

regular patterns in the residuals indicate the inability of the model to describe all 

the features of the data appropriately. In our case the scatter plots of deviance 

residuals show the inability of LC model to capture the well-known cohort 

effect. On the contrary the residuals of RH model look more reasonably random. 

Table 1 reports the results obtained calculating the BIC index for LC and RH 

models both for females and males. According to that results the RH is the best 

fitting one. 
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Table 1: BIC index for selected mortality models 

 Males Females 
RH 27839.01 27584.65 
LC 43772.54 29778.88 

 
For mortality projections, we consider a forward time span of h=30 years. As 

customarily, we assume that the period index 
tk   follow a random walk with 

drift and the cohort index 
xt  follows a univariate ARIMA process, 

independent of the period indexes. Then, for each mortality model, the 

forecasting procedure is based on the best ARIMA process fitting the observed 

data, as obtained from the auto.arima() function of the R Package “forecast” 

(Hyndman et al 2008). Table 2 reports the ARIMA(p,d,q) process that are 

assumed for the cohort effects both for females and males. 
 

Table 2: Selected ARIMA process for forecasting cohort effect 

Males Females 
RH ARIMA (1,2,2)  ARIMA(1,2,2) 
 

According to these forecasts, the central projections of death rates and the 

expected residual life span at age 65  are computed for the two selected models 

and different genders (see Figures 3a and 3b, 4a and 4b; tables 3a and 3b). 

 

 
  

Fig. 3a. Fitted and forecasted death 

rates for males aged 65 

Fig. 3b. Fitted and forecasted death rates for 

females aged 65 
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Cohort LC  RH  

1952 12.97 12.80 

1956 13.16 13.16 

1960 13.42 13.31 

1964 13.74 13.70 

1968 14.22 14.37 

1972 14.81 15.12 

1976 15.47 15.63 

1980 16.11 15.86 

1984 16.73 16.61 

1988 17.30 17.52 

1992 17.82 18.55 

1996 18.24 19.20 

2000 18.59 19.89 

2004 18.91 20.71 

2008 19.23 21.40 

Tab. 3a. Life expectancy 

at age 65 for male 

cohorts for the selected 

mortality models 
 

    Tab. 3b. Life expectancy at  

    age 65 for female cohorts for 

     the selected mortality  models 
  

 

       
Fig. 4a. Life expectancy for males aged 

65 

     Fig. 4b. Life expectancy for females aged 65 

The indexation mechanism will assume, for each mortality model M, the 

expected life span for cohort 1952 as EPPD
(M)

.  Table 4a and 4b report the 

computed lag as the minimum forward shift that should be applied to the 

retirement age (say, set at age 65), in order to reach the threshold EPPD(M). 

Results are represented in fig.5.a and 5.b. Different patterns are observed for 

different genders. Specifically, for females residual life expectancy is globally 

higher than for males, although the specification of the cohort effects (which is 

supported by the data) yields a steeper increase in expected lives for males than 

for females. This circumstance yields that in the case of RH model the lags 

requested for females are lower than for males for younger generations. Finally 

Cohort LC RH 

1952 15.90 15.76 

1956 16.41 16.51 

1960 16.97 16.98 

1964 17.57 17.54 

1968 18.22 18.28 

1972 18.85 19.05 

1976 19.47 19.56 

1980 20.00 19.95 

1984 20.47 20.58 

1988 20.91 21.18 

1992 21.32 21.88 

1996 21.71 22.35 

2000 22.08 22.80 

2004 22.46 23.40 

2008 22.84 23.86 
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we note that the cohort effect is stronger for the male population (lags are higher 

in case of RH model respect the LC model for males), and also the RH more 

sharply improves the fitting performances for males than for females. 
 

Table 4a: Required lags by the indexation mechanism for Males 

Lag 
 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 

LC 1 1 2 3 4 5 5 6 7 7 8 8 8 9 
RH 1 1 2 3 4 5 5 6 8 9 10 10 11 12 

 
Table 4b: Required lags by the indexation mechanism for Females 

Lag 

 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 

LC 1 2 3 4 4 5 6 6 7 7 7 8 8 9 

RH 2 2 3 4 5 5 6 7 7 8 8 9 10 10 

  

 

 

 
 

 Fig. 5a. Lag to reach EPPD 
for LC (red) and RH (blue) females 

Fig. 5b. Lag to reach EPPD for LC (red) and 
RH (blue) males 
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Conclusions 

The paper suggests a flexible pension scheme based on the expected residual 

life to adjust the retirement age for keeping a constant Expected Pension Period 

Duration (EPPD) and containing the pension costs to a fixed level. In this 

context the choice of the stochastic mortality model is crucial. So, we applied 

the indexing mechanism to the Italian male and female populations in case of 

the LC and RH models. In this way we show the impact of the selected models 

on the indexed retirement age when the cohort effect is considered or not. 

Moreover results highlight different cohort effects for males and females.  The 

paper represents the first step of a work in progress. Future developments will 

extend the mortality projection topic to the choice of the best mortality model in 

terms of fitting and forecasts among the family of GAPC models.  Finally we 

will measure the impact of different stochastic mortality projection models on 

the Social Security System costs introducing a suitable index, while accounting 

for uncertainty of both estimation and prediction. 
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Abstract. Expected dramatic increase in the number of people with cognitive impairment 

will put high demands on health and social care in the Czech Republic. Population aging 

and the increase of elderly persons aged 65+ evoked a need to address this issue, since 
age is the major risk factor for dementia and severe cognitive impairment. Conflicting 

conclusions of European studies confirm the difficulties of quantifying the disease. This 

article includes the analysis of risk factors of severe cognitive impairment, based on 

socio-demographic and health variables in the Czech Republic. The method of logistic 
regression was used for the analysis of risk factors. 

 
Keywords: Population Ageing, Severe Cognitive Impairment, Risk Factors, Czech 

Republic. 
 

 

1 Introduction 
 

Due to an expected increase of demented persons, another objective of the PhD 

thesis is to find risk factors for the occurrence of dementia. In the event that is 

known as risk factors associated with dementia, and medicine can find a way to 

delay disease or prevented. The aim is to evaluate the applied statistics and draw 

conclusions regarding the demographic and medical issues associated with 

dementia. It is as important as the mathematical (theoretical) statistics. 

Application statistics troubleshooting from another department is equally 

important for statistics, demography and biomedicine. In the Czech Republic 

lacks an effective national measures in the field of dementia and mental 

disorders - National Action Plan for Alzheimer's disease was accepted until the 

beginning of 2016. 

 

In general, particular disease, e.g., diabetes, cardiovascular disease or poor 

physical and mental condition, also increase the risk of occurrence. The 

situation is complicated by the fact that the individual may suffer at the same 

time at more than one simultaneously disease: diabetes, hypertension or heart 

disease. Equally important is appreciated that not all AIDS patients with a given 
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disease visit the practitioner and are introduced into the statistics. Therefore, a 

number of diseases which are characterized by, but not limited too course of the 

patient, e.g., Elevated blood pressure, it can be seen only very roughly. One 

approach to solving this problem is to try to model development morbidity from 

chronic disease on the basis of knowledge of the risk factors. 

The source of data used is the SHARE database (The Survey of Health, Aging 

and Retirement in Europe), which by its multidisciplinary nature provides a 

comprehensive picture of the aging process in Europe. The results in the 

dissertation are of significance with respect to the issue of dementia useful 

material for future analysis and professionals. 

 

2 Data – The Survey of Health, Ageing and Retirement in 

Europe (SHARE) 
 

The aim of SHARE (The Survey of Health, Aging and Retirement in Europe) is 

creating a longitudinal data set across Europe consisting of persons older than 

50 years and their families. 

Among the main topics of multidisciplinary research include demography, 

family, education, physical and mental health, cognitive function, medical care 

and risks, quality of life, employment and income, housing, income and 

consumption of households, social support, etc. Data set SHARE provides full 

advice socio-demographic variables, variables relating to lifestyle and physical 

and mental health, which help to elucidate acting factors. The investigation so 

far to the 5 waves in different European countries, including CR. It was on a 

panel database of microdata from the area of the economic situation, health, 

social and family bonds. It provides real-tracking data on a sample of 123 000 

individuals (more than 293 000 interviews) 27 European countries and Israel 

older than 50 years. Czech Republic was involved in the project in a second 

wave of investigations in 2006. The variables characterizing the state of 

physical and mental health and variables from which it was possible to calculate 

a variable cognitive function, found only in the second, fourth and fifth wave 

investigation, were therefore used in the dissertation data exclusively from these 

waves. One drawback SHARE investigation that do not include people in social 

devices. Estimates of the incidence of dementia seniorskej population differ. In 

institutionalized senioroch it is always higher than in senioroch living alone 

(Nikolai et al., 2013). As shown Jagger et al. (2000). The prevalence of 

dementia is significantly increased in social and health devices as in households. 

Since demented persons require intensive care, it is in a certain phase of the 

disease necessary to have these persons transferred to social facilities (Hallauer, 

2002). The most frequent group of respondents were consisted of age less than 

60 years (37.62%), followed by annual 60-69 (35.16%), annual 70-79 (19.23%), 

annual 80-89 (7.64%) and the smallest proportion represented persons older 

than 90 years (0.35%). The relative proportions of the age categories are shown 

in Figure 1.  
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Figure 1. Age structure of the respondents 

Source: data SHARE (2015), own construction 

 

 

 

3 Determinants of occurrence of dementia 
 

 

In the literature there exist several risk factors of dementia. From these results it 

can be assumed that higher education and active lifestyle reduce the chance of 

developing dementia. Furthermore, some diseases such as diabetes and 

cardiovascular diseases or poor physical and mental health should generally 

increase the chances of developing dementia. The aim of this part is the analysis 

and identification of factors that affect the risk of severe cognitive impairment 

in the Czech Republic. Researchers question is whether there are any 

assumptions or risk factors, which when exposed to a certain person more 

frequently, thereby increasing their chances of developing a cognitive disorder? 

Admission variables related to socio-demographic characteristics, physical and 

mental health and lifestyle were drawn from the SHARE, which were described 

in section 2.  

Multi-dimensional analysis can exclude relationships that exist between the 

explanatory variables. To determine associations between basic demographic 

characteristics and other variables, and severe cognitive impairment model was 

constructed logistic regression. Alltogether we constructed 4 models of logistic 

regression.  
 

After the analysis of risk factors for severe cognitive impairment and by looking 

for associations between socio-demographic variables, variables of physical and 
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mental health, social characteristics and development of severe cognitive 

impairment the fourth model was created that includes variables, which were in 

the previous models confirmed as significant.  

 

In all models, it was shown that the chances of developing severe cognitive 

impairment increases rapidly with age. Also higher education positively affects 

cognition. It is important to highlight the factors which appeared in most models 

as significant (higher than e.g., education) and the family status (living with a 

partner). Starting from a model there is about 6 times higher risk of dementia for 

persons who live without a partner. 

 

 

4 ROC curve 

 
To illustrate the discriminating capabilities of the model we used ROC curve 

(Received Operation Characteristic Curve; see Figure 2). ROC curve enables the 

ability of the diagnostic assay depending on the sensitivity (sensitivity) and 

specificity (accuracy) and minimize the consequences of erroneous diagnostic 

decisions. In a square of a unit we receive content: diagonal (and area under the 

diagonal size of about 0.5), when the model has no ability to classify and units 

are classified into groups randomly; a curve under the diagonal (defining the 

area of greater than 0.5) for certain models with better or worse discrimination 

capability; ROC curve confluent with the left upright and the upper horizontal 

side of the square in a situation where model classifies perfectly and the quality 

is best expressed by the entire unit area of a square (Hebák et al., 2015). The 

closer the ROC curve in the upper left corner, the higher the overall accuracy of 

the test (Zweig, Campbell, 1993). In case the model no discriminatory property 

and units are randomly assigned to the given categories, the ROC curve has a 

diagonal shape (dashed line). 

 

Value of McFadden's pseudo R-square is in this case, it was 0.41, and the value 

of Kendal tau is equal to 0.14. Statistics AUC value is 0.938 (see Figure 3). By 

these criteria, the best is the final model (see Figure 3). 
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Figure 2. ROC Curve  

Source: MedCalc, 2016 
 

 
 

 
 

 

Figure 3. ROC Curve  

Source: own calculation 
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5 Risk factors of dementia in the literature 

 

 
Due to the complexity of dementia syndrome, and factors that increase the risk 

of disease, has heretofore been unambiguously identified relatively few risk 

factors. Risk factors, such as e.g., Age, family history and inheritance can not be 

changed, but recent investigations indicate that there are other risk factors that 

can be influenced. Some factors are still debatable and others have been 

repeatedly confirmed in the existing studies. Jorm (1994) is under research and 

Short form of the Informant Questionnaire on Cognitive Decline in the Elderly 

(IQCODE): Development and cross-validation discloses Down syndrome as a 

possible risk factors for Alzheimer's disease. During the 60s and 70s of the 20th 

century the aluminum appeared to be a possible risk factor causing Alzheimer's 

disease. This suspicion led to concerns about the everyday use of aluminum 

through Pot film beverage cans antiperspirants. Since then, studies have not 

confirmed the statistical significance of aluminum in the incidence of dementia 

and Alzheimer's disease. Attention therefore focuses scientists to other research 

and aluminum is now possible to exclude from the list of risk factors of 

dementia. 

Regardless of the form of dementia, personal, economic and societal 

consequences of this disease can be devastating. The following portion provides 

a comprehensive summary of the results of international studies of the risk 

factors of dementia using statistical methods. 

 

Conclusions 

 
Age was demonstrated (in accordance with literature) as the major risk factor of 

severe cognitive impairment. The risk of severe cognitive impairment increases 

with age, some studies have suggested that the highest age groups is slower 

increase. Pliant factors, such as. Lifestyle, can prevent and slow down the 

development of cognitive disorders. Lifestyle also affected by the presence of 

other diseases such as hypertension, diabetes, heart attack, vascular disease of 

the brain which are also associated with severe cognitive impairment. It can be 

concluded that healthy diet reduces the risk of developing severe cognitive 

impairment, both directly and indirectly. There is no direct correlation between 

the different pathologies and pursued the development of severe cognitive 

impairment, but generally it can be said that a combination of factors, the 

monitored increases the likelihood of its development. A higher level of 

education and healthy lifestyle appear to be the factors which delay disease 

incidence in the higher age group. 

People with higher education had access i greater cognitive reserve and are able 

to work longer and with a decrease in brain function. Interestingly finding that 

partner coexistence indirectly protects against the development of dementia: it is 

well known that persons in Partnership live longer, healthier, have more social 

bonds more emotional stimuli aid like. Support partnerships may thus become 
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one of the instruments preventing dementia ( and other chronic diseases in the 

elderly). 

Aging of the population with particular emphasis on more than two-fold 

increase in the number of dementing and those with severe cognitive 

impairment in a population must be understood as a call for the entire company 

and invites public and private institutions to action. In addition to the necessary 

medical care must be a target for aging society, increase the capacity of long-

term care. The necessity of social services depending on age and level of 

dependency has been discussed in the first chapter of the thesis. The company 

must be aware of these changes that will belong not only to increase the number 

of demented people and increased costs associated with the care of patients and 

their treatments, but also the associated problems, such as the varying structure 

of the population and the load, which will represent for the family caregiver or 

pre-set institutional care. 
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Abstract. Intervention analysis is an important method for analysing temporary or
long-lasting effects of sudden events on time series data. We use monthly data of
the National Statistics Office’s Tourstat survey covering the years 2003 up to 2012.
This contains a number of time series regarding tourist demographics, the type of
tourism, and other variables of economic relevance. We apply intervention analysis to
determine the impact of the introduction of budget airline routes to Maltese tourism
related time series. We consider two main interventions. The first is the introduction
of Italy and UK bound routes in October 2006. The second is the introduction of
a considerable number of routes in March 2010, in particular the Marseille route.
In addition to the standard types of intervention introduced by Box and Tiao [1],
the step and the pulse intervention, we also use a periodic pulse intervention which
allows us to cater for any seasonality in the intervention effect, with the corresponding
transfer function possibilities. We conclude with a critique of this method for this
data.
Keywords: Time series analysis, intervention analysis, tourism.

1 Introduction

Intervention analysis looks for dynamic changes in a time series following an
intervention. The seminal paper related to intervention analysis is that by
Box and Tiao [1]. This intervention, in actual practice, could take the form
of an event, procedure, law or policy intended to change a particular trend.
Transportation and tourism time series are time series which are expected to
be impacted by external events that are known to have occurred at a particular
point in time. By understanding the extent of the impact of an intervention
on a time series, policy makers would be able to quantify the exent of the
impact and adjust policy to cater for inferred change. Intervention analysis
has often been used to study the effects of policy, procedure or other events
on transportation and tourism. In [6], the impact of fare and service changes
on transportation in Kentucky during the period 1975-1985 is studied. In [5],
the impact on passenger ridership of the opening of a new railway line in Soeul
is investigated. A study from a tourism perspective is found in [4], where the
impact of SARS in 2003 on Japanese tourism to Taiwan is assessed.
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The relatively small size of the Maltese islands means that changes in poli-
cies and interventions may prove to have a significant effect on the economy.
Tourism is an important pillar of the Maltese economy, and the impact of the
introduction of low cost carriers, which have been introduced in 2006, to Mal-
tese tourism has never before been studied. In this paper we look at how the
introduction of these new routes has impacted on the volume and profile of
tourists visiting Malta during the above mentioned period. The analysis is
based on variables derived from the Tourstat survey [8] carried out by the Na-
tional Statistics Office in Malta. This is a tourism survey carried out monthly
using a two-stage sampling technique consisting of clustering and systematic
sampling stages. The survey is carried out at departure terminals at randomly
picked time-intervals, and tourists visiting Malta are selected systematically
and interviewed as they are entering the departures lounge towards the end of
their stay. The results from this survey are then projected for the whole tourist
population. For the analysis, we consider the period 2003-2012 on a monthly
basis. We shall be looking at two interventions - the introduction of low cost
routes to Pisa and London in October 2006, and a considerable addition of
new routes (namely Bologna, Marseille and other European airports in Spain,
Denmark and Poland) in March 2010. Due to numerous time series datasets
at our disposal, from here onwards we shall only present those series where
intervention eventually proved to be significant.

When carrying out intervention analysis, some assumptions need to be taken
into consideration. First of all, apart from the noise of the series, the only
exogenous impact shall be presumed to be that of the event or the intervention
itself. Secondly, the temporal delimitations of the intervention are presumed to
be known, such as the time of onset, the durations and the time of termination
of the input event. Lastly, a sufficient number of observations in the series
should be available before and after the onset of the event for the researcher
to separately model the pre-intervention time series and the post-intervention
time series.

2 Building the intervention model

Building an intervention model typically follows these steps. A model is con-
structed for change, which describes what is expected to occur given knowledge
of the known intervention (or interventions). Data analysis is then worked out
appropriately based on that model. A pre-intervention model is first obtained,
based on the data prior to the first intervention. A SARIMA (seasonal au-
toregressive moving average) model is typically used at this stage, but not
exclusively. This is then followed by an analysis on the whole dataset including
the intervention. This is usually chosen after the selected model is used to gen-
erate forecasted values for the period after the intervention, and the differences
between the actual values after the interention and the forecasted values are
visually analysed. The typical intervention model is given by

Yt = f (θ, I, t) +Nt (1)
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where Y is the original or appropriately transformed series, f represents the
dynamic model for the intervention effects and is a function of the parameter
set θ, the intervention variables I and the time t, and N represents the under-
lying time series with no intervention, which may either be completely random
or modeled by some time series model of endogenous variables. Diagnostic
checks are then carried out on the fitted model, and if serious deficiencies are
uncovered, the model needs to be modified. Typical diagnostic checking which
occurs at this stage is the significance of model parameters, where one also in-
cludes post-intervention data, and analysis of residuals. In this paper we shall
assume that N is modeled by SARIMA. A SARIMA (p, d, q) (P,D,Q)s with
no constant term is given by the equation

(1−B) (1−Bs)φ (B)Φ (Bs)Nt = θ (B)Θ (Bs)Zt (2)

where B is the backward operator, Z is a white noise process and:

1. φ (z) = 1− φ1z − ...− φpz
p

2. Φ (z) = 1− Φ1z − ...− ΦP z
P

3. θ (z) = 1 + θ1z − ...− θqz
q

4. Θ (z) = 1 +Θ1z − ...−ΘQz
Q

If we include the constant term, we replace Nt in (2) with Ñt ≡ Nt−µ for non-
zero constant term µ. We now look into possible ways of modelling intervention.

2.1 Dynamic Models for Intervention

A model for intervention can contain both single and multiple interventions.
For a single intervention, the dynamic model in (1) is given by

f (θ, I, t) = χt =
ω (B)

δ (B)
It (3)

where

1. ω (z) = 1− ω1z − ...− ωrz
r

2. δ (z) = 1− δ1z − ...− δsz
s

3. ω (z) and δ (z) have roots outside the unit circle
4. χt represents the dynamic transfer from a single intervention I

5. θ = (ω1, ..., ωr, δ1, ..., δs)

Furthermore, we call the term ω(z)
δ(z) in (3) the transfer function, as it relates the

exogenous input It with the observed process Y at time t. The generalisation
of (3) for multiple interventions is given by

f (θ, I, t) =

k
∑

j=1

χtj =

k
∑

j=1

ωj (B)

δj (B)
I
(j)
t (4)

where
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1. ωj (z) = 1− ω1jz − ...− ωrjjz
rj

2. δj (z) = 1− δ1jz − ...− δsjjz
sj

3. for all j, ωj (z) and δj (z) have roots outside the unit circle
4. I =

(

I(1), ..., I(j)
)

5. χtj represents the dynamic transfer from the jth intervention I(j)

6. θ = (ω11, ..., ωrkk, δ11, ..., δskk)

The two most common types of intervention variables I
j
t are the step in-

tervention and the pulse intervention. The step intervention S(T,j) represents
an intervention at time T that remains in effect thereafter, hence causing a
permanent change in state. In this case:

S
(T ,j )
t =

{

0, t < T

1, t ≥ T
(5)

The pulse intervention P (T,j), on the other hand, represents an intervention at
time T whose change in state is only temporary. In this case

P
(T ,j )
t =

{

0, t 6= T

1, t = T
(6)

Sometimes, however, the intervention effect may also be seasonal. This is
likely to cause model misspecification if not catered for. Specifically devised
for our purpose, we shall also consider a periodic pulse intervention to model
one of our time series. Denoting it by P (d,t,j), we define this as follows

P
(d,T ,j )
t =

{

1, t = T + j + bd

0, t 6= T + j + bd
(7)

where a ∈ {0, 1, ..., d− 1} and b ∈ Z
+. To cater for multiple periodic pulse

intervention effects, one can consider these within the context of a multiple
intervention model of the type (4).

We next discuss the polynomial terms in (3) and (4). The ωj-polynomials
are responsible for the delay in the effect of the intervention variable, while
the δj-polynomials are responsible for the type of change in the mean after
the effect of the intervention. For example, if ωj (z) = ω̃, then the effect of the
intervention of the mean is immediate, while if ωj (z) = ω̃zk for k > 0, then the
effect of the intervention is delayed by k. On the other hand, δj (z) = 1 suggests

an abrupt change in mean after the effect of the intervention, δj (z) = 1 − δ̃z

where δ̃ ∈ (0, 1) suggests a gradual change in mean after the effect of the
intervention, while δj (z) = 1 − z suggests a linear increase/decrease without
bound. For illustrations of the different effects to the mean level for different
combinations of ωj-polynomials and δj-polynomials applied to interventions
of the type (5) and (6), see [1], Section 2. For interventions of the type (7),
we shall only apply ωj (z) = ω̃j , due to the fact that the intervention effect
for a particular month will only be expected to occur in that month. On
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the other hand, in the denominator, we shall assume either that δj (z) = 1,

δj (z) = 1− δ̃jz
d or δj (z) = 1− zd. In the latter, we allow for gradual change

along the seasonal streaks of the intervention. The forms for ωj (z) and δj (z)
mentioned in this paragraph are the only ones we shall consider moving forward.

Fig. 1. The response to a periodic pulse intervention with d = 4 for the following
transfer functions: (a) ω (z) = ω̃, δ (z) = 1, (b) ω (z) = ω̃, δ (z) = 1 − δ̃z4 and (c)
ω (z) = ω̃, δ (z) = 1− z4.

Preliminary analysis for deciding which intervention model is most appro-
priate is not unique. One approach for selecting an adequate intervention model
is through plots of the differences between the actual values after intervention
and the forecasted values. We opt to use moving average plots which have
smoothed out the noise and seasonal effects, hence bringing to the fore the
underlying patterns of the data. This will be elaborated on in Section 3. Ulti-
mately, these are just graphical indications, and the resulting model may not
correspond to what one expects from preliminary analysis.

2.2 Inference for the intervention model

We now discuss estimation for the intervention model in 1. Given a time
series of length N + d + sD, the likelihood may be obtained in terms of an
N -dimensional vector W whose tth element is given by

Wt = (1−B)
d
(1−Bs)

D
(Yt − f (θ, I, t))

where

Wt =

{

θ (B)Θ (Bs)

φ (B)Φ (Bs)

}

Zt
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is stationary. Let β be the vector SARIMA and intervention parameters in 1.
Then the likelihood function is

L
(

β, σ2
z |W

)

=
(

2πσ2
z

)−
N
2 |M|

1

2 exp

{

−
S (β)

2σ2
z

}

where σ2
zM

−1 is the covariance matrix of W and

S (β) = W′MW =

N
∑

t=0

E [Zt|W, β]

Least squares estimation may be applied as a good alternative when MLE be-
comes infeasible to implement because of the model’s strong nonlinearity. Fur-
thermore, two alternative approaches to estimation are suggested by [1]. The
first approach uses the same parameters obtained at pre-intervention stage and
just estimates the intervention parameters. In this case we would be looking
at a quasi-likelihood or quasi-least squares problem. This appears to be less
ideal but may sometimes lead to more manageable optimisation, however this
was never necessary in our case. The second approach, on the other hand, will
apply maximum likelihood estimation or least squares estimation (typically
non-linear least squares estimation) to the whole model. When the interven-
tion is abrupt or gradual, i.e. δ (z) = 1, δ (z) = 1 − δ̃z or δ (z) = 1 − δ̃zd,
maximum likelihood may be used by applying a number of available software
packages. When δ (z) = 1 − z or δj (z) = 1 − zd, estimating (1) becomes a
restricted least squares problem. For the purpose of restricted least squares
estimation, (1) may be rewritten as

(1−B)
d
(1−Bs)

D

{

φ (B)Φ (Bs)

θ (B)Θ (Bs)

}

(Yt − f (θ, I, t)) = Zt (8)

Methods for transforming (8) into regression form can be found in [2], Chap-
ter 11, and the parameters are then estimated via the Levenberg-Marquardt
algorithm or other alternatives.

2.3 Goodness of fit measures and residual diagnostics

The following goodness of fit measures are used to select the best intervention
model. In the following, we denote by Ŷt the one-step ahead predictor of Yt.

1. Mean absolute error (MAE): MAE = 1
T

∑T
t=1

∣

∣

∣
Yt − Ŷt

∣

∣

∣
;

2. Mean absolute percentage error (MAPE): MAPE = 100
T

∑T
t=1

∣

∣

∣

Yt−Ŷt

Yt

∣

∣

∣
;

3. Maximum absolute error (MaxAE): MaxAE = maxt

∣

∣

∣
Yt − Ŷt

∣

∣

∣
;

4. MaxAPE (MaxAPE): MaxAPE = 100maxt

∣

∣

∣

Yt−Ŷt

Yt

∣

∣

∣
;
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5. Normalised BIC (NBIC): NBIC = p lnT − 2 lnL, where L is the model
likelihood and p is the number of parameters to be estimated. When the
likelihood is not known, we can approximate this by NBIC = ln (MSE)+

p ln (T ), where MSE = 1
T

∑T
t=1

(

Yt − Ŷt

)2

. For independent identically

distributed normal disturbances, the two are equivalent.

Furthermore, we shall also apply the Ljung-Box test on the error terms to
ensure that the white noise hypothesis is satisfied. For further details on the
Ljung-Box test see [3].

3 Results

The limitation with intervention analysis is that it is based on the assumption
that the model specification is correct and no other exogenous occurrences
have influenced the data. Furthermore, the size of the pre-intervention and
post-intervention data set may also hinder a proper specification of the model.
A more detailed discussion of the limitations of intervention analysis can be
found in e.g. [7]. We shall therefore perform preliminary analysis on the data
to identify some characteristics of the data after the noise and seasonality
have been smoothed, to avoid having gross misspecifications in the model and
erroneous identification of the intervention.

3.1 Preliminary analysis using moving averages

We shall plot prior moving averages of order 12 over the French tourism series,
package tourism series and Italian tourism series - three series that we have
identified to be influenced by the mentioned interventions. We opt for prior
moving averages rather than centred ones, as these are better for identifying
the exact occurence of the intervention effect. From Fig. 2, we can see from the
moving average that the French tourism model appears to show a linear and
unbounded increase in tourism following the addition of new routes, including
Marseille, in March 2010. The package tourism moving averages, after the
March 2010 intervention, shows a gradual increase which quickly reaches a
plateau. The Italian tourism model, on the other hand, also appears to show
an increase which reaches a plateau after a few years.

Despite the characteristics evident in Fig. 2, the modelling aspect may
lead us to different models altogether. Sometimes, what appears to be the
ideal model ends up not being estimable. Furthermore, there are instances
where it may be difficult to capture all features, and we may be forced to opt
for some features rather than others. Nonetheless, in this paper we present
intervention models where the white noise hypothesis via the Ljung-Box test is
not rejected at the 0.05 level of significance and, furthermore, we shall ensure
that the SARIMA part of the model is causal and invertible after first order
and seasonal differencing.
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Fig. 2. Original series (black solid line) and prior moving average of order 12 (red
solid line) for the following tourism series: French (top left), package (top right) and
Italian (bottom). Black vertical line denotes the time of the intervention.

3.2 Model fitting and diagnostics

In this section we discuss models and their diagnostics for the aforementioned
series where this was estimable. We select the model with the best good-
ness of fit criteria which satisfies the required model assumptions. Due to the
permanent nature of our interventions, we have not considered the pulse in-
terventions in (5), but the step interventions in (4) where appropriate. Where
step interventions failed, we applied the periodic pulse interventions in (6) for
each month. When implementing an intervention model of the type (4), we
have attempted estimation for ω (z) = ω̃zk for various lags k and δ (z) for all
the aforementioned forms. We take k = 0, 1, 2, 3 when δ (z) = 1 and k = 0, 1
otherwise. For some cases, the parameters for the models could not be esti-
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mated due to numerical instability. For an intervention model of the type (6),
we have considered ω (z) = ω̃ in conjunction with δ (z) = 1, δ (z) = 1− δ̃zd and
δ (z) = 1−zd. We have also allowed for multiple interventions, however none of
the time series considered found more than one intervention to be significant.
The time series where intervention was deemed to have a significant impact
were monthly French tourist numbers, monthly package tourist numbers and
monthly Italian tourist numbers. For the French tourism series and package
tourism series, the step intervention model was sufficient and the significant
intervention was the one occurring in March 2010. This was expected for the
French tourism time series, as this corresponded to the intervention where the
Marseille route was introduced. On the other hand, for the Italian tourist time
series, the periodic pulse intervention model was found to be more appropriate
and the significant intervention was the one occurring in October 2006. This
means that the introduction of the Pisa route in October 2006 left an impact
on Italian tourism volumes, but the introduction of the Bologna route in March
2010 does not appear to have had a significant impact. The fitted models and
the results are the following.

We first look at the step intervention model for French tourism time series.
With reference to the model in (1), N is represented by a SARIMA (0, 0, 0)
(1, 1, 0)12. On the other hand, we take ω (z) = ωz and δ (z) = 1− z. The two
coefficients that need estimating, Φ and ω̃, we obtained through non-linear least
squares estimation after transforming (7) into regression form. The parameters,
standard errors and corresponding 95% confidence intervals are found in Table
1.

Parameter Estimate Standard Error 95% Lower Bound 95% Upper Bound

Φ -0.45 0.09 -0.62 -0.27

ω̃ 656.79 132.33 394.04 919.53

Table 1. Parameter estimates for the French tourism intervention model.

The goodness of fit statistics for this model are MAE = 1120.74, MAPE =
14.9, MaxAE = 4903.4, MaxAPE = 92.92, NBIC = 14.46 and R2 = 0.86.
The Ljung-Box statistic for the 18th lag is 18.898 and the p-value is 0.4. Fitting
a similar model but with ω (z) = ω̃ was unsuccessful. Models with ω (z) = ω̃zk

for k = 0, 1, ...3 and δ (z) = 1 were also successfully fitted, but the Ljung-Box
test was rejected at 0.05 level of significance in all cases, p-values extremely
close to zero.

The next series we look into is the package tourism time series, again ap-
plying the step intervention model. With reference to the model in (1), N

is represented by a SARIMA (1, 0, 0) (1, 1, 0)12. On the other hand, we take
ω (z) = ω̃zk for k = 0, 1, 2, 3 and δ (z) = 1. Other types of intervention models
were also attempted but the model fitting was unsuccessful. There are three
coefficients that needed estimating: φ, Φ and ω̃. These are obtained via max-
imum likelihood estimation. To select the optimal k, we look at the goodness
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of fit statistics for various k = 0, 1, 2 in Table 4 when maximum likelihood
estimation is applied.

k R2 MAE MAPE MaxAE MaxAPE NBIC Ljung-Box

0 0.93 5166.58 9.63 18642.62 40.4 17.81 16.44 (p = 0.42)

1 0.94 5128.23 9.53 18462.64 40.68 17.81 18.29 (p = 0.31)

2 0.94 5075.65 9.44 18741.43 40.4 17.79 17.31 (p = 0.37)

3 0.94 5111.37 9.51 18542.7 40.87 17.79 18.62 (p = 0.29)

Table 2. Goodness of fit tests and Ljung-Box statistic for the package tourist inter-
vention model at k = 0, 1, 2, 3.

Parameter Estimate Standard Error p-value

φ 0.57 0.08 0

Φ -0.46 0.09 0

ω̃ 4686.06 2028.95 0.02

Table 3. Parameter estimates for the package tourism intervention model at k = 2.

In Table 2, the superior goodness-of-fit statistics are marked in bold. Since the
intervention model at k = 2 had the best MAE and MAPE, and the joint
best R2, MaxAPE and NBIC with other models having different k, we opt for
this model. The parameters, standard errors and p-values for the intervention
model at k = 2 are found in Table 3.

We finally look at the Italian tourism time series. The first attempt was to fit
intervention models with ω (z) = ω̃zk and all possible δ (z). While the models
were estimable when δ (z) = 1 and δ (z) = 1 − z, these led to residuals with
significant short term correlation. An analysis of raw monthly pre-intervention
and post-intervention means led us to suspect that seasonality i the intervention
effect was the issue. The post-intervention increase in the raw mean for the
month of July was 8402.58 (the highest) in comparison to the pre-intervention
raw mean, while the increase for February was 3283. We therefore implement
the periodic pulse intervention model, and we shall assign a periodic pulse to
each month of the year. Hence we have a model of the type (1), where the
dynamic model is of the multiple type in (3). We consider combinations of the
cases where ωj (z) = ω̃j , and δj (z) is either equal 1, 1− δ̃jz

12 or 1−z12. Hence,
we look at an intervention model of the form

f (θ, I, t) =

12
∑

j=1

ω̃j

δj (z)
P

(12,T,j)
t

where T corresponds to October 2006, the 46th data point. With reference
to the model in 1, N is represented by a SARIMA (1, 0, 0) (0, 0, 1)12 with
constant term. On the other hand, the best model is obtained when ω (z) = ω̃
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and δ (z) = 1 for July and September, while δ (z) = 1 − δ̃z12 for August. We
use maximum likelihood estimation to estimate µ, φ, Θ1, Θ2, the ω̃j ’s and δ̃8.
The periodic pulse interventions for July, August and September were found
to be significant. The significant parameters, standard errors, and p-values are
found in Table 4.

Parameter Estimate Standard Error p-value

µ 10734.55 1173.76 0

φ 0.52 0.09 0

Θ -0.52 0.11 0

ω̃7 8335.69 2253.92 0

ω̃8 12271.77 3510.25 0

δ̃8 0.51 0.18 0.01

ω̃9 4743.29 2241.27 0.04

Table 4. Parameter estimates for the Italian tourism intervention model.

The goodness of fit statistics for this model are MAE = 2572.57, MAPE =
29.77, MaxAE = 18175.44, MaxAPE = 165.56, NBIC = 16.92 and R2 =
0.77. The Ljung-Box staistic for the 18th lag is 13.17 and the p-value is 0.66.

Based solely on the obtained model fits, we deduce the following. French
tourism has increased linearly after removing the SARIMA dynamics of the
model, at an estimated rate of 656.79 every month. The response to the in-
tervention appears to have occurred with a delay of one month, as k = 1 for
the dynamic model explaining intervention. On the other hand, after removal
of the SARIMA dynamics, package tourism appears to have increased by an
estimated 4686.06 in the post-intervention months. The response to the in-
terventions appears to have happened with a two month lag (k = 2). This
occurrence may appear strange, considering that low cost airline routes are
not associated with package tourism, since these travel options have made self-
organised travel affordable. Indeed, package tourism appeared to have been on
the decline for quite a few years prior to the 2010 intervention. However, what
we may be seeing here is the response of the tourism industry to the intro-
duction of a significant number of low cost routes in March 2010, by offering
more worthwhile deals to the potential Maltese tourism market. It is also likely
that package deals have now been making use of these inexpensive routes to
lower their prices. Finally, for the Italian tourism market, the periodic pulse
intervention was found to be significant for the months of July, August, and
September. We have a sudden estimated increase of 8115.29, on removal of
the SARIMA effect, in the post-intervention July months. For September, the
sudden estimated increase is of 4571.45. On the other hand, for August, the
post-intervention effect is increasing gradually to an estimated asymptote of
25044.43. Interestingly, intervention was not found to have led to a significant
increase in British tourists in 2006, or a significant increase in tourists from
other EU countries in 2010, despite the addition of new routes from Spain,
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Fig. 3. Original series (black dashed line), fitted series (black solid line), lower 95%
confidence levels (blue solid line) and upper 95% confidence levels (red solid line)
for the following tourism series: French (top left), package (top right) and Italian
(bottom). Black vertical line denotes the time of the intervention.

Denmark and Poland. A plot of the original series, fitted values of one-step
predictors and lower/upper 95% confidence levels can be seen in Fig. 3.

4 Conclusion

Intervention analysis is a useful way of assessing the impact of policy on time
series. In this paper, we have presented three cases where the introduction
of new routes was found to have a significant impact, either on the intended
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tourism market or on other areas. Intervention was found to be significant for
French and Italian tourism, where an increase in tourists from this country is
detected, and package tourism, where the tourism industry appears to have
responded to the introduction of low cost airlines. Furthermore, we see that
the intervention did not affect Italian tourism equally for all months - only
the effects for the months of July, August and September were found to be
significant.

Intervention analysis is not without its pitfalls. The amount of data avail-
able pre-intervention and post-intervention may affect both model selection and
estimation. A complex transfer function may also complicate the estimation
problem. Indeed, sometimes we may need to settle for simpler and less informa-
tive models. Furthermore, we need to be careful not to falsely attribute changes
in the dynamics of a time series to intervention effects. These are all issues we
have encountered when performing the analysis. A careful exploratory analy-
sis of the data and being well informed about the context that one is dealing
with may help avoid these mistakes. Nonetheless, intervention analysis is an
effective and important tool for detecting effect of a sudden change, whether
intended or unintended, and is also capable of influencing future policy and
decision-making.
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Abstract: This paper uses the symbolic data analysis tools in order to display 

and analyze the conditional quantile estimates, with an application to the cost 

allocation problem in agriculture. After recalling the conceptual framework of 

the estimation of agricultural production costs, the first part presents the 

empirical data model, the quantile regression approach and the interval data  

techniques used as symbolic data analysis tools. The second part presents the 

comparative analysis of the econometric results for wheat between twelve 

European member states, using principal component analysis and hierarchic 

clustering of estimates and range of estimation intervals, discussing the 

relevance of the displays obtained for inter-country comparisons based on 

specific productivity. 

Keyword: agricultural production, cost allocation, micro-economics, quantile 

regression, symbolic data analysis, confidence intervals 

 

 

1 Conceptual framework and methodological aspects of 

cost allocation 
 

Successive reforms of the Common Agricultural Policy (CAP), the 

integration of agriculture in the 28 Member States resulting from enlargement of 

the European Union (EU) have raised both in the context of competitive 

markets as markets subject to regulation, recurring needs for estimating costs of 

production of major agricultural products. The analysis of agricultural 

production costs, whether retrospective or prospective, is also a tool for 

analyzing margins for farmers. It allows to assess the price competitiveness of 

farmers, one of the major elements for development and sustainability of food 

chains in the European regions. Thus, the estimation of production costs 

provides partial but certainly needed lightings on the issues raised by the 

adaptation of European agriculture to the context of agricultural markets, 

whether they are national, European or international. 
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Given these issues, in contexts of either ex ante or ex post scenarios, for 

evaluation of eventual options of public agricultural policy, we must be able to 

provide information on the entire distribution of production costs and to meet 

the needs of simulations and impact assessment in the various common market 

organizations. In this perspective, based on the observation of asymmetry and 

heteroskedasticity within the empirical distribution of agricultural inputs, we 

propose a methodology adapted to the problem of estimating the specific costs 

of production for the main agricultural products in a European context where 

agricultural holdings remain mainly oriented towards multiple productions, 

despite a preponderance of farms specializing in some of the more integrated 

agricultural production sectors. 

To this end, we propose a methodology to obtain and analyze estimates of 

these quantile specific costs that are conditioned by the product mix of farmers. 

To demonstrate the relevance of this approach, we will apply this methodology 

to estimate the specific costs of wheat, agricultural commodity most commonly 

produced in the EU28, to a set of twelve European countries (EU12) where this 

production is significant in 2006.  

We first present the empirical estimation of specific production cost model 

derived from an econometric approach to cost allocation, using a 

microeconomic model to build an input-output matrix (Divay and Meunier [6]). 

Second, we introduce the methodology for estimating conditional quantiles as 

proposed by Koenker and Bassett [8]. Third, we present the symbolic data 

analysis tools used in our procedures, mainly based on the concepts and 

methods described in Bock and Diday [1], using symbolic principal component 

and divisive clustering analyses. Fourth, the various displays provided by these 

symbolic tools are commented and discussed based on the conditional quantile 

estimates obtained for wheat production at the European level. Eventually, we 

conclude on the effectiveness of this approach for the wheat production with a 

proposal to extend it to other main agricultural products. 

 

2 The empirical model of specific production cost 

estimates 
 

In the EU-Farm Accounting Data Network (FADN) survey, the input 

recording occurs in aggregated form at the farm level and does not provide 

direct estimates of production costs incurred by each agricultural commodity 

produced. In contrast, the EU-FADN survey provides at the farm level, on one 

hand, the amount of gross product generated by each of the various commodities 

and, on the other hand, the sum of expenses for all the specific agricultural 

inputs recorded. So, it becomes possible to estimate, with an econometric model 

regressing the specific inputs on the gross products, the allocation coefficients 

of agricultural inputs to the main agricultural products, denoted as "specific 

coefficients" of production. 
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Following Desbois, Butaut and Surry [5], the econometric model 

decomposes linearly x the sum of specific inputs for each farm holding i 

according to the gross product Y of each agricultural commodity j, expressed by 

the following stochastic equation: 

𝑥𝑖 = ∑ 𝛾𝑗𝑌𝑖
𝑗

+ 𝜀𝑖 𝑤𝑖𝑡ℎ 𝜀𝑖 𝑖𝑖𝑑
𝑃
𝑗=1     (1). 

 

3 The conditional quantile estimation 
 

To take into account the intrinsic heterogeneity of the distribution of the 

specific costs, we estimate the specific production coefficients of equation (1) 

accordingly with the methodology of quantile regression (Koenker and Bassett 

[8]), the solution being expressed in terms of conditional quantile of order q: 

𝜇𝑞(𝑖) = ∑ 𝛾�̂�
(𝑞)𝑌𝑖

𝑗𝑃
𝑗=1      (2) 

As [2], we assume that the data generator process is a linear model with 

multiplicative heteroscedasticity characterized in matrix form by: 

𝑥 = 𝑌′𝛽 + 𝑢 with 𝑢 = 𝑌′𝛼 × 𝜀 and 𝑌′𝛼 > 0 (3) 

where 𝜀 ∼ 𝑖𝑖𝑑[0, 𝜎] is a random-vector identically and independently 

distributed with zero mean and constant variance 𝜎2. Under this assumption, 

𝜇𝑞(𝑥|𝑌, 𝛽, 𝛼), 

the 𝑞𝑡ℎ conditional quantile of the production cost x, the production cost, 

conditioned by Y and the α and β parameters, is derived analytically as follows: 

𝜇𝑞(𝑥|𝑌, 𝛽, 𝛼) = 𝑌′[𝛽 + 𝛼 × 𝐹𝑒
−1(𝑞)]   (4), 

where 𝐹𝜀  is the cumulative distribution function (CDF) of the errors. 

At least, two kinds of model can be distinguished: 

i) 𝑥 = 𝑌′𝛽 + 𝑢with  𝑢 = 𝐾𝜖, homoscedastic errors 

𝑉(𝜖|𝑌) = 𝜎2, denoted as the location-shift model, i.e. the linear 

model of conditional quantile with homogeneous slopes; while 

𝑌′𝛼 = 𝐾 is constant, the conditional quantiles 

𝜇𝑞(𝑥|𝑌, 𝛽, 𝛼) = 𝑌′𝛽 + 𝐾𝐹𝑒
−1(𝑞) get all the same slope, but 

differ only by a constant gap, growing as q, the quantile order, 

increases; 

ii) 𝑥 = 𝑌′𝛽 + (𝑌′𝛼) × 𝜀and 𝑌′𝛼 > 0 with heteroscedastic 

residuals, referred as the location-scale shift model, i.e. the linear 

model of heterogeneous conditional quantile slopes. 

Weighted conditional quantiles were proposed as weighted L-estimates in 

heteroscedastic linear models (Koenker and Zhao [9]) defined by the weighting 

{𝜔𝑖; 𝑖 = 1, ⋯ , 𝑛}. Those weights correspond to the inverse of the FADN 

sampling frequency in order to ensure the country representativeness of the 

estimates. 
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The observation weighting leads to a quantile regression scheme solving the  

minimization problem (5): 

𝛽𝜔(𝑞) = 𝐴𝑟𝑔𝑚𝑖𝑛
𝛽∈𝑅𝑝

{ ∑ [𝜔𝑖𝑞|𝑦𝑖 − 𝑥𝑖
′𝛽|]

𝑖;𝑦𝑖≥𝑥𝑖
′𝛽

+ ∑ [𝜔𝑖(1 − 𝑞)|𝑦𝑖 − 𝑥𝑖
′𝛽|]

𝑖;𝑦𝑖<𝑥𝑖
′𝛽

} 

Given the FADN sample size and its non-random selection, we opt for the 

method of resampling based procedure based on the Markov Chain Marginal 

Bootstrap (MCMB) because no assumption on distributions of hazards is 

needed; this method gives robust empirical confidence intervals in a reasonable 

computation time (He and Hu [7]). 

 

 

4 Symbolic analyses of the empirical distributions of specific 

costs 
 

The symbolic data analysis tools used in this paper are mainly based on the 

vertices principal component analysis (V-PCA, Cazes et al. [3]) and the PCA of 

the range transformation of  interval data (RT-PCA, Lauro and Palumbo [10]), 

with the divisive clustering method (Chavent [4]) chosen to ensure the best 

mathematical coherency for the display and analysis of the conditional quantile 

estimates.  

Let us denote ∆= {𝜕1, ⋯ , 𝜕𝑖, ⋯ 𝜕𝑛}, the empirical distributions of 

specific costs, as symbolic objects described by a set of p conditional quantile 

estimators 𝑋 = {𝑥1, … , 𝑥𝑗 , … , 𝑥𝑝}. for p=6 give the following quantile 

estimates {𝑄~0,10, 𝑄~0,25, 𝑄~0,50, 𝑄0,75, 𝑄~0,90}. This feature is referred to as the 

quality criterion. The [inf ; sup] estimation intervals of MCMB conditional 

quantiles are denoted 𝑥𝑖𝑗⏞⏟ = [𝑥𝑖𝑗⏟ ; 𝑥𝑖𝑗⏞].  

These estimation intervals can be represented by the pair (𝑚𝑖𝑗; 𝑧𝑖𝑗) where 

𝑚𝑖𝑗 is the conditional central estimate, and 𝑧𝑖
�̄�

= 𝑥⏞𝑖𝑗 − 𝑥𝑖𝑗⏟  is the interval 

range transformation.  

However, because the MCMB intervals are not symmetric, we shall rather 

consider the hyper-volume, associated with the description of the Symbolic 

Objects (SO), 

 𝛿𝑖 , 1 ⩽ 𝑖 ≤ 𝑁, 

computed as the Cartesian product  𝑧𝑖
𝑗

× ⋯ × 𝑧𝑖
𝑗

× ⋯ × 𝑧𝑖
𝑝

  of the p 

associated quantile descriptors. 
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The Description Potential (DP) measurement is defined by: 

𝜋(𝜔𝑖) = ∏ 𝜇(�̄�𝑖
𝑗
)𝑝

𝑗=1      (6) 

where is the normalized range with respect to the domain  𝑠𝑗.  However, if the 

measurement of one of the descriptors tends to zero, then the DP tends to zero. 

To overcome this problem, the Linear Description Potential (LDP), is used 

by De Carvalho [11] for the instance 𝑎𝑖 of symbolic object 𝛿𝑖, as: 

(𝑎𝑖) = ∑ 𝜇(�̄�𝑖
𝑗
)𝑝

𝑗=1       (7). 

The Range Transformation Principal Component Analysis (RT-PCA) is 

defined by the factorial decomposition of the total LDP: 

𝐿𝐷𝑃𝑡𝑜𝑡 = ∑ 𝜎(𝑎𝑖)
𝑛
𝑖=1      (8), 

allowing a geometric representation of hyper-volumes in which the inf vertices 

are translated to the origin. With regards to the orthogonality between couples of 

sides of each hypercube, the search of the optimal subspace to visualize the size 

and the shape of each quantile distribution as a SO can be implemented by a non 

centered PCA with respect to the sup vertices. The non centered PCA  

performed on the matrix √𝑧𝑖
�̄�
 is decomposing the 𝐿𝐷𝑃𝑡𝑜𝑡  criterion. 

Hence, our mixed strategy of PCA of the distribution of specific costs (DSC-

PCA) combines the V-PCA and the RT-PCA in the three steps approach of the 

symbolic PCA defined by Lauro and Palumbo [10], to take into account the 

differences in scale and shape between empirical distributions of specific costs. 

Also based on the estimation intervals of conditional quantiles, we use  

DIV
1
, a divisive hierarchical clustering procedure (Chavent [4]), to obtain 

criteria for classifying countries according to their specific wheat costs. 

The DIV evaluation criterion of the partition 𝑃𝐾  with 𝐾 clusters 

𝑃𝐾 = (𝐶1, ⋯ , 𝐶𝑘, ⋯ , 𝐶𝐾)  

is the sum of the homogeneity indices, such as: 

𝑊(𝑃) = ∑ 𝑄(𝐶𝑘)𝐶𝑘∈𝑃      (9), 

with the homogeneity index 𝑄(𝐶𝑘) =
1

2𝑛𝑘
∑ ∑ 𝑑2(𝛿𝑖, 𝛿𝑗)𝜔𝑗∈𝐶𝑘𝜔𝑖∈𝐶𝑘

, 

and the euclidean distance 𝑑(𝜔𝑖 , 𝜔𝑘) = (∑ 𝑑𝑗
2 (𝑥𝑖

𝑗
⏟
⏞

, 𝑥𝑘
𝑗

⏟
⏞

)𝑝
𝑗=1 )

1 2⁄

. 

 

  

                                                 
1
 DIV is the divisive hierarchical clustering procedure of the Sodas 2.5 software 
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5 The visualization and the analysis of econometric results 
 

In 2010, according to Eurostat estimates, the EU27 accounts for 21% of 

world wheat production. The EU12 countries are among the largest producers in 

terms of amounts collected, descending countries: France (FRA, 27.9%), 

Germany (DEU, 17.6%), United Kingdom (UKI, 10.9%), Poland (POL, 6.9%), 

Italy (ITA, 5.0%), Spain (ESP, 4.3%), Denmark (DNK, 3.7%), Hungary (HUN, 

2.7%), Sweden (SVE, 1.6%), Belgium (BEL, 1.4%), and (1.1%) for Austria 

(OST) and Netherlands (NLD), either 84.3% of the European production. 

The Table 1 presents estimates of conditional quantiles (the first decile D1, 

the lower quartile Q1, the median Q2, the upper quartile Q3, the ninth decile 

D9) for wheat production costs, issued from Surry, Desbois and Butault [12]. 

They are issued from the quantile regression of specific agricultural production 

costs (the SE281 accounting aggregate in EU-FADN) based on the 

decomposition of the gross product among fifteen speculations, for a subset of 

12 European countries (EU12) in 2006. 

 
Tab. 1. The Specific Cost Estimates (€) for 1 000 € of Wheat Gross 

Product, EU12-FADN 2006. 

Country  D1 Q1 Q2 Q3 D9 

BEL 364 407 407 506 691 

DNK 220 265 363 437 543 

DEU 284 285 320 335 372 

ESP 228 226 252 333 560 

FRA 345 392 449 491 563 

HUN 209 247 342 354 427 

ITA 164 238 335 378 471 

NLD 144 207 295 489 771 

OST 204 239 277 250 305 

POL 266 293 347 420 523 

SVE 368 285 349 437 597 

UKI 293 302 357 396 460 

 
Source: FADN-based author’s computations, 
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The visualization of the relative position of countries is provided by the first 

factorial plan (figure 1) from the V-PCA of point estimates, accounting for 

90.7% of total inertia. Accounting for 64.4% of total inertia, the first principal 

component F1 is a size axis positively correlated (> 0.77) to all conditional 

estimators, especially to Q2 (0.89), and Q1 (0.90). The second principal 

component F2, accounting for 26.3% of total inertia, is positively correlated 

with D9 (0.81) and Q3 (0.52) and negatively D1 (-0.45) and Q1 (-0.37). 

The hierarchical clustering procedure
2
 gives two interesting partitions at low 

level of semi-partial R squared, P4 (8%) and P5 (4%), projected on first factorial 

plan (figure 2): {NLD} with highest D9 estimate, {BEL, FRA} with highest Q2 

estimates, {OST, DEU} the lowest D9 estimates, {ESP, ITA, HUN} with Q2 

lower values than {DNK, POL, SVE, UKI} characterised by more central 

estimates. 

 

 
Fig. 1. The First Factorial Plan (F1xF2) of the V-PCA, with the 

Conditional Quantile Projections (D1, first decile; Q1, lower quartile; 

Q2, median; Q3, upper quartile; D9, ninth decile) 
Source: FADN-based author’s computations 

 

 

                                                 
2
 The ‘proc CLUSTER’ procedure of the SAS software. 

F1 (64,4%)

F2 (26,3%)
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Fig. 2: The First Factorial Plan (F1xF2) of the V-PCA, with the 

Empirical Distributions of EU-12 Countries 
Source: FADN-based author’s computations 

 

However, the RT-PCA of the interval ranges  gives complementary 

information (figure 3). 
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Fig. 3. The,RT-PCA of Empirical Distributions of Specific Costs, with 

the Projected Interval Coordinates of Quantile Estimates. 
Source: FADN-based author’s computations 

 

For the F1 component, only the correlation interval of D9 is strictly positive 

([0.260, 0.990]); all other correlations intervals contain origin. Meanwhile, the 

radii of correlation intervals of D1 and Q1 are the highest ones (0.87 and 0.88 

respectively). Hence, examination of F1 correlation projections identifies D9 as 

an estimator indicating heteroscedasticity for conditional distributions while 
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appear similarities along F2, involving D1 and Q1 as indicators of skewness by 

lower estimates, and Q3 and D9 as indicators of skewness by higher estimates. 

On the first factorial plane of symbolic objects (figure 4), rectangle of 

France (FRA), consisting of the projections of the edges of estimate hyper-

rectangle parallel to the first two principal components, differs from that of 

Germany (DEU), this which means specific differences in costs both in terms of 

scale (along Axis1, the first principal component, whose central dispersion 

rather reflects the differences between median estimates) and in shape of 

specific costs distributions (along Axis 2, the second principal component, 

opposing the estimates of lower quantiles to those of the upper quantiles). 

The distributional ranges may partially overlap on the lowest quantiles as 

indicated by the positions of the projected hyper-rectangles of Austria (OST) 

and France (FRA). Note also the projection of the Netherlands (NED) hyper-

rectangle that includes all other projected hyper-rectangles, indicating the most 

heterogeneous distribution, followed in this by Sweden (SVE) and Belgium 

(BEL) projected rectangles whose lengths according Axis 1 are among the 

largest. Hence, DSC-PCA can be used as a procedure to characterize 

distributions of specific costs: Netherlands, Sweden and Belgium are associated 

to the location-scale shift model while other countries are rather belonging to 

the location-shift (homogeneous) model. 
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Fig. 4. The RT-PCA of Empirical Distributions of Specific Costs, with 

the Projected Hyper-Rectangles of EU12 Countries 
Source: FADN-based author’s computations 
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The divisive clustering procedure (Chavent [4]), applied to the confidence 

intervals of the quantile estimates, confirms these differences and similarities 

indicating the cost structure to the classes of countries (figure 5). 

  

 
Fig. 5: The Interval Divisive Hierarchical Clustering of Empirical 

Distributions of Specific Cost, with the EU-12 Countries, 2006. 
Source: FADN-based author’s computations 
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First, at the first node of the divisive tree, comes a major distinction between 

location distributional scales: on one hand (the triplet {NED, BEL, SVE} whose 

D9 conditional quantiles of specific costs exceed € 579.75) and, on the other 

hand, other countries whose ninth decile estimates are less or equal to that value. 

Second, at the bottom of the tree, the divisive clustering algorithm highlights 

a partial order, authorizing some local rankings based on the conditional first 

decile (D1): a first local ranking, between Italy, Hungary, Spain and Germany; a 

second one between Poland and the United Kingdom; and a third one, between 

the Netherlands, Belgium and Sweden. 

These local rankings can be used in inter-country comparison for the 

purpose of specific productivity assessment, in the context of an increasingly 

competitive wheat market. 

 

 

6 Conclusion 
 

In this paper, we proposed a symbolic data analysis approach in order to 

display the distributions of quantile conditional estimates. We apply this 

approach to the specific costs of production for wheat in twelve European 

countries. This case study demonstrates the relevance of our approach in 

allowing the identification of significant differences particularly between France 

and Germany, two of the main European producers of wheat. 

With regards of location and shape of the conditional quantile estimated 

distribution, the national differences are mainly based on the highest conditional 

decile and quartile, displaying the skewness by the greatest values of the 

empirical distribution of conditional quantile estimates. 

The skewness of conditional quantile distributions for wheat production cost 

being inherited from the heterogeneity of conditions and techniques in 

agricultural production among European producers, we propose to extend our 

approach to other main agricultural products such as cow milk and pig.  
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Abstract. We study the problem of controlling the stochastic growth of a bounded pest 

population by the introduction of geometric catastrophes. The damage done by the pests 
is represented by a cost. Another cost is also incurred when the controlling action of 

introducing geometric catastrophes to the population is taken. It is assumed that the 

catastrophe rate is constant. We aim to find a stationary policy which minimizes the 

long-run expected average cost per unit time. A semi-Markov decision formulation of the 
problem is given. It seems intuitively reasonable that the optimal policy is of control-

limit type, i.e. it introduces geometric catastrophes if and only if the pest population is 

greater than or equal to a critical size. Although a rigorous proof of this assertion is 

difficult, a computational treatment of the problem is possible. Various Markov decision 
algorithms are implemented for the computation of the optimal policy. From a great 

number of numerical examples that we have tested, there is strong evidence that the 

optimal policy is of control-limit type. 

Keywords: Pest control, Geometric catastrophes, Semi-Markov decision process, 
Control-limit policy, Markov decision algorithms 
 

 

1  Introduction 
 

In the last four decades, several articles have appeared dealing with population 

processes under the influence of catastrophes. The stochastic growth of a 

population has been successfully modeled by using various suitable 

birth/immigration/emigration-death processes. It is assumed that the catastrophe 

of a population may have different forms. The considered population may be 

controlled by some action which initiates a specific type of catastrophes.  

   An interesting problem that arises in biological population models controlled 

by catastrophes is related to the computation of a stationary policy which 

satisfies a predefined optimality criterion. A usual optimality criterion is the 

minimization of the long-run expected average cost per unit time. In some of 

these problems, it can be shown that the optimal stationary policy initiates the 

controlling action of introducing a type of catastrophe to the population if and 

only if the size of the biological population is greater than or equal to a critical 
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level. Such a policy is usually called control-limit policy and the critical level is 

called the control-limit. The semi-Markov decision process and the Markov 

decision process in continuous time are appropriate mathematical models for the 

description of the stochastic growth of biological populations controlled by 

catastrophes. 

   The simplest form of catastrophes is the so-called total catastrophes. When 

such a type of catastrophes is initiated into a population then the entire 

population is annihilated. In the article of Kyriakidis and Abakuks [6], a simple 

immigration-birth process was considered to represent the stochastic growth of a 

pest population. It was assumed that the pest population may be controlled by an 

action which introduces total catastrophes. A Markov decision process in 

continuous time was considered and the stationary policy which minimizes the 

long-run expected average cost per unit time was found. It was proved that the 

optimal stationary policy belongs into the class of control-limit policies 

according to which the controlling action of introducing total catastrophes is 

taken if and only if the size of the pest population is greater than or equal to a 

critical value. In Kyriakidis [9], the problem of controlling a simple 

immigration-birth-death process, which represents a pest population by the 

introduction of total catastrophes was assumed. A suitable semi-Markov 

decision formulation was given which enabled the author to numerically 

compute the optimal policy. By applying the standard policy iteration algorithm 

there is strong numerical evidence that the optimal policy has a control-limit 

form. Economou [3] proved that the optimal policy in the problem of controlling 

a compound immigration process through total catastrophes is of control-limit 

type. In Kyriakidis and Dimitrakos [10] the same problem as in Economou’s 

paper was studied and it was further showed that the average cost of a control-

limit policy is unimodal as a function of the critical population size. This result 

enabled the authors to design efficient Markov decision algorithms for the 

numerical computation of the optimal control-limit policy.    

   In population processes under the influence of total catastrophes, except for 

the computation of the optimal policy, alternative interesting problems are also 

studied. Various papers deal with the computation of important descriptive 

measures for the population, such as its equilibrium probabilities and its 

extinction probability. In Kyriakidis [8], the stationary probabilities of a simple 

immigration-birth-death process under the influence of total catastrophes were 

derived using a renewal argument for the case in which the catastrophe rate is 

equal to one. In Swift [13], the transient probabilities for a simple immigration-

birth-death process under total catastrophes were derived for the case in which 

the catastrophe rate is constant. 

   Alternative catastrophe mechanisms were introduced in the article of 

Brockwell et al. [2] in some Markov models which represent the stochastic 

growth of a population. In these models, it was assumed that the population size 

can be reduced by a random amount which was geometrically, binomially or 

uniformly distributed. Explicit formulas for some descriptive quantities of 
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interest were derived, such as the stationary distribution of the population size 

and the distribution of the time to population extinction. In Kyriakidis [7], an 

efficient special-purpose Markov decision algorithm was developed for the 

optimal control of the stochastic growth of a bounded pest population subjected 

to uniform catastrophes. There is strong numerical evidence that the designed 

algorithm converges to the optimal policy within the class of all stationary 

policies. The final policy obtained by the algorithm is of control-limit type. In 

Economou [4], a stochastic model was studied in which the population grows 

according to a compound Poisson process. Binomial catastrophes were initiated 

in the population. The equilibrium distribution of the process was studied and an 

algorithmic approach for its approximate computation was derived. In Artalejo 

et al. [1], an immigration process subjected to binomial and geometric 

catastrophes was studied. Explicit expressions was derived for some populations 

descriptors of interest such as, among others, the first population extinction time 

and the maximum population size reached between two consecutive extinctions. 

In Kapodistria et al. [5], a birth/immigration-death process under binomial 

catastrophes was studied and explicit expressions were obtained for the transient 

and equilibrium factorial moments which are then used to construct the transient 

and the equilibrium distribution of the population size.  

   In this article, we consider a pest population which grows stochastically 

according to a general birth process. The pest population is controlled by an 

action which introduces geometric catastrophes. Under an appropriate cost 

structure, a Markovian decision process is considered in which we aim to find a 

stationary policy which minimizes the long-run expected average cost per unit 

time.  

   The article is mainly concerned with a computational treatment of the problem 

and is organized as follows.  In Section 2 we present the model and in Section 3 

its semi-Markov decision formulation is given. In Section 4, we present two 

numerical examples by implementing various Markov decision algorithms such 

as the standard value iteration algorithm, the standard policy iteration algorithm 

and the modified policy iteration algorithm. From a great number of numerical 

examples that we have tested, there is strong evidence that the optimal 

stationary policy is of control-limit type.    

 

 

2  The model 
 

Consider a pest population which grows stochastically according to a general 

birth process in a habitat with carrying capacity ,N  where N  is a positive 

integer. We assume that the birth rates ,10,  Nii  are positive. The birth 

rate N  is necessarily equal to zero since it corresponds to the carrying capacity 

of the habitat. The damage done by the pests is represented by a cost 

,0,0 Nici   for each unit of time during which the population size is equal 
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to .i  It seems intuitively reasonable to assume that the sequence }{ ic is non-

decreasing and .00 c  The pest population may be controlled by an action 

which introduces geometric catastrophes. 

   It is assumed that the rate   of catastrophe is constant. If a catastrophe occurs, 

when the population size is ,1, Nii   the population size after the catastrophe 

is reduced to ,11,  ijj  with probability 
1)1(  jipp  and is reduced to 

0j  with probability ,)1( 1 ip  where ).1,0(p   

   Let the cost of taking controlling action be k  per unit time where k  is a 

positive number. Let also ,0},{ Niff i   denote a stationary policy under 

which the action if  is taken when the process is in state .i  It is assumed that 

1if  when the controlling action of introducing geometric catastrophes is 

being taken and 0if  when the controlling action is not being taken. If the 

stationary policy ,0},{ Niff i   is employed, our assumptions imply that 

we have a continuous-time Markov chain model for the population growth of 

the pests with state space },,0{ NS   and the following transition rates:   

   

     Transition       Rate 

                  1 ii           ,0, Nii         

                  ji               ,)1( 1
i

ji fpp   ,11,1  ijNi  

                  0i              .1,)1( 1 Nifp i
i     

                   

We consider a Markovian decision process in which we aim to find a stationary 

policy which minimizes the long-run expected average cost per unit time. An 

intuitively appealing class of policies is the class P }, 1 ,{ NxPx   where xP  

is the stationary policy according to which the controlling action of introducing 

geometric catastrophes is taken if and only if the population size is equal to or 

exceeds .x  These policies are called control-limit policies. It seems intuitively 

reasonable that the optimal policy is of control-limit type. Although it seems 

difficult to give a rigorous proof of this assertion, a computational treatment of 

the problem is possible by applying various Markov decision algorithms.  
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3  Formulation as a semi-Markov decision model 
 

Let )(apij  be the probability that the next state of the process will be j  given 

that the action }1,0{a  is taken in the present state Nii 0,  and let ),( aiT  

and ),( aiC  be the corresponding one-step expected transition time and cost, 

respectively. We assume that 1a  when the controlling action which 

introduces geometric catastrophes is being taken and 0a  when the controlling 

action is not being taken. These quantities are given below. 
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One-step expected times 
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One-step expected costs 
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Based on the above semi-Markov decision formulation, a direct implementation 

of the standard Markov decision algorithms (e.g. standard value iteration 

algorithm, standard policy iteration algorithm) and of the modified policy 

iteration algorithm is possible. For a detailed description of these algorithms we 

refer, for example, to the books of Puterman [12] (see Ch. 6, pp. 185-195) and 

Tijms [14] (see Ch. 7, pp. 284-286). 

 

4  Numerical results 
 

In this section, we present two numerical examples. We implemented the 

standard value iteration algorithm, the standard policy iteration algorithm and 

the modified policy iteration algorithm by running the corresponding Matlab 

program on a personal computer equipped with an Intel Core i5-3230M, 2.6 

GHz processor and 4 GB of RAM. In all examples that we have tested, there is 

strong numerical evidence that the optimal stationary policy has a control-limit 

form. 

 

Example 1. We assume that the pest population grows according to the 

Prendiville process (see e.g. Nasell (2011), Section 2.4, pp. 14-15), where the 

birth rates i  are given by ,1 









N

i
vi  ,0 Ni   where v  is a positive 

constant. The cost rate of the damage done by the pests is assumed to be .ici   

We also assume that ,12,50  vN 15k  and .3.0p
 

The rate of the 

catastrophe is assumed to be .5
 
The control-limit policy NP  according to 

which the controlling action is being taken only in state N  is chosen as the 

initial stationary policy in the initial step of the standard policy iteration 

algorithm. Note that if the process is never controlled the long-run average cost 

per unit time is equal to Nc  (i.e. equal to 50 in our example), since state N  is 

an absorbing state in this case. In Table 1, we present the successive control-

limit policies xP  generated by the algorithm and their average costs. As it can 

be seen in the second row of Table 1 from the value of the average cost of the 

policy NP  which is equal to 43.5218, the policy NP  achieves a considerably 
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smaller average cost than the policy of never controlling. The optimal policy 

was obtained after 5 iterations of the algorithm.  

 

Table 1. The successive control-limit policies xP  generated by the policy 

iteration algorithm 

Critical value x  Average cost xg  

50 43.5218 

1 18.1925 

6 17.3070 

3 16.8772 

4 16.8314 

 

Thus, there is strong numerical evidence that the optimal policy obtained by the 

algorithm is the control-limit policy 4P  according to which the controlling 

action of introducing geometric catastrophes is taken if and only if the 

population size is equal to or exceeds the critical value .4*x  The value of the 

minimum average cost is approximately equal to 16.8314. We also choose 
310  as the tolerance number for the stopping criterion of the standard value 

iteration algorithm. The algorithm is terminated after 584 iterations. Choosing 

the same value of the tolerance number   as in the standard value iteration 

algorithm, the modified policy iteration algorithm is stopped after only 22 

iterations. This significant difference in the number of iterations between the 

two algorithms is consistent with the report of Puterman’s [12] book in p. 193, 

according to which the implementation of modified policy iteration requires 

little additional programming effort yet attains superior convergence to value 

iteration algorithm. 

   In Table 2, for 10  and for each value of ,p  we present the critical values 

*x  of the optimal control-limit policies *xP  obtained by the value iteration 

algorithm and by the modified policy iteration algorithm, their minimum 

average costs *xg  the required number of iterations of the value-iteration 

algorithm (Iterations 1) and the required number of iterations of the modified 

policy iteration algorithm (Iterations 2). 
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Table 2. The optimal control-limit policies *xP  for each value of p  

p  *x  *xg  Iterations 1 Iterations 2 

0.1 4 6.7464 105 10 

0.2 4 7.9757 167 13 

0.3 3 9.3643 234 15 

0.4 3 10.8265 312 18 

0.5 3 12.5068 404 20 

0.6 2 14.2123 529 24 

0.7 2 16.2156 679 27 

0.8 1 18.5118 881 32 

0.9 1 21.0820 1107 36 

 

 

   We observe that, as p  increases, the critical number *x  that corresponds to 

the optimal control-limit policy *xP  decreases. 

   In Figure 1, we present a graph that shows the variation of the minimum 

average cost as the probability p  takes values in the set }.9.0,,1.0{   We see 

that, as p  increases, the minimum average cost increases rather linearly. 

 

 

Fig. 1. The minimum average cost as parameter p  varies 
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  In Table 3, we present the optimal critical value *x  obtained by the Markov 

decision algorithms and the corresponding average cost *xg  obtained by the 

policy iteration algorithm for various values of the parameters ,  v  and .k  

 

Table 3. The optimal control-limit policy *xP   

A. The effect of varying   for ,3.0p 12v  and 15k  

  Critical value *x  Minimum cost *xg  

0.5 50 48.7576 

1 50 47.1361 

5 4 16.8314 

10 3 9.3598 

20 3 5.4743 

 

B. The effect of varying v  for ,3.0p
 

5  and 15k  

v  Critical value *x  Minimum cost *xg  

1  2 2.4166 

2 2 4.0931 

5 3 8.0895 

10 4 14.3120 

20 4 27.1417 

 

C. The effect of varying k  for ,3.0p  5  and 12v  

k  Critical value *x  Minimum cost *xg  

5  2 9.3847 

10 3 13.2115 

15 4 16.8314 

20 4 20.3035 

25 5 23.6474 
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From Table 3, it can be seen that the optimal critical value *x  decreases as the 

catastrophe rate   increases and the minimum average cost *xg  decreases as   

increases.  It can also be seen that the optimal critical value *x  increases as v  

and k  increase and the minimum average cost *xg  increases as v  and k  

increase. ■ 

 

Example 2. We assume that the pest population grows according to the same 

Prendiville process, as in Example 1. The cost rate is now assumed to be 

.ici   We also assume that ,10,60  vN 16k  and .4.0p  The rate of 

the catastrophe is assumed to be .15
 
The control-limit policy 1P  is chosen 

as the initial stationary policy in the initial step of the standard policy iteration 

algorithm. In Table 4, we present the successive control-limit policies xP  

generated by the algorithm and their average costs. The optimal policy was 

obtained after 7 iterations of the algorithm.  

 
Table 4. The successive control-limit policies xP  generated by the policy 

iteration algorithm 

Critical value x  Average cost xg  

1 8.1927 

60 7.7555 

2 6.6896 

10 6.5482 

3 6.2246 

5 6.0973 

4 6.0931 

 

Thus, there is strong numerical evidence that the optimal policy obtained by the 

algorithm is the control-limit policy 4P  according to which the controlling 

action of introducing geometric catastrophes is taken if and only if the 

population size is equal to or exceeds the critical value .4*x  The value of the 

minimum average cost is approximately equal to 6.0931. We also choose 
310  as the tolerance number for the stopping criterion of the standard value 

iteration algorithm. The algorithm is terminated after 278 iterations. Choosing 

the same value of the tolerance number   as in the value iteration algorithm, the 

modified policy iteration algorithm is stopped after only 27 iterations. 

   In Figure 2, for ,1.0p  we present a graph that shows the variation of the 

critical number *x  that corresponds to the optimal control-limit policy ,*xP  as 

the parameter k  takes values in the set }.60,58,,4,2{ 
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Fig. 2. The variation of the optimal critical number *x  as parameter k  varies 

 
We observe that, as k  increases, the critical number *x  that corresponds to the 

optimal control-limit policy ,*xP  increases. When k  takes values in the set 

},10,,2{   the critical number *x  increases rather rapidly while when k  takes 

values in the set },60,,12{   the critical number *x  increases slowly. 

   In Figure 3, again for ,1.0p  we present a graph that shows the variation of 

the minimum average cost as the cost rate k  of taking the controlling action 

that introduces geometric catastrophes takes values in the set }.60,58,,4,2{ 
 

 

 
 

Fig. 3. The variation of the minimum average cost as parameter k  varies
 

We observe that, as k increases, the minimum average cost increases almost 

linearly. The minimum average cost increase rather rapidly for  ,10k  while 

for ,10k  the minimum average cost increases slowly. ■ 
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Conclusions 
In this paper we considered the problem of controlling the stochastic growth of a 

bounded pest population by the introduction of geometric catastrophes. It was 

assumed that the cost rate caused by the pests is an increasing function of their 

population size and that the cost rate of the controlling action which introduces 

geometric catastrophes is constant. We sought a stationary policy which 

minimizes the long-run expected average cost per unit time. It seems reasonable 

that the optimal policy introduces geometric catastrophes if and only if the pest 

population is greater than or equal to a critical level. Although a proof of this 

assertion seems difficult, a computational treatment of the problem is possible 

based on a semi-Markov decision formulation of the model. We implemented 

various Markov decision algorithms for the computation of the optimal policy. 

From a great number of numerical examples that we have tested, there is strong 

evidence that the optimal policy belongs to the class of control-limit policies. 
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Abstract. The aim of this paper is to use artificial neural networks in order to generate 

time series which reproduce the properties of the real electroencephalograms. The focus 
was made on manifestations of nonlinearity and deterministic chaos. The study deals 

with a question about the place of modeling in the study of complex systems and 

processes. Particular attention is paid to the definition of indicators of studied time series. 

The goal was to make meaningful judgments about the intrinsic properties of the 
generated EEG signals in comparison with the real signals. We presented and evaluated 

the simulation results with the help of artificial neural networks. The conclusion is that 

under certain conditions the neural networks with chaotic neurons may reproduce 

properties of real EEG signals. But at the same time the similarity between generated and 
real signal is not so close that there is no way to distinguish one from another by using a 

sufficiently informative methods including visually representing information. In other 

words, the concept of cybernetic black box is limited in practice by the complexity of the 

problem. 
Keywords: artificial neural networks, models of chaotic neurons, modeling of 

electroencephalogram signals, deterministic chaos. 
 

1 Introduction 
 

It should be noted that EEG analysis methods are specific in their capabilities 

and purpose. There are many methods for analyzing the EEG signal: from visual 

expert evaluation to analysis of microstates using Markov chains (Gärtner et al. 

[4]). Moreover, nonlinear methods make it possible to obtain more accurate and 

nontrivial results than linear methods, in view of the nonlinearity of the EEG 

itself. These methods include the study of reconstructed attractor in the lag 

space, calculating the correlation dimension, the information entropy, the largest 

Lyapunov exponent, the Hurst exponent, the fractal dimensions, the recurrent 

diagram, and so on (see, for instance, Acharya et al. [1] ). 

It should be noted that the model can contain a stochastic component, that is, it 

should not be purely deterministic. This modeling can also be carried out using 

artificial neural networks (ANN). In this paper, we consider such ANNs, in 

which deterministic chaos is included a priori (Crook and Scheper [15] ). Thus, 

the hypothesis was formulated that it is possible to construct an artificial neural 

network for modeling the EEG signal, in which there are layers consisting of 

chaotic neurons.  
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2 General properties of electroencephalograms (EEG) 
 

The signal consists of a set of interfering rhythms of brain activity with the 

addition of chaos and noise of various types. The EEG signal is nonstationary at 

sufficiently large time intervals (Kaplan at al. [2]) and nonlinear (Rombouts at 

al. [3] ). This is especially noticeable in the case of external stimulation of the 

brain by signals from the sensory organs (Fig. 1). 

 

 
Fig. 1. EEG signal in response to a stimulus (Payal at al. [17] ) 

 

In this figure, we can estimate what the EEG signal is. Usually it varies from -30 

to 50 millivolts ( V ).Changes in the EEG signal can occur in milliseconds. 

From a mathematical and computational point of view, the EEG is a collection 

of discrete time series, the number of which corresponds to the number of EEG 

recording channels. Each such time series can be written as follows: 

}{ , [1,..., ]X x t Nt  . Here N  is the number of the EEG signal samples, t  

is the discrete time. The number of samples in the EEG record depends on the 

recording conditions. Usually the sampling frequency is 250 or 500 Hz and the 

recording time is 1-2 minutes. 

 

3 Quantitative indicators of EEG analysis 
 

Below we briefly describe some aspects of the EEG analysis and those 

quantitative indicators that were used in this work in assessing the quality of 

modeling the artificial EEG signals. 

In this paper we use the fact that there are many measures, which take into 

account chaotic dynamics, suitable for analyzing time series in general and EEG 

signals, in particular. It is reasonable to use several complexity measures for 

EEG signals at the same time (Burns [5] ). In the framework of this study, the 

following quantitative indicators were chosen to compare the real EEG signals 

with the model EEG signals: 

 Hjorth Mobility;  

 Hjorth complexity;  

 Information entropy;  
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 Approximate entropy;  

 Algorithmic complexity;  

 Largest Lyapunov exponent;  

 Hurst exponent;  

 Correlation dimension. 

Below we will consider in more details each of these measures. 

 

 3.1 Hjorth Parameters 
 

These parameters were proposed specifically for EEG analysis in Hjorth [6]. For 

the time series }{ , [1,..., ]X x t Nt   , they were called as Activity ( )HA X , 

Mobility ( )HM X  and Complexity ( )HC X . The activity corresponds exactly 

to the sample variance of the time series, so we will not calculate it separately: 

( ) ( )HA X Var X      (1) 

Mobility can be understood as the standard deviation of the signal power 

spectrum. That is, the standard deviation of the first time derivative of the 

signal, divided by the standard deviation of the signal itself: 

 

( )

( )
( )

dX
Var

dt
HM X

Var X
      (2) 

Here, by the derivative, we mean its finite difference approximation, that is, the 

increments of the time series under study with a unit step. 

The complexity is related to the change in frequency. The complexity is 

calculated as follows: 

 

( )

( )
( )

dX
HM

dt
HC X

HM X
      (3) 

Hjorth parameters are fairly simple and easy to calculate. They are currently 

used in the study of EEG signals (see, for instance, Cecchin at al.[7] ). 

Therefore, we also use these measures in this paper. 

 

 3.2. Information Entropy 

 

Calculating the information entropy (IE) of the EEG signal can be useful for 

quantifying the various states of the brain. It can also be regarded as a measure 

of the complexity of the signal in the sense of its conditional information 

content (Ghorbanian at al.[8] ). Information entropy is given by the formula: 

 

 
2 2

( ) log ( )
2

IE X s si ii
      (4) 
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In this expressions, si  are the coefficients of the signal X in some wavelet 

orthonormal basis. In this paper we also use another entropy measure. Namely, 

approximate entropy is used. 

 

 3.3. Approximate Entropy 
 

This indicator determines the complexity of the signal }{ , [1,..., ],X x t Nt   

by means of an analysis of its regularity, based on a logarithmic estimation for 

similarity of the compared patterns (Pincus [9]). Approximate entropy (AE) can 

be defined as the following difference: 

 

( 1)1 1 1
( ) log ( ) log ( )

1 1( 1)

N m N mm m
AE X C r C ri i

i iN m N m

 

 

   
  

   

 (5) 

The "correlation integral" ( )
m

C ri  in this formula is calculated as follows: 

 
( 1)1

( ) ( )
1,( 1) 1

x xi j

N m
m

C r ri
j j iN m






 
  

   
  (6) 

Here N  is the number of time series samples, and ( )x  is the Heaviside 

function. Accordingly, ,r  and m  are parameters that can be varied during the 

computation process. The quantity m   is called the embedding dimension of a 

time series in the lag space. The delay time   determines the lag value. The 

methods for determining these parameters are well known and therefore are not 

given here The value of r  is the size of the boxes of the time series 

reconstructed attractor covering in the lag space. 

 

 

 3.4. Algorithmic Complexity 
 

Algorithmic complexity (also Kolmogorov complexity, Lempel-Ziv complexity) 

determines how complex a given sequence of symbols is relative to the length of 

the shortest computer program necessary for a complete description of this 

sequence of symbols. Initially, concept of Algorithmic Complexity (AC) was 

formulated by Kolmogorov [10]. 

We used the approach realized in Kugiumtzis and Tsimpiris [11]. Calculation of 

algorithmic complexity was performed using the MATS toolbox ("Measures of 

Analysis of Time Series"). This toolbox of the MatLab package was created 

specifically for the analysis of time series, including EEG, in  Kugiumtzis and 

Tsimpiris [11]. It has a graphical interface, data loading capabilities and a wide 

range of indicators. Here we note that with the help of MATS in the present 

work, the Hjorth Mobility, the Hjorth Complexity, the Approximate entropy, the 

Hurst exponent, and the Correlation dimensions were calculated. 
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 3.5. Largest Lyapunov Exponent 
 

This measure is one of the key characteristics for detecting deterministic chaos 

in the dynamic system or time series. There is a huge literature and methods of 

LLE calculating. Here we do not discuss them. In general, the largest Lyapunov 

exponent is defined as follows:  

 

( , )1 0
lim lim ln .

0
0 0

x x t

t x t x





  
 (7) 

We can understand 
0

x  as the distance between two close points 
0

x  and 

x x  on the attractor in the phase or lag space at the moment 0t  . 

Correspondingly, ( , )
0

x x t  is the distance between these points at the moment 

t . If orbits exponentially diverge with time, the LLE is positive what indicates 

the chaos. In the present paper the LLE of the EGG signals were calculated as in 

Das at al. [12]. To calculate the LLE of the EEG time series, we chose the 

embedding dimension from 5 to 20 and the time lag equal to 1. 

 

 3.6. Hurst Exponent 

 

The Hurst exponent is a popular quantitative measure for the analysis of time 

series (see, for instance, Das at al. [12] ). With its help it is possible to measure 

long-period memory in a time series. For the time series 

( ), [0,1,..., ]X x t t T   the Hurst exponent is defined in the framework of 

standard R/S analysis by the formula:  

 

 
log( / )

( ) .
log( )

R S
H X

T
      (8) 

R  is the difference between the maximum and minimum deviation from the 

mean. S  is the standard deviation. As a result, the ratio /R S  gives the value 

of the normalized range. We use this indicator to compare the properties of the 

real EEG signal and the model EEG signals. 

 

 3.7. Correlation Dimension 
 

In addition to the fractal dimension 
0

D  and the information dimension 
1

D  , the 

correlation dimension 
2

D  has become popular as one of the fractal dimensions, 

applicable to a wide range of data, including EEG records (Pereda at al.[13] ). It 

is given by the formula: 
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log ( )

( ) lim .
2 0 log( )

C r
CD X D

r r
 


    (9) 

 The value of r  is the size of the boxes of the time series reconstructed attractor 

covering in the lag space, and ( )C r  is the correlation integral: 

 

 
( (

1
( )

( 1) ( 1) 1
( )

1 1,

( 1) ) ( 1) 1)
C r

N m N m
r x xi j

i j i j

N m N m

 

 






    
   

  

    
  (10) 

Here, N  corresponds to the number of samples in the EEG time series 

}{ , [1,..., ]X x t Nt  , and  is the Heaviside step function. In fact, for 

carrying out such calculations, various algorithms can be used, for example, the 

Grassberger-Procaccia algorithm [14]. The quantity m  is the embedding 

dimension of a time series in the lag space. The delay time   determines the lag 

value.  

 

 

4 Chaotic artificial neural networks  
 

The model of the chaotic neuron and the chaotic neural network (CNN) was first 

proposed in 1990 by Crook and Scheper [15]. The essence of the chaotic neuron 

is in a special choice of its activation function. Such neurons can be added to the 

neural network along with other neurons, which may have other activation 

functions. Neurons of different types can be placed on different layers of the 

neural network. 

In the simplest case, as an activation function f  of a chaotic neuron, a chaotic 

logistic map can be used:  

 ( ) ( ) (1 ), 4y n f u ru u rn n n       (11) 

Here, ( )y n  denotes the output of the neuron, and un  is the internal state of the 

neuron, which is calculated as follows:  

  
1

m n n
u w xn j j

j
 


 

Here, 
n

w j  are the weights of the neuron, 
n

x j  is the input signal of the neuron, n  

is the number of the training example, and m  is the number of inputs for the 

neuron. For such an activation function (11), the output of the chaotic neuron 

must be limited to a certain interval, namely the interval 0,1  (Fig. 2). 
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Fig. 2. Schematic representation of a chaotic neuron 

 

Another fairly simple and effective option for choosing the activation function is 

a chaotic decimal mapping: 

( ) ( ) 10( [ ])y n f u u un n n    (12) 

Here the function x  denotes the integer part of x . 

Based on what has been said above, a number of assumptions can be made 

about how to use CNN for the generation of an artificial EEG. The main method 

for generating a model EEG signal is an iterated forecast one step ahead. This 

means that at least one of the components of the network input vector 

corresponds to the output value obtained in the previous step in time: 

 

( ) ( 1)x t y ti    (13) 

Here, ( 1)y t   is the output of CNN, and ( )x ti  are the inputs of the neural 

network with the iterated forecast one step in time t .  

The approach in which many steps in time the output of the CNN is fed to the 

input can be called an iterated model, since the input can be given both an 

output value and an error calculated at the output. It is understood that the 

iterative mode of network operation will be used after the neural network 

training stage. A neural network trained to predict an EEG signal for one step 

forward can use its own calculation data to further predict the signal by one 

more step in time forward. When this procedure is repeated many times the 

network starts to generate a time series that does not depend directly on the 

source data, but depends on what the network has learned. It should be noted 

that the iterative mode is not identical with the recurrence of the neural network 

and can be carried out regardless of the presence or absence of recurrence in the 

network architecture. 

 

5 Calculations and results 
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All the calculations were made in the MatLab package. For convenience and 

standardization of all time series of EEG, they were normalized to the interval 

 0,1  by the formula:  

 

   
min( )

ˆ
max( ) min( )

x x
x

x x





   (14) 

 

It is important to note that all major operations are performed on time series of 

1000 samples, including network training, generation of artificial EEG and 

calculation of all used measures. This avoids a number of impediments that 

could impair the quality of the calculations. On the other hand, these are long 

enough time series to stably calculate all the measures. To simulate the EEG 

signal, a database was used with a set of EEG recordings, available for free use 

and described in Hoffmann at al.[16]. These records were provided in a pre-

processed form and suitable for use in the MatLab package. The sampling 

frequency of each EEG record was chosen to be 128 Hz. 

The next step was to choose the network training algorithm. For this study, the 

Bayes regularization of the error back propagation method was chosen, which 

minimizes the combination of quadratic errors. This regularization is based on 

the widely known Levenberg-Marquardt algorithm, but in some cases the 

chosen method exceeds Levenberg-Marquardt algorithm and gives a smaller 

errors (Payal at al.[17]). 

 

 5.1 Modeling parameters 
 

The lag vectors composed on the basis of the EEG signal were chosen as CNN 

inputs. Namely, if }{ , [1,..., ]X x t Nt   is the EEG time series, then the lag 

vector is calculated as follows:  

 ( ) ( , , , ..., )2 ( 1)
m

L t x x x xt t t t m           (15) 

Here t  it is fixed in accordance with the selected time series sample,   

determines the lag value, and the embedding dimension m  corresponds to the 

lag vector dimension, that is, the number of lag vector ( )
m

L t  components. 

Thus, m  determines the number of CNN inputs. These two quantities   and m  

must first be determined by calculating them from the original EEG time series. 

The procedure for calculating   and m  is well known and therefore is not 

described here.  

 

 5.2 Results of modeling 

 

To standardize CNN in this series of computational experiments, a multilayer 

perceptron with a different number of layers was used. But in each layer the 

number of neurons was fixed and equal to 10. In this case, logistic and decimal 
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mapping can be used as an activation function in different layers, either 

individually or simultaneously in one neural network. In addition, as a 

"standard" nonchaotic activation function, a sigmoid activation function was 

chosen for some neurons. This activation function takes values on the interval 

 0,1  and is defined by the formula: 

  
1

( ) .
1

S x x
e

 


     (16) 

The desired dynamics of the artificial EEG was observed in the case of very 

good network training. The maximum achieved value of the dtermination 

coefficient 
2

0.995R   can be considered sufficiently large to compare time 

series in 1000 samples. However, the comparison of the network response with 

the training signal is not of great importance, since the goal was to obtain time 

series of the artificial EEG when the network is operated independently in the 

iterative mode. 

The most successful was a neural network with three layers and ten neurons in 

each layer. In this case, the first two layers as an activation function contain a 

decimal mapping, and the last layer contains a sigmoid activation function. As a 

result of computer experiments, it turned out that the number of input neurons 

needed to be reduced to two and use a lag equal to one. The visualization in 

MatLab of the used neural network is shown in Fig. 3, where F  denotes a 

chaotic activation function. 

 

 
Fig. 3. Visualization of the network structure. In the third hidden layer the 

sigmoid activation function is selected, in the output layer the activation 

function is linear 

 

To obtain the final results, three copies of such a network were created, working 

independently of each other. Below these chaotic neural networks are 

designated as CNN1, CNN2, CNN3. The results of the analysis of the time 

series generated by these neural networks are presented in Table 1 below. The 

symbol "EEG" in this table means a fragment of the real EEG, through which 

the neural networks were trained. For all three neural networks the parameters 

5m   and 22  were used. The results of comparison of quantitative 
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measures for one of the real EEG and three artificial EEG are presented in Table 

1. 

 

Sym 

bol 
Measures EEG CNN1 CNN2 CNN3 

HM Hjorth Mobility 0.06 0.06 0.05 0.06 

HC Hjorth complexity 0.94 0.81 0.95 0.84 

IE Information entropy 295.32 307.71 315.04 301.62 

AE Approximate entropy 0.39 0.41 0.39 0.46 

AC 
Algorithmic 

complexity 
0.65 0.76 0.75 0,76 

LLE 
Largest  

Lyapunov exponent 
0.59 0.27 0.20 0.61 

H Hurst exponent 0.67 0.51 0.51 0.57 

CD 
Correlation 

dimension 
3.15 3.03 3.22 3.03 

Table 1. Comparison of EEG modeling results 

 

It can be seen that practically all the parameters of the simulated EEG series are 

very close to those of the original EEG signal. The difference in the results of 

three chaotic neural networks can be due to the different statistical quality of 

their learning. The internal variability of the real EEG can level the 

computational difference in quantitative indicators. 

 

Conclusions 

 

In this study, by means of theoretical and in computational experiments it was 

found that it is possible to build a model based on CNN, which would reflect 

some of the basic quantitative characteristics of the natural EEG signal. There 

are many options for constructing a model, but they are all built on the principle 

of an iterated forecast. To identify the most promising models, quantitative 

experiments are needed. In these experiments, the similarity of the model EEG 

signal to the natural one should be evaluated using a specially selected set of 

indicators. 

The relevance of the development of the generator of artificial EEG is that 

different models and algorithms for EEG analysis can be checked on simulated 

time series (for example, classifiers). Classifiers can then be applied to natural 

EEG signals. The chaotic neural network can be reconfigured and trained on 

different EEG time series to obtain the desired result. Thus, the use of CNN 

makes it possible to simulate EEG of any type. 
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Abstract. We deal with the calculation of price sensitivities for stochastic volatility
models. We consider general forms for the dynamics of the underlying asset price and
its volatility. We make use of Malliavin calculus to compute the price sensitivities.
Obtained results are applied to several recent stochastic volatility models as well as
existing ones that are commonly used by practitioners. Each price sensitivity is a
source of financial risk. The suggested formulas are expected to improve on hedging
of the underlying risk.
Keywords: Asset Pricing, Malliavin Calculus, Price sensitivity, Stochastic volatility,
Risk management, European options.

1 introduction

Mathematical tools are increasingly utilized by investors and financial insti-
tutions in order to neutralize or reduce the underlying financial risk. Among
others, price sensitivities are commonly used in markets for financial deriva-
tives in order to hedge against risk. This is indeed an active field of research.
Recently, several papers have dealt with this important issue. It is shown in
the literature that the valuation of financial derivatives is more accurate if the
underlying data generating process is characterized by a stochastic volatility
process. The existing literature suggests using a stochastic process for the
volatility in order to determine the price of financial derivatives. The aim of
this paper is to deal with the derivation of the price sensitivities. We derive
price sensitivities for a general stochastic volatility model by making use of the
Malliavin calculus. It should be mentioned that each financial trading posi-
tion that is based on financial instruments has five price sensitivities, which
are known as the Greeks in the financial literature. The precise calculation
of these price sensitivities is of paramount importance for the immunization
of potential financial risk of a financial trading position or a portfolio. The
first price sensitivity is known as Delta, which is equal to the change of the
trading position with respect to the price of the underlying asset under the
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ceteris paribus condition. The second price sensitivity is called Gamma, which
is representing the change of the Delta for a portfolio of options with respect
to the price of the underlying asset. The third source of risk in this situation
is known as Vega and it embodies the change of the trading position with re-
gard to a marginal change in the volatility of the original asset. The fourth
price sensitivity is called Theta, which captures the change of the value of the
underlying portfolio with respect to the time factor. The last price sensitivity
is commonly known as Rho in the literature and it is capturing the sensitiv-
ity of the trading position with respect to the risk free rate (i.e. the interest
rate). Each of these Greek measures represent a source of risk for the portfo-
lio and traders must calculate the pertinent Greeks for their portfolio at the
end of every trading day so as to take required action if the internal risk is
higher than the pre-determined levels by the underlying financial institution.
The Malliaivn calculus is especially useful in this case because the price of the
financial derivatives is regarded as a stochastic process that is in closed form.
Consequently, dealing with the price sensitivities via this method is an appro-
priate approach. Through the Malliavin calculus we are able to transform the
differentiation into integration and thus provide an unbiased measure of each
price sensitivity. Many of the existing contributions to the price sensitivities
are based on the finite difference approach, which can indeed be considered an
biased methodology. Conversely, the Malliavin method is unbiased and it can
also be less time-consuming in terms of convergence. The idea to make use
of the Malliavin calculus for computing price sensitivities originates from [8].
This first application was within the context of a market that is characterized
by information generated by the Brownian motion. Their method relies on the
Malliavin derivative on the Wiener space, which contains two parts. The first
part is the application of the chain rule and the second part is utilizing the fact
that the derivative has an adjoint (Skorohod integral) which can be described
by the Ito integral for adapted processes. Lately, this approach has been uti-
lized by [5] for markets under stress or experiencing a financial crisis. There
are also several other papers that use the Malliavin calculus for markets with
jumps. For example, [7] uses the Poisson noise via the jump times. [1] takes
into account both the jump timing as well as the amplitude of the underlying
jumps. [3] deals with jump-diffusion models via the Malliavin calculus with
regard to the Brownian motion conditional on the Poisson component. In ad-
dition, [2] permits the Poisson noise to take into account the amplitude of the
jumps. However, the timing of the jumps is not taken into account. Conversely,
[6] provide the price sensitivities by utilizing the Malliavin derivative on the
Wiener space and the Poisson noise when the timing of the jumps is taken
into account. This paper provides price sensitivities for a general stochastic
volatility model that encompasses a number of well-known existing models as
well as several new ones.

After this introduction the remaining part of the paper is organized as follows:
Section two presents the model and an introduction to Malliavin calculus. Sec-
tion three deals with deriving the price sensitivities via the Malliavin approach.
A general formula is provided that encompasses different stochastic volatility
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models. The formula is applied to find the price sensitivities for several new
stochastic volatility models as well as for other specific stochastic volatility
models that are well-known in the literature. In the last Section concluding
remarks are provided.

2 Preliminaries

In this section, we describe the general stochastic volatility model and we
present some tools from Malliaivin calculus needed to our study.
We consider two independent Brownian motion (Bt)t∈[0,T ] and (B

′

t)t∈[0,T ] and
a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ), where (Ft)t∈[0,T ] is the natu-

ral filtration generated by B and B
′
. Next we introduce a general framework

for the stochastic volatility model.

2.1 The stochastic volatility model

We assume that the marketplace contains only two assets. The first asset is a
risk free asset given by (At := e

∫ t
0
rsds)t∈[0,T ] where r is the interest rate. The

second asset is the underlying risky asset on which a European call option is
built. It is assumed to have a stochastic volatility i.e the volatility is driven by
a stochastic volatility model. The price of the underlying asset (Xt)t∈[0,T ] and
the volatility process are stochastic processes driven by the following stochastic
differential equations

dXt = µtXtdt+ σ(Yt)XtdBt, (1)

dYt = g(Yt)dt+ β[ρdBt +
√

1− ρ2dB
′

t], t ∈ [0, T ], (2)

with X0 = x > 0 and Y0 = y ∈ R. µ is a deterministic function, β ∈ R,
ρ ∈ [−1, 1] and σ ∈ C2([0, T ] × R) such that for any t ∈ [0, T ], σ(.) 6= 0. σ is
the volatility of the underlying asset, β measures the volatility of the volatility
and ρ represents a measure of dependency between the price of the underlying
asset and its volatility. The market considered here is incomplete. There is an
infinity of E.M.M -Equivalent Martingale Measure- (i.e a probability equivalent
to P under which the actualized price (Xte

−rt)t∈[0,T ] is a martingale). Let Q
be a fixed P -E.M.M. Q is identified by its Radon-Nikodym density w.r.t P ,
denoted ζT and given by

ζT = exp

(∫ T

0

asdBs + bsdB
′

s −
1

2

∫ T

0

(a2s + b2s)ds

)
,

where (at)t∈[0,T ] and (bt)t∈[0,T ] are two predictable processes s.t.

at = −µt − rt
σ(Yt)

, (3)

and b is arbitrary. Now let, for any t ∈ [0, T ], Wt = Bt −
∫ t
0
asds and W

′

t =

B
′

t −
∫ t
0
bsds then by the Girsanov theorem W and W

′
are two Q-Brownian
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motions. In the following we work with a fixed P -E.M.M. Q and we will use
E[.] (instead of EQ[.]) as the expectation under the probability Q. We have,
under Q, for any t ∈ [0, T ]

dXt = rtXtdt+ σ(Yt)XtdWt, (4)

dYt = h(Yt, Xt)dt+ β[ρdWt +
√

1− ρ2dW
′

t ], (5)

where

h(Yt, Xt) := g(Yt) + βρat + β
√

1− ρ2bt, (6)

at is given by (3) and bt is a predictable process, assumed depending on Yt and
Xt i.e. bt = bt(Yt, Xt).

2.2 Malliavin derivative

We give an introduction to Malliavin derivative in Wiener space and we list
some important results . We denote by (Dt)t∈[0,T ] the Malliavin derivative on
the direction of W . We denote by P the set of random variables F : Ω → R,
such that F has the representation

F (ω) = f

(∫ T

0

f1(t)dWt, . . . ,

∫ T

0

fn(t)dWt

)
,

where f(x1, . . . , xn) =
∑
α aαx

α is a polynomial in n variables x1, . . . , xn and
deterministic functions fi ∈ L2([0, T ]) . Let ‖.‖1,2 be the norm

‖F‖1,2 := ‖F‖L2(Ω) + ‖D·F‖L2([0,T ]×Ω), F ∈ L2(Ω).

Then Dom (D), the domain of D, is equal to P w.r.t the norm ‖.‖1,2. The next
propositions are very useful when using the Malliavin derivative.

Proposition 1 Given F = f
(∫ T

0
f1(t)dWt, . . . ,

∫ T
0
fn(t)dWt

)
∈ P. We have

DW
t F =

k=n∑
k=0

∂f

∂xk

(∫ T

0

f1(t)dWt, . . . ,

∫ T

0

fn(t)dWt

)
fk(t).

To calculate the Mallaivin derivative for Itô integral, we will use the following
Proposition.

Proposition 2 Let (ut)t∈[0,T ] be a Ft−adapted process, such that ut ∈ Dom (D),
we have

Dt

∫ T

0

usdWs =

∫ T

t

(Dtus)dWs + ut.

The reader can refer to [9] for more detailed description on Malliaivin calculus.
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From now on, for any stochastic process u and for F ∈ Dom (D) such that
u.D.F ∈ L2([0, T ]) we let

DuF := 〈DF, u〉L2([0,T ]) :=

∫ T

0

utDtFdt. (7)

The next proposition presents some important results that link D and its ad-
joint δ, known as the Skorohod integral.

Proposition 3 a) Let u ∈ Dom (δ) and F ∈ Dom (D), we have E[DuF ] ≤
C(u)‖F‖1,2, and E[Fδ(u)] = E[DuF ].
b) Consider a L2(Ω × [0, T ])-adapted stochastic process u = (ut)t∈[0,T ]. We

have δ(u) =
∫ T
0
utdWt.

c) Let F ∈ Dom (D) and u ∈ Dom (δ) such that uF ∈ Dom (δ) thus δ(uF ) =
Fδ(u)−DuF.

3 Price sensitivities

We consider a European option with payoff f(XT ), where (Xt)t∈[0,T ] denotes
the underlying asset price given by the general stochastic volatility model (4-
5). We denote by C the value of the European option. We will compute the
following price sensitivities:

Delta =
∂C

∂x
, Gamma =

∂2C

∂x2
, Rho =

∂C

∂r
, Vega =

∂C

∂σ
,

The last price sensitivities Theta = ∂V
∂t can be obtained using the partial

differential equation satisfied by C, the price of the option. In the following
proposition we find the Malliaivn derivatives of XT and Yt w.r.t D.

Proposition 4 For 0 ≤ t ≤ T , We have

DtXT = XT

(
σ(Yt)−

∫ T

t

σ
′
(Ys)σ(Ys)DtYsds+

∫ T

t

σ
′
(Ys)DtYsdWs

)
(8)

and

DtYs = βρ+

∫ s

t

Dth(Yν , Xν)dν, (9)

where

Dth(Yν , Xν) = g
′
(Yν)DtYν + βρ(µν − rν)

σ
′
(Yν)

σ2(Yν)
DtYν + β

√
1− ρ2Dtbν , (10)

with 0 ≤ t ≤ ν ≤ s ≤ T .

Proof. The equality (8) can be obtained by applying the Malliavin derivative
to (4). Then we use the chain rule, proposition 2, and

Dt

∫ T

0

usds =

∫ T

t

(Dtus)ds, (11)
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when (us)s∈[0,T ] is an adapted process.
To find DtYv, we have from (5), for 0 ≤ t ≤ v ≤ T ,

DtYv = Dt

(
Y0 +

∫ v

0

h(Ys, Xs)ds+ βρWv + β
√

1− ρ2W
′

v

)
= βρ+

∫ v

t

Dth(Ys, Xs)ds,

where

Dth(Ys, Xs) = Dt(g(Ys) + βρas + β
√

1− ρ2bs)

= g
′
(Ys)DtYs + βρDt

rs − µs
σ(Ys)

+ β
√

1− ρ2Dtbs

= g
′
(Ys)DtYs + βρ(µs − rs)

σ
′
(Ys)

σ2(Ys)
DtYs + β

√
1− ρ2Dtbs.

�

The second and the third order derivatives of XT w.r.t D, essential for com-
puting the different price sensitivities are given in the following proposition.

Proposition 5 For 0 ≤ t ≤ T , we let LTt := σ(Yt)−
∫ T
t
σ

′
(Yν)σ(Yν)DtYνdν+∫ T

t
σ

′
(Yν)DtY νdWν , then we have DtXT = XTL

T
t and

DuXT = XT

∫ T

0

utL
T
t dt (12)

DuDuXT = XT

(∫ T

0

utL
T
t dt

)2

+

∫ T

0

∫ T

s

usutDsL
T
t dtds

 (13)

DuDuDuXT = XT

(∫ T

0

utL
T
t dt

)3

+ 3

∫ T

0

utL
T
t dt

∫ T

0

∫ T

s

usutDsL
T
t dtds

+

∫ T

0

∫ T

r

∫ T

s

urusutDrDsL
T
t dtdsdr

)
(14)

Proof. The equalities (12-14) are obtained using (7) and the chain rule of the
Malliavin derivative. �

The derivatives DsL
T
t , DrDsL

T
t , DsDtYv and DrDsDtYv can be found using

the chain rules of the Mallaivin derivative. Similar calculations can be found
in [4].

3.1 First order price sensitivities: Delta, Rho, Vega

Let C = E[f(Xζ
T )] be the price of the option, ζ can take values: the asset price

x to obtain Delta, the interest rate r for Rho, and σ for Vega. We have

∂

∂ζ
E
[
f(Xζ

T )
]

= E

[
f(Xζ

T )

(
∂ζX

ζ
T

DuX
ζ
T

δ(u)−Du

(
Xζ
T∂ζX

ζ
T

DuX
ζ
T

))]
.
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Next we compute the Delta, the Rho and Vega can be computed by the same
way. The Delta corresponds to ζ = x, so ∂ζST = ∂xST = 1

xST and we have

Delta = E

[
f(XT )

(
∂xXT

DuXT
δ(u)−Du

(
XT∂xXT

DuXT

))]
= E

[
f(XT )

(
XT

xDuXT
δ(u)−Du

(
X2
T

xDuXT

))]
=

1

x
E

[
f(XT )

(
1∫ T

0
utLTt dt

δ(u)− 2XT +
X2
TDuDuXT

(DuXT )2

)]

=
1

x
E

[
f(XT )

(
1∫ T

0
utLTt dt

δ(u)− 2XT

+
XT (

∫ T
0
utL

T
t dt)

2 +XT

∫ T
0
usDs(

∫ T
0
utL

T
t dt)ds

(
∫ T
0
utLTt dt)

2

)]

=
1

x
E

[
f(XT )

(
1∫ T

0
utLTt dt

δ(u)−XT

(
1−

∫ T
0
us(
∫ T
s
utDsL

T
t dt)ds

(
∫ T
0
utLTt dt)

2

))]
.

The previous calculations can be applied to the α-hypergeometric model of [16]
and most of the stochastic volatility models existing in the literature.

3.2 Gamma

The Gamma is computed using the second order derivative of C = E[f(ST )]
w.r.t x given by

∂2

∂x2
E [f(XT )] =

∂

∂x
Delta =

1

x

∂

∂x
E [f(XT )H]

=
1

x
E

[
f(XT )

(
H∂xXT

DuXT
δ(u)−Du

(
H∂xXT

DuXT

)
+ ∂xH

)]
=

1

x
E

[
f(XT )

(
HXT

xDuXT
δ(u)−

(
H(DuXT )2 +XTDuXTDuH +HXTDuDuXT

x(DuXT )2

)
+∂xH)] ,
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where

H =
1∫ T

0
utLTt dt

δW (u)−XT

(
1−

∫ T
0
us(
∫ T
s
utDsL

T
t dt)ds

(
∫ T
0
utLTt dt)

2

)

DuH = −
∫ T
0
us(
∫ T
s
utDsL

T
t dt)ds

(
∫ T
0
utLTt dt)

2
δ(u)

−XT

(∫ T
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(
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3


∂xH = − 1

x
XT

(
1−

∫ T
0
us(
∫ T
s
utDsL

T
t dt)ds

(
∫ T
0
utLTt L

T
t dt)

2

)
.

The above formula for Gamma is valid for most of the recent and well-know
stochastic volatility models existing in the literature such as the Heston or the
α−hypergeometric volatility models.

4 Conclusions

This paper provides price sensitivities for a general stochastic volatility model
that encompasses a number of recent models as well as well-known existing
ones. For instance, we find the price sensitivities for recent stochastic volatility
models such as the α-hypergeometric model of [16] and the linear model of
[14]. In addition, we give the price sensitivities for existing models that are used
regularly by practitioners such as: Hull-White [87], Stein-Stein [91] and Heston
model [93]. The Malliavin calculus is used for this purpose. The advantage
of this method is that it is unbiased and it requires less computational time
compare to the finite difference method which is commonly used in this context.

The suggested formulas are expressed as propositions combined with pertinent
proofs. Each price sensitivity is a source of financial risk that investors need to
tackle. Thus suggesting alternative measures of price sensitivities is expected
to improve on the management of the underlying financial risk.
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Abstract. Electricity is important for any nation. It influences not only the economy, but 

also the political and social aspects of a nation. Forecasting electricity demand is vital for 

future technical improvements. Short-term electricity demand forecasts are important for 
controlling of the electric power system. Recently, electricity demand series has found to 

contain more than one seasonal pattern. Intraday and intraweek seasonal patterns are 

appeared in the Egyptian electricity demand time series. This study investigates using 

Artificial Neural Networks in accommodating these seasonality patterns for forecasting 
hourly electricity demand in Egypt by using seasonal lags as inputs. Different artificial 

neural networks with different seasonal daily and weekly lags are used. The mean 

absolute percentage error is used to compare forecasting power of different artificial 

neural networks. Results indicate the accuracy of forecasts produced by the different 
artificial neural networks for different time horizons. 

 

Keywords: Electricity demand forecasting, Mean Absolute Percentage Error, Artificial 

Neural Networks, Double Seasonality 
 

 

1  Introduction 
 

Electricity is one of the necessities in the ordinary life, and a major driving force 

for economic growth and development. The unstorable nature of electricity 

means that the supply of electricity must be always available to satisfy the 

growing demand.  

 

In the early 2000s, Egypt has faced a major problem in its electric power sector. 

Egypt is in a great need of an ambitious reform program in its electric power 
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system in order to avoid what is called "Electricity Crisis". The reason behind 

this problem is the rapid electricity demand growth without preplanned 

strategies to fulfill these needs. 

Therefore, electricity utilities throughout the world have given a remarkable 

interest for forecasting electricity demand. Decision makers around the world 

widely use energy demand forecasting as one of the most important policy tools. 

One hour ahead forecast helps electric power utilities make correct scheduling 

decisions, minimize costs, maintain the balance between electricity supply and 

demand, and increase the reliability of electric power system (Bunn [1], Garcia 

and Kirschen [2]). 

 

Artificial Neural Networks (ANNs) have been used for electricity demand 

forecasting. Regression approaches have criticized in that they use linear 

functions to forecast the load demand. However, ANN is able to perform 

nonlinear modeling. It does not assume any functional relationship to forecast 

electricity demand. In addition, the forecasts produced by ANNs are efficient 

and accurate (Park et al. [3]). 

  

In 1996, ANNs was adopted to forecast electricity load for Greek Public Power 

Corporation (Bakirtzis et al. [4]). In (Liu et al. [5]), three short-term forecasting 

methods included an ANN, an autoregressive (AR) model, and fuzzy logic 

method were compared. They concluded that ANN and fuzzy logic 

outperformed AR model. In a recent study (Darbellay and Slama [6]), forecasts 

of short-term Czech electricity demand were obtained using ANN and 

autoregressive integrated moving average (ARIMA) models. The results showed 

the superiority of ANN.  

 

In 2001, ANN was used to forecast electricity demand for the Republic of 

Ireland, while in 2009 it was used to forecast electricity load for California. 

ANN performed well and accurate forecasts were obtained (Ringwood et al. [7], 

Pindoriya et al. [8]).  

 

Double seasonal pattern is shown in electricity demand series of many 

countries. A daily seasonal cycle is noticeable from the similarity of the hourly 

demand from one day to the other. Moreover, a weekly seasonal cycle is also 

found. The electricity demand of a certain day is same in different weeks. 

Therefore, using a forecasting method that takes into account these both 

seasonal patterns (daily and weekly) is vital. Double seasonal autoregressive 

integrated moving average (DSARIMA) model, a double seasonal Holt-Winters 

method and Artificial Neural Networks (ANNs) are proposed to capture the 

double seasonal pattern of the electricity demand series. In this paper, ANNs 

with different seasonal lags is investigated in accommodating these seasonal 

patterns and forecasting the Egyptian electricity demand series. The rest of this 

paper is organized as follows. Section II describes the Egyptian electricity 

demand series. Section III explains Artificial Neural Network (ANN). Section 

IV discusses the results. The conclusion closes the article. 
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2  Electricity demand in Egypt 
 

A hourly data set of one year beginning from Saturday 7 January 2012 till 

Friday 28 December 2012 represents the Egyptian electricity demand series 

measured in megawatt (MW). Figure 1 shows a part of the Egyptian electricity 

demand series. Hour 1 till hour 24 represent the first day in this sub series that is 

Friday 1 June, and from hour 24 till hour 48 represents the second day and so 

on. 

 

Figure 1 confirms the presence of both seasonal patterns (daily and weekly 

seasonal patterns). A daily seasonal cycle is apparent in this sub set. Electricity 

demand is similar for different days. A weekly seasonal cycle is also noticeable 

by comparing the electricity demand of a day in different weeks. It is observable 

that the weekdays have similar patterns of demand, while the weekend days that 

have a lower peak of demand have a different electricity demand. 
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Fig. 1. Electricity demand in Egypt during the period  

from Friday 1 June to Thursday 28 June  

 

3  Feed Forward Neural Network 
 

ANNs have been developed as a mathematical model of human cognition or 

neural biological. ANN is based on the following assumptions:  

i. Information processing occurs at elements (called neurons).  

ii. Signals are passed between neurons over connection links.  

iii. Each connection link has an accompanied weight.  

iv. Each neuron applies an activation function to its input to determine its 

output signals. 

Therefore, ANNs are characterized by the following components:  
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i. The interconnection pattern between the different layers of neurons 

(called its architecture)  

ii. The process for setting and updating the weights of the 

interconnections (called its training or learning algorithm)  

iii. The activation function that converts a neuron's weighted input to its 

output activation.  

 

The connection patterns within and between layers is called the network 

architecture. An ANN has an input layer in which the activation of each neuron 

sends an external input signal; and an output layer that does not send an external 

input signals but from which the response of the net is produced. Neural 

networks are classified according to the number of layers into single layer 

networks or multilayer networks.  

 

A single layer net has an input layer and an output layer. It has only one 

connection of weights. The input neurons are connected to output neurons but 

are not connected to other input neurons. A multilayer net contains one or more 

hidden layers which exist between the input layer and the output layer. 

Typically, there are more than one connection of weights. Multilayer nets can 

solve more complex problems than the single layer nets, but training algorithm 

may be more difficult. 

 

 A feedforward network refers to the direction of signals flow from the input 

units to the output units (see Figure 2). Input signals are passed through the 

neural network once to the output neurons.  Feedforward networks with single 

hidden layer are the most widely used for forecasting financial and economic 

time series data (Kaastra and Boyd [9], Zhang et al. [10]).  

 

Neural network behavior changes in order to adapt to the new environment. 

Such changes are due to changes in the weights in the network. A training 

algorithm is intended to model changes in the efficiency with which neurons 

pass information. The backpropagation algorithm is used in feedforward ANNs. 

The backpropagation algorithm uses supervised training, which means that we 

provide the algorithm with the actual values and calculate the error (difference 

between actual values and the forecasted values obtained by ANNs). 

Backpropagation algorithm aims to reduce this error, until the ANN fits the data 

well. 

  

Training a feedforward network by backpropagation contains three steps: (1) the 

feedforward of the input training pattern, (2) the backpropagation of an error, 

and (3) the modification of the weigths. 

 

The artificial neurons are arranged in layers and send their signals “forward”. 

The errors are calculated and then propagated backwards. The network receives 

inputs by neurons in the input layer, and the output of the network is given by 

the neurons on an output layer. The main purpose of the backpropagation 
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algorithm is to minimize the error. The training begins with random weights, 

and then modifies these weights until the error will be reduced. 

 
 

Fig. 2. Diagram of single hidden layer feed forward neural network 

 

 

 

4  Empirical Results 
 

In this section, we investigate the performance of ANN in forecasting the 

Egyptian electricity demand series taking into account different daily and 

weekly seasonal lags in order to accommodate the both seasonal patterns. 

Different number of single hidden layer feedforward ANNs were obtained using 

using R package version 3.1.0. Different electricity demand lagged values were 

used as input variables. Daily seasonal lags that are 24, 48, and 72 and weekly 

seasonal lags that are 168, 336, and 504 were considered. The complete 

Egyptian electricity demand series is used to get the ANNs except for the last 4 

weeks of the series that are put aside to evaluate accuracy of post-sample 

forecasts.  

 

For evaluating the forecasting accuracy of these ANNs, the mean absolute 

percentage error (MAPE) is calculated. The MAPE is the average of the 

absolute percentage prediction error (Taylor et al. [11]). Low values of this 

statistic are desirable. Table 1 shows different ANNs with different lags. The 

MAPE of the forecasts produced by these ANNs up to one week horizon, two 

weeks horizon, three weeks horizon and a month horizon were calculated as 

follows: 
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Table 1. The MAPE of out-sample forecasts of different ANNs 

 

Different 

ANNs 

MAPE (%) of the forecasts up to 

different time ahead 

One 

week 

Two  

weeks 

Three 

weeks 

One 

month 

1 to 72, 168, 

336, 504 

3.96 3.83 3.69 4.29 

1 to 72, 168, 

336 

3.26 3.41 4.14 4.61 

1 to 72, 168 3.43 4.76 5.93 7.13 

1 to 48, 168, 

336, 504 

3.55 3.44 3.28 3.79 

1 to 48, 168, 

336 

3.08 3.20 3.87 4.28 

1 to 48, 168 3.20 4.42 5.52 6.65 

1 to 24, 168, 

336, 504 

2.33 2.23 2.25 2.70 

1 to 24, 168, 

336 

2.21 2.30 2.59 2.90 

1 to 24, 168 2.39 3.09 3.77 4.60 

 

 

Based on the pervious results, ANNs with seasonal lags (1 to 24, 168,336, 504) 

and (1 to 24, 168, 336) that have the lowest MAPE for different time horizons 

are preferred. Figure 3 represents the forecasts produced by these two ANNs 

and the actual values of the Egyptian electricity demand series up to a week 

ahead. It is observable that the forecasts are close to the actual values. The two 

ANN are competitive to each other and could be considered as a good 

forecasting tool for the Egyptian electricity demand series. 
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Fig. 3. Time plot of the actual values versus the forecasts produced by the 

selected ANN 
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Conclusions 
 

Forecasting is a critical problem. The improvement of the forecasting accuracy 

comes from a good method that provides accurate forecasts. An observable 

feature of the electricity demand time series is the presence of both daily and 

weekly seasonal patterns. It is found that the daily electricity demand has the 

same pattern every day. In addition, the weekly electricity demand is not 

different through different weeks. Electricity demand on weekend days is 

observed to be similar on different weeks but different from the other days. 

Taking this feature into account during forecasting improves our forecasting 

accuracy. That is in turn will help in control and scheduling of electric sector.  

In this paper, Artificial Neural Network was investigated for forecasting hourly 

electricity demand in Egypt taking into account different seasonal lags as inputs. 

Results showed that the forecasts produced by these networks were accurate for 

different time horizons and could be used as a recommended forecasting tool by 

the Egyptian electric power authority to obtain accurate forecasts for 

development. For future work, different other forecasting methods such as 

Bayesian forecasting methods could be used to analyze the Egyptian electricity 

demand series. In addition, controlling external effects plays an important role 

to improve forecasting accuracy. 
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The score correlation coefficient
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vodárenskou věž́ı 2 Prague 18200 Czech Republic
(E-mail: zdenek@cs.cas.cz)

Abstract. The t-score is a real-valued score function with a sense of likelihood
score for central point of the distribution. This concept is used for definition of
a distribution-dependent score correlation coefficient. Its performance is compared
with some currently used correlation coefficients by means of Monte Carlo experi-
ments.
Keywords: generalized likelihood score, t-score, heavy-tails.

1 Introduction

The usual measure of linear dependence of random variables X and Y with
finite expectations EX, EY and finite variance V arX = E(X−EX)2, V arY =
E(Y − EY )2 is their correlation coefficient

ρ(X,Y ) =
E(X − EX)(Y − EY )

[V arXV arY ]1/2
. (1)

Formula (1) can be naturally generalized for arbitrary random variables includ-
ing those with heavy-tailed distributions into

ρ(X,Y ) =
Eψ1(X̃)ψ2(Ỹ )

[Eψ2
1(X̃)Eψ2

2(Ỹ )]1/2
(2)

where ψ1, ψ2 are functions with finite first and second moments and X̃, Ỹ are
centered versions of X and Y , respectively.

Given the observed sample (x1, y1), ..., (xn, yn) of a bivariate random vari-
able (X,Y ), the finite version of (2) is

r(x, y) =

∑
ψ1(x̃i)ψ2(ỹi)

(
∑
ψ2
1(x̃i)

∑
ψ2
2(ỹi))

1/2
, (3)

where
∑

is either the usual sum
∑n
i=1, which is used in this paper, or its

trimmed analogue (Gnanadesikan and Kettenring, 1972).
By setting ψ1(z) = ψ2(z) = z, x̃i = xi − x̄, ỹi = yi − ȳ, (3) turns into the

Pearson sample correlation coefficient, rP , say. By setting ψ1(z) = ψ2(z) =
ψ(z) where ψ is a bounded function and x̃i = xi −med(x), ỹi = yi −med(y),
(3) turns into a robust correlation coefficient. As ψ is often taken the Huber
psi-function

ψ(z, k) = max[−k,min(z, k)], (4)
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with some chosen value k. An overview of other robust variants of (2) is
given i.e. by Shevlyakov and Smirnov (2011). The Spearman rank correlation
coefficients is the sample correlation coefficient between the observation ranks.

All these estimates are independent of distributions of X and Y . The ques-
tion is whether taking them into account could improve correlation estimates.

Example 1. Let us consider a heavy-tailed loglogistic distribution FL with
support (0,∞) and probability density

fL(x; t) =
1

t

1

(1 + x/t)2
. (5)

Note that even the mean of FL does not exist. The log-likelihood score for t is

SL(x; t) =
1

t

x/t− 1

x/t+ 1
. (6)

Clearly, ESL = 0 and ES2
L is finite. Given an observed sample (x1, ..., xn) from

FL, the maximum likelihood estimate t̂ of t is the solution to the equation

n∑
i=1

xi − t
xi + t

= 0. (7)

Since t can be considered in (5) as a ’central value’ of FL and the value SL(xi; t̂)
of the log-likelihood score actually expresses relative influence of xi with respect
to t̂, function (6) seems to be the proper function to be used in formula (3).

As a first test of this idea we generated independent random samples of X
and Z, both distributed according FL, with t = 1. By setting

Y = ρX +
√

1− ρ2Z (8)

we obtained samples (X,Y ) with theoretical correlation coefficient ρ. The
sample likelihood score correlation coefficient rL was obtained by taking in (3)
ψ1(x̃i) = SL(xi; t̂1), ψ2(ỹi) = SL(yi; t̂2), where t̂1 and t̂2 are the correspond-
ing solutions of (7). For each sample we computed also the Spearman rank
coefficient (rS) and the robust correlation coefficient with Huber psi-function
(4) and k = 1.75t̂j . For illustration purposes we computed also the sample
Pearson’s correlation coefficient (rP ), though its use in the case of distribution
(5) is not entitled.

Average values of these sample correlation coefficients after 20.000 repeated
experiments are shown on Fig. 1.

Besides the expected result that Pearson rP is of no use, we see that the
likelihood rL behaves by a similar way as Spearman and Huber estimates.
Moreover, and surprisingly for the author, all the usable estimates depend on
the value of ρ, overestimating it when the true correlation is low and underes-
timating it when the correlation is high.

Recently, Fabián (2001) introduced a scalar score function of continuous
distributions with arbitrary support, taken as a likelihood (Fisher) score with
respect to the ’center’ of F . It makes possible to study distribution-dependent
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Fig. 1. Dependence of average sample correlation coefficients and mean square errors
on theoretical ρ for loglogistic distribution.

score correlation coefficients (3), where psi-functions are scalar score functions
of distributions.

In the paper we shortly introduce the relevant scalar scores and present a
comparison of behavior of the score correlation coefficient with those mentioned
above on the base of Monte Carlo experiments.

2 t-score and score correlation coefficient

The transformation-based score or shortly t-score of a (non-transformed) dis-
tribution G with support the entire real line R and probability density g is the
usual score function TG(x) = −g′(y)/g(y). Let us state that its central point
y∗G is the mode, the solution of equation TG(y) = 0. A transformed distribution
F (x) = G(η(x) with open interval support X = ϕ−1(R), where ϕ : X → R is
a smooth strictly increasing function, has t-score

TF (x) = TG(ϕ(x)) (9)

and central point x∗F = ϕ−1(y∗G), the solution of equation TF (x) = 0.
Formula (9) can be rewritten (Fabián, 2001) into aform independent on G,

TF (x) = − 1

f(x)

d

dx

[
1

η′(x)
f(x)

]
. (10)

As the the support-dependent functions η(x) we define mappings suggested by
Johnson (1949),

η(x) =

 log(x− a) if X = (a,∞)

log
(x− a)
(b− x)

if X = (a, b).
(11)

The reasons for this choice and exceptions from this rule, not important for the
present study, are discussed in details by Fabián (2016).

The t-scores of heavy-tailed distributions are bounded. Score moments ETF
and ET 2

F of any distribution are finite, ETF = 0. Function

SF (x) = η′(x∗F )TF (x)
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equals for a particular class of distributions with ’central’ parameter, as in
Example 1, the likelihood score for this parameter. ES2

F is thus interpreted as
generalized Fisher information with respect to x∗F . The reciprocal value

ω2
F =

1

ES2
F

can be taken as a measure of variability of F (Fabián, 2007, 2016).
Since in (10) is differentiation with respect to the variable, all concepts

concern parametric distributions as well. A parameter θ = (θ1, ..., θm) of Fθ(x)
can be estimated by means of the score moment estimating equations

1

n

n∑
i=1

T kF (xi; θ) = ET kF (θ), k = 1, ...,m, (12)

Fabián and Stehĺık (2008), Fabián (2010, 2016).
Let now X,Y be random variables with (not necessarily identical) open

interval supports X and Y, respectively. Let FXY be the joint distribution and
TX , TY be t-scores of marginal distributions of X and Y . The finite version of
(2), the sample score correlation coefficient, is given by (Fabián, 2010)

rF =

∑n
i=1 TX(xi; θ̂X)TY (yi; θ̂Y )[∑n

i=1 T
2
X(xi; θ̂X)

∑n
i=1 T

2
Y (yi; θ̂Y )

]1/2 , (13)

where θ̂X and θ̂Y are estimates of corresponding vectors of parameters of
marginal distributions, respectively.

For distributions with linear t-score, that is for normal, gamma and beta
distributions, (13) is identical with the Pearson correlation coefficient. Prop-
erties of rF of distributions with non-linear t-scores were studied by means of
Monte Carlo experiments.

3 Results of simulation experiments

Couples (X,Y ) were constructed using independent random samples of X and
Z generated from one or two-parameter marginal distributions as in Example
1 with the use of (8), using routines from the MATLAB Statistics toolbox.

Rough estimates of parameters of marginal distributions were found by the
solution of the corresponding equations (12). The size of samples was n=75.
For n > 25 results practically did not depend on n.

The results are as follows.
The score correlation coefficient of distributions with support R and with

finite interval support exhibit neither dependence on the variability of distribu-
tions nor dependence on ρ. Even in the case of a non-symmetric heavy-tailed
extreme value distribution, Pearson’s rP is less biased than rF . We conclude
that for slightly skewed distributions correlation relations ’overcome’ properties
of distributions.
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Let us present results of simulation study of distributions with support X =
(0,∞) with various properties of right tais: Weibull with light tail, Pareto type
III (’shifted’ Pareto), which is the simplest model of a heavy-tailed distribution,
and Fréchet (inverse Weibull) with fat tail. The density, t-scores and score
variances of these distributions are given in Table 1, Pareto III is the beta-
prime distribution with p = 1.

F f(x) TF (x) x∗F ω2
F

Weibull c
x

(x
τ

)ce−( x
τ
)c c[(x

τ
)c − 1] τ τ2

c2

beta-prime 1
B(p,q)

xp−1

(x+1)p+q
qx−p
x+1

p
q

p(p+q+1)

q3

Fréchet c
x

(x
τ

)−ce−( x
τ
)−c c[1− (x

τ
)−c] τ τ2

c2

Table 1. Characteristics of some distributions with support (0,∞)

To avoid studying of very skewed distributions generating data both either
near zero or too large, we select parameters giving mild values of the score
coefficient of variation, which we define by

scv =
x∗F
ωF

.

It appeared that for a given scv results practically do not depend on x∗F .
According to Table 1, the score coefficient of variation of Weibull and

Fréchet distributions is scv = c and of Pareto III is scv =
√
q/q + 2. A

decrease values of scv means increase of variability, generating large outliers,
which are, however, in accordance with the distribution.

To estimate correlation coefficient of skewed distributions with light tail
having TF (x) ∼ xc with approximately c > 0.75, the most suitable is the
Pearson’s rP . For c < 0.75, the most suitable estimates affords the score
correlation coefficient rF . These results are illustrated by Fig. 2.

Fig. 3 shows the dependence of estimates of the correlation coefficient in
case of the Pareto distribution. As in Example 1, the unfavorable tendency
of estimates with decreasing score coefficient of variation is clearly apparent:
low ρs are overestimated and high ρs are underestimated. For distributions
with Pareto tails with high scv appears to be the best estimates the score rF .
For descending values of cv, that is, with increasing variability of distributions,
represented by the fat-tailed Fréchet, the rank estimate rS seems to be the
best.
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Fig. 2. Dependence of average sample correlation coefficients and mean square errors
on theoretical ρ for Weibull distribution.
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Fig. 3. Dependence of average sample correlation coefficients and mean square errors
on theoretical ρ for heavy-tailed distributions.
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4 Conclusions

The t-score of a continuous distribution is a function describing a relative in-
fluence of x ∈ X with respect to the central point of distribution. It makes
possible to introduce a distribution-dependent correlation coefficient. This con-
cept, perhaps theoretically interesting, seems to have a practical use only for
random variables with distributions having tails of Pareto type, for which is
less biased than both robust and rank correlation coefficients. On the base
of our simulation experiments we conclude, that for estimation of association
of data from symmetric or mildly non-symmetric distributions the best is the
Pearson rP , and for highly skewed distributions with fat tails the Spearman
rank coefficient is the most robust.
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Abstract. Differences in life expectancies by marital status is a well-known 

phenomenon. To understand better the nature of these differences it is appropriate to use 

the decomposition method which can detect contributions of individual age groups in 
adult age to the total difference. 

The aim of this paper is to quantify the age-specific contributions of individual age 

groups to the total differences in life expectancy at births by marital status in the Czech 

Republic since 1990. The analysis is based on annual Czech Statistical Office data. Each 
five-year time period is analysed separately. 

Highest contributions to the total differences in life expectancy at births were observed 

for males mainly in the age groups 50–59 and 60–69 years, for females usually in the age 

groups 60–69 and 70–79 years. In first decade studied for males under 60 single the 
highest contribution show single males while at higher ages divorced and widowed. In 

the last decade, single males have highest contribution in all age groups. For females, the 

development is more regular and stable. The highest contribution is observed for single 

females, the lowest for widowed. 
Keywords: family status, life expectancy, decomposition by age, Czech Republic. 
 

1  Introduction 
 

Demographic studies usually analyze mortality by age and gender. However, 

mortality also depends on many other factors. One such factor is marital status, 

which is also one of the very important demographic criteria determining the 

demographic behavior of the population. Single people have different 

demographic behavior than married, divorced or widowed people. Therefore, 

marital status is considered an important social indicator that differentiates the 

population based on their link to family and marriage. Changes in marital status 

(marriage, divorce, widowhood) are considered very important demographic 

events. Marital status also provides indirect information about the lifestyle and 

status of an individual in society. Social status can sometimes depend on, or be 
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partly determined by, marital status. There is a statistical correlation between 

marital status and death rate. 

The mortality of married people is lower than that of single, divorced or 

widowed people. This is what William Farr, an epidemiologist, physician and 

statistician of the General Register Office for England and Wales, (mostly 

known as the founder of medical statistics and the first classification of death 

causes) already claimed in the 19
th

 century (1858). Based on the analysis of 

specific mortality rates by age, he showed that the mortality of single people is 

considerably higher than the mortality of married people of the same age and 

that the mortality of widowed people is even higher (Parker-Pope[4]).  

The differences in mortality by marital status were confirmed by many other 

studies. Their explanation is based on many theories and hypotheses that can be 

divided into two basic groups. The first one, the so-called causality theory 

(protection theory), is based on the hypothesis of a “protective” effect of 

marriage and its positive influence on health and a longer life. On the other 

hand, the second theory, the so-called selection theory, is based on the 

hypothesis that those who get married are healthier on average, and thus their 

mortality is lower.   

The causality theory emphasizes that marriage is an important social institution. 

Based on this theory, a better quality of life in wedlock stems from the fact that 

the spouses support each other emotionally and socially. They overcome life 

problems better and more easily and usually have more social contacts and thus 

can find necessary support or help from friends more easily in case of any 

problems. The causality theory also points out the fact that life in wedlock 

promotes a healthier lifestyle, married people have fewer bad habits, such an 

excessive alcohol consumption and smoking, and suffer from depression and 

anxiety less often. Married couples also usually keep track of each other’s health 

condition and thus are more likely to see a physician earlier in case of any 

medical problem. Women in particular make sure that all family members have 

preventive checkups and take care of their spouse if he becomes seriously ill. 

Married people also have a better financial situation and usually a higher 

standard of living since they have joint funds and share some expenses. If one of 

the spouses loses work, the other spouse can financially support him or her as 

long as necessary. According to the causality theory, the longer a marriage lasts, 

the more benefits it provides. (Hamplová[2], pp. 738 -739.) 

The question is whether marriage is as beneficial for men as for women, or 

whether marriage provides more advantages to men or women. This issue was 

researched by Jessie Bernardová, who concluded that marriage provided more 

advantages to men than to women. According to her, married women are not 

actually happier, but adjust their answers in different surveys to expected social 

norms that assume that married women are happier. (Hamplová[3], p. 133.) 

An interesting question is whether marriage positively affects men about the 

same as women, or whether men or women benefit from marriage more. Based 

on some studies, marriage has a bigger impact on men because the differences 

in mortality between single and married men are bigger than those between 

single and married women. However, other studies show that women benefit 
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from marriage more than men, or that men and women benefit from marriage 

about the same but in different areas. Marriage has a positive impact on men by 

protecting them against depression and on women by protecting them against 

alcoholism. It is pointed out that men have better psychological health 

regardless of marital status than women. A life crisis, such as divorce or 

widowhood, affects men and women differently. These crises affect men much 

more than women.   

On the other hand, the selection theory assumes that people marry or do not 

marry, or remain in wedlock for a shorter or longer period of time, mostly based 

on their personality traits. According to this theory, the mortality of married 

men and women is not lower because they are married. This theory stresses a 

favorable selective impact of marriage on mortality, e.g. people with a serious 

illness or a physical handicap usually do not marry, and also assumes that 

people with certain personality traits, e.g. temperament, optimism, etc., are 

better preconditioned for creating and maintaining long-term relationships, 

which is also positively reflected in their lower mortality. On the other hand, 

people suffering from depression, ill people or alcoholics, etc. (i.e. people 

whose mortality exceeds the average) have less chance to marry and their risk of 

divorce is higher.   

Nevertheless, Hamplová[3], pp. 131-132, mentions three reasons why the 

selection theory has been called into question lately. The first reason is that the 

measurements of physical and psychological health either do not confirm the 

selectivity effect or show only a very weak selectivity effect. The second reason 

is that the mortality of the widowed (who were married for a rather long time) is 

higher than that of people who are still married, i.e. marriage decreases 

mortality. The third fact that calls the selection theory into question is based on 

the conclusions of medical research confirming that single people die more 

often due to their different lifestyle rather than due to their genetically 

conditioned illness. 

The number of marriages in the Czech Republic and many European countries 

has currently gone down and more and more couples live together out of 

wedlock. This fact should also be analyzed and researched to see whether or not 

living out of wedlock has the same positive impact on mortality as marriage. 

However, the problem is that there are usually no reliable data about the 

number, gender and age of people living together out of wedlock and mostly 

that this fact is not investigated in the deceased.  

 

 

2  Differences in mortality by marital status in the Czech 

Republic 
 

Pechholdová and Šamanová[5] provide a very detailed analysis of the 

correlation between mortality and marital status in the Czech Republic for the 

years the population census was carried out starting in 1960. In all analyzed 

years, the life expectancy of married men and women aged 30 is higher than the 
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life expectancy of unmarried men and women, and the difference is higher in 

men than in women. 

The trends during the socialist regime (1961–1990) and the post-socialist era 

were quite different. The differences in the mortality of the married and the 

unmarried doubled and even tripled during the 1960s, 1970s and 1980s as 

compared to the year 1961. During the entire analyzed time period, the mortality 

of single women was the highest and the mortality of widows the lowest from 

among unmarried women, although the mortality of divorced and widowed 

women gradually approximated. In the case of men, the situation was different 

at first. In the years 1961, 1971 and 1981, the mortality of divorced men was the 

highest and the mortality of single men the lowest from among unmarried men. 

This trend changed in 1991 where (similarly to women) the mortality of single 

men was the highest and the mortality of widowers the lowest (Tab. 1). 

 

Tab. 1. Differences in life expectancy at births by marital status 

 Reference category: married 

Year 1961 1970 1980 1991 2001 2010 

Males  

Single -3.08 -5.11 -6.59 -9.15 -8.76 -9.58 

Divorced -3.63 -5.58 -7.34 -8.24 -7.47 -7.65 

Widowed -3.54 -5.39 -7.44 -7.16 -7.24 -5.73 

Females  

Single -3.26 -4.67 -5.50 -6.65 -7.57 -7.70 

Divorced -2.46 -3.12 -3.49 -4.77 -4.67 -4.99 

Widowed -1.31 -1.64 -2.39 -3.21 -4.04 -4.69 
Source: Pechholdová and Šamanová[5], Tab. 1 

 

In her analysis of comparative indexes of mortality in individual years during 

1982–1993, Rychtaříková[6] shows that the mortality of single men practically 

did not change, while mortality in other marital status categories decreased, in 

particular in married men. The mortality of women in all marital status 

categories decreased, but considerably less in single women.   

 

 

3  Trends of life expectancy development by marital status in 

1990–2014 
 

After the year 1989, the behavior of the Czech population in terms of marriage 

rather considerably changed. People got married at an older age, the marriage 

rates dropped and the percentage of children married out of wedlock went up. 

For instance, while almost 79% of men and over 83% of women were married at 

the age of 30–39 in the year 1991, only about 50% of men and slightly over 

60% of women were married at the same age in the year 2010 (Pechholdová, 

Šamanová[5], Tab. 2).  
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This chapter provides the results of the analysis of the trend in the mortality of 

men and women by marital status and analyzes life expectancy at birth by 

marital status. This life expectancy was calculated in a usual way based on 

complete mortality tables by marital status, using the Czech Statistical Office’s 

data containing the number of the deceased and the number of population in the 

individual years of the analyzed time period classified by gender, age unit and 

marital status.   

Specific death rates for people under the age of 16, when it is not possible to 

marry, were considered to be the same for all marital status categories (equal to 

death rates regardless of marital status). Death rates were differentiated based on 

marital status after the age of 16, but only if the mid-period population of the 

given age and marital status was higher than 100. In the case that the mid-period 

population of the given age and marital status was lower, the mortality of all 

people of the given age was used, regardless of marital status.  

The life expectancy of men and women kept going up more or less linearly 

during the entire analyzed time period (Fig. 1). The life expectancy of all men 

went up (regardless of their marital status) from not quite 67.6 years to 75.7 

years, i.e. by 3.9 months a year. The increase in the life expectancy of married 

men was slightly lower (by 3.8 months), but higher in the case of other 

categories of men (the average increase in the life expectancy of single men was 

4.4 months a year, of divorced men 5.3 months a year and of widowers 5.7 

months a year). Therefore, the differences of married and unmarried men 

lessened, while the differences of widowed, divorced and single men increased.  

The increase in the life expectancy of women, regardless of marital status, was 

lower (by 3 months a year on average), from 75.5 in the year 1990 to 81.7 in the 

year 2014 (Fig. 2). When taking into consideration marital status, the increase 

was also lower in women than in men. The life expectancy of married women 

during the analyzed time period went up by 2.4 months a year on average, while 

the life expectancy of single women went up by 3.1 months a year, of divorced 

women by 3.3 months a year and of widows by 3.2 months a year. Similarly to 

men, the differences in the life expectancy of married and unmarried women 

lessened. 

The trend in life expectancy, taking into account marital status, shows much 

bigger incidental deviations from the linear trend since especially the number of 

people of a certain marital status is very low in particular in some age groups. In 

order to eliminate these deviations, life expectancy for the individual five-year 

periods of 1990–94, 1995–99, …, 2010–14 were calculated as well. Since the 

goal of the trend analysis is not really the trend in life expectancy but rather the 

trend in life expectancy by marital status, married men and women were chosen 

as a reference category and the differences in life expectancy in this reference 

category and in the individual categories of unmarried people (i.e. single, 

divorced and widowed people) were analyzed.   

The basic trends are the same for both men and women (Fig. 3 and 4). In all 

analyzed time periods, the life expectancy of single people differed from the life 

expectancy of married people the most, while the life expectancy of widowed 
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people differed the least. The difference for females was approximately 1 to 4 

years less than in the relevant category of men during the same time period. 
 

 
Source: data Czech Statistical Office, authors’ calculation 

Fig. 1. Life expectancy at births by marital status – males 

 

 
Source: data Czech Statistical Office, authors’ calculation 

Fig. 2. Life expectancy at births by marital status – females 
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Source: data Czech Statistical Office, authors’ calculation 

Fig. 3. Differences in life expectancy at births by marital status – males 

(reference category – married) 

 

 
Source: data Czech Statistical Office, authors’ calculation 

Fig. 4. Differences in life expectancy at births by marital status – females 

(reference category – married) 
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While all differences were bigger during 1995–1999 than in the previous time 

period, they started lessening after 2000 and were smaller in the last analyzed 

time period of 2010–2014 than in the time period of 1990–1994. This may be 

caused by the gradual drop in the marriage rate, the higher percentage of single 

people in the population and thus the lower selective effect of marriage on 

mortality.  

 

 

4  Decomposition of life expectancy differences by age 
 

From a demographic standpoint, it is important to analyze not only the 

difference in overall life expectancy but also the contribution of individual age 

groups to this overall difference. For these purposes, the method which 

decomposes differences in life expectancy to the contribution of each age group 

is often used. This is why the decomposition of the overall difference of life 

expectancy by ten-year age intervals was calculated for each analyzed time 

period and each category of unmarried people. Of course, there cannot be any 

difference in the age group of 0–9, and the differences in the age group of 10–19 

and 90–99 are insignificant. This is why these age groups are not shown in the 

following figures.  

When comparing with married men and women, the biggest contributions to the 

difference in life expectancy at birth come mostly from men in the age groups of 

50–59 and 60–69 and usually from women in the age of 60–69 and 70–79. 

However, the contributions differ, depending on marital status. During the first 

analyzed five-year time periods, the biggest contribution of men aged under 60 

comes from single men, while the biggest contribution of men over 60 comes 

from divorced or widowed men. One of the main reasons may be the fact that 

young single men die more due to their irresponsibility, unhealthy lifestyle or 

some medical reason (which may also be why they did not get marry), while 

older single men are psychologically more stable than divorced or widowed 

men, some of whom may have a hard time dealing with the dissolution of their 

marriage or with the death of their long-time spouse. However, this was not the 

case during the past ten years, and in all age groups of men, single men 

contribute to the difference in life expectancy the most and widowed men the 

least, which corresponds to the overall difference in life expectancy at birth. The 

trend in women is more regular and, with some exceptions, single women 

always contribute the most and widows the least. See Fig. 5 – 14. 

 

 

Conclusions 
 

The life expectancy of men in the Czech Republic went up by more than 8 years 

and that of women by more than 6 years between 1990 and 2014. After the year 

1990, the mortality of married people was lower than the mortality of single, 

divorced and widowed people, which corresponds to European trends. 
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Source: data Czech Statistical Office, authors’ calculation 

Fig. 5. Decomposition by age in life expectancy at births by marital status – 

1990–1994 males (reference category – married) 

 

 
Source: data Czech Statistical Office, authors’ calculation 

Fig. 6. Decomposition by age in life expectancy at births by marital status – 

1990–1994 females (reference category – married) 
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Source: data Czech Statistical Office, authors’ calculation 

Fig. 7. Decomposition by age in life expectancy at births by marital status – 

1995–1999 males (reference category – married) 

 

 
Source: data Czech Statistical Office, authors’ calculation 

Fig. 8. Decomposition by age in life expectancy at births by marital status – 

1995–1999 females (reference category – married) 
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Source: data Czech Statistical Office, authors’ calculation 

Fig. 9. Decomposition by age in life expectancy at births by marital status – 

2000–2004 males (reference category – married) 

 

 
Source: data Czech Statistical Office, authors’ calculation 

Fig. 10. Decomposition by age in life expectancy at births by marital status – 

2000–2004 females (reference category – married) 
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Source: data Czech Statistical Office, authors’ calculation 

Fig. 11. Decomposition by age in life expectancy at births by marital status – 

2005–2009 males (reference category – married) 

 

 
Source: data Czech Statistical Office, authors’ calculation 

Fig. 12. Decomposition by age in life expectancy at births by marital status – 

2005–2009 females (reference category – married) 
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Source: data Czech Statistical Office, authors’ calculation 

Fig. 13. Decomposition by age in life expectancy at births by marital status – 

2010–2014 males (reference category – married) 

 

 
Source: data Czech Statistical Office, authors’ calculation 

Fig. 14. Decomposition by age in life expectancy at births by marital status – 

2010–2014 females (reference category – married) 
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The biggest differences are between the life expectancy of married people and 

single people; the smallest difference is between the mortality of married people 

and widowed people. The difference is always bigger in men than in women. 

These differences were bigger in the 1990s, but this gradually changed after 

2000. In 2010 –2014 in particular, the differences in life expectancy by marital 

status were significantly smaller than during the previous five-year time period 

and smaller than in 1990-94. This is also proven by the fact that the overall 

increase in the life expectancy of unmarried men during the analyzed period was 

slightly higher than that of married men and that the life expectancy of 

unmarried women increased more than the life expectancy of married women. 

The main reason may be the lower marriage rate and thus a lower percentage of 

married people and a higher percentage of single people. This lessens the 

selective effect of marriage. While some physical or psychological handicap or 

an irresponsible lifestyle, which could also be the cause of the higher death rate 

of single people, used to often be the reason why people did not marry, 

nowadays there is probably a higher percentage of healthy and responsible 

people with an average or above-average death rate among single people.  
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Abstract: Though hedonic regression remains a popular technique for estimating property values, structural equation 

modeling (SEM) is increasingly seen as a realistic analytical alternative. The article presents an SEM analysis of a 

historical dataset for a large Canadian realtor. An iterative approach was adopted for the modelling. The first phase 

focussed on internal relationships between houses’ structural characteristics and the second, on housing values and 

their determinants. In the final phase, advertised list prices and location details were the priority. A comprehensive 

evaluation of the resulting holistic model revealed a wealth of significant structural relationships - particularly 

between house style, structure and attributes.   

 

Keywords: Housing Prices, Hedonic Price Theory, Structural Equation Modelling  

1 Introduction 

Housing is a durable, long-term asset, highly differentiated and fixed in location [1]  Effective price 

estimation [2] is crucial to any successful property acquisition. With Hedonic Price Theory [3], a house is 

considered a ‘basket’ of attributes -  z1, z2, …, zn  say – against which the house price, P = f(z1, z2, …, zn) 

can be derived. Attributes here typically relate to structural, locational, neighbourhood and environmental 

(e.g. noise and pollution) characteristics [4]. Depending on the functional form, f adopted for computing 

P, various hedonic regression formulations are available for estimation purposes [5]. Some of the most 

common in use include the linear, semi log and log linear but a mix of these together with transformations 

such as the Box - Cox are becoming increasingly prevalent (see, for instance [6], [7]). 

In terms of mass property appraisal modelling, the “physical – neighbourhood - location” framework has 

long been established. But since neighbourhood is strongly linked to location, physical (structural) and 

locational characteristics tend to be the focus in practice. 

Structural characteristics 

Structural characteristics of a house usually include the age of the house, the square metres of living 

area, the number, size and type of rooms in the house, and the attachment or lack of garage spaces or 

chattels. These characteristics contain both quantitative and qualitative dimensions, for example, living 

area, lot size and number of rooms are quantitative characteristics; while chattels can be viewed as 

qualitative. 

Locational characteristics 
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Because houses are ‘locationally immobile’ and spatially no two properties are the same, location can 

have a huge impact on house values [8]. Location is often assessed in relation to accessibility – for 

example, proximity to a central business district (CBD; also to neighbourhood - in terms of access to 

educational and entertainment facilities etc [9]. 

Although hedonic prices models are widely employed in residential property value studies, they are 

frequently beset by a range of technical problems including multicollinearity, heteroscedasticity and 

autocorrelation [10] - all of which are actually straightforwardly handled by SEM. 

This is the rationale for the modelling that follows. Using the AMOS 16 package, the SEM analysis 

approach is illustrated for a Canadian house sales application – details of which appear in section 2. An 

overview of the work is presented in Section 3 and conclusions in Section 4.  

 

2 Data 

The data was taken from Freeman and Janssen [11] and relates to houses located in ten selected 

neighbourhoods of Edmonton, Canada. Each home was listed and sold individually through the realtor’s 

Multiple Listing System and relates to the eighteen month period after 1 January 1988.  

Of the 240 houses that made up the sample, 90% (216) were bungalows and the remainder, two-storey 

homes. The mean list price for all houses was $140324.63 whilst that for bungalows was $137129.22 - 

compared to $169083.33 for two-story homes. Ages of houses ranged from 5 to 32 years with a mean of 

22 years; correspondingly the sizes of properties ranged from 90 to 267 m
2
 (the mean value was 

approximately 125 m
2
). 

Excepting list price, variables for the study were identified by house and lot attributes as follows:  

 

Variable  Definition 

House Attributes 

STYLE  1 if bungalow, 2 if two storey 
R  Number of rooms 

B  Number of bathrooms 

BR  Number of bedrooms 

S  Living area (square metres) 
A  Age (years) 

BAS  Basement (from 1 (open) to 3 (finished)) 

G  Number of garage spaces 

ATT  Dummy variable, 1 if attached, 0 detached 
F  Number of fireplaces (wood-burning) 

C  Number of chattels (appliances) 

 

Lot Attributes 

LOTS   Lot size (square metres)  

CO   1 if corner lot, 0 otherwise  

CUL   1 if cul-de-sac, 0 otherwise  
LA   1 if lane behind, 0 otherwise  

E   Exposure of yard (N, NE, E = 1, otherwise 0)  

Zj   Dummy variable represents zone j (j = 0, 1, …9)  

TIME   Driving time 

 

Table 1. Definition of variables 
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3 Analysis 

 

Prior to the SEM modelling, exploratory factor analysis (EFA) was conducted to help determine the 

underlying structure of the data and gain insight into the possible latent constructs that might exist. This 

provided the basis of the initial measurement model which was then tested using confirmatory factor 

analysis (CFA). Following on, a progression of structural relationships between latent and manifest 

variables were introduced and validated [12]. Three phases were involved in the SEM modelling overall. 

 

Exploratory Factor Analysis (EFA) 

 

Factors of interest were first identified using principal components analysis (PCA) with Varimax rotation 

[13].  

 

This was then followed up with a principal axis factoring (PAF) / oblimin rotation analysis to help 

establish the latent structure of the model.  

 

For the sake of practicality, it was decided not to introduce this locational variables Z0-Z9 until phase two 

of the modelling [14]. These were therefore omitted from the EFA which generated factors as follows: 

 

Factor 1 (“House Style”) linked to the STYLE (bungalow or two-storey) and ATT 

(attached or detached) variables  

Factor 2 (“House Structure”) covered the R (number of rooms), B (number of bedrooms) 

and BR (number of bathrooms) variables  

Factor 3 (“House Attributes”) represented the F (number of fireplaces), G (number of 

garage spaces) and C (number of chattels) variables.  

Based on the latter, three research hypotheses were adopted for the study: 

H1: House style positively impacts on House structure   

H2: House style positively impacts on House attributes  

H3: House structure positively impacts on House attributes  

Phase One 

In the first phase of the SEM modelling, internal relationships between the structural characteristics of a 

house were investigated, without consideration of the value of the house – see Figure 1 which provides 

the formal path diagram of the theoretical (measurement) model to be evaluated.  

 

AMOS provides a large number of standard diagnostics for assessing the effectiveness of a particular 

model choice. Selected values of these for model 1a) are summarised in Table 2. 
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Fig 1. Measurement Model 1a) 

 

 

 

Table 2. Goodness of Fit summary: Model 1a) 

 

Though the latter model appears satisfactory according to some of the indices shown here, there is clearly 

room for improvement with others. As a refinement, therefore it was decided to introduce a covariance 

link between the error terms e2 and e4.  Note that the chattels item (which turned out to have a zero 

regression weight) was simultaneously dropped.  The resultant estimated model 1b), is shown in Figure 2 

with associated diagnostics in Table 3.  

 

 

Fig 2. Estimated Model 1b) 
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Table 3. Goodness of Fit summary: Model 1b) 

 

Plainly, this is a much better fit. No less importantly, all loadings here (except for bathrooms) were found 

to be statistically significant (p<0.05) and all relationships in the expected direction.  

 

Phase 2 

 

In the second phase, the model was modified to investigate the relationships between house values and 

structural and location characteristics.  

 

A second order factor ‘House Value’ was therefore introduced into the model. Furthermore, the latent 

variable ‘Location’ was included as an underlying indicator of accessibility and neighbourhood. The 

resultant estimated model is shown in Figure 3. Unfortunately, the accompanying diagnostics in Table 4 

can be seen to be far from satisfactory. 

 

Fig 3. Estimated Model 2a) 
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 Table 4. Goodness of Fit summary: Model 2a)  

 
 

To rectify the situation, it was decided to allow for selected error terms to be correlated. This was done 

iteratively in line with successive AMOS modification index outputs. Details of the revised estimated 

model (2b) were obtained as follows: 

 

Fig 4. Estimated Model 2b) 

 

Table 5. Goodness of Fit summary: Model 2b) 

 

Apart from the χ2 statistic, the fit results here all look satisfactory. However, because large sample sizes - 

as in this study - are notoriously linked to significant χ2 results, the CMIN/DF criterion (following 
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convention) was used as a proxy. On this basis, the model would therefore be judged to have satisfactory 

fit characteristics throughout. In addition, all indicator estimates are statistically significant at the 5% 

level with the arrow directions too in line with expectations.  

 

Phase 3 

  

In the third phase, the latent variable ‘House Price’ was introduced into the model, as estimated in Figure 

5 - with corresponding diagnostics in Table 6. (The logic behind this adaptation is that list price is 

literally more a reflection of House Price than House Value.) 

 

Fig 5. Estimated Model 3 

 

 

Table 6. Model 3: Goodness of Fit summary 

As with Table 5, the latter diagnostics confirm that the model satisfactorily fits the data. 

 

Similarly, the standardized estimates of all model loadings shown in Figure 5 can be shown to be highly 

significant (at the 0.1% level).  
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House Value is also found to be positively related to the four latent variables House Style, House 

Structure, House Attribute and Location. 

 

In addition, supporting evidence for research hypotheses H1, H2 and H3 is provided by supplementary 

correlation output as follows:     

           Sample 

      Correlation      Inference 

___________________________________________________________________________________ 

H1: House style positively impacts on House structure   0.866*  Accepted 

H2: House style positively impacts on House attributes  0.432*    Accepted 

H3: House structure positively impacts on House attributes   0.409*    Accepted 

 

* p < .05 

 

Finally, the squared multiple correlations in Figure 5 reveal that 77% of the variance of House Style, 97% 

of the variance of House Structure, 92% of the variance of House Attributes and 100% of the variance of 

Location are individually accounted for by House Value. Of interest the percentages here - as well as 

model loadings in Figure 5 are identical to those for Model 2b) (Figure 4) – suggesting that the distinction 

between the House Price and House Value latent constructs is probably more semantic than real.  

 

3 Conclusions 

Despite the dearth of published research on SEM modelling of house values, it is reassuring to note how 

strikingly in agreement the findings above are with those of Liu and Wu [15]. For their analysis of 

residential data from Dalian, China, two measures, house price and satisfaction degree were chosen to 

represent house value (not just list price as in our own case). In further contrast, a four factor (location, 

residential district, structure and neighbourhood environment) framework was adopted for their 

modelling. Notwithstanding these differences, it is salutary to find that Liu and Wu too concluded 

location and structure to be far and away, the most important determinants of house value. 
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Abstract. Quantifying the proximity between N -grams allows to establish criteria
of comparison between them. Recently, a consistent distance d to achieve this end
was proposed, see Garćıa and González-López (2017) [2]. This distance takes advan-
tage of a model structure on Markovian processes in finite alphabets and with finite
memories, called Partition Markov Models, see Garćıa and González-López (2017) [1].
In this work we explore the performance of d in a real problem, using d to establish
a notion of natural proximity between DNA sequences from patients with identical
diagnosis, which is: Burkitt lymphoma/leukemia. And we present a robust strategy
of estimation to identify the law that governs most of the sequences considered, thus
mapping out a common profile to all these patients, via their DNA sequences.
Keywords: Partition Markov Models, Bayesian Information Criterion, Robust Es-
timation in Stochastic Processes..

1 Introduction

The Burkitt lymphoma occurs when the chromosome 8 (locus of gene MYC)
is broken, which produces a change in the cellular proliferation. The data
used in this paper corresponds to the most frequent variant, produced by the
translocation between chromosomes 8 and 14. It is known, so far, three variants
of Burkitt lymphoma, which are (i) endemic, (ii) sporadic, (iii) produced by
immunodeficiency. The first case is observed in childs in Equatorial Africa and
it is associated with chronic Malaria infections. It does not exist until the
moment and according to what we know, a clear notion of the profile of the
Burkitt lymphoma’s DNA. Considering that it is natural to expect diversity
between DNA strains, we will measure the distance between 15 of them. We
adopt a distance between the strains which is conditioned to each possible
common string s, where s is an element of the state space. That is, suppose
that xn1

1,1 and xn2
2,1 are the concatenations of elements a, c, g and t of the DNA

of two patients, say 1 and 2, ds(1, 2) will be the distance between the sequences
in relation to s some string of interest, for instance s = aggc. As there are a
variety of possible strings, which we should observe to measure the discrepancy
between the strains, we will compute the maximum of all: maxs{ds(1, 2)}, so
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as to focus on the most extreme situation among them. This notion allows to
identify which of these strings can be considered more distant of the majority,
and allows us to select the strains which will be used to define the profile of the
DNA. To strengthen our conclusions, we compared the model constructed with
the selected strains with the model constructed using the 15 available strains.
This work is organized as follows, first we introduce the notion of distance as
well as the general notation. Then we will describe the strains of the 15 patients,
we will inform their source. In the results we show the values calculated for
the maximum distance between strains two to two. We also show the model
induced by this strategy.

2 Criteria

Let (Xt) be a discrete time (order o < ∞) Markov chain on a finite alphabet
A. Let us call S = Ao the state space and denote the string amam+1 . . . an
by anm, where ai ∈ A, m ≤ i ≤ n. For each a ∈ A and s ∈ S, P (a|s) =
Prob(Xt = a|Xt−1

t−M = s). In a given sample xn1 , coming from the stochastic
process, the number of occurrences of s in the sample xn1 is denoted by Nn(s)
and the number of occurrences of s followed by a in the sample xn1 is denoted by

Nn(s, a). In this way Nn(s,a)
Nn(s)

is the estimator of P (a|s). In the next paragraph,

we give the notion of distance between two processes.

Definition 1. Consider two Markov chains (X1,t) and (X2,t), of order o, with
finite alphabet A and state space S = Ao. With sample xnk

k,1, for k = 1, 2
respectively; for any s ∈ S,

ds(1, 2) =
α

(|A| − 1) ln(n1 + n2)

∑
a∈A

{
Nn1(s, a) ln

(
Nn1(s, a)

Nn1
(s)

)
+Nn2

(s, a) ln

(
Nn2

(s, a)

Nn2(s)

)
−Nn1+n2(s, a) ln

(
Nn1+n2(s, a)

Nn1+n2
(s)

)}
with Nn1+n2

(s, a) = Nn1
(s, a)+Nn2

(s, a), Nn1+n2
(s) = Nn1

(s)+Nn2
(s), where

Nn1
and Nn2

are given as usual, computed from the samples xn1
1,1 and xn2

2,1

respectively, with α a real and positive value. In this paper we use α = 1
2 , see

Garćıa and González-López (2017) [1].

The most relevant properties of d are listed below. Both properties are conse-
quence of results proved in Garćıa and González-López (2017) [1]:

i. The function ds(1, 2) is a distance between the Markov chains relative to
the specific string s ∈ S. If (Xi,t), i = 1, 2, 3 are Markov chains under the
assumptions of definition 1, with samples xni

i,1, i = 1, 2, 3 respectively,

ds(1, 2) ≥ 0 with equality ⇔ Nn1
(s, a)

Nn1(s)
=
Nn2

(s, a)

Nn2(s)
∀a ∈ A,
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ds(1, 2) = ds(2, 1),

ds(1, 2) ≤ ds(1, 3) + ds(3, 2).

ii. Local behavior of process Laws. If the stochastic laws of (Xi,t), i = 1, 2 in s
are the same then then ds(1, 2) −→

min(n1,n2)→∞
0.

Otherwise ds(1, 2) −→
min(n1,n2)→∞

∞.

3 DNA data

The database is composed by 15 DNA sequences, available in the reposi-
tory: https://www.ncbi.nlm.nih.gov/nuccore/, coming from 15 patients
with Burkitt lymphoma/leukemia carrying the t(8;14)(q24;q32) with IgH-MYC
fusion, breakpoint in the joining region. The registers (genbank numbers) of
the sequences are: AM2871z.1, where z=39, 40, 41, 46, 50, 52, 57, 58, 59, 61,
62, 65, 76, 81, 87. For each sequence, the concatenation of bases a,c,g,t ob-
served in the code is the realization denoted by xn1 . The size of each sequence
is shown in table 1.

z 39 40 41 46 50 52 57
n 3641 2965 4464 2731 5428 2475 3907

z 58 59 61 62 65 76 81 87
n 3636 4291 2642 3206 2906 2635 3608 3734

Table 1. Sample sizes n of DNA sequence coming from 15 pa-
tients with Burkitt lymphoma/leukemia, AM2871z.1, where z =
39, 40, 41, 46, 50, 52, 57, 58, 59, 61, 62, 65, 76, 81, 87.

4 Results

In tables 2 and 3 we expose the dmax values between the DNA sequences,
where dmax(i, j) = maxs∈S{ds(i, j)}, i 6= j, i, j = AM2871z.1, with z =
39, 40, 41, 46, 50, 52, 57, 58, 59, 61, 62, 65, 76, 81, 87. At the end of each column
we record the sum of the dmax, that is:

S(i) =
∑
j

dmax(i, j), for each sequence i = AM2871z.1,

where z = 39, 40, 41, 46, 50, 52, 57, 58, 59, 61, 62, 65, 76, 81, 87. Through ds we
have a criterion to rescue the greatest distance between two DNA sequences.
From the magnitudes found, we can affirm that the processes can be considered
as coming from the same stochastic law, dmax < 1. We also verified the above
statement from the dendrograms constructed using the values recorded in tables
2 and 3, see figure 1.
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j \ i 39 40 41 46 50 52 57

40 0.23625
41 0.16160 0.25648
46 0.22578 0.24031 0.21857
50 0.20218 0.25847 0.17855 0.22644
52 0.19479 0.17870 0.21143 0.16253 0.33231
57 0.09777 0.24533 0.13885 0.22058 0.12481 0.19363
58 0.27729 0.21783 0.30105 0.25156 0.28312 0.23041 0.25738
59 0.12485 0.32050 0.09723 0.24232 0.15545 0.21165 0.09821
61 0.20229 0.10170 0.22626 0.20598 0.30120 0.12572 0.25328
62 0.32556 0.34309 0.35858 0.26633 0.47720 0.24569 0.32362
65 0.22234 0.15183 0.26545 0.15812 0.25339 0.29264 0.27469
76 0.19421 0.24629 0.20804 0.12923 0.23960 0.12786 0.19308
81 0.16363 0.17050 0.19272 0.16614 0.22817 0.17392 0.12994
87 0.26047 0.16796 0.24704 0.25130 0.41112 0.26425 0.22481

S(i) 2.8890 3.13523 3.06186 2.96519 3.67203 2.94553 2.77597

Table 2. dmax(i, j) values, i 6= j, i, j = AM2871z.1, where z =
39, 40, 41, 46, 50, 52, 57, 58, 59, 61, 62, 65, 76, 81, 87.

j \ i 58 59 61 62 65 76 81 87

59 0.30177
61 0.20284 0.32032
62 0.27748 0.34112 0.25478
65 0.25707 0.27412 0.21689 0.30528
76 0.13397 0.21109 0.13318 0.27990 0.21237
81 0.25801 0.14463 0.11904 0.23329 0.21155 0.15334
87 0.23089 0.24762 0.20658 0.37764 0.20689 0.23144 0.19405

S(i) 3.48067 3.09091 2.87007 4.40955 3.30265 2.69363 2.53891 3.52205

Table 3. dmax(i, j) values, i 6= j, i, j = AM2871z.1, where z =
39, 40, 41, 46, 50, 52, 57, 58, 59, 61, 62, 65, 76, 81, 87. In bold the lowest value of S, as-
sociated to the sequence with z = 81.

4.1 The DNA profile

The model we will apply in the data, is extensively investigated in Garćıa and
González-López (2017) [1]. This is the most general model known to be used
in finite order Markov chains on a finite alphabet, since this model includes
fixed order Markov chains and the variable lenght Markov chains (VLMC).
Essentially what this model proposes is to estimate the transition probabilities
that describe the process by identifying a partition L = {L1, · · · , L|L|} in the
state space S. The state space is divided into parts Li, i = 1, · · · , |L| which
constitute a partition. The strings of each part have in common the characte-
ristic of sharing the same transition probability to any element of the alphabet.
In practice, all strings included in the same part of that partition will be used
for the computation of the transition probability that identifies them. The
identification of such partition is done using the Bayesian Information Criterion
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Fig. 1. Dendrograms build through the dmax values (tables 2-3), agglomeration
method: Average, on the left and Complete, on the right.

(BIC), which also is the basis to the concept ds, previously introduced.
Table 4 shows some general characteristics that are observed in the adjustment
of the model introduced in Garćıa and González-López (2017) [1]. We include
progressively (from top to bottom) the closest sequences, according to the
criterion S. That is, first using the sequence 81, second, using two sequences:
81 and 61 and so on. In other words, we are increasing the sample size from
one stage to the next, following as iclusion criterion the magnitude of S. We
can not state unequivocally that by increasing the sample sizes we increase the
parts of the estimated partition, but it seems to be a trend, as seen in the table
4. But this could also be the result of incorporating in the model gradually the
more distant sequences according to criterion S.
We apply in all the adjustments the agglomerative method, whose performance
is analyzed in Garćıa and González-López (2017) [1], the memory used in all
the adjustments is equal to 4=blog|A|(2475)c − 1, with alphabet A = {a,c,g,t}
where 2475 is the smallest sample size reported in table 1.
We describe in a comparative way the results when applying the model in: (i)
the 7 closest sequences according to S, which are: AM2871z.1, where z=39, 46,
52, 57, 61, 76, 81 (see tables 5 and 6) and (ii) the 15 sequences (see tables 8 and
9). We note (see table 6) that in relation to the transition probabilities from
part i to the elements of the alphabet, 3 of these parts show their highest values
in the transition to a, 10 parts expose their highest values in the transition to
c, 9 of those parts show their highest values in the transition to g and 5 of
those parts expose their greater probabilities in the transition to t.

In table 7 we highlight the composition of the four parts 1, 16, 12 and 26
that show the highest values of transition probability for a, c, g and t respec-
tively. We also emphasize in table 7, the part 14 that joins all those strings
whose transition probability to c is zero.
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z Sample size |S| |L|
81 3604 134 6

81,76 6235 193 13

81,76,57 10138 241 18

81,76,57,61 12776 249 21

81,76,57,61,39 16413 255 27

81,76,57,61,39,52 18884 255 28

81,76,57,61,39,52,46 21611 255 27

81,76,57,61,39,52,46,41 26071 256 31

81,76,57,61,39,52,46,41,59 30358 256 33

81,76,57,61,39,52,46,41,59,40 33319 256 31

81,76,57,61,39,52,46 36221 256 34
41,59,40,65

81,76,57,61,39,52,46 39853 256 37
41,59,40,65,58

81,76,57,61,39,52,46 43583 256 39
41,59,40,65,58,87

81,76,57,61,39,52,46 49007 256 40
41,59,40, 65,58,87,50

81,76,57,61,39,52,46 52209 256 42
41,59,40,65,58,87,50,62

Table 4. Relation between the sequences used in the estimation and number of parts
of the estimated partition, for AM2871z.1, where z=39, 40, 41, 46, 50, 52, 57, 58, 59,
61, 62, 65, 76, 81, 87.

We list in table 8 the elements of the partition obtained using all the strains,
and then we give their transition probabilities in table 9.

According to table 9, 7 parts exhibit their highest transition probability
values for the element a, 13 for the element c, 14 for the element g, and 8
for the element t. Note that the parts recorded in the selection given in table
7, where we use only 50% of the nearest strains, are combinations of those
listed in table 10 with other parts, in the latter case we use all the strains. We
detail the connection in the table 11. We see that the listed parts (to the left
of table 11) are dispersed in several parts of the model adjusted with all the
sequences. In the case of the last line, the strings listed in part 14 of table 7
occur with nonzero frequencies, when using all the sequences. This last aspect
shows evidences of the natural dispersion that is imprinted to the model with
only 50% of the sequences more near, when we use all the sequences.
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i of part Li Strings

1 acgc, accg, ccag, gacg, acac, gcag, caat, atca

2 ccgc, cggt, cctc, agga, tcac, tagg, acca, gcac

3 gcgc, cgtg, ctat, tctc, cagg, cacc, taag, cgtt, ttct, cccc, ggct, gtca
ctct, agac, tctt, ctta, tgcc, atgc, gttt, tatc, gctt, cttg, agct

4 tcgc, gaca, tttc, ctgc, ttgt, gata, gtta

5 aggc, aaca, agtc, agca, attc, ttcg, aagt, taca, agcg, cagc, gtcc

6 cggc, cgct, tttg, atac, gccg, caga, ttat, ctaa, tagt, ctca, gaaa

7 gggc, gtct, aatt, ttgg, cctt, ttgc, tgga, ctgt, taat, tgta, ccat
tcct, ttca, ggaa, ctcg, tgtt, agaa, gtga

8 tggc, atct, gagt, gagc, aatc, tacg, ggcc, ggtt, agtg, cact, ataa

9 gtgc, gatc, catc, aaga, gctc, aaat, aata

10 actc, tgaa, acag, gtat

11 cgtc, tgtc, gtag, aggt, ttag, ttga, gtac, gcct

12 ggtc, gtaa, agtt, caaa, gttc, gaag, atag

13 cttc, taaa, ttta, catt, attt, aaag, ttaa, acat, aagc, cttt, aaac

14 caag, gcca, tgag, gcaa, aacg, acga, ccac

15 tcag, attg, agag, atcc, aact, cgat, cgta, catg, taga, tccc, ttcc, acaa

16 cgag, tccg, tcta, ggta, taac, acgg, gaga, cata

17 ggag, tgtg, tgct, tcca, tctg, tttt, ccca, ccga, ggca, gcgg, gtgg
tgat, gggg

18 ctag, tcgt, ctgg, aaaa, tcgg, gtgt, gggt, tggt, gatt

19 cacg, aagg, tcaa, cgcg, actg, cgca, tgcg, tcat, ccgt

20 cccg, ctac, atcg, aggg, aatg, ggcg, cggg

21 gtcg, atta, ggat, cgaa, gagg, ggac, tact, tgca, tata, agat, acct
gcga, tcga

22 ccgg, gatg, caac, cctg, atgg, tatt, tggg, tatg, accc, ggtg, cgac, atgt
gcta, ggga

23 gctg, gaat, gttg, acgt, tgac, gacc

24 gcat, gact, ccta, gcgt, caca, acta, gaac, ttac

25 atat, cgga, actt, atga, ccct, cagt, aacc, ccaa, agta, ctga

26 tacc

27 gccc, cgcc, ctcc, agcc

Table 5. Parts of the partition selected through the Bayesian Information Criterion,
using AM2871z.1, where z=39, 46, 52, 57, 61, 76, 81.
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i of part Li a c g t

1 0.52430 0.24041 0.18670 0.04859
2 0.26705 0.53977 0.13636 0.05682
3 0.31714 0.25073 0.30718 0.12495
4 0.16245 0.27557 0.53791 0.02407
5 0.47689 0.07948 0.27542 0.16821
6 0.20235 0.17204 0.33822 0.28739
7 0.11628 0.31924 0.46564 0.09884
8 0.26162 0.34661 0.36122 0.03054
9 0.14495 0.11376 0.57982 0.16147
10 0.00487 0.42336 0.37226 0.19951
11 0.02754 0.11864 0.61441 0.23941
12 0.26225 0.08357 0.62824 0.02594
13 0.17198 0.23406 0.41527 0.17869
14 0.35484 0.00000 0.18894 0.45622
15 0.27907 0.22161 0.12996 0.36936
16 0.02667 0.72800 0.11200 0.13333
17 0.23476 0.35264 0.24390 0.16870
18 0.13996 0.43050 0.31757 0.11197
19 0.36605 0.38650 0.02658 0.22086
20 0.20380 0.51813 0.09845 0.17962
21 0.08753 0.43885 0.11631 0.35731
22 0.16603 0.35227 0.21136 0.27034
23 0.14469 0.25736 0.23303 0.36492
24 0.01155 0.33949 0.22864 0.42032
25 0.07393 0.47471 0.28664 0.16472
26 0.03922 0.05882 0.03922 0.86275
27 0.26437 0.04310 0.46264 0.22989

Table 6. Transition probabilities P (·|Li) with · ∈ {a,c,g,t} and i = 1, · · · , 27. For
each part i, listed on the left column (see table 5), we indicate in bold the highest
transition probability to the elements of the alphabet.

i of part Li Strings Probability

1 acgc, accg, ccag, gacg, acac, gcag, caat, atca P (a|L1) =0.52430

16 cgag, tccg, tcta, ggta, taac, acgg, gaga, cata P (c|L16) =0.72800

12 ggtc, gtaa, agtt, caaa, gttc, gaag, atag P (g|L12) =0.62824

26 tacc P (t|L26) =0.86275

i of part Li Strings Probability

14 caag, gcca, tgag, gcaa, aacg, acga, ccac P (c|L14) = 0

Table 7. Selected parts, from table 5, which have the greater (on top)/null (on
bottom) transition probabilities to each element of the alphabet {a,c,g,t}.
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i of part Li Strings

1 acgc , accg

2 ccgc, gagt, acca, gagc, ggcg, cggt

3 gcgc, tacg, cgtg, ccca, gccg, ctat, cacc, ttat, ctaa, caga

4 tcgc, ggtt, aatc, ggcc, atca, agtg, ataa, tggc, atct

5 aggc, agtc, aaca, agca

6 cggc, cgct, tttg, atac

7 gggc, ctcg, gtct, cctt, gaca, tagc

8 atgc, gttt, cttg, tatc, ttgg, cttc, catt, taaa, gctt

9 ctgc, ctgt, gttc, tttc

10 gtgc, ggtc, gaag, atag, agtt, caaa, gtaa

11 ttgc, tgga, taat, aaac, ttca, aaag, ttaa, acat, aagc, ttta, cttt

12 catc, ctcc, gctc, aaga, gccc

13 gatc, aata, aaat, gtac, gtag, ttga, ttag, aggt

14 actc, agaa, cgga, atat, atga

15 cctc, tgcc, ggct, tcca, acac, ggag, tgat, tgtg, tgct, gcac, tctg, tttt, gtca

16 tctc, taag, cccc, cagg, ttct, ctct, tctt

17 cgtc, tgtc, gcct

18 attc, aagt, agct, taca, tagt, ctca, gaaa

19 caag, gcca, ccac

20 acag, gtat, tgaa

21 ccag, agac, agga, gcag, gacg, caat, cgtt

22 tcag, attg, aact, agag, catg, atcc, aatg, cgat, cgta

23 cgag, tccg

24 tgag, acga, gcaa, agcc, cgcc

25 ctag, ggga, accc, gctg, atgt, gaat, acgt, gttg, tgac, gacc

26 aacg, taga, acaa, tccc, ttcc

27 cacg, aagg, tcaa, cgca, actg, cgcg, tagg, tcac

28 cccg, ctac, aggg, atcg, gtcg, atta, cggg

29 agcg, cagc, gtcc, ttcg

30 tgcg, tcat, ccgt, acct

31 gagg, ggac, tgca, gcat, ttac, gact, gaac, caca, tata

32 acgg, agat

33 ccgg, gatg, tact, atgg, cctg, gcta, caac, tggg, tatg, ggtg, tatt, cgac, ggca, ccga

34 gcgg, gtgg, cact, ctta, attt, aaaa, gggg, cgaa

35 tcgg, actt, tggt, gggt, ctgg, tcgt, gatt

36 ccat, ggaa, tgta, tcct, aatt, gata, gtta, gtgt, tgtt, gtga

37 ggat, gcga, gaga, tcga

38 ccct, cagt, aacc, ccta, ccaa, agta, ctga

39 gcgt, acta

40 ttgt

41 cata, tcta, ggta, taac

42 tacc

Table 8. Parts of the partition selected through the Bayesian In-
formation Criterion, using all the sequences AM2871z.1, where z =
39, 40, 41, 46, 50, 52, 57, 58, 59, 61, 62, 65, 76, 81, 87.
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i of part Li a c g t

1 0.62162 0.17568 0.11824 0.08446
2 0.20141 0.52669 0.18127 0.09063
3 0.27795 0.22742 0.25900 0.23563
4 0.26518 0.31020 0.37473 0.04989
5 0.49296 0.03873 0.34859 0.11972
6 0.15173 0.17569 0.36646 0.30612
7 0.17982 0.28801 0.44956 0.08260
8 0.26409 0.22741 0.38224 0.12625
9 0.13973 0.20960 0.58923 0.06145
10 0.25732 0.09728 0.57741 0.06799
11 0.15512 0.23870 0.42244 0.18373
12 0.22067 0.08288 0.50377 0.19268
13 0.07543 0.16140 0.58475 0.17843
14 0.07708 0.49605 0.26383 0.16304
15 0.26020 0.34949 0.22874 0.16156
16 0.34054 0.25250 0.28011 0.12685
17 0.05213 0.06398 0.55450 0.32938
18 0.29789 0.14042 0.34416 0.21753
19 0.38671 0.04532 0.09970 0.46828
20 0.01037 0.41014 0.38134 0.19816
21 0.43774 0.26038 0.21384 0.08805
22 0.27390 0.29363 0.11684 0.31563
23 0.08333 0.82222 0.05556 0.03889
24 0.26710 0.05375 0.35668 0.32248
25 0.14725 0.28990 0.24258 0.32027
26 0.28553 0.14211 0.18027 0.39211
27 0.38189 0.38091 0.06102 0.17618
28 0.19352 0.51001 0.09724 0.19924
29 0.48899 0.11006 0.19654 0.20440
30 0.22482 0.37230 0.02698 0.37590
31 0.05018 0.35636 0.17236 0.42109
32 0.02055 0.66438 0.02740 0.28767
33 0.17956 0.35776 0.19200 0.27069
34 0.19475 0.34030 0.30463 0.16031
35 0.15342 0.42826 0.30464 0.11369
36 0.09625 0.36320 0.44644 0.09401
37 0.07349 0.48294 0.14961 0.29396
38 0.09836 0.36339 0.31785 0.22040
39 0.00339 0.35254 0.28136 0.36271
40 0.17865 0.31828 0.49281 0.01027
41 0.05017 0.63378 0.16890 0.14716
42 0.05970 0.10448 0.12687 0.70896

Table 9. Transition probabilities P (·|Li) with · ∈ {a,c,g,t} and i = 1, · · · , 42. For
each part i, listed on the left column (see table 8), we indicate in bold the highest
transition probability to the elements of the alphabet.
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i of part Li Strings Probability

1 acgc, accg P (a|L1)=0.62162

23 cgag, tccg P (c|L23)=0.82222

9 ctgc, ctgt, gttc, tttc P (g|L9)=0.58923

42 tacc P (t|L42)=0.70896

Table 10. Selected parts, from table 8 and 9, which have the greater transition
probabilities to each element of the alphabet {a,c,g,t}.

Index of part from table 7 Indices of parts - table 8

1 1,4,15,21

16 23,32,37,41

12 9,10

26 42

14 19,24,26

Table 11. Relation between the parts listed in table 7 and 10. On left we display
the parts coming from the model using only 50% of the DNA sequences, on right the
parts coming from the model using all the DNA strains. In the same line, on the
right we list the parts in which are identified the elements into the part on the left.
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5 Conclusion

In this paper we show how to use the measure d introduced in Garćıa and
González-López (2017) [1] to establish a notion of proximity between strains of
Burkitt lymphoma/leukemia, over the alphabet A = {a, c, g, t}, we deal with
15 strains. The state space is formed by strings that are concatenations of size
4 of elements coming from the alphabet, and the DNA sequences are identified
with Markov processes of memory 4. From d it is also possible to propose a
strategy of selection of strains, for the construction of a model that allows to
describe the way the elements of the state space are organized. The measure
d allows to select the nearest strains to build the model whose represents the
majority of the strains. We estimate the transition probability of each string
for any element of the alphabet A. By the conception of the model it is possible
to classify the strings into 27 categories, where each category contains strings
with the same transition probability to elements of the alphabet, ie within each
category, the strings are stochastically equivalent. Comparing the model con-
structed from the closest strains to the model with all the strains, we noticed
that the categories practically double. An open question is to be able to quan-
tify with some level of significance the impact of the inclusion of each strain on
the model, as the quantity S increases. An answer in that line would allow to
classify the different possible models, given the 15 strains.
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Abstract. In this paper, it is explored a distance which allows to compare Marko-
vian processes. It is shown the relationship of this distance to the divergence of
Kullback Leibler and revealed its stochastic behavior in terms of the Chi-squared
distribution. The distance allows to decide if there is any discrepancy between two
samples of stochastic processes. When a discrepancy exist, the use of this distance
allows us to find the strings where the discrepancy is manifested. We apply the dis-
tance to written texts of European Portuguese coming from two authors: Vieira-1608
and Garrett-1799. In the application the distance reveals the linguistic configurations
that expose discrepancies between written texts of different genres from the same au-
thor. This type of results could characterize linguistic genres and varieties in the
same language.
Keywords: Distance, Partition Markov Models, Kullback Leibler, Chi-square dis-
tribution, Computational linguistics..

1 Introduction

By comparing several processes it is possible to tackle real problems. In linguis-
tics, for instance, different writing texts of a single language should point out
identical characteristics associated with the language, common to all of them.
A comparison of texts would also be useful to point out linguistic varieties exis-
ting within a language, see Galves et al. (2012) [3]. But process comparison can
also be implemented to processes that operate in parallel, for example in the
industrial field, often there are imposed operational constraints for processes
to exhibit a similar behavior, in order to obtain a standard final material. On
the other hand, the certainty that parallel processes follow the same behavior
facilitates the implementation of maintenance control strategies. For this rea-
son it is relevant to be able to measure the similarity between processes. In
Garćıa and González-López (2015) [6] a criterion d is proposed to achieve this
objective. d is based on the conception of Partition Markov Models formulated
over discrete Markov processes with finite memory and finite alphabets, Garćıa
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and González-López (2017) [5]. When the processes have the same law and the
samples are large enough, it is possible to prove that d converges to 0 almost
surely. In this work we explore other properties of this criterion, in order to
construct a distance in the strict sense of the word. We show the relation that
the distance d has with the divergence of Kullback Leibler and we give a no-
tion about its behavior in terms of the Chi-square distribution. In addition,
we apply this distance to a real problem.

2 Preliminaries

Let (Xt) be a discrete time (order o < ∞) Markov chain on a finite alphabet
A. Let us call S = Ao the state space and denote the string amam+1 . . . an
by anm, where ai ∈ A, m ≤ i ≤ n. For each a ∈ A and s ∈ S, P (a|s) =
Prob(Xt = a|Xt−1

t−M = s). In a given sample xn1 , coming from the stochastic
process, the number of occurrences of s in the sample xn1 is denoted by Nn(s)
and the number of occurrences of s followed by a in the sample xn1 is denoted

by Nn(s, a). In this way Nn(s,a)
Nn(s)

is the estimator of P (a|s).

Definition 1. Consider two Markov chains (X1,t) and (X2,t), of order o, with
finite alphabet A and state space S = Ao. With sample xnk

k,1, for k = 1, 2
respectively. For any s ∈ S,

ds(x
n1
1,1, x

n2
2,1) =

α

(|A| − 1) ln(n1 + n2)

∑
a∈A

{
Nn1(s, a) ln

(
Nn1

(s, a)

Nn1(s)

)
+Nn2

(s, a) ln

(
Nn2

(s, a)

Nn2
(s)

)
−Nn1+n2(s, a) ln

(
Nn1+n2

(s, a)

Nn1+n2(s)

)}
with Nn1+n2

(s, a) = Nn1
(s, a)+Nn2

(s, a), Nn1+n2
(s) = Nn1

(s)+Nn2
(s), where

Nn1
and Nn2

are given as usual, computed from the samples xn1
1,1 and xn2

2,1

respectively. With α a real and positive value.

The most relevant properties of d are listed below. Both properties are conse-
quence of results proved in Garćıa and González-López (2017) [5]:

i. The function ds(x
n1
1,1, x

n2
2,1) is a distance between the Markov chains relative

to the specific string s ∈ S. If (Xi,t), i = 1, 2, 3 are Markov chains under
the assumptions of definition 1, with samples xni

i,1, i = 1, 2, 3 respectively,

ds(x
n1
1,1, x

n2
2,1) ≥ 0 with equality ⇔ Nn1

(s, a)

Nn1
(s)

=
Nn2

(s, a)

Nn2
(s)

∀a ∈ A,

ds(x
n1
1,1, x

n2
2,1) = ds(x

n2
2,1, x

n1
1,1),

ds(x
n1
1,1, x

n2
2,1) ≤ ds(xn1

1,1, x
n3
3,1) + ds(x

n3
3,1, x

n2
2,1).
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ii. Local behavior of processes laws. If the stochastic laws of (X1,t) and (X2,t)
are the same in s, then ds(x

n1
1,1, x

n2
2,1) −→

min(n1,n2)→∞
0.

Otherwise, ds(x
n1
1,1, x

n2
2,1) −→

min(n1,n2)→∞
∞.

In the following result we show the relationship between this distance and
the Kullback-Leibler divergence D(P ||Q), a concept commonly used in the
topic, but that does not constitute a distance. We also show the asymptotic
behavior of the distance. We will use the following notations D(P (·)||Q(·)) =∑
a∈A P (a) ln(P (a)

Q(a) ) and χ2(P (·), Q(·)) =
∑
a∈A

(P (a)−Q(a))2

Q(a) , for two distribu-

tions P and Q defined in the alphabet A, with Q(a) 6= 0, a ∈ A. First, we
will see how the quantity D(P (·)||Q(·)) behaves under certain conditions on P
and Q. Consider the function f(x) = x ln(x), near to x = 1, by the Taylor’s

expansion we have f(x) = (x−1)+ (x−1)2
2 +δ(x)(x−1)2 where δ(x) = − (x−1)

6t2 for
some value t ∈ (x, 1) (Lagrange’s form). We note that when x → 1, δ(x) → 0.
Thus, for two probability distributions P and Q in A,

P (a) ln
(P (a)

Q(a)

)
= Q(a)f

(P (a)

Q(a)

)
= P (a)−Q(a) +

1

2

(P (a)−Q(a))2

Q(a)
+ δ
(P (a)

Q(a)

) (P (a)−Q(a))2

Q(a)
,

for a ∈ A,

D(P (·)||Q(·)) =
1

2
χ2(P (·), Q(·)) +

∑
a∈A

δ
(P (a)

Q(a)

) (P (a)−Q(a))2

Q(a)
(1)

and

D(P (·)||Q(·))
χ2(P (·), Q(·))

=
1

2
+

∑
a∈A δ

(
P (a)
Q(a)

)
(P (a)−Q(a))2

Q(a)

χ2(P (·), Q(·))
. (2)

If P (a)
Q(a) → 1, given ε positive and small enough, |δ

(
P (a)
Q(a)

)
| < ε and∣∣∣∑a∈A δ

(
P (a)
Q(a)

)
(P (a)−Q(a))2

Q(a)

χ2(P (·),Q(·))

∣∣∣ < ε, so D(P (·)||Q(·))
χ2(P (·),Q(·)) →

1
2 .

If one of the probabilities is the empirical distribution, say P̂ (a) = X(a)
k , where

the occurences of a in the sample of size k is denoted by X(a), and the sample

is generated from the law Q, χ2(P̂ (·)||Q(·)) = 1
k

∑
a∈A

(X(a)−kQ(a))2

kQ(a) . Thus,

if we introduce the quantity χ2,k(P̂ (·), Q(·)) =
∑
a∈A

(X(a)−kQ(a))2

kQ(a) , we can

recognize the typical Chi-square statistic. From the equation (1) we obtain

D(P̂ (·)||Q(·)) =
1

2k
χ2,k(P̂ (·), Q(·)) +

∑
a∈A

1

k
δ
( P̂ (a)

Q(a)

) (X(a)− kQ(a))2

kQ(a)
(3)

and when P̂ (a)
Q(a) → 1,

D(P̂ (·)||Q(·))
χ2,k(P̂ (·), Q(·))

→ 1

2k
.
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If we have two samples of sizes k1 and k2 generated from the law W, with

emprirical distribution P̂ (a) = X(a)
k1

and Q̂(a) = Y (a)
k2

respectively. We obtain
(equation (1)),

D(P̂ (·)||Q̂(·)) =
1

k1

∑
a∈A

(W (a)

Q̂(a)

)(1

2
+ δ
( P̂ (a)

Q̂(a)

)) (X(a)− k1W (a))2

k1W (a)
+

1

k2

∑
a∈A

(W (a)

Q̂(a)

)(1

2
+ δ
( P̂ (a)

Q̂(a)

)) (Y (a)− k2W (a))2

k2W (a)
+

∑
a∈A

(
1 + 2δ

( P̂ (a)

Q̂(a)

))
(P̂ (a)−W (a))

(W (a)

Q̂(a)
− 1
)
. (4)

So, when W (a)

Q̂(a)
→ 1 and P̂ (a)

Q̂(a)
→ 1,

D(P̂ (·)||Q̂(·))
1

2k1
χ2,k1(P̂ (·),W (·)) + 1

2k2
χ2,k2(Q̂(·),W (·))

→ 1. (5)

These simple relationships between empirical distributions allows us to deli-
neate the behavior of the distance ds (definition (1)).

Theorem 1. Let (Xk,t) be a Markov chain of order o, with finite alphabet A,
state space S = Ao and xnk

k,1 a sample of the process for k = 1, 2. Consider also

s ∈ S. If D
(
Nnk

(s,·)
Nnk

(s) ‖
Nn1+n2

(s,·)
Nn1+n2

(s)

)
<∞, for k = 1, 2, then

ds(x
n1
1,1, x

n2
2,1) =

α

(|A| − 1) ln(n1 + n2)

∑
k=1,2

Nnk
(s)D

(Nnk
(s, ·)

Nnk
(s)

‖ Nn1+n2
(s, ·)

Nn1+n2
(s)

)
.

When
Nnk

(s,·)/Nnk
(s)

W (·) → 1 for k = 1, 2,

2 ln(n1 + n2)
(|A| − 1)

α
ds(x

n1
1,1, x

n2
2,1) ∼d

∑
k=1,2

χ2,Nnk
(s)
(Nnk

(s, ·)
Nnk

(s)
,W (·)

)
+ χ2,Nn1+n2

(s)
(Nn1+n2

(s, ·)
Nn1+n2(s)

,W (·)
)
,

where ∼d means similarity in distribution.

370



Proof. Note that ln(n1 + n2) (|A|−1)
α ds(x

n1
1,1, x

n2
2,1) is

=
∑
a∈A

{
Nn1

(s, a) ln

(
Nn1(s, a)

Nn1
(s)

)
+Nn2

(s, a) ln

(
Nn2(s, a)

Nn2
(s)

)
−(Nn1

(s, a) +Nn2
(s, a)) ln

(
Nn1+n2

(s, a)

Nn1+n2(s)

)}
.

=
∑
a∈A

{
Nn1(s, a)

(
ln

(
Nn1(s, a)

Nn1
(s)

)
− ln

(
Nn1+n2(s, a)

Nn1+n2
(s)

))}
+

∑
a∈A

{
Nn2

(s, a)
(

ln

(
Nn2

(s, a)

Nn2(s)

)
− ln

(
Nn1+n2

(s, a)

Nn1+n2(s)

))}
=
∑
k=1,2

Nnk
(s)
∑
a∈A

Nnk
(s, a)

Nnk
(s)

ln

(
Nnk

(s, a)

Nnk
(s)

/
Nn1+n2(s, a)

Nn1+n2
(s)

)

=
∑
k=1,2

Nnk
(s)D

(Nnk
(s, ·)

Nnk
(s)

‖ Nn1+n2(s, ·)
Nn1+n2

(s)

)
.

Following the equation (5)∑
k=1,2

Nnk
(s)D

(Nnk
(s, ·)

Nnk
(s)

‖ Nn1+n2
(s, ·)

Nn1+n2(s)

)
∼d

∑
k=1,2

Nnk
(s)

2

{χ2,Nnk
(s)
(
Nnk

(s,·)
Nnk

(s) ,W (·)
)

Nnk
(s)

+
χ2,Nn1+n2 (s)

(
Nn1+n2

(s,·)
Nn1+n2 (s)

,W (·)
)

Nn1+n2
(s)

}
.

Then,

2 ln(n1 + n2)
(|A| − 1)

α
ds(x

n1
1,1, x

n2
2,1) ∼d∑

k=1,2

χ2,Nnk
(s)
(Nnk

(s, ·)
Nnk

(s)
,W (·)

)
+ χ2,Nn1+n2 (s)

(Nn1+n2
(s, ·)

Nn1+n2
(s)

,W (·)
)
.

3 Application to Linguistic Data

Tycho Brahe corpus is an annotated historical corpus, freely accessible at
Galves and Faria (2010) [2]. This corpus uses the chronological criterion of
the author’s birthdate to assign a time for written texts. The subset of wri-
tten texts included in this study, listed in table 3 is composed by six texts
from two authors. Linguistic studies show that the variability observed in di-
fferent written texts of European Portuguese involves, among other aspects,
changes in the proportion of occurrence of the placement of the stress in the
last or in the penultimate syllable of the word and alterations in the use of
monosyllables, with or without stress, see for instance Frota et al. (2012)[1].
For this reason we guide our inspection to the position in the word occupied
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Author Vieira Vieira Vieira
Date 1608 1608 1608
Type dissertation letters sermons

Notation 1608d 1608c 1608s

Author Garrett Garrett Garrett
Date 1799 1799 1799
Type letters narrative theater

Notation 1799c 1799n 1799t

Table 1. The set of the Tycho Brahe corpus.

by the stress and the size of the word (number of syllables). Each written
text was processed with a slightly modified version of the perl-code “silaba”
by Miguel Galves, that can be freely downloaded for academic purposes at
www.ime.usp.br/∼tycho/prosody/vlmc/tools/sil4.pl . The software was
used to extract two components of each orthographic word, denoted by (i, j),
where i is the total number of syllables which compound the word, i = 1, 2, ..., 8
and j indicates the syllable (from left to right) in which is registered the stress
in the word. Where, j = 0 means no stress in the word. The period (final
of sentence) was codified as (0, 0). The alphabet A used here was defined as
exposed in table 3.

Orthographic word code Element in the alphabet A Meaning

(0, 0) 0 final of sentence
(1, 1) 1 monosyllable with stress
(1, 0) 2 monosyllable without stress
(2, 2) 3 dissyllable - stress in the last syllable
(2, 1) 4 dissyllable - stress in the first syllable

(i, i), i ≥ 3 6 oxytone word
(i, i− 1), i ≥ 3 7 paroxytone word
(i, i− 2), i ≥ 3 8 proparoxytone word

Table 2. Definition of the alphabet A.

We can define

dmax = max{ds(xn1
1,1, x

n2
2,1), s ∈ S} (6)

and
smax = arg max{dmax}. (7)

Observe that dmax < ε if and only if ds(x
n1
1,1, x

n2
2,1) < ε,∀s ∈ S. That is, a small

value of dmax indicates the stochastic laws on s are similar for all s ∈ S. In
other words the distributions of the processes are similar.

As seen in definition 1, if the stochastic laws of (X1,t) and (X2,t) are the
same in s, then

ds(x
n1
1,1, x

n2
2,1) −→

min(n1,n2)→∞
0.
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In the same way if the local laws for s are different then,

ds(x
n1
1,1, x

n2
2,1) −→

min(n1,n2)→∞
∞.

We can see that if dmax is large, smax is exactly the string we want to
recognize, as being relevant in terms of discrepancy but all the strings with a
large relative value of d will reveal changes on the local laws of the processes
relative to the string. In this application a value larger than 1 will be considered
significant.

We note that the comparison is made between the different texts of the
same author. The memory o used in this application is equal to 2.

ds(1608c, 1608d) s ds(1608c, 1608s) s ds(1608d, 1608s) s

1.02591 7-6 1.18101 4-7 1.07770 1-7
1.11191 1-6 1.28567 2-3 1.07883 4-4
1.13048 3-6 1.98674 2-7 1.33124 4-7
2.14046 7-2 3.86756 2-4 1.67395 2-4

1.74245 2-7

ds(1799c, 1799t) s ds(1799t, 1799n) s

1.13432 1-7 1.01398 1-7
1.20717 4-4 1.07517 6-2
1.29197 7-0 1.24806 1-2
2.15512 4-2 1.34589 3-2
2.35864 4-7 2.56588 2-4
2.84146 2-7 2.57690 4-7
3.40959 7-2 3.56924 4-2
3.46598 2-4 3.74332 2-7

4.49460 7-2

Table 3. Cases with values of d > 1 :1608c-1608d, 1608c-1608s,1608d-1608s, 1799c-
1799t, 1799t-1799n. In bold the dmax value (see equation (6)) and the smax string
(see equation (7)).

String Meaning

2-4 a monosyllable without stress followed by a dissyllable with stress in the first syllable
2-7 a monosyllable without stress followed by a paroxytone word
7-2 a paroxytone word followed by a monosyllable without stress

Table 4. Meaning of each smax detected by dmax.

Other studies in the area show that the strings 2-4, 7-2 and 2-7 (see tables
3, 4) are volatile configurations of the European Portuguese (from the 16th
century to the 19th century) see Garćıa et al. (2017) [4]. We can see that this
characteristic persists when analyzing the variability of different written texts
of the same author, being that author: Vieira or Garrett.
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a ∈ A smax: 7-2 (2.14046) smax: 2-4 (3.86756) smax: 2-7 (1.74245)
1608c 1608d 1608c 1608s 1608d 1608s

0 0.00000 0.00000 0.02277 0.06825 0.05221 0.11444
1 0.09461 0.09927 0.06624 0.07620 0.05200 0.05488
2 0.20037 0.15025 0.31714 0.35255 0.50989 0.47124
3 0.07616 0.04350 0.04251 0.04473 0.02926 0.03284
4 0.31379 0.29417 0.20402 0.22949 0.16547 0.16809
6 0.03763 0.03986 0.02638 0.02175 0.02337 0.02203
7 0.26082 0.34266 0.31144 0.19307 0.15053 0.12464
8 0.01662 0.03028 0.00949 0.01397 0.01726 0.01183

a ∈ A smax: 2-4 (3.46598) smax: 7-2 (4.49460)
1799c 1799t 1799t 1799n

0 0.05469 0.13364 0.01100 0.00183
1 0.06448 0.10649 0.13265 0.10353
2 0.28798 0.27959 0.34777 0.15735
3 0.04389 0.04200 0.06598 0.05153
4 0.19514 0.24608 0.23505 0.29684
6 0.02971 0.01273 0.02749 0.02863
7 0.30959 0.17522 0.17113 0.32410
8 0.01452 0.00424 0.00893 0.03619

Table 5. Conditional probabilities P (a|smax), ∀a ∈ A computed from each written
text: 1608c, 1608d; 1608c, 1608s; 1608d, 1608s; 1799c, 1799t; 1799t, 1799n.

Table 5 shows the transition probabilities P (a|smax) ∀a ∈ A, for each pair
of compared texts. With this information we can check the differences between
the written texts in relation to the prosodic construction, for example P (2|7−2)
is 0.34777 in the text 1799t (theater) and it goes to 0.15735 in the written text
1799n (narrative) both texts from Garrett. Moreover, the most probable choice
for the second text, since the string 7-2 has been observed is 7 (P (7|7 − 2) =
0.3241).

We can define 3 groups of strings: (i) strings that show discrepancies be-
tween Vieira’s texts but not in the case of Garrett’s texts, (ii) strings that show
discrepancies between Garrett’s texts and not in the case of Vieira’s texts and
strings that show discrepancies between texts for each of these authors. See
the detailed description of each group in table 6.

Values of d greater than 1 have not been detected in the comparison between
the texts: 1799c (letters) and 1799n (narrative). Thus, these texts can be
considered as coming from the same Markovian process.

4 Conclusion

The distance proposed in this paper has a clear relation to the divergence
of Kullback Leibler, we show this in theorem 1. In addition, the adequately
scaled distance has its stochastic behavior described by a sum of Chi-squared
dependent random variables, also seen in the theorem 1. In relation to the
application, note that the distance introduced here makes it possible to decide
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Author String Meaning

Vieira 1-6 a monosyllable with stress
followed by an oxytone word

2-3 a monosyllable without stress followed by
a dissyllable with stress in the last syllable

3-6 a dissyllable with stress in the last syllable
followed by an oxytone word

7-6 a paroxytone word
followed by an oxytone word

Garrett 1-2 a monosyllable with stress followed by
a monosyllable without stress

3-2 a dissyllable with stress in the last syllable
followed by a monosyllable without stress

4-2 a dissyllable with stress in the first syllable
followed by a monosyllable without stress

6-2 an oxytone word followed by
a monosyllable without stress

7-0 a paroxytone word
followed by final of sentence

Both 1-7 a monosyllable with stress followed by
a paroxytone word

4-4 a dissyllable with stress in the first syllable followed
by a dissyllable with stress in the first syllable

4-7 a dissyllable with stress in the first syllable
followed by a paroxytone word

Table 6. Strings (see table 3) and meaning of the linguistic compositions that cha-
racterize the variability between the texts of the same author. We also list the strings
(with d > 1) that are common among the authors, the constructions listed in table 4
are excluded.

whether two Markovian stochastic processes follow the same law or not. And
it also allows to identify discrepancies pointing out the strings responsible for
them.
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Abstract. Multiple-choice questions are common in Israeli institutions of higher 

education. They can be checked and graded automatically using artificial intelligence 
methods so that the answer sheets are aligned and segmented automatically into the 

relevant regions, and then the answers marked by the students are read. In the next step 

the grades can be easily calculated by comparing the marked data with the correct 

answers. To evaluate the efficiency of the exam in addition to the basic statistical 
analysis of the grades, we propose efficiency measures for each question as well as for 

the whole exam. These efficiency measures attempt to answer the following questions: 

how many of the “strong” students have answered a particular question correctly and 

how many of the “weak” students have failed in a particular question. A question is 
considered efficient if most “strong” students succeed in it while most “weak” ones fail. 

In a similar fashion, an exam questionnaire is considered efficient if the majority of its 

questions are efficient. Our measures can be used both for multiple-choice and numeric 

answers. We have performed the proposed statistical analysis on the grades of a number 
of real life examinations and our conclusion is that the proposed analysis and efficiency 

measures are beneficial for the purpose of estimating the quality of the exam and 

discovering the inefficient questions: the ones that  fail to separate the “strong” and the 

“weak” students. 

Keywords: Efficiency evaluation, Multiple-choice questions, Statistical analysis of 

performance, Academic exams 
 

1 Introduction 

 
Multiple-choice questions are a well-known method of examination often used 

in academic institutions of higher education (see state of the art at Wood [1]). 

They are easy to check and can even be graded automatically using scanners or 

camera-based systems that utilize image processing and computer vision 

techniques (Kosolapov et al. [2], Gershikov and Kosolapov [3] and [4]). Most of 

the automatic systems use specially tailored optical mark recognition (OMR) 

techniques, which are much faster and more reliable than general purpose 

optical character recognition (OCR) techniques (Bergeron [5]). The use of 

machine vision methods for applications, where visual information has to be 

translated to quantitative data, has accelerated in recent years due to 

technological advances in the areas of mobile devices and digital photography. 
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Automatic checking of exams also has the advantage of easy statistical analysis 

of the students’ performance in the exam at the global level as well as at the 

individual question level. This is because during the grading process, all the 

necessary data for such analysis has already been collected. 

 

Once the grades have been derived, the grades statistics can be analyzed by a 

number of well-known statistical methods: classical test theory, factor analysis, 

cluster analysis, item response theory, and model analysis (Ding and Beichner 

[6]). Additionally, after the grades have been derived and analyzed, it is  

important to compare the performance of the group of students in this particular 

test or quiz to other groups of students or past examinations and determine the 

level of knowledge of the students versus the level of knowledge required by the 

exam. Clearly, a high difficulty level of the questions or a low knowledge level 

of the examined students may result in the same low performance in the exam. 

The opposite case is also true: high performance of the examinees due to an 

easy exam or excellent knowledge of the exam subject demonstrated by the 

students. To identify these cases we suggest a different kind of mathematical 

analysis in addition to the regular statistical analysis of the grades by calculating 

the average, the standard deviation, the median, the histogram of the grades, the 

passing/failing percent of students, and other similar values.  

 

Our idea is to use efficiency measures for each question. One of these efficiency 

measures attempts to answer the following question: how many of the “strong” 

students answered a particular question correctly. Another measure attempts to 

evaluate the performance of the “weak” students: how many of them failed in a 

particular question. A question is considered efficient if most “strong” students 

succeed in it while most “weak” ones fail. In a similar fashion, an exam 

questionnaire is considered efficient if the majority of its questions are efficient. 

In the next section we present our efficiency measures. For best performance, 

we believe these measures have to be calculated iteratively. 

 

2 Exam Efficiency Evaluation 
 

2.1 Efficiency Measures and Efficiency Weighted Grades 
 

Assume that the exams were checked and graded using the regular method of 

point allocation to the different questions without any other weighting. We first 

define 
,033 iEff Gd , the initial “good” efficiency of an exam question number i , 

as the ratio between the number of “strong” students that answered this question 

correctly i

GdN  and the number of “strong” students in the whole exam GdN . 

The “strong” students are defined as those in the top 33% of the final grades. 

Thus 
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In a similar fashion, we define 
,033 iEff Bd , the initial “bad” efficiency of an 

exam question number i , as the ratio between the number of “weak” students 

that answered this question incorrectly
i

BdN  and the number of “weak” students 

in the whole exam BdN . The “weak” students are defined as those in the 

bottom 33% of the final grades. Thus 

 

 

 

 

We can now define the efficiency of question i  as either the minimum of the 

two efficiencies: 

 

 

 

or as the average of the two efficiencies: 

 

 

 

We prefer the second choice as the first option is much more demanding for a 

question to be considered efficient. This means that the minimum option is more 

suitable for readers who prefer more of a challenge. 

 

It is reasonable to average the individual question grades by the efficiencies of 

Equations (3) or (4) so that an efficient question contributes more to the 

resulting grade than an inefficient one. We now define the efficiency weighted 

grade of each student as: 

 

 

 

Here, 
QN  is the number of questions in the exam and 

iGrade  is the grade of an 

individual examinee of question number i.  

 

2.2 Iterative Execution 

 
To improve the performance of our efficiency measures, we suggest repeating 

the process described above, using the following steps in iteration k   

 1,2,3,...k   

1. Divide the students into three classes: the “strong” students, the “weak” 

students, and the average ones, where the “strong” ones are the students in 

 ,033 . 2
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N
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the top 33% of the weighted grades kWGrades  and the “weak” ones are 

the students in the bottom 33% of the weighted grades kWGrades .  

2. Calculate the efficiencies 
,33 i kEff Gd  and 

,33 i kEff Bd  for question 

number i using the classes derived in the previous stage and Equations (1) 

and (2). The number of students in the “strong” and “weak” classes are 

substituted for i

GdN  and i

BdN , respectively. 

3. Calculate the question efficiencies 
,33i kEff  using Equations (3) or (4). 

4. Calculate the weighted grades 
kWGrades  using Equation (5). 

Repeat the process until the maximal number of iterations is reached (for 

example, 50) or the efficiencies converge subject to a certain stop criterion, for 

example, 

 

 

 
and         

                        , , 1

1

1
| 33 33 | . 7

QN

i k i k

iQ

Eff Bd Eff Bd TH
N





   

TH here is a small threshold, e. g., 0.01. 
Finally, the exam efficiency score is calculated as 

 

 

 

where lastk  is the last iteration of the algorithm.  

 

2.2  Post-Processing 
 

The weighted grades klastWGrades  can be adjusted to have a distribution on 

the same scale as the one of the non-weighted grades, given by 

1

QN

i

i

Grades Grade


 . There are several options for such an adjustment. Only 

one of these options should be used. 

1. Adjust the weighted grades to have the desired median value 

GradesMedian , that can be chosen to be the same as for the non- 

weighted grades or any other value; e.g., 50 for grades on the scale of 0-

100. This step is done simply by dividing 
klastWGrades  by their current 

median, multiplying it by GradesMedian , and then rounding: 

 , , 1

1

1
| 33 33 | 6

QN

i k i k

iQ

Eff Gd Eff Gd TH
N
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1
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An additional step of setting grades above the maximal possible grade (e.g., 

100) to that maximal value should be added. 

2. Adjust the weighted grades to have the desired maximal value 

GradesMax , which can be chosen to be the same as for non-weighted 

grades or another value; e.g., 100. This step is done in a similar fashion to 

the one above. No additional steps are required here if GradesMax is 

chosen reasonably. 

3. Adjust the weighted grades to be in the same scale as the non-weighted 

grades; e.g., 0-100, by scaling them using the final question efficiencies 

,33i klastEff . The maximal possible weighted grade that the student can 

achieve is 

 

 

 

where iPoints  is the number of points allocated to question number i . 

Thus the scaling is done simply by the following formula: 

     . 11new klast
klast

WGrades GradesMax
WGrades round

WGradesMax

 
  

 
 

Here, GradesMax  is usually chosen to be the maximal value of the regular 

non-weighted grades; e.g., 100. 

 

In this work we prefer the third option for post-processing the grades. 

 

3 Real-Life Experiments and Results 
 

We applied the algorithms described in the previous section to a number of real 

life examinations performed in an electrical engineering course in an academic 

college. The results for one of the exams are given in Fig. 1. The exam consisted 

of ten multiple-choice questions with five possible answers for each. We label 

this exam as “Exam1”. When analyzing the results, the efficiencies were 

calculated using the average of the “good” and “bad” efficiency values, as given 

in Equation (4). As can be seen in Fig. 1, the efficiencies range from as low as 

0.08 to as high as 0.94 before averaging, and the range is 0.5 to 0.76 after 

averaging. Also, there is no significant correlation between the success rate in a 

certain question and its efficiency score except for the radical cases of a very 

high success rate (close to 100%) or a very low one (close to 0%). We consider 

the success rate to be a poor criterion to measure efficiency since it can be the 

same for questions where the “strong” students succeeded and the “weak” ones 

failed and for questions with the opposite results. 

 

 ,

1

33 · , 10
QN

i klast i

i

WGradesMax Eff Points




381



Based on both good and bad efficiencies we can classify the questions into 

categories as shown in Table 1. There are 16 categories, similar to the four 

shown in the table. Another four categories of inefficient questions, which we 

find interesting, are given in Table 2 and allow the definition of very easy and 

very hard questions differently than just based on the success rate. The proposed 

efficiencies allow the comparison of two questions with exactly the same 

success rate, but different performance of “strong” and “weak” students.  

 

 

 
Fig. 1. Results for Exam1: success rates and efficiencies for ten multiple-choice 

questions. Exam efficiency is 0.62. 

 

Table 1. Question categories based on good and bad efficiencies. 
 

Criterion “Strong” 

students 

category 

“Weak” 

students 

category 

Efficiency 

Category 

0.25 33 0.5iEff Gd   and 

0.25 33 0.5iEff Bd   

Inefficient 

question 

Inefficient 

question 

Inefficient 

33 0.25iEff Gd   and 

33 0.25iEff Bd   

Highly 

inefficient 

question 

Highly 

inefficient 

question 

Highly 

inefficient 

0.5 33 0.75iEff Gd   and 

0.5 33 0.75iEff Bd   

Normal 

efficiency 

question 

Normal 

efficiency 

question 

Efficient 

0.75 33 iEff Gd  and 

0.75 33 iEff Bd  

Highly 

inefficient 

question 

Highly 

inefficient 

question 

Highly 

efficient 
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We can now define an efficient exam:  

 The majority of questions were efficient. 

 There were no questions with average efficiency below 0.5.  

 

The results for another exam, labeled Exam2, are shown in Fig. 2. Here, the 

efficiencies range from 0.15 to 1 before averaging and from 0.57 to 0.87 after 

averaging for the 12 available multiple-choice questions. The exam scored  
 

 

Table 2. Special question categories based on good and bad efficiencies. 
 

Criterion Category 

0.75 33 iEff Gd  and 33 0.5iEff Bd   Easy question 

33 0.5iEff Gd   and 0.75 33 iEff Bd  Hard question 

0.75 33 iEff Gd  and 33 0.25iEff Bd   Primitive (very easy) 

question 

33 0.25iEff Gd   and 0.75 33 iEff Bd  Challenging (very hard) 

question 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Results for Exam2: success rates and efficiencies for ten multiple-choice 

questions. Exam efficiency is 0.71. 

 

higher on the total efficiency scale, with 0.71 compared to just 0.62 for Exam1. 

Based on the categories in Table 1 and Table 2, we can classify questions 2, 9,  

and 10 as highly efficient, questions 3, 6, 8, and 12 as efficient, questions 1, 5, 

and 11 as easy (which is also supported by the success rate), question 4 as  hard 

(despite the 51% success rate) and question 7 as challenging.  There were no 

inefficient questions in Exam2, as defined in Table 1.  

There were no primitive questions as well. This is supported also by the overall, 

relatively high, average efficiency. In Exam1, on the other hand, there was one 

primitive question (number 6), two challenging questions (number 4 and 5), an 

easy question (number 10) and one question close to being inefficient (number 
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2). Checking our criterion for efficiency of the whole exam, we can see that 

Exam2 is efficient, while Exam1 is marginally efficient. 

 

Graphs of the non-weighted grades in ascending order and the corresponding 

adjusted weighted grades are shown in Fig. 3. The weighted grades were post-

processed using the third method in Section 2.2. The grades change when using 

weighting to a small extent, but enough to see different weighted grades for 

students who answered the same number of questions correctly.  

 

 
 

Fig. 3. Comparison of the non-weighted grades (plotted in ascending order) and 

the corresponding adjusted weighted grades for Exam2. 
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Fig. 4. Histograms of the non-weighted and adjusted weighted grades for 

Exam2. The average was 50.98 and the standard deviation was 18 for the 

weighted grades, while the average was 51.37 and the standard deviation was 17 

for the non-weighted grades. The median was 50 in both cases. 

 

A comparison of the histograms of the weighted and non-weighted grades, 

adjusted for efficiency, is given in Fig. 4 for Exam2. The average and median of 

the grades remain practically the same in both cases: with an average of around 

51 and a median of 50 for grades on the scale of 0-100. The weighted grades 

become less discrete, meaning the differences between adjacent grades on the 

grade scale are smaller, allowing differentiation between two examinees that 

replied the same number of questions, but one of whom succeeded in questions 

that were more difficult for the group of examined students. This student will 

get a higher weighted grade than the other one by a few points, allowing the 

examiner to tell them apart (whether it will affect their actual final grades or 

not). 

 

Conclusions 

In this work we use statistical analysis of exam grades to evaluate their 

efficiency. The efficiency measures are proposed at both the individual question 

level and the exam level. One of these efficiency measures attempts to answer 

the following question: how many of the “strong” students have answered a 

particular question correctly. Another measure attempts to evaluate the 
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performance of the “weak” students: how many of them have failed in a 

particular question. A question is considered efficient if most “strong” students 

succeed in it while most “weak” ones fail. In a similar fashion, an exam 

questionnaire is considered efficient if the majority of its questions are efficient. 

Our measures can be used both for multiple-choice and numeric answers (where 

points are granted if the student writes the expected numeric value or one close 

to it).  

 

We also propose a different method to grade the exams using weighted 

averaging using the question efficiencies as weight coefficients. This method 

has the benefit of differentiating between the students that successfully solve 

more difficult questions and those that solve the easier ones even when the non-

weighted grade is the same. 

 

We performed the proposed statistical analysis on the grades for a number of 

real life examinations and have presented and discussed the results. Our 

conclusion is that the proposed analysis and efficiency measures are beneficial 

for the purpose of estimating the quality of the exam and locating its weakest 

links: the questions that fail to differentiate between the “strong” and the 

“weak” students. 
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Abstract. Topic detection is usually considered as a decision process implemented
in some relevant context, for example categorization by cluster extraction. In this
case, clusters correspond to topics that should be identified. Density-based clustering,
for example, uses only a density level ε and a lower bound for the number of points
in a cluster. As the density level is hard to be estimated, a stochastic process, called
the DBSCAN-Martingale, is constructed for the combination of several outputs of
DBSCAN for various randomly selected values of ε in a predefined closed interval
[0, εmax] from the uniform distribution. We have observed that most clusters are
extracted in the interval [0, εmax/2], and moreover in the interval [εmax/2, εmax] the
DBSCAN-Martingale stochastic process is less innovative, i.e. extracts only a few
or no clusters. We found that non-symmetric skewed distributions are useful for the
generation of density levels for faster cluster extraction, compared to the uniform
distribution. Experiments on real datasets show that the average innovation time
of the DBSCAN-Martingale stochastic process is reduced about 25% when skewed
distributions are employed, so less time is needed to extract all clusters.
Keywords: DBSCAN-Martingale, Time Operator, Skewed distributions, Internal
Age, Density-based Clustering, Innovation process.

1 Introduction

Journalists and media monitoring companies need to quickly detect articles
relevant to a certain topic and to manage large collections of articles. Given a
collection of articles the estimation of the correct number of topics is a chal-
lenging task, due to the fact that there are articles that do not belong to any of
the topics. We have presented an estimation on the number of clusters (topics)
using a Martingale process, namely the DBSCAN-Martingale [1]. The DB-
SCAN [2] algorithm is repeatedly applied using a random density parameter
ε, while the lower bound for the number of clusters minPts is kept constant.
The generated stochastic process progressively estimates the number of clus-
ters in any dataset but has been introduced in the context of text clustering to
estimate the number of topics. The final number of clusters is provided by a
majority vote among several realizations of the DBSCAN-Martingale process.
Similarly, the DBSCAN-Martingale has also been applied in the context of im-
age retrieval and image clustering [3] in the estimation of the number of visual
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words in a set of visual descriptors, showing the wide applicability of this novel
clustering approach. In all cases, the processing time is a critical aspect and
needs to be minimized as much as possible.

Towards this direction, we examine whether skewed distributions are able
to extract all clusters faster compared to the uniform distribution in the se-
lection of the density level ε. The time needed to extract all clusters is the
number of iterations, using several random choices of the density level ε in a
pre-defined interval [0, εmax]. However, not all iterations of DBSCAN are inno-
vative, i.e. they do not extract the same number of clusters or some iterations
do not extract any clusters. The innovation probabilities at any stage of a
stochastic process have been introduced in [4] and have been demonstrated in
the non-stationary random walks modeling stock market prices [5] and in the
fluctuations of the US economy [6], through the construction of the associated
Time Operator. The Time Operator has been introduced in the context of
stochastic processes [7–9], quantifying the distribution of innovations in the
considered (clock) time domain. We shall examine whether the innovations of
the DBSCAN-Martingale are distributed in a symmetric way or not, in order
to minimize the required time stages T needed to extract all clusters (topics).

2 Density-based clustering

DBSCAN [2] provides as output a clustering vector C with values the cluster
IDs C[k] of each point k = 1, 2, . . . , n, assigning each item k to a cluster. In case
the k-th item is marked as noise, then: C[k] = 0. The parameters of DBSCAN
are, first, a density level ε and, second, a lower bound for the number of clusters
in a dataset minPts. The parameter minPts is usually predefined based on
the size of the expected clusters, but the density level ε is hard to be estimated
and, if so, then the algorithm is not able to output all clusters using one unique
density level, as shown, for example, in Fig. 1, where there are 10 clusters, but
not of the same density level.

The OPTICS diagram [10] has been used to visualize the cluster structure,
where each dent represents a cluster. Moreover, OPTICS is used to observe
the density level at which the desired clusters are extracted. The OPTICS plot
for the dataset of Fig. 1 is presented in Fig. 2.

The parameter minPts is a pre-defined fixed value, approximately equal to
10, as initially proposed in [10]. For each density level ε, the output of DBSCAN
is one clustering vector and is denoted by CDBSCAN(ε). Small values of ε result
to CDBSCAN(ε) = 0, where 0 is a vector of zeros, because all points are marked
as noise. However, large values of ε, result to CDBSCAN(ε) = 1, where 1 is
a vector of ones, since all points are reachable from any other point, hence,
all points are assigned to the same cluster. A smart selection of the density
level cannot ensure correct estimation in the number of clusters, with a strong
impact to the performance of a news clustering approach [1], using for example
Latent Dirichlet Allocation [11] to assign news articles to topics.

The estimated number of clusters in the illustrative dataset of Fig. 1 is
presented in Fig. 3, where we observe that 10 clusters are correctly estimated
by the majority of 1000 DBSCAN-Martingale realizations.
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Fig. 1. A dataset with 10 clusters

3 The DBSCAN-Martingale and Time Operator

Initially, a random sample of uniformly distributed random numbers εt, t =
1, 2, . . . , T in [0, εmax] is generated by the DBSCAN-Martingale. The sample
of εt, t = 1, 2, . . . , T is sorted in increasing order and for each density level εt a
clustering vector is provided by DBSCAN, denoted by CDBSCAN(εt).

In the beginning of the DBSCAN-Martingale process, there are no clus-
ters detected, i.e. C(0) = 0. We denote by Ft the σ-algebra generated
by {CDBSCAN(ε1), CDBSCAN(ε2), . . . , CDBSCAN(εt)} and let F0 be the triv-
ial σ-algebra {Ω, ∅} at stage t = 0. At stage t = 1 all clusters are kept:
C(1) := CDBSCAN(ε1), extracted at lowest density level ε1. At stage, t = 2,
some of the detected clusters by CDBSCAN(ε2) are new and some of them have
also been extracted at stage t = 1. DBSCAN-Martingale keeps only the newly
detected clusters of the second stage, t = 2, by taking only groups of points of
the same cluster ID with size greater than minPts:

C(t)[j] :=

{
0 if point j belongs to a previously extracted cluster

CDBSCAN(εt)[j] otherwise
(1)

where C(1) = CDBSCAN(ε1). Each vector of Eq. (1) has only the newly ex-
tracted clusters and all other points are marked as noise (zero cluster ID).
The cluster IDs of C(t) are relabeled, starting from 1 + maxj C

(t−1)[j] to
r+ maxj C

(t−1)[j], assuming that r clusters have been extracted up to stage t.
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Fig. 2. OPTICS reachability distance plot for the dataset of Fig. 1

The Hilbert space Ht at stage t, is successively constructed by the ranges of
the conditional expectations Et = E[.|Ft] up to stage t, t = 1, 2, . . . , T , where
the σ-algebras Ft, t = 1, 2, . . . , T are generated by the vectors
{CDBSCAN(ε1), CDBSCAN(ε2), . . . , CDBSCAN(εt)}. Our knowledge about the fi-
nal clustering vector C up to stage t is restricted to EtC. Moreover, the pro-
jections onto the innovation spaces Nt are given by:

PtC = E[C|Ft]	 E[C|Ft−1] = (Et 	 Et−1)C = C(t) (2)

and the final clustering vector C lives in the space of fluctuations H = N1 ⊕
N2 ⊕ · · ·NT :

C = C(1) ⊕ C(2) ⊕ . . .⊕ C(T ) (3)

Each projection EtC = E[C|Ft], t = 1, 2, . . . , T is our “best prediction”
about the next (t + 1) outcome of the clustering vector C which needs to be
determined:

EtC = E[C|Ft] = C(1) ⊕ C(2) ⊕ . . .⊕ C(t) (4)

Finally, at stage t = T , we have gained all available knowledge about the
vector C, i.e. C = E[C|CDBSCAN(ε1), CDBSCAN(ε2), . . . , CDBSCAN(εT )] and
all available clusters have been extracted.

The self-adjoint operator with spectral projections the conditional expecta-
tions Et on the space of fluctuations H is the Time Operator of the stochastic
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Fig. 3. 1000 realizations of the DBSCAN-Martingale in the dataset of Fig. 1

process Xt, t = 1, 2, . . .:

T =

∞∑
t=1

t(Et 	 Et−1) (5)

The Time Operator, as defined in Eq. (5), acts on the clustering vector C
in H, defining also the distribution of innovations:

pt = Prob{C ∈ Nt} =
‖PtC‖2

‖C − E[C]‖2
=
‖C(t)‖2

‖C‖2
(6)

where E[C] = 0 because at the beginning of the process the clustering vector C
is a vector of zeros and there are no expected clusters without any application
of the DBSCAN algorithm.

The distribution of innovations has been assumed to be symmetric in [1],
since the random sample of density levels εt, t = 1, 2, . . . , T in [0, εmax] has
been generated from the uniform distribution. In contrast, we propose the
generation of the random sample in an alternative way, having statistically
significant skewness.
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4 Generation of skewed samples of density levels

Motivated by the generation of random samples from the exponential distribu-
tion [12], through the transformation

X ← − lnU

λ

where U is a random variable uniformly distributed in [0,1], we propose the
following generation of a random sample of density levels as follows:

1. Generate a sample of size T from the uniform distribution in [0,1]:

ε1, ε2, . . . , εT

2. Transform the generated values using the natural logarithm:

εt ← − ln εt

3. Normalize in [0,1]:

εt ← εt/max
t
{εt}

4. Expand in [0, εmax] :

εt ← εt ∗ εmax

This generation of the sample is parameter free (no rate parameter λ is
required) and is in fact skewed, since it is a normalized sample of the exponential
distribution, which in general has skewness equal to two. The sample skewness
is usually estimated in three different ways [13], as also highlighted in the
documentation of the library “e1071” of the statistical software R. We selected
the typical definition used in many textbooks:

g1 =
m3

m
3/2
2

(7)

where the sample moments of order r are:

mr =
1

n

n∑
i=1

(xi − µ)r (8)

and xi are the non-missing elements of x, µ their mean value.

In the following, we shall examine whether the proposed steps 1–4 reduce
the innovation time of the DBSCAN-Martingale process, by reducing the stages
T needed to extract all clusters.

https://www.r-project.org/
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5 Experiments

In the experiments we compare the proposed method with the result based
on the uniform generation of density levels ε. The datasets we have used for
comparison are four synthetic datasets with points in the 2-dimensional plane
that contain 5,10, 15 and 20 clusters, with sizes 500, 1000, 1500 and 2000
points, respectively. We also downloaded the news articles available in the
datasets WikiRef150, WikiRef186 and WikiRef220, containing, topics such as
Paris attacks November 2015, Premier League, Malaysia Airlines Flight 370,
Samsung Galaxy S5 and Michelle Obama (5 topics). Additional information is
provided in the online dataset description. We used the online implementation
of DBSCAN-Martingale.

From the text documents, numbers and punctuation are removed, as well as
the English stopwords. Words are stemmed using Porter’s algorithm using the
R library “tm”. Words are then tokenized into bi-grams as proposed in [1] and
the parameter minPts is set to 15 and εmax = 2. For the synthetic datasets,
the parameters are set as minPts = 55 and εmax = 0.5. In all datasets, 1000
realizations of the DBSCAN-Martingale process were generated and skewness
is averaged for the sample of generated density levels using Equation (7).

Table 1. Time needed to extract all clusters using the uniform distribution as pro-
posed in [1] and using our proposed skewed sample. In bold we present the minimum
values for the time needed to extract all clusters.

Realizations Uniform distribution Skewed distribution

Dataset Clusters Skewness time needed T Skewness time needed T

Dataset 1 5 0.02 4 1.12 2

Dataset 2 10 -0.01 4 0.99 2

Dataset 3 15 0.00 3 1.02 2

Dataset 4 20 -0.02 3 0.97 2

WikiRef150 3 0.01 3 0.99 3

WikiRef186 4 0.00 4 0.93 3

WikiRef220 5 0.00 4 0.96 4

In Table 1 we observe that the time needed to extract all clusters is remark-
ably (approximately 25%) reduced by our approach. This fact has a strong
impact in the overall estimation of the number of clusters or topics, since the
DBSCAN-Martingale process is generated several times and the final decision
is taken by a majority vote scheme. Apparently, there are cases, such as the
WikiRef150, where the clusters are 3 and both methods extract the clusters
using the same time.

http://mklab.iti.gr/project/web-news-article-dataset
https://github.com/MKLab-ITI/topic-detection/blob/master/DBSCAN Martingale.r
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6 Concluding Remarks

We have presented a novel approach to generate the sample of density levels in
the density-based clustering approach of DBSCAN-Martingale. The innovation
time, as also modeled by the associated Time Operator, is reduced when skewed
non-symmetric samples are employed, in all datasets examined. The proposed
approach has been tested in three datasets of news articles and in four general
synthetic datasets with various sizes and numbers of clusters. The skewed
generation of the density levels allows to reduce the time needed to extract all
clusters and therefore, provides faster estimation of the number of clusters. In
the future, we shall examine whether this approach is also applicable to other
clustering tasks in multimedia and social media applications.
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Abstract. The three-way model has been proposed as a development of the original Lee-

Carter (LC) model when a three-mode data structure is available. The three-way LC 

model allows enriching the basic LC model by introducing several tools of exploratory 

data analysis. 

Such exploratory tools allow giving a new perspective to the demographic analysis 

supporting the analytical results with a geometrical interpretation and a graphical 

representation. 

From a methodological point of view, there are several issues to deal with when focusing 

on such kind of data. Specially, in presence of the three-way data structure, several 

choices on data pre-treatment could affect the whole data modelling. 

The first step of a three-way mortality data investigation consists in exploring the 

different source of variations and highlighting the significant ones. 

We will consider the three-way LC model investigated through a three-way analysis of 

variance with fixed effects, where each cell is given by the mortality rate in a given year 

of a specific age-group for a country.  

Firstly, we consider the variability attached to each of the three ways main effects: age, 

years and countries. Then, we consider the variability induced by the interactions 

between each pair of the three ways. Finally, the three-way interaction could give 

information on which country have a specific trend (along years) in each age-group. 

This kind of analysis is useful to assess the source of variation in the raw mortality data, 

before to extract rank-one components by the LC-model.  

Keywords: Anova, Lee-Carter Model, Three-way principal component analysis, Human 

Mortality Database. 
 

 

1  Introduction 
 

In the last few years, the actuarial literature focused on models for detecting 

multiple population trends ([9], [9 b], [17], [20], etc.). In particular, an 

increasing interest was revealed about “connected” population dynamics 

categorized by similar socio-economic conditions and by geographical 

proximity. Investigating long-run equilibrium relationships might provide 

valuable information about the factors driving changes in mortality, in particular 

across ages and across countries. This aspect has contributed to the growth of 

the interest in studying cross-country longevity common trends. For this reason, 

we observed a development of country and age-based longevity risk models 

([13], [15], [17], [20]). 
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In 2005, Li and Lee demonstrated the improvement of the mortality projections 

for individual countries by taking into account the patterns in a larger group 

[15]. Using the data downloaded from the Human Mortality Database, they 

applied the Lee-Carter model to a group of populations allowing each its own 

age pattern and level of mortality, but imposing shared rates of change by age. 

The augmented common factor LC method they derived, aimed to model and 

forecast mortality for a group of populations in a coherent way, taking 

advantage of commonalities in their historical experience and age patterns, 

while acknowledging their individual differences in levels, age patterns, and 

trends. In other words, Li and Lee proposed to model a single population in 

reference to another coherent population. Several other models followed the Li 

and Lee idea; the literature refer to these models as multi-population models or 

coherent mortality models. These studies suggest dependence across multiple 

populations and common long run relationships between countries (for instance 

see [13]). To handle the joint development across different populations of 

mortality rates [9] propose a new framework to introduce cross sectional 

dependence for adjacent age groups, across countries and serial/time 

dependence. According to [23], studying mortality experience for a group of  

populations with similar mortality behaviors might improve the stability of 

mortality modelling and allow for solving the problem of small population. 

Indeed some authors propose the replication of the data by mixing appropriately 

the mortality data from neighboring countries [18].  

In this contribution, we start from the consideration that populations which are 

sufficiently similar to be grouped together may have experienced different 

mortality histories. On the basis of these findings, we believe that, in presence 

of disaggregated data, we may arrange a three-way data structure. Assessing the 

different sources of variation we may build more robust analysis also producing 

different sub-models for homogenous sub-populations. For instance, if we 

discover that mortality data can be aggregated for homogeneous countries, 

applying different LC-Models to any single cluster will lead more reliable result 

compared to the whole model with higher aggregated data.  

Thus, we consider the three-way LC model [20] investigated through a three-

way analysis of variance with fixed effects, where each cell is given by the 

mortality rate in a given year of a specific age-group for each any countries. In 

other words, we take into account a three-way array, given by the mortality rates 

for age, years and countries. In presence of these data, there are several choices 

on data pre-treatment that will affect the whole data modelling. Generally 

speaking, the advantage of introducing a third way in the analysis of a 

traditional years per age-class mortality data is much more clear if we can 

hypothesize that the decomposition along the third way brings information.  

The paper is organized as follows: Section 2 illustrates the three-way LC-model. 

In Section 3 we present some pre-treatment steps of our strategy. In Section 4 

we discuss the three-way LC model through an empirical case study. 
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2 The three-way LC-model 
 

In Russolillo et.al 2011, we proposed a natural extension of the LC model to a 

three-way, three mode, data structure. It allows to enrich the basic LC model by 

introducing a third mode in the analysis. For instance, we proposed to consider 

the death rates aggregated for time, age-group and Country. Our goal is showing 

the capability of the 3W-LC model to deal with different sub-populations. For 

this reason, we specify the 3W-LC model to consider different criteria. In this 

way we would like to address the analyst to the proper use and the correct 

interpretation of the three way analysis in order to face some subjective choices 

implicit in the model. In this framework we have to defining an analytical  

framework to drive the actuary throughout the different steps of the analysis in 

order to providing a proper interpretation of the model components when the 

data structure deals with Time x Age x Occasion. 

Let us recall the LC Model and the 3-Way LC Model. We can state both 

demographic models referring to the mean centred log-mortality rates: 

 

 ln xt x x t xtm        

 

 

  .ln xtc x c x t c xtcm         

 

where x is the generic age group, t the generic year and c is the third criterion ( 

in our application country). As in the traditional LC model 
x  is the age-

specific parameter independent of time, in the 3W LC model .x c  is the age & 

country death parameter independent of time. x  and t  have the same 

interpretation as in the classical LC model, while c  represents the term 

associated to the third criterion. The final term 
xt  is the error term, assumed to 

be homoschedastic (with mean 0 and variance 
2

 ) and reflects particular age-

specific historical influences not captured by the model. Sometimes the data 

available can be aggregated according to a different way, for example: 

Countries, Ethnic groups, Causes of Death, etc 

In these cases, the singular value decomposition associated to the LC model has 

to be reformulated to take into account the new data structure. 

To solve the decomposition problem in literature are proposed several solutions 

which give rise to different statistical methods (Multiple Factorial Analysis, 

STATIS, Generalized Canonical Analysis, PARAFAC, Tucker’s Methods, etc.). 

Anyway, the natural extension of the SVD in a three way framework is the 

Tucker3 model (Tucker, 1964, 1966; Kroonenberg, P.M., 1983), which we will 

take into account in our contribution. 
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3 Data Pre-Treatment 
 

Our strategy involves some pre-treatment steps. With the Analysis of Variance 

we assess the main sources of variability considering firstly the main effects: 

age, year and country. Moreover, we may consider the variability induced by the 

paired interactions between the three ways. Lastly, the three way interaction 

could give information on which country has a specific trend (along years) in 

each age-group. This kind of analysis is recommended to assess the source of 

variation in the mortality data before extracting rank-one components, useful to 

make mortality projections. It is worthwhile to detect on which mode mortality 

data should be further aggregated for obtaining more homogeneous datasets. In 

presence of a three way data structure, pre-treatment is much more important 

because of several choices that will affect the whole data modelling. The 

advantage of introducing a third way in the analysis of a traditional year per 

age-group mortality data is much more clear if we can hypothesize that the 

decomposition along the third way brings information. 

In this analysis we can distinguish three cases: 

1) the third-way shows homogeneous mortality patterns 

2) the third-way shows heterogeneous mortality patterns 

3) Clustering effects: there are “occasions” with homogeneous trends 

within the same group but showing heterogeneity between two 

different groups 

In the first case, since the mortality data are similar, it is possible to aggregate 

the different mortality experiences.  

On the other hand, a factorial decomposition will provide a single component 

that will explain much of the inherent variability. 

In the second case, any data aggregation is awkward and any solution could lead 

to unreliable results.  

In this case a factorial decomposition will give a poor synthesis on the first 

component. 

The third case is of more interest from our point of view. In this case, we may 

argue that a unique synthesis is not reliable, but several synthesis are possible 

and they can be explored. Moreover, the presence of different patterns should be 

indicated by a significant source of variation along the country way. Indeed, the 

first step of a mortality data investigation should be addressed by exploring the 

different sources of variation and highlighting the significant ones. 
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4 The Procedure at Work 

 

We discuss the three-way LC model through an empirical case study. We make 

use of the mortality data downloaded from the ‘‘Human Mortality Database’’ 

(HMD) (www.mortality.org). The countries included are the following:  

Austria, Sweden, UK, France, Belgium, Netherlands, Switzerland, Portugal, 

Italy, Norway, Spain, Finland, Luxembourg, Ireland, West Germany, East 

Germany, Czech Republic, Denmark. The 18 countries have a common time 

range dating from 1960 to 2006; data are downloaded in age groups ranging 

from 0, 1-4 up to 95-99. The data array is constituted by 18 Countries x 21 Age-

groups x 47 Years. As we can notice in Figures 1 and 2, each Country has its 

own data pattern: 

 

 

 
Fig. 1. Surface representation of the UK mortality data. 

 

 

 
Fig. 2. Some surfaces for different Countries 
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In each Country, we can see how age-groups show different mortality levels: in 

particular, higher levels for extreme years (U-shape) can be highlighted (Fig.2). 

The time series seem linear decreasing along years. In order to assess the source 

of variability in the three modes, we perform a 3-way Analysis of Variance 

(ANOVA) with fixed effects. The results are shown in Table 1: 

  

 
 

Table 1. ANOVA Results 

 

This kind of analysis allows to determine the most important sources of 

variability in the three-way raw data structure (i.e. the log mortality rates).  

It outlines the most significant effects (it has to be specified that we are not 

treating with a random sample, so we do not take into account the theoretical 

probability distribution F, whilst we assess in a descriptive way the size of the 

considered statistical variables). 

From this first analysis it is evident that the age-group is the one that gives raise 

to the most important source of variability. 

Next step is a Cluster Analysis which gives useful insights on how aggregate 

data.  

 

 
Fig. 3. Homogeneous Age-groups according to the general level of mortality across 

Countries 
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Hierarchical Cluster analysis (Ward’s Method) gives useful insights on how to 

aggregate data. We have seen that there are different levels of age-specific 

mortality. In particular, we can distinguish two or three levels: Extreme young 

and old age-groups and adult age-groups. Looking at our data (Fig.4), we decide 

to remove the age-group effect considering the mean centred log-mortality rates 

 

 
Fig. 4. Surface after removing the age-group effect 

 

After removing the mean across age-groups, the source of variability to explore 

is along years, as it can be observed in Table 2.  

 

 
Table 2. ANOVA after Removing the Age-group Effect 

 

We can notice that interaction now exists between years and age-groups (28%); 

Interaction between years and country is not evident, while it is interesting to 

observe the three-way interaction (11.27%). From a graphical point of view, in 

Fig.5 we show the cases of of UK (left) and Italy (right). 
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Fig. 5. Data after removing Age-group Effect 

 
It is evident a decreasing trend along years and the interaction between years 

and age-groups: the slopes of the year trends vary along the age-groups. 

Moreover, some differences occur across countries. In Fig.6, we can notice that 

the age-group effect has been eliminated and the age-group are now very 

similar. 

  

 

 
Fig. 6. Homogeneous Age-groups after removing age-group effect 

 

 

Indeed, by comparing the dendrograms in Fig.6 and in Fig.3, we can see that the 

dissimilarity index on the vertical axis is now ten times smaller than before.  
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We run the Tucker3 analysis with 2x2x2 components which gives a fit of 

87.5%. The results are shown in Table 3.  

 

 Age1xCountry1 Age2xCountry1 Age1xCountry2 Age2xCountry2 

Years1 38.26 0.00 0.01 -4.59 

Years2 -0.01 5.45 0.99 0.65 

Table 3. Tucker3 Analysis - Main Results 

 

The Tucker3 model allows to obtain the scores related to each component for 

each mode. Each entry in the core matrix is used to explain the three-mode 

interaction measures and the percentage of explained variance. For example, 

38.26 suggests that the higher variability is given by the first components. The 

sign specifies the type of interaction among them. 

In particular, we are interested in Tucker3 Scores for Years Mode to detect the 

st
 . The ones related to the first component are shown in Fig.7.   

 

 
Fig. 7. Tucker3 Scores for Years Mode - first component 

 

Fig. 7 shows a synthesis of the 18 countries from which it is possible to derive 

both an aggregate t  or a specific one.  
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Conclusions 

 
In this contribution, we deal with a three-way mortality data investigation in 

order to explore different sources of variations and to highlight the significant 

ones. 

The procedure allows to give a major insight into the data structure, having: 

- Identified the main sources of variability 

- Explored the interaction among the different modes  

In further research, intermediate target will be to study how is it possible to 

compare mortality projections, for homogenous age-group or countries. The 

final aim is to build a software environment to steer the actuary in the pre-

treatment choice.  
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Abstract. In this paper we face the problem of the linear approximation of nonlin-
ear time series models. After the definition of linear process, we distinguish between
linear approximation and linear representation of nonlinear models, shortly giving
some examples that better clarify this distinction. The attention is then given to
the threshold autoregressive models whose linear approximation is discussed starting
from an example (that motivate the contribution) and some theoretical issues.

Keywords: Nonlinear time series, linear approximation, threshold model.

1 Introduction

The complexity of most nonlinear models often leads to evaluate if a linear
representation or a linear approximation can be admitted for this class of mod-
els. In presence of linear representation the aim can be ascribed to the need
of taking advantage (under proper assumptions) of the large and strengthened
literature developed in the linear domain (to cite the main references, Box and
Jenkins [3], Brockwell and Davies [4]) whereas, linear approximations can be
seen as a tool for model selection (or more generally to select candidate models
for the data under analysis), to “filter” the dynamic relationship among vari-
ables such that the “purely” nonlinear component, obtained in output, can be
properly examined.
Before to show the main advantages obtained from the linearization, it is useful
to clarify when a stochastic process {Xt}, with t ∈ Z, is said to be linear.
Let {Xt} a mean zero stationary process and let {et} a sequence of White
Noise, with E[et] = 0 and E[e2t ] = σ2 <∞. From the Wold decomposition, Xt

can be expressed as:

Xt =
∞∑
i=0

ψiet−i +Dt (1)

with ψ0 = 1,
∑∞

i=1 ψ
2
i <∞, E[etDs] = 0, for all s, t ∈ Z, and Dt a deterministic

component.
Starting from the decomposition (1), a zero mean stationary process Xt is said
to be linear if it can be given as:

Xt =
∞∑
i=0

ψiet−i (2)
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with {et} ∼IID(0, σ2)1.
It can be easily shown that the ARMA(p, q) model belongs to the linear class
(some authors identify the linear class with ARMA models) and its widely
known structure is given by:

Xt −
p∑

i=1

φiXt−i = et −
q∑

j=1

θjet−j (3)

where well defined assumptions are given on the parameters φi and θj to guar-
antee the stationarity and invertibility of the model (Box and Jenkins [3]).

Starting from this definition of linear process, the aim of the present paper is
to show how to obtain the “best linear approximation” (in terms of L2 norm) of
a nonlinear process. In particular in Section 2 we further clarify the difference
between linear representation and linear approximation of nonlinear models
and then, in Section 3 we provide new results on the linear approximation of
the Threshold AutoRegressive (TAR) model (Tong [11]). Some examples with
simulated data give evidence of the advantages that can be obtained from the
use of the theoretical issues proposed.

2 Linear representations and linear approximations of
nonlinear models

The linearization of nonlinear processes has been differently intended in the
literature. Ozaki [8] proposes a local linearization of a nonlinear continuous
dynamical system using (under proper requirements) a discrete time autore-
gressive approximation over a sufficiently small time interval ∆t; Francq and
Zaköıan [5] investigate on the properties of the estimators of the parameters of
the so called weak ARMA models when some assumptions, usually given on the
innovations et (Box and Jenkins [3]), do not hold. The estimation procedure
is based on the minimization of the squared deviations about the linear con-
ditional expectation and for this reason the estimated model is seen as weak
linear representation of nonlinear models.

If we want to face organically the linearization problem of the nonlinear
process Yt, we can consider two main approaches: the first considers the lin-
ear representation of the nonlinear model (where the nonlinear structure is
rewritten in alternative linear form, after the introduction of proper assump-
tions); the second approach makes a distinction between the linear (Xt) and
the “purely” nonlinear (Vt) component of the process Yt, such that it can be
decomposed as:

Yt = Xt + Vt. (4)

This decomposition is usually made through linear approximations, often ob-
tained from proper expansions of Yt.
Examples of the first and the second approach have been differently proposed

1Note that is some cases {et} is assumed to be a sequence of uncorrelated Gaussian
random variables and so the independence is guaranteed as well.
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in the literature.
Consider a GARCH(p, q) model (Bollerslev [2]) for the conditional variance
of Yt, it can be shown that this model admits a linear representation. Let
Yt ∼GARCH(p, q):

Yt = htεt

ht = c+

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjht−j , (5)

with εt and i.i.d. sequence with E[εt] = 0 and E[ε2t ] = 1. If we fix ut = ε2t −ht,
model (5) becomes:

ε2t = c+

max{p,q}∑
i=1

(αi + βi)ε
2
t−i + ut −

p∑
j=1

βjut−j

with αi = 0, for i > q and βi = 0, for i > p. In other words ε2t ∼ARMA(max{p, q}, p)
model.
The distinction between the linear and the “purely” nonlinear component,
introduced with the second approach, is traditionally based on the Volterra
series expansion of Yt (among the others Priestley [9], Tong [11]). In more
detail, let f(Yt, Yt−1, Yt−2, . . .) = et, with f(·) an invertible function, then
Yt = g(et, et−1,...) where g(·) is a well behaved nonlinear function that can be
expanded, near the origin 0 = (0, 0, . . .), in Taylor series. Under these condi-
tions Yt can be given as:

Yt = k0 +
∞∑
i=0

kiet−i +
∞∑
i=0

∞∑
j=0

kijet−iet−j +
∞∑
i=0

∞∑
j=0

∞∑
w=0

kijwet−iet−jet−w + . . .

(6)
where k0 = g(0), ki = ∂g

∂et−i
|0, kij = ∂g

∂et−i∂et−j
|0, and so on.

It is clear that when kij = kijw = . . . = 0 the linear approximation of Yt is
obtained.
An example of linear approximation of a nonlinear process can be easily shown
if we consider the bilinear model (Subba Rao [10]):

Yt +

p∑
j=1

ajYt−j =
r∑

j=0

cjεt−j +
m∑
i=1

k∑
i′=1

bii′Xt−iεt−i′ (7)

where the “purely” nonlinear component is given by the last term on the right
of equation (7). If bii′ = 0, for i < i′, the “purely” nonlinear component
(even called superdiagonal bilinear model) is such that its terms are (at least)
uncorrelated and it makes the derivation of the linear approximation more easy.
In the other cases this approximation is more difficult and for this reason has
been investigated using different expansions (Guegan [7]).
The bilinear model (7) is often seen as first example of generalization of the
linear ARMA model in nonlinear domain.
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Another example is given by the threshold autoregressive model (Tong and Lim
[12]):

Yt =
k∑

j=1

(
φ
(j)
0 +

p∑
i=1

φ
(j)
i Yt−i

)
I(Yt−d ∈ Rj) + εt (8)

where k is the number of autoregressive regimes, p is the autoregressive order,
Yt−d is the threshold variable, d is the threshold delay, Rj = [rj−1, rj), for j =

1, . . . , k, such that R =
⋃k

j=1Rj and −∞ = r0 < r1 < . . . < rk−1 < rk = +∞.
When k = 1 the threshold model (8) degenerates to a linear autoregressive
model whereas when k > 1 the linear approximation is not so immediate.
In the next section we present some new results of the linear approximation
of model (8). It is based on the use of an alternative representation of the
threshold model as discussed in the following.

3 Linear approximation of the Threshold Autoregressive
model

Let Yt be a threshold model (8) that, for easy of exposition, is assumed to have

k = 2 regimes and null intercepts (φ
(j)
0 = 0, for j = 1, 2, . . . , k):

Yt =

p∑
i=1

φ
(1)
i Yt−iI(Yt−d ≤ r1) +

p∑
i=1

φ
(2)
i Yt−i[1− I(Yt−d ≤ r1)] + εt. (9)

Model (9) can be alternatively written as:

Yt = Φ1Yt−1I(Yt−d ≤ r1) + Φ2Yt−1[1− I(Yt−d ≤ r1)] + εt,

= Φ2Yt−1 + εt + (Φ1 −Φ2)Yt−1I(Yt−d ≤ r1) (10)

where

Yt =

 Yt
. . .

Yt−p+1


(p×1)

, Φj =

[
φ
(j)
1 . . . φ

(j)
p−1 φ

(j)
p

Ip−1 0

]
(p×p)

, εt =

[
εt
0

]
(p×1)

for j = 1, 2, with I the identity matrix and 0 the null vector.
From equation (10) it seems easy to discriminate the linear and the nonlinear
components of the threshold model: in fact if we use the same approach consid-
ered for model (7), the last term of (10) could represent the “purely” nonlinear
component of the model.
Note that the bilinear and the threshold models have a not negligible difference:
as remarked before, if we consider the “purely” nonlinear component of model
(7) it can be shown that, under proper conditions on the values of i and i′, its
terms are uncorrelated (Granger and Andersen [6]) whereas similar results do
not hold for the “purely” nonlinear component of the threshold model (10). It
implies that the linear approximation cannot be limited to the first two terms
of (10) but it needs a more detailed investigation.
In this regard consider the following example.
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Example 1. Let Yt be a threshold autoregressive model with autoregressive
order p = 2:

Yt =

{
0.75Yt−1 − 0.22Yt−2 + εt Yt−1 ≤ 0

−0.10Yt−1 + 0.79Yt−2 + εt Yt−1 > 0
(11)

with εt ∼ N(0, 1). If we generate T = 1000 artificial data (with burn-in 500)
from model (11), the plots of the autocorrelation function (ACF) and of the
partial autocorrelation function (PACF) are given in Figure 1.
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Fig. 1. ACF and PACF of the artificial data generated from model (11)
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Fig. 2. ACF and PACF of the residuals obtained after fitting an AR(2) model to the
artificial data generated from model (11)
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Following the decomposition in equation (10), it seems that the linear com-
ponent should be an AR(2) structure that, if fitted to the artificial data, does
not catch all the linearity of the generating process, as can be noted if we
evaluate the correlograms of the residuals in Figure 2. ut

A first and näıve linear approximation of the nonlinear process Yt, can be
given defining, for the parameters of the linear model, a set of values obtained
as weighted mean of the parameters of the threshold model, as illustrated in
the following example.

Example 2. Let Yt be a threshold autoregressive model:

Yt =

{
0.12Yt−1 + εt Yt−1 ≤ 0

0.36Yt−1 + εt Yt−1 > 0
(12)

with εt ∼ N(0, 1). We generate T = 1000 artificial data (with burn-in 500)
whose corresponding correlograms are given in Figure 3.
If we further generate T = 1000 artificial data from an autoregressive model
Xt = φXt−1 + εt (with the same innovations of model (12)), where φ is a
weighted mean of the parameters used in model (12), such that φ = 0.12 ∗ λ+
0.36 ∗ (1 − λ), with λ = P [Yt−1 ≤ 0], the correlograms of the simulated data
are given in Figure 4.
From the comparison of Figures 3 and 4 it can be noted that the ACF and
PACF of both series are similar: it gives empirical evidence of the ability of
the autoregressive approximation to catch the linear component of the series Yt
such that the “purely” nonlinear component, Vt, can be properly investigated.
ut
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Fig. 3. ACF and PACF of the artificial data generated from model (12)

The empirical evidence of Example 1 and Example 2 introduces what we
state in the following proposition (whose proof is omitted for brevity):
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Fig. 4. ACF and PACF of the artificial data generated from the linear approximation
of model (12)

Proposition 1. Let Yt be a stationary and ergodic threshold process (9) with
E[Y 2

t ] < ∞. The best linear approximation, in L2 norm, of Yt is given by
Xt ∼ARMA(2p; 2p) model.

Proposition 1 allows to further investigate and to revise the results of Ex-
ample 1.

Example 1 (cont.). Given the artificial data generated in Example 1 and follow-
ing the results of Proposition 1, the best linear approximation of Yt is given by
an ARMA(4,4) model whose ACF of the residuals (that represent the “purely”
nonlinear component) and of the squared residuals are presented in Figure 5.
It can be clearly noticed that, differently from the results in Example 1, the
linear approximation completely catch the linear component, Xt, of the gener-
ating process whereas the squared residuals show the existence of a nonlinear
component, Vt, that can be evaluated. ut

Even the results of Example 2 can be further discussed: it can be noted
that the linear AR(1) structure considered can be seen as the dominant part
of the ARMA(2,2) model that, from Proposition 1, represents the best linear
approximation of the generating process Yt.

Further note that when in decomposition (4) Xt ≡ 0, the process Yt be-
comes “purely” nonlinear and so the autocorrelations of the series cannot be
significantly different from zero, as stated in the following Corollary.

Corollary 1. Given model (9), under the assumptions of Proposition 1, there
exists a threshold process where the linear component is identically null.

It can be empirically illustrated showing that proper combinations of the
parameters of the autoregressive regimes can lead to Xt ≡ 0 in (4).
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Fig. 5. On the left, ACF of the residuals of the ARMA approximation of the data
generated from model (11); on the right, ACF of the squared residuals

Example 3. Let Yt be a threshold autoregressive model:

Yt =

{
0.50Yt−1 + εt Yt−1 ≤ 0

−0.90Yt−1 + εt Yt−1 > 0
(13)

with εt ∼ N(0, 1). In Figure 6, frame (a), the ACF do not show a significant
linear dependence among the data that on the contrary becomes evident if we
consider the ACF of Y 2

t (frame (b)). In fact if we compute the parameter φ as
in Example 2, its value is very near to zero and so the nonlinear structure of
data prevails (it can be clearly appreciated from the correlogram of Y 2

t ). ut

Remark 1. What stated in Corollary 1, and empirically shown in Example 3,
has a main remarkable consequence: the linear approximation of the threshold
model can be seen as a proper reparametrization of the process Yt. In fact,
when the parameters of the autoregressive regimes assume well defined values
of the parametric space (such that the linear component Xt becomes identically
null), the process Yt is “purely” nonlinear.

To conclude, it is interesting to note what distinguishes our results from those
given in Francq and Zaköıan [5]. As said before, they consider the estimation
of a linear ARMA model (3) under “weak” assumptions on the innovations et
and their aim is to show that, under proper conditions, the strong consistency
and asymptotic normality of the estimators still hold.
These results are not negligible: in fact, if applied in nonlinear domain, they
allow to state that if well defined assumptions are verified on the generating
process, the estimated ARMA model is a “weak” linearization of the nonlinear
model. The results can be even applied to the nonlinear generating process (9)
under proper assumptions related to the existence of moments and the geomet-
ric ergodicity (An and Huang [1], Theorem 3.2).
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Fig. 6. Frame (a): ACF of the artificial data, Yt, generated from model (13); Frame
(b): ACF of Y 2

t

A problem that has not been faced in Francq and Zaköıan [5] is the identifi-
cation of the linear approximation that on the contrary has been introduced
in the present paper where, given a threshold autoregressive model, a relation
between the order of the autoregressive regimes and the order of the ARMA
model is stated. Further we have highlighted that the ARMA approximation is
obtained, for this class of models, reparametrizing the threshold process that,
under proper conditions on the values assumed by its autoregressive coefficients,
becomes a “purely” nonlinear process.
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Abstract. In this paper we use a database from a Portuguese bank, with data related to 

the behaviour of customers, to analyse churn, profitability and next-product-to-buy. The 

database includes data from more than 94000 customers, and includes all transactions 
and balances of bank products from those customers for the year 2015. We describe the 

main difficulties found concerning the database, as well as the initial filtering and data 

processing necessary for the analysis. We discuss the definition of churn criteria and the 

results obtained by the application of several techniques for churn prediction and for the 
short-term forecast of future profitability. Finally, we present a model for predicting the 

next product that will be bought by a client. The models show some ability to predict 

churn, but the fact that the data concerns just a year clearly hampers their performance. 

In the case of the forecast of future profitability, the results are also hampered by the 
short timeframe of the data. The models for the next product to buy show a very 

encouraging performance, being able to achieve a good detection ability for some of the 

main products of the bank. 

Keywords: Data Mining, Bank Marketing, Churn, Clustering, Random Forests. 
 
 

1  Introduction 
 

The huge amounts of data that banks currently possess about their 

customers allow them to make better decisions concerning the efforts to obtain 

new customers and the types of marketing campaigns they undertake. Better 

decisions are beneficial to the bank, since they may lead to increased profits, but 

they may also be beneficial to customers, who can now be targeted just by 

campaigns concerning products that may interest them. 

One important piece of information that can sometimes be estimated 

from data in bank databases is the Customer Lifetime Value (CLV). CLV can be 
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understood as the total value that a customer produces during his/her lifetime 

[1]. There are many models for quantifying this value (see, for instance, [2] for a 

review of the most prominent models). Some existing models are based on the 

Recency, Frequency, Monetary framework [3] and Pareto/NBD [4,5] or related 

models [6-7]. As pointed out by Blattberg et al.[8], due to the uncertainty in 

future customer behaviour, as well as in the behaviour of the firm’s competitors 

and of the firm itself, CLV is indeed a random variable and methodologies 

should try to compute an expected CLV. 

CLV prediction in the retail banking sector is especially difficult for a 

number of reasons, including product diversity (which can jeopardize the use of 

RFM based approaches [9]), the existence of both contractual and non-

contractual clients (meaning that some clients are free to leave as soon as they 

want, while others have long-term contracts) and even the difficulty in 

identifying lost customers. Despite these difficulties, several authors have 

addressed the estimation of CLV in retail banks. Glady et al.[10] use a modified 

Pareto/NBD approach to estimate CLV in the retail banking sector. The authors 

show that the dependence between the number of transactions and their 

profitability may be used to increase the accuracy in CLV prediction. Haenlein 

et al.[11] present a model with four different groups of profitability drivers, 

based on a classification and regression tree. Clients are clustered into different 

groups, and a transition matrix is used to consider movements between clusters. 

A CLV model based on RFM and Markov chains is proposed in Mzoughia and 

Limam [12]. Calculating the churn probability for a given client or cluster of 

clients may support the estimation of CLV. Ali and Arıtürk[13] present a 

dynamic churn prediction framework that uses binary classifiers. Customer 

churn prediction is also tackled by He et al.[14], by applying support vector 

machines.  

Another important issue in retail banking is identifying the products 

that a customer is most likely to be willing to purchase, in order to enhance the 

effectiveness of cross-selling strategies or marketing campaigns. This may be 

addressed by Next-Product-To-Buy (NPTB) models, which attempt to predict 

“which product (or products) a customer would be most likely to buy next, 

given what we know so far about the customer.” [15] 

Examples of works analysing NTBD models and cross-selling 

strategies in banking can be found, for example, in [15-17]. Knott et al.[15] 

compare several NTBD models in the context of a retail bank. The authors 

compare the use of different predictor variables, different calibration strategies 

and different methods, including discriminant analysis, multinomial logit, 

logistic regression and neural networks. The authors conclude that the use of 

both demographic data, information concerning the products currently owned 

and customer activity data increases the model accuracy, and that random 

sampling performs better than non-random sampling. Concerning the method, 

the authors do not find large differences, although neural networks seem to 

perform slightly better than the remaining methods, and discriminant analysis 

seems to perform slightly worse. Li et al.[16] use a structural multivariate probit 

model to analyse purchase patterns for bank products. Li et al.[17] use a 
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multivariate probit model and stochastic dynamic programming in order to 

optimize cross-selling campaigns, aiming to offer the right product to the right 

customer at the right time, through the right communication channel. 

In this paper, we address the estimation of future profitability and 

churn probability as initial steps in CLV estimation, and we also aim at 

predicting the next product to be bought by a client. We rely both on 

econometric models and data mining techniques, choosing the one with the best 

predictive ability in the test set, that is, the one that performs better in a set that 

is independent from the one used to estimate the model.  

The paper is organized as follows. After this introduction, we present 

and discuss the database in Section 2. Section 3 addresses the estimation of 

customer profitability, and Section 4 considers the prediction of customer churn. 

Section 5 focuses on next-product-to-buy models, and the conclusions and 

future research are discussed in Section 6.  

 

 

2  Data set 
 

The database used in this work includes data from more than 94000 

customers of a Portuguese retail bank, incorporating all transactions and 

balances of bank products and bank-related activity of those customers in the 

year 2015. The database contains only anonymized data, guaranteeing the 

privacy of the data and preventing the identification of clients. 

Socio-demographic data includes the age, the first digits of the 

postcode (allowing the identification of the region in which the client resides), 

the marital status, the job, the way the client opened the bank account (whether 

in a bank branch, online or in other way) and the day the client opened the 

account. 

 

All bank products are associated with checking accounts, and the 

database also contains the transactions and balances of all products associated 

with the client’s account, as well as the number and value of the products of 

each type owned by the customer. Data is aggregated at the monthly level, 

meaning that balances correspond to the end of the month and transactions 

correspond to the accumulated monthly activity. The bank products include 

different types of mutual funds, insurance products and credit products, as well 

as credit and debit cards, term deposits and stock market investments. 

Additionally, the number of online logins made by the customer to the bank site 

and the number of transactions made online are also available in the database. 

Other important pieces of data are the net profit the bank gained with each 

customer in each month, for different categories of products. The number of 

records concerning transactions, balances and numbers of logins is larger than 

8.5 million. 

The database had to be cleaned, since it contained some obviously 

invalid values (for example, invalid customer ages, including a few negative 

ages). Customers with invalid data were removed from the database. 
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Other pre-processing included aggregations in some categorical 

variables. The initial database included 486 different jobs and, using an official 

taxonomy of jobs for Portugal, we mapped them into a set of just 17 jobs. A 

similar procedure was performed for the marital status: initially, there were 

eleven different values for this variable (including different values for married 

customers, for different types of pre-marital agreements). These original values 

were mapped into a set of five different values. 

 

After this initial pre-processing of the data, relations between different 

variables were analysed, and some expected relations were indeed found. An 

example is the relation between the wealth deposited in the bank and the 

profitability of the client for the bank. Figs. 1 and 2 show this relation, for the 

months of January and December, as well as a trend line. It is clear that 

profitability tends to increase with wealth, as was to be expected. 

 

  
Fig. 1. Relation between customer wealth 

and profitability for the bank in January 

Fig. 2. Relation between customer wealth 

and profitability for the bank in December 

 

Three shortcomings of the database were made evident in a preliminary 

analysis. The first is related to outliers in customer profitability, and it will be 

analysed in Section 3. 

The second shortcoming is that the records that are interpreted as 

different customers may correspond to the same person who chose to open 

different accounts: for example, someone who chose to create an account for 

day-to-day transactions and another for retirement savings (retirement mutual 

funds, stock market investments and the like). Although this may create some 

bias, we do not expect this to happen in many cases, so the impact of such 

possibility will probably be limited. 

Another, more serious, shortcoming is the existence of just one year of 

data, aggregated in monthly values. This makes it difficult to assess the 

medium- and long-term behaviour of the customers, for example to determine 

whether or not a customer is in churn. It also makes it impossible to test 

medium- and long-term forecasts. This shortcoming is expected to cause some 

problems in the estimation of customer profitability and customer churn. 

 

In order to assess the accuracy of prediction models, data was divided 

into two sets. 60% of the observations were used as a training set, to estimate 
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the models. The other 40% of the observations constitutes a test set, used to 

assess the prediction accuracy in data that was not used in the estimations. 

 

3  Short-term forecasting of customer profitability 
 

Profitability from a client in a given month is expected to be strongly 

correlated with the profitability in the previous month. This is clearly shown to 

be the case in Fig. 3, which shows the relation between the profitability in 

January and February. As expected, the points in this graph are very close to the 

straight line y=x, showing that that profitability given by the client in a given 

month is a good forecast of the profitability given by the client in the next 

month. Therefore, we aimed at forecasting the changes in profitability instead of 

the profitability, in order to avoid getting apparently good forecasting results 

just because profitability shows high persistence.  

 

  
Fig. 3. Relation between the profitability 

of the clients in January and February 

Fig. 4. Relation between the profitability of 

the clients in June and July 

 

Fig. 4 shows the relation between the profitability in June and July. 

Once again, the relation is close to the straight line y=x, for the large majority of 

observations, but there are several important outliers, corresponding to 

customers whose profitability shows a visible increase. In fact, in May and July, 

the profitability associated with some customers has an important increase, only 

to show a similar decrease in the following month (June and August, 

respectively). This introduces outliers in the data, harming the ability to predict 

future profitability. According to an analysis of this situation made with bank 

members, this seems to be due to the way the profitability of some (very few) 

products is accounted. New, more realistic ways of considering the profitability 

of these products will be analysed with the bank but, meanwhile, we chose to 

use the existing values, in order to avoid the risk of introducing biases in the 

data.  

Fig. 5 shows a histogram with the monthly values of the profitability. 

We can see that there is a very large number of slightly negative values of the 

monthly profitability. 
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Fig. 5. Histogram with monthly values of customer profitability 

 

 

We started by trying to predict the change in customer profitability 

one-month ahead. We used both socio-demographic data and data from the 

customer activity and balances in the three previous months to estimate the 

change in the customer profitability in the next month. For example, data 

concerning activity, transactions and balances from January, February and 

March is used to estimate the change in profitability between March and April. 

The goodness-of-fit measure that we chose is the Root Mean Square Error 

(RMSE) and we compare the obtained forecast with the naïve forecast that 

assumes that the change in profitability is equal to the average change in the 

training period (termed ModAvg).  

The first types of models to be estimated were linear models. This 

allowed us to get a first idea of the relevance of the different variables for 

explaining the changes in profitability. The non-relevant variables were 

iteratively removed and, in the end, the model presented an adjusted R
2
 of 

0.4593. The performances of the model thus obtained and of the benchmark 

model (ModAvg), both in the training and in the test sets, are summarized in 

Table 1. 

 

Table 1. Performance of the linear model and of the benchmark model 

Model RMSE in the training set RMSE in the test set 

Linear model 12.90 15.21 

ModAvg 17.67 19.72 

 

As can be seen in Table 1, the linear model is better than ModAvg, 

both in the training set and in the test set, and model performance deteriorates in 

the test set. 

In order to give an idea of the impacts of the different variables, we 

show the sign of the coefficients and their statistical significance in Table 2, for 
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some of the most significant variables. Since we are considering some data from 

the three previous months to estimate the change in customer profitability, the 

coefficient signs are presented for each of these months (one, two and three 

months before the change in profitability we are trying to forecast). 

 

Table 2. Sign and significance of some of the most significant variables of the 

linear model 
 Sign and significance 

 One month before Two months before Three months before 

Online logins +*** +* - 

Number of online 

transactions 

+*** -*** -*** 

Credit card transactions +*** -*** +*** 

Number of different 

mutual funds in the 

account 

+*** + -*** 

Value of stock market 

holdings 

-*** +*** + 

Number of stock 

market transactions 

-*** +** -*** 

Total wealth  +*** -*** -*** 

Total value of loans +*** + -*** 

Value allocated to term 
deposits in the month 

+*** +*** - 

Value removed from 
term deposits in the 

month 

-*** -*** -*** 

Amount of wages 

deposited in the bank 

+*** -*** +** 

Profitability from 

checking account 

-*** +*** + 

Profitability from term 

deposits 

-*** +*** + 

Profitability from home 

equity loans 

-*** +*** +*** 

Profitability from other 

(non-home equity) 

loans 

-*** +*** +*** 

Profitability from 

mutual funds 

-*** +*** -*** 

Profitability from stock 

market holdings 

-*** +*** + 

Age +*** 

+,-: sign of the coefficient; *: Significant at the 10% level; **: Significant at the 5% 

level; ***: Significant at the 1% level 

 

In some cases, the coefficient signs change from one month to the next, 

while remaining very significant. This is a clear indication that not only the 

value of the variable is relevant to forecast the change in profitability, but the 
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change in the value may be relevant as well. For example, wealth in the latest 

month has a positive sign, whereas wealth in the month before has a negative 

sign: this may mean that both the most recent value of the wealth and the latest 

change in wealth have a positive influence in the expected change in 

profitability. 

In the cases of stock market holdings and transactions, the coefficient 

signs seem to be the contrary of what was expected. One possible explanation 

may be that customers with larger stock market holdings use the account mostly 

to make trades and deposit such assets (that is, as an investment account), and 

they do not tend to buy new products that are profitable to the bank. 

Another interesting result is the negative and statistically significant 

sign in the last month profitability, for the different categories of products. 

However, this has a simple interpretation: all other things remaining constant, 

the larger the profitability already is, the less it is expected to increase. 

Finally notice that only one socio-demographic variable is significant: 

age. Older clients generate more profits than younger clients. The significance 

of age was also found on the other models that we considered. 

 

 We also applied linear models to forecast the change of profitability at 

2, 3 and 4 months horizons. The results, shown in Table 3, clearly show that the 

forecasting ability of the models decreases when the forecasting horizon 

becomes longer. 

 

Table 3. Performance of linear models on the test set, for different forecasting 

horizons 

Forecasting horizon  RMSE in the training set RMSE in the test set 

1 month 12.90 15.21 

2 months 14.63 17.29 

3 months 16.39 18.62 

4 months 17.56 20.33 

 

After this linear model, several data mining methods were applied: 

regression random forests, gradient boosting, naïve Bayes and linear 

discriminant analysis. Although these methods perform better than the linear 

model in the training set (sometimes very significantly), we could never 

improve the predictive performance in the test set, when compared with the 

linear model. So, there seems to be an overfitting problem with the application 

of these data mining techniques to predict profitability. We must, however, 

point out that, due to the long computation times associated with the application 

of these techniques, we tried a limited number of configurations for each one. In 

random forests, for example, it is possible that a different set of variables, or 

different numbers of trees or of candidates to each split, might lead to better 

results. 

 

  

4  Churn prediction 
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One important initial difficulty in churn prediction was the definition 

of churn. The bank had no clear definition and, for this work, we chose to define 

churn through rules that are mostly based on common sense: there is churn if 

there are no relevant products and small amounts of credits and of wealth 

deposited in the bank. The exact rules consisted on defining that a customer was 

in churn if, simultaneously, he/she had no insurance contracts, no term deposits, 

no mutual funds and no credit or debit cards, the wealth in the bank was below 

1000 € and the loans amounted to less than 100 €. 

Our goal in predicting churn was mainly to predict which customers 

are not currently in churn but have a high probability of churning in the future. 

When we mention churning in the future, we are considering a reasonable 

amount of time; given the fact that we have data for only a year, we chose to 

predict churn using a 6-month horizon. In order to have enough data to try using 

different lags, we aimed at trying to predict which customers were not in churn 

in June 2015, but were in churn in December 2015. The number of customers in 

this situation was quite low, less than 0.7% of the customers of the database. 

Churn prediction was handled as a classification problem. We used 

both linear models (probit and logit) and several data mining techniques 

(Adaboost, linear discriminant analysis, classification random forests). The best 

results were achieved with classification random forests, which obtained a much 

better performance than all the other models. We will only present the results 

obtained by classification random forests and logit models (the linear models 

with the best performance). 

We started to use a large number of variables in the models, both 

socio-demographic and related to balances, transactions and other activity. For 

balances, transactions and other activity, we started by using the values from 

January to June 2015. We defined a variable that measures the ratio between the 

value of wealth in June and the average wealth in the semester, and we defined a 

similar variable for the amount of loans. We also defined new binary variables, 

for several products, to define whether or not the customer had any of that 

product (regardless of the amount) in each month, and also for determining 

whether the customer had made any online logins and transactions in each 

month. 

Several configurations were tried (mostly in the linear models), in 

order to assess whether the binary variables or the initial values performed 

better, and then the less significant variables were iteratively removed. In the 

end, the number of relevant variables was much smaller than for profitability 

prediction. In almost all the cases, we found out that only the most recent value 

was relevant, the main exceptions being the two new variables that measured the 

relation between June values and average semester values for wealth and 

credits. 

 

In general, the most relevant variables were: 

 Age 

 Wealth 
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 Ratio between the wealth in June and the average wealth on the 

semester 

 Value of loans 

 Ratio between the value of loans in June and the average value of the 

semester 

 Profitability in the latest months 

 Total balance of term deposits 

 Existence of transactions and logins in the latest months 

 

The models we used define the probability that a customer is going to 

churn. In order to assess the prediction ability, we calculated the average 

probability that the models assign to churners and to non-churners. The results 

are shown in Table 4, and they show that random forests assign much higher 

probabilities to customers that effectively end up churning, although they also 

assign slightly higher probabilities to non-churners.  

 

Table 4. Performance of the best linear model (logit) and the best non-linear 

technique (random forests) 

Model Logit model Random forest 

Average probability 

assigned by the model to 

customers that 

effectively churn 

3.78% 9.89% 

Average probability 

assigned by the model to 

customers that end up 

not churning 

0.66% 0.71% 

 

We can see that random forests show some ability in differentiating 

future churners from non-churners. However, we must acknowledge that, due to 

limitations in the data that were mentioned in Section 2, we cannot be sure if the 

customers we are identifying as churning are, in reality, churning. 

 

 

5  Next-product-to-buy  
 

We also tried to predict, for some products, whether or not a given 

product from the bank will be the given customer’s next buy. Since data is 

monthly, we are in fact identifying whether customers buy a product in the next 

month in which they acquire one or more products from the bank. This is also a 

classification problem: a product is classified as whether or not it will be bought 

in the month a next purchase is made. We used both linear models (probit and 

logit) and data mining techniques (random forests, Adaboost, linear discriminant 

analysis). 
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Three products, held by an important percentage of customers, were 

considered: term deposits, debit cards and credit cards. Purchase of such 

products was identified as an increase in the number of units of the product in 

the customer account. This allows us to avoid incorrectly classifying as 

purchases the cases in which a customer just changes a product he currently 

holds by another of the same kind (e.g., ending a term deposit and applying the 

capital in a new one). 

The logic used for defining the training and test sets was somewhat 

different in this analysis. In the training set, the prediction was made for the next 

purchase in the months from May to August, using data from the previous three 

months (February to April). In the test set, we intended to predict the next 

purchase in the four-month period from September to December, using data 

from the previous three months (June to August). Only customers making any 

kind of purchase in the considered four-month period were taken into account 

(that is, we try to predict what is the next product to be bought, we are not 

making a joint prediction of the next product and of the probability of a buying 

occurring). 

Apart from socio-demographic variables and transactions, balances and 

bank-related activity in the three previous months, new binary variables were 

added regarding the occurrence of purchases of the different types of products, 

for each of the three previous months. 

 
Table 5. Performance of logit models in predicting the next product bought by a 

customer 

Product 

Percentage 

of customers 

for which 
the product 

is the next to 

be bought 

Average 

probability 

estimated by 

the model, 
when the 

product is 

the next to 

be bought 

Average 

probability 

estimated by 

the model, 
when the 

product is not 

the next to be 

bought 

Percentage of 

customers 

correctly 
identified by 

the model as 

buying the 

product next 

Percentage of 

customers, 

among the 5% 

with largest 
probability in the 

model, for which 

the product is the 

next to be bought 

Term 

deposits 
51.4% 59.7% 41.9% 71.3% 90.0% 

Debit 

cards 
11.4% 20.5% 9.7% 38.2% 60.2% 

Credit 

cards 
13.7% 19.9% 11.7% 31.6% 38.0% 

 
The best results in the test set were obtained with logit models. In 

Table 5 we present the performance of these models. In order to assess the 

predictive ability of the models, we considered the average probability given by 

the model when the product is the next to be bought and when it is not, the 

percentage of customers correctly identified by the model as buying the product 

next, and also the percentage of customers, among those with the top 5% 

probabilities estimated by the model, who effectively buy that product next. 

This last measure is particularly interesting for defining targeted marketing 
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campaigns, since it allows the identification of the customers that will most 

probably buy the product. We also present the percentage of customers for 

which the product is the next to be bought – this is, in fact, the probability of a 

customer next buying that product, when you choose him/her at random. 

We can see that the models perform quite well. In particular, the 

customers to whom the models assign higher probabilities do really have a high 

probability of next purchasing the product. 

 

 

6. Conclusions and future research 
 

 In this paper we present the results of an analysis of churn, profitability 

and next-product-to-buy, obtained using a database concerning the behaviour of 

customers from a Portuguese bank. If it is possible to accurately predict churn 

probabilities and the evolution of profitability, then it is possible to estimate 

customer lifetime value, which is of great importance for defining marketing 

strategies.  

 As we explained, the database has some shortcomings, including not 

identifying the same client with different accounts, the existence of profitability 

outliers and the fact of there being just a year of data, aggregated in monthly 

values. 

 A linear model showed a good performance in the estimation of future 

short-term profitability at the 1-month horizon, but the performance of the 

estimated models seems to deteriorate when the prediction horizon increases, 

even if it is only to a few months. For churn, we had no solid reference to 

determine when a customer churns, so we defined a rule for identifying 

churning customers. A random forest seems to have an interesting ability to 

forecast which customers will churn in the next six months. However, given the 

short time period covered by the database, we cannot be completely sure that the 

customers identified as having churned did, indeed, churn. Therefore, given the 

limitations in the results concerning profitability and churn prediction, we feel 

that it is not yet possible to make a credible calculation of customer lifetime 

value. Still, the results concerning churn are interesting and may help 

identifying the customers whose relation with the bank is becoming very weak. 

The bank may thus target these customers with marketing campaigns, in order to 

try to avoid losing them. 

 The results of the models of the next-product-to-buy are very 

interesting, and show that a logit model has a good ability to predict the next 

product that a customer will buy. In particular, a large percentage of the 

customers to whom the model predicted the top 5% largest probabilities of 

purchasing each of the considered products, did indeed buy that product next. 

This opens the way to targeted marketing campaigns for selling the products 

that the customers are more likely to purchase. 

 At the outset, we expected data mining techniques to outperform the 

predictive ability of linear models. Although data mining techniques usually 

perform much better in the training set, only in the case of churn were they able 
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to beat a logit model in the test set. Possible explanations for this may be that 

linear models are particularly suited to this data set, that the shortcomings of the 

database are especially harming the performance of data mining techniques, and 

that different parametrizations of the techniques should be tested in order to 

fine-tune them to the characteristics of the data. Concerning this latter 

explanation, the number of tested parametrizations was indeed limited, due to 

very long computational running times, but we will, in the future, try new 

parametrizations and new approaches, in order to achieve better predictions. 

 As future work, we are already in contact with the bank to get a 

database covering a longer time period. This is expected to allow us to define a 

more credible identification of churning customers and better predictions of 

future profitability and next-product-to-buy. We will also address the estimation 

of customer lifetime values, both using predictions of churn probability and 

future profitability and also using other approaches made available by a longer 

database. Finally, we will try to obtain better predictions of the next-product-to-

buy, and propose models for defining long-term market strategies based on 

these predictions. 

 

 

References 
 

[1] M. EsmaeiliGookeh and M.J. Tarokh. Customer Lifetime Value Models: A 

literature Survey. International Journal of Industrial Engineering, 24, 4, 317-336, 2013. 

[2] S.S. Singh and D.C. Jain. Measuring Customer Lifetime Value. Review of 

Marketing Research (Review of Marketing Research, Volume 6) Emerald Group 

Publishing Limited, 6, 37-62, 2010. 

[3] P.S. Fader, B.G. Hardie and K.L. Lee. RFM and CLV: Using iso-value curves 

for customer base analysis. Journal of Marketing Research, 42, 4, 415-430, 2005. 

[4] D.C. Schmittlein, D.G. Morrison and R. Colombo. Counting Your Customers: 
Who-Are They and What Will They Do Next?. Management science, 33, 1, 1-24, 1987. 

[5] D.C. Schmittlein and R.A. Peterson. Customer base analysis: An industrial 

purchase process application. Marketing Science, 13, 1, 41-67, 1994. 

[6] P.S. Fader, B.G. Hardie and K.L. Lee. “Counting your customers” the easy 
way: An alternative to the Pareto/NBD model. Marketing science, 24, 2, 275-284, 2005. 

[7] P.S. Fader, B.G. Hardie and J. Shang. Customer-base analysis in a discrete-

time noncontractual setting. Marketing Science, 29, 6, 1086-1108, 2010. 

[8] R.C. Blattberg, E.C. Malthouse and S.A. Neslin. Customer lifetime value: 
Empirical generalizations and some conceptual questions. Journal of Interactive 

Marketing, 23, 2, 157-168, 2009. 

[9] Y. Ekinci, F. Ülengin, N. Uray and B. Ülengin. Analysis of customer lifetime 

value and marketing expenditure decisions through a Markovian-based model. European 
Journal of Operational Research, 237, 1, 278-288, 2014. 

[10] N. Glady,  B. Baesens and C. Croux. A modified Pareto/NBD approach for 

predicting customer lifetime value. Expert Systems with Applications, 36, 2, 2062-2071, 

2009. 

[11] M. Haenlein, A.M. Kaplan and A.J. Beeser. A model to determine customer 

lifetime value in a retail banking context. European Management Journal, 25, 3, 221-234, 

2007 

429



[12] M.B. Mzoughia and M. Limam. An improved customer lifetime value model 
based on Markov chain. Applied Stochastic Models in Business and Industry, 31, 4, 528-

535, 2015. 

[13] Ö.G. Ali and U. Arıtürk. Dynamic churn prediction framework with more 
effective use of rare event data: The case of private banking. Expert Systems with 

Applications, 41, 17, 7889-7903, 2014. 

[14] B. He, Y. Shi, Q. Wan and X. Zhao. Prediction of customer attrition of 

commercial banks based on SVM model. Procedia Computer Science, 31, 423-430, 
2014. 

[15] A. Knott, A. Hayes and S.A. Neslin. Next-product-to-buy models for cross-

selling applications. Journal of Interactive Marketing, 16, 3, 59-75, 2002 

[16] S. Li, B. Sun and R.T. Wilcox. Cross-selling sequentially ordered products: An 
application to consumer banking services. Journal of Marketing Research, 42, 2, 233-

239, 2005. 

[17] S. Li, B. Sun and A.L. Montgomery. Cross-selling the right product to the right 

customer at the right time. Journal of Marketing Research, 48, 4, 683-700, 2011. 
 

 

430



_________________ 

17
th

  ASMDA Conference Proceedings, 6 - 9 June 2017, London, UK 
 

© 2017 CMSIM               

 

 

Penultimate Approximations in Extreme Value
Theory and Reliability of Large Coherent

Systems
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Abstract. The rate of convergence of linearly normalized maxima/minima to the
corresponding non-degenerate extreme value (EV) limiting distribution is a relevant
problem in the field of extreme value theory. Moreover, the limiting EV approximation
can be asymptotically improved, through the so-called penultimate approximations,
which have been theoretically studied from different perspectives. Recently, this same
topic has been revisited in the field of reliability, where any coherent system can
be represented as either a series-parallel or a parallel-series system, with a lifetime
which can thus be written as the minimum of maxima or the maximum of minima.
For large-scale coherent systems, the possible non-degenerate EV laws are eligible
candidates for the finding of adequate lower and upper bounds for such system’s
reliability. However, since such non-degenerate limit laws are better approximated
by an adequate penultimate distribution in most situations, it is sensible to assess
both theoretically and through Monte-Carlo simulations the gain in accuracy when a
penultimate approximation is used instead of the ultimate one.
Keywords: Extreme value theory, Monte-Carlo simulation, penultimate and ulti-
mate approximations, system reliability.

1 Introduction and preliminaries

The main objective of this article is to put forward and discuss the existence
of accurate bounds for the exact reliability function (RF), R

T
(t) := P(T > t)

=: 1 − F
T

(t), of a complex system S with lifetime T and lifetime cumulative
distribution function (CDF) F

T
. The derivation of the exact RF can indeed be

intractable due to the large number of system’s components and to the way the
operating process uses such components. As examples of such structures, and
among others, we mention transport networks of energy, oil, gas and water.

Any coherent system (see Barlow and Proschan[2], for details) can be rep-
resented as either a parallel-series (PS) system—parallel structure with com-
ponents connected in series, or a series-parallel (SP) system—series structure
with components connected in parallel. The lifetime, T , of any system S can
thus be written as either the maximum of minima or the minimum of max-
ima. Just as mentioned above, let T denote now the lifetime of a coherent
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structure with n components, with lifetimes (T1, . . . , Tn). Let us denote by
(T1:n ≤ · · · ≤ Tn:n) the sample of associated ascending order statistics (OSs),
with T1:n = min1≤i≤n Ti, Tn:n = max1≤i≤n Ti. The main importance of OSs in
reliability lies on the fact that the random variable (RV) T can always be writ-
ten as a function of the OSs associated with the RVs Ti, 1 ≤ i ≤ n. Indeed, T1:n
is the lifetime of a series system, the one that works if and only if (iff) all its n
components work, and Tn:n is the lifetime of a parallel system, a structure that
works iff at least one of its n components work. A k-out-of-n system, i.e. the one
that works iff at least k of its n components work, has a lifetime given by Tk:n,
1 ≤ k ≤ n. And we always have T = TI:n, where I is a discrete RV with support
{1, 2, . . . , n}. The vector s := (s1, s2, . . . , sn), with si := P(I = i), 1 ≤ i ≤ n, is
the so-called signature of the system (Samaniego[20]). To find the aforemen-
tioned representations, we need to identify the so-called minimal paths—paths
without irrelevant components that enable the operation of the system, and
the minimal cuts—sets of relevant components that imply the failure of the
system whenever removed. Generally speaking, let Pj , 1 ≤ j ≤ p = pn, denote
the minimal paths, and Cj , 1 ≤ j ≤ s = sn, the minimal cuts. Then, and for
non-necessarily identically distributed components,

s∏
j=1

(
1−

∏
i∈Cj

Fi(t)
)
≤ R

T
(t) ≤ 1−

p∏
j=1

(
1−

∏
i∈Pj

(1− Fi(t))
)
,

i.e. we can easily build lower and upper bounds for the reliability on the basis
of the minimal cuts (assuming they are independent) and minimal paths (as-
suming they are disjoint), respectively. For sake of simplicity, we now assume
that all minimal paths have the same size l = ln and that all minimal cuts have
a size r = rn (the so-called regular system), and that Ri(t) = R(t), 1 ≤ i ≤ n
(the so-called homogeneous system). Then, with n = rnsn = lnpn, we get the
lower/upper bounds,

L
SP

= L
SP

(t) =
(

1− (1−R(t))rn
)sn
≤ R

T
(t)

≤ 1−
(

1−Rln(t)
)pn

= UPS(t) = UPS . (1)

In Section 2, some further details on these reliability bounds will be given,
together with a simple illustration of SP and PS representations. Assuming
that the number, n, of components of S goes to infinity, asymptotic extreme
value (EV) ultimate or limiting models often provide a good interpretation of
the RF of S. Considering a fixed large number of components, pre-asymptotic
or penultimate models can provide an improvement of the convergence rate
and a better approximation to the RF of S. In Section 3, we provide the main
results in extreme value theory (EVT), the ones needed for the derivation of
ultimate and penultimate behaviour of PS and SP systems, the topic discussed
in Section 4. Following closely Reis et al.[19], Section 5 is devoted to providing
results on a small-scale Monte-Carlo simulation and concluding remarks.
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2 Some further details on reliability bounds

Apart from the reliability bounds, (L
SP
, U

PS
), provided in (1), we refer the

most crude lower and upper bounds for the system’s RF, the ones given by
the RFs of the associated series and parallel systems, with all the n system’s
components working independently. More precisely, and with the notation used
in Section 1, we get

L
S

= L
S
(t) = Rn(t) ≤ R

T
(t) ≤ 1− (1−R(t))n = U

P
(t) = U

P
. (2)

To see the possible accuracy of the bounds in (1), comparatively to the ones in
(2), we provide the following example:

Example 1. Let us consider the simple structure in Fig. 1. For this struc-

1

2

3

4

5

6

Fig. 1. A bridge-series structure

ture, we have the minimal paths, {1,4,6}, {2,5,6}, {1,3,5,6}, {2,3,4,6}, and the
minimal cuts, {1,2}, {4,5}, {1,3,5}, {2,3,4}, {6}. Consequently, we have the
following representations of the system under consideration:

1

1

2

2

4

5

3

3

5

4

6

6

6

6

Fig. 2. PS representation of the structure in Fig. 1

We can thus write,

T = max
(

min(T1, T4, T6),min(T2, T5, T6),min(T1, T3, T5, T6),

min(T2, T3, T4, T6)
)
,
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1
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5

1

3

5

2

3

4

6

Fig. 3. SP representation of the structure in Fig. 1

as well as

T = min
(

max(T1, T2),max(T4, T5),max(T1, T3, T5),max(T2, T3, T4), T6
)
.

We obviously need to pay attention to the strong dependence of the different
RVs either in the overall max or min operators. But we can easily build re-
liable upper and lower bounds for the reliability, on the basis of the minimal
paths (assuming they are disjoint) and the minimal cuts (assuming they are
independent), respectively.

For this particular example, and considering that any of the components
work independently of the others and with a probability p, we easily get the
static reliability, 2p3 +2p4−5p5 +2p6. And putting R(t) = p in (1) and (2), we
get the bounds L

S
= L

S
(p) = p6, U

P
= U

P
(p) = 1− (1− p)6, L

SP
= L

SP
(p) =(

1− (1− p)2
)2 (

1− (1− p)3
)2
p, UPS = UPS(p) = 1 − (1 − p3)2(1 − p4)2, all

represented in Fig. 4.

0
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1

0 0.2 0.4 0.6 0.8 1

 
U

P

 

p

 
L

S

 
U

PS

 
L

SP

Fig. 4. Statitic reliability and lower/upper reliability bounds associated with the
structure in Fig. 1

Just as happens in the example above, the lower and upper bounds in
(1) are usually much more accurate than L

S
(t) and L

P
(t), in (2). This can

also be seen in Fig. 5, where we consider the static counterpart of the RF,
writing p := R(t), representing for ln = rn = 2; sn = pn = 10 (n = 20),
ln = rn = 4; sn = pn = 5 (n = 20) and ln = rn = 4; sn = pn = 15 (n = 60), the
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lower bounds L
S
≡ L

S
(p) = pn, L

SP
≡ L

SP
(p) =

(
1− (1− p)rn

)sn
, as well as

the upper bounds U
P
≡ U

P
(p) = 1− (1−p)n, U

PS
≡ U

PS
(p) = 1−

(
1−pln

)pn
,

as functions of p.
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0 0.2 0.4 0.6 0.8 1

n = 20 (ln = rn = 4; sn = pn = 5)

n = 60 (ln = rn = 4; sn = pn = 15)

n = 20 (ln = rn = 2; sn = pn = 10)

UP
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UPS

LSP

p p

p

UP

LS

UPS

LSP

UP

LS

UPS

LSP

Fig. 5. Lower and upper reliability bounds associated with ln = rn = 2; sn = pn = 10
(top left), ln = rn = 4; sn = pn = 5 (top right) and ln = rn = 4; sn = pn = 15 (bottom)

Again, the SP-PS lower-upper bounds always revealed to be much more
accurate than the S-P reliability bounds.

3 Limiting behavior of maxima and minima

Just as mentioned above, and whenever dealing with large-scale coherent sys-
tems, it is sensible to assume that n, the number of system components goes
to infinity. Then (Gnedenko[7]), the possible non-degenerate extreme value
distributions either for maxima (EVMD), given by

G(x) ≡ Gξ(x) :=

{
e−(1+ξx)

−1/ξ

, 1 + ξx > 0, if ξ 6= 0,

e−e
−x
, x ∈ R, if ξ = 0,

(3)
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or for minima (EVmD), given by

G∗θ(x) = 1−Gθ(−x), with Gξ(x) given in (3), (4)

the symetrised version of the EVMD in (3), are eligible candidates for the
system reliability or at least for the finding of adequate lower and upper bounds
for such a reliability on the basis of the SP and PS representations discussed
in Section 1.

The shape parameter ξ, in (3), the so-called extreme value index for maxima
(EVIM), measures the heaviness of the right-tail function (or RF), F (x) ≡
R(x) = 1 − F (x), as x → +∞, and the heavier the right-tail, the larger ξ is.
The EVMD is sometimes separated in the three following types,

Type I (Gumbel) : Λ(x) = exp(− exp(−x)), x ∈ R,
Type II (Fréchet) : Φα(x) = exp(−x−α), x ≥ 0,
Type III (max-Weibull) : Ψα(x) = exp(−(−x)α), x ≤ 0,

α > 0, the types considered in the aforementioned Gnedenko’s paper. We have

Λ(x) = G0(x), Φα(x) = G1/α(α(1− x)), Ψα(x) = G−1/α(α(x+ 1)),

with Gξ the EVMD, in (3).
The shape parameter θ, in (4), the so-called EVI for minima (EVIm), mea-

sures the heaviness of the left-tail function, F (x), as x→ −∞, and the heavier
the left-tail, the larger θ is. Similarly to what happens in the max-scheme, the
EVmD is sometimes separated in the three following types:

Type I (min-Gumbel) : Λ∗(x) = 1− exp(− exp(x)), x ∈ R,
Type II (min-Fréchet) : Φ∗α(x) = 1− exp(−(−x)−α), x ≤ 0,
Type III (Weibull) : Ψ∗α(x) = 1− exp(−xα), x ≥ 0.

Remark 1. Note that the limiting result for minima, given in (4), comes from
the fact that min1≤i≤nXi = −max1≤i≤n(−Xi). If the sequence max1≤i≤n(−Xi)
can be normalised, in order to admit a non degenerate limit Z, then the CDF
of Z will be of the same type as Gθ, the EVMD, for some θ ∈ R. Hence
the possible limit laws for minima, conveniently normalised, will be such that
F−Z(x) = P(−Z ≤ x) = P(Z ≥ −x) = 1 − Gθ(−x) = G∗θ(x). We then say
that the CDF F , associated with the RV X, is in the min-domain of attraction
of G∗θ, using the notation F ∈ Dm(G∗θ), and this happens if and only if the
CDF of −X is in the max-domain of attraction of Gθ, i.e. with the notation
H(x) = 1− F (−x), H ∈ DM(Gθ).

3.1 Rates of convergence

Thinking now on max-domains of attraction, and without loss of generality due
to Remark 1, another relevant problem in EVT concerns the rate of conver-
gence of Fn(anx+ bn) to Gξ(x) or, equivalently, the finding of estimates of the
difference

dn(F,Gξ, x) := Fn(anx+ bn)−Gξ(x). (5)
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In EVT there exists no analogue of the Berry-Esséen theorem that, under broad
conditions, gives a rate of convergence of the order of 1/

√
n in the central limit

theorem. The rate of convergence depends strongly on the right-tail of F , on
the choice of the attraction coefficients, and can be rather slow, as first detected
in Fisher and Tippett[5]. A similar comment applies to the left-tail.

3.2 Penultimate approximations

To the best of our knowledge, Fisher and Tippett[5] were the first authors to
provide the so-called max-Weibull penultimate approximation for Φn(x), with
Φ the normal CDF. They observed that, despite of the fact that Φ ∈ DM(G0),
the convergence of Φn(anx+ bn) towards G0(x) is very slow. Through the use
of skewness and kurtosis coefficients as indicators of closeness, they showed
that Φn(x) is ‘closer’ to a suitable penultimate G−1/ξn((x−λn)/δn), for ξn > 0,
λn ∈ R, δn > 0, than to the ultimate G0((x− bn)/an). Such an approximation
is the so-called penultimate approximation.

The modern theory of rates of convergence in EVT began with Anderson[1],
Gomes[8] and Galambos[6]. For papers on the subject prior to 1992, we refer
the review in Gomes[10]. Developments have followed different directions that
can be found in Beirlantet al.[3] and Gomes and Guillou[11]. We refer here only
the study of the structure remainder dn(F,Gξ, x), in (5), with F ∈ DM(Gξ),
ξ ∈ R, i.e. the finding of un → 0, as n→∞, and ϕ(x) such that

Fn(anx+ bn)−Gξ(x) = unϕ(x) + o(un).

We then say that the rate of convergence of Fn(anx+ bn) towards Gξ(x) is of
the order of un. In this same framework, the possible penultimate behaviour
of Fn(anx+ bn) has been studied, i.e. the possibility of finding H(x) = Hn(x),
perhaps a max-stable DF, such that

Fn(anx+ bn)−Hn(x) = O(rn), rn = o(un).

We refer Gomes[9], Gomes and Pestana[13], and Gomes and de Haan[12], who
derived, for all ξ ∈ R, exact penultimate approximation rates, under the so-
called von Mises-type conditions and some extra differentiability assumptions.
In Kaufmann[14] a similar result was proved, but under weaker conditions. This
penultimate or pre-asymptotic behaviour has further been studied by Raoult
and Worms[15] and Diebolt and Guillou[4], among others.

4 Asymptotic behavior of PS and SP systems

On the basis of the main theorem in [12], and the results in [16], [17], [18]
and [19], we can now state the following results, respectively given in Sections
4.1 and 4.2, and which establish the ultimate and penultimate models for a
sequence of RFs of regular and homogeneous PS and SP systems.
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4.1 Ultimate and penultimate models for the RF of a regular and
homogeneous PS system

Let F ∈ Dm(G∗θ), the min-domain of attraction of G∗θ, i.e. assume that there
exist sequences {an > 0}n≥1 and {bn ∈ R}n≥1 such that

F1:n(anx+ bn) := 1− (1− F (anx+ bn))n −→
n→∞

G∗θ (x) ,

for all x ∈ R and where G∗θ is the EVmD, in (4). Given an integer sequence
pn → ∞, such that pneln = o(1), en := supx∈R |F1:n(anx + bn) − G∗θ(x)|, and
ln →∞, with lnpn = n, and as shown in Reis et al. [19], there exist sequences
{αn > 0}n≥1 and {βn ∈ R}n≥1 such that

Hn(αnx+ βn) :=
(

1−
(

1− F (αnx+ βn)
)ln)pn
−→
n→∞

Λ(x) ≡ G0(x), ∀x ∈ R.

Consequently, for a regular homogeneous PS system, composed by pn paral-
lel subsystems with ln components in series, the sequence of associated RFs,
suitably normalized, is such that,

Rn(αnx+ βn) := 1−
(

1−
(

1− F (αnx+ βn)
)ln)pn

−→
n→∞

1− Λ(x) = 1−G0(x), ∀ x ∈ R.

If we further assume that ln → ∞ and pn(ln2 pn)eln = o(1), as n → ∞, then,
for all θ 6= −1, there exist a sequence {ξn}n≥1 such that

Hn(αnx+ bn)−Gξn(x) = O(1/ ln2 pn), ∀ x ∈ R.

Moreover, we can choose ξn = ξn(θ) = −(θ + 1)/lnn. Consequently, for a
regular and homogeneous PS system, the sequence of RFs is such that

Rn(αnx+ bn)− (1−Gξn(x)) = O(1/ ln2 pn), ∀ x ∈ R.

4.2 Ultimate and penultimate models for the RF of a regular and
homogeneous SP system

On the basis of a min-version of the main theorem in [12], and the results in
[16] and [19], we can now state the following results:

Let F ∈ DM(Gξ), the max-domain of attraction of Gξ, i.e. let us assume
that there exist sequences {an > 0}n≥1 and {bn ∈ R}n≥1 such that

Fn:n(anx+ bn) := Fn(anx+ bn) −→
n→∞

Gξ (x) ,

for all x ∈ R and where Gξ is the EVMD, in (3). Given a sequence of integers
sn → ∞, such that snern = o(1), en := supx∈R |Fn:n(anx + bn) − Gξ(x)| and
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rn →∞, with rnsn = n, there exist sequences {αn > 0}n≥1 and {βn ∈ R}n≥1
such that

H∗n(αnx+ βn) := 1−
(

1− F rn(αnx+ βn)
)sn

−→
n→∞

Λ∗(x) ≡ G∗0(x),

for all x ∈ R. Consequently, for a regular homogeneous SP system, the sequence
of associated RFs, suitably normalized, is such that,

R∗n(αnx+ βn) :=
(

1− F rn(αnx+ βn)
)sn

−→
n→∞

1−G∗0(x),

for all x ∈ R. If we further assume that rn → ∞ and sn(ln2 sn)ern = o(1), as
n→∞, then, for all ξ 6= −1, there exist a sequence {θn}n≥1 such that

H∗n(αnx+ bn)−G∗θn(x) = O(1/ ln2 sn).

for all x ∈ R. Moreover, we can choose θn = θn(ξ) = −(ξ + 1)/lnn. Conse-
quently, for a regular homogeneous SP system, composed by sn series subsys-
tems with rn components in parallel, the sequence of RFs, Rn(αnx + βn), is
such that, for all x ∈ R,

R∗n(αnx+ bn)− (1−G∗θn(x)) = O(1/ ln2 sn).

5 Monte-Carlo simulation

To assess the gain in accuracy when a penultimate approximation is used
instead of the ultimate one, we slightly enlarged the Monte Carlo simula-
tions presented in [19], where several PS(pn,ln) systems have been simulated,
with lifetime components from different models, including the EVmD(θ), and
GPmD(θ)=− ln(1 − EVmD(θ)), for a few values of θ. The hypothesis H0 :

G∗n = 1 − (1− F )
ln ∈ DM (Gξ) , for some ξ ∈ R, was not rejected, and no

typical behavior was detected on the variation of ln, except for small values of
ln (ln < 20), and lifetime parents different from the EVmD, as can be seen in
Figure 7. The ultimate law G0 was also tested, and the null hypothesis,

H0 : Fn (x) =
(

1− (1− F (x))
ln
)pn

= G0 ((x− λ)/δ) ,

with Fn (x) the CDF of the lifetime of a PS system and (λ, δ) ∈ R×R+ a vector
of unknown (location and scale) parameters, was rejected except for θ = −1
(showing consistency between simulated and theoretical results). Estimated
type I error increases as θ moves away from −1, and decreases as pn increases.

For the simulated PS systems, a goodness of fit test for the EVMD with
known shape parameter and unknown location and scale parameters was ap-
plied to test the penultimate law, i.e the null hypothesis

Hn (x) = Gξn ((x− λ)/δ) , ξn = −(θ + 1)/lnn,

with λ and δ, respectively unknown location and scale parameters. Further-
more, to see whether the estimates of ξ are closer to the penultimate param-
eter ξn rather than to the ultimate parameter zero, we have computed ξ̂, the
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maximum likelihood estimate in the GEVξ model, and using a Monte Carlo
simulation, with R = 1000 runs have simulated the root mean square error
(RMSE) and the bias (BIAS),

RMSEP =

√
1
R

R∑
i=1

(
ξ̂−ξn

)2
, RMSEU =

√
1
R

R∑
i=1

(
ξ̂i

)2
,

BIASP= 1
R

R∑
i=1

(
ξ̂i−ξn

)
, BIASU= 1

R

R∑
i=1

ξ̂i.

Figure 6 is associated with EVmD(θ) lifetime parents. The ‘black’ is used for
BIASP and RMSEP , and the ‘red’ is used for BIASU and RMSEU . The BIAS
are pictured in dashed lines.
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Fig. 6. EVmD(θ) lifetimes: ultimate and penultimate BIAS and RMSE

Figure 7 is similar to Figure 6, but associated with GPmD(θ) lifetime par-
ents. For ln = 10, it is here possible to note that RMSEU < RMSEP for
θ < −1. But most of the times we indeed have RMSEP < RMSEU for θ 6= −1.

5.1 Concluding remarks

The gain in accuracy of a penultimate approximation comparatively to the ul-
timate one justifies its use in practice. We are conscious that the restriction
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Fig. 7. GPmD(θ) lifetimes: ultimate and penultimate BIAS and RMSE

that the RF of all components of the system is the same is strong, but such an
assumption was used only as a simplification. More intricate but similar work
can be done for non-homogeneous systems. Applications of the developed the-
ory are feasible, but beyond the scope of this article. Indeed, a great variety of
parametric models can further be considered, like, for instance, the penultimate
EV parametric model suggested by Smith[21],

PEVξ(x; r) = exp
(
−(1 + ξx)−1/ξ

(
1 + r(1 + ξx)−1/ξ

))
, 1 + ξx > 0

or the associated penultimate GP CDF,

PGPξ(x; r) = 1− (1 + ξx)−1/ξ
(

1 + r(1 + ξx)−1/ξ
)
, 1 + ξx > 0.

The development of inferential procedures for these models is thus welcome.
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Abstract.  In this paper an embedded semi-Markov stochastic process is applied in 

reliability problem. The problem concerns of two different cold standby system. We 

assume that the system consists of one operating unit  A, the stand-by unit B that may have 

different probability distributions of the times to failure. We suppose that there is an 

unreliable switch in the system which is used at the moment of the working unit failure. A 

discrete state space and continuous time stochastic process  describes work of the system 

in reliability aspect. To obtain the reliability characteristic and parameters of the system 

we construct so called an embedded semi-Markov process in this process.  In our model 

the conditional time to failure of the system is represented by a random variable denoting 

the first passage time from the given state to the subset of states. To calculate the reliability 

function and mean time to failure of the system we apply theorems of the Semi-Markov 

processes theory  concerning   the conditional  reliability functions. Often an exact 

reliability function of the system by using Laplace transform is difficult to calculate, 

frequently impossible. In those cases we  apply one of theorems of Semi-Markov processes 

perturbation theory, to obtain an approximate reliability function of the system. 

Keywords: Semi-Markov process,  cold standby system, embedded  stochastic process. 

 

 

1 Introduction 

A model presented here is an extension of the models that have been considered 

by Barlow and Proshan [1], Brodi and Pogosian [2], Koroluk and Turbin [7] and 

Grabski [4], [5]. As a model of the two different cold standby system we construct 

so called embedded Semi-Markov process by defining the renewal kernel of that 

one. Construction  of the renewal kernel  is an important first step in solving the 

problem. This method was presented in [2], [4], [5]. The conditional  time to 

failure of the system is described by a random variable that means the first passage 

time from the given state to the subset of states. To obtain the conditional 

reliability functions of the system we use appropriate system of integral equations. 

Passing to the Laplace transforms we get system of linear equations for 

transforms. The solution are  Laplace transforms of the conditional reliability 

functions of.  Applying property of Laplace transform  we compute the mean time 

to failure of the system. Very often calculating an exact reliability function of the 

system by using Laplace transform is a complicated matter but there is a 
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possibility to apply the theorem of the theory of the Semi-Markov processes 

perturbation  [6], [7], [8], [10] to obtain an approximate reliability function of the 

system. We use Pavlov and Ushakov concept [9] of the perturbed SM process, 

which is presented in [3] by Gercbakh, for calculation approximate reliability 

function of the cold standby system. 

 

2  Description and Assumptions  

We assume that the system consists of one operating unit 𝐴, the stand-by unit 𝐵 

and a switch. We assume that a lifetime of a basic operating unit is represented 

by a random variable  𝜁𝐴, with distribution given by a probability density function 

(PDF)  𝑓𝐴(𝑥), 𝑥 ≥ 0. When the operating unit fails, the spare 𝐵 is immediately 

put in motion by the switch. The failed unit is renewed by a single repair facility. 

A renewal time of a unit 𝐴 is a random variable 𝛾𝐴 having distribution given by a 

cumulative distribution function (CDF)  𝐻𝐴(𝑥) = 𝑃(𝛾𝐴 ≤  𝑥),    𝑥 ≥ 0. Lifetime 

of the unit 𝐵 is a random variable  𝜁𝐵 , with PDF  𝑓𝐵(𝑥),    𝑥 ≥ 0. When unit  𝐵  
fails, the unit  𝐴  immediately starts to work by the switch (if it is "up") and unit 

𝐵 is repaired. A renewal time of the unit 𝐵 is a random variable  𝛾𝐵  having 

distribution given by the CDF  𝐻𝐵(𝑥) = 𝑃(𝛾𝐵 ≤ 𝑥), 𝑥 ≥ 0. 

Let  𝑈  be a random variable having a binary distribution  

𝑏(𝑘) = 𝑃(𝑈 = 𝑘) = 𝑎𝑘(1 − 𝑎)1−𝑘,    𝑘 = 0,1, 0 < 𝑎 < 1, 

where  𝑈 = 0, if a switch is failed at the moment of the operating unit failure, and 

 𝑈 = 1, if the switch work at that moment. 

The failure of the system takes place when the operating unit fails and the 

component that has failed sooner is not still ready to work or when both the 

operating unit and the switch have failed. 

We suppose that an initial state is 5 with probability  𝑝 ≥ 0 or  6 with probability  

𝑞 = 1 − 𝑝. 

We also assume that the whole system is renewable.  After failure  the entire 

system is renewed. A renewal time of whole system is random variable with 

distribution given by a cumulative distribution function (CDF 

𝐻(𝑥) = 𝑃(γ ≤ 𝑥),    𝑥 ≥ 0. 

Moreover we assume that all random variables, mentioned above are mutually 

independent.  
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3  Construction of Semi-Markov reliability model 

To describe the reliability process of the system, we have to define the states and 

the renewal kernel. We introduce the following states: 

0 –   failure of the whole system due to a failure of a switch; 

1 –  failure of the whole system due to the failure of the unit 𝐵 during repair        

         period  of the unit A; 

2 –  failure of the whole system due to the failure of the unit 𝐴 during repair        

         period  of the unit B; 

3 –    repair of the unit A, unit B is working; 

4 –    repair of the unit B, unit A is working; 

5 –    both  unit A and unit B are "up" and unit A is working. 

6 –    both  unit A and unit B are "up" and unit B is working. 

Figure 1 shows functioning of the system. Let  0 = 𝜏0
∗, 𝜏1

∗, 𝜏2
∗, …  denote the 

instants of the states changes and  {𝑌(𝑡):  𝑡 ≥ 0}  be a random process with the 

state space  𝑆 = {0, 1, 2, 3, 4, 5, 6}, which keeps constant values on the half-

intervals  [𝜏𝑛
∗ , 𝜏𝑛+1

∗ ), 𝑛 = 0,1, …  and it is right-continuous. This process is not 

semi-Markov, because a memory-less property is not satisfied for all instants of 

the state changes of it. 

 Operating process  realization  of this standby system is shown in Figure 1.  We  

construct a new random process in a following way. Let  0 = 𝜏0  and  𝜏1, 𝜏2, . ..  
denote instants of the unit failures or instants of the whole system failure.  

Suppose that the lines are denoted             

          -         -   work of the unit  A   or  B 

                   -   repair (renewal) of the unit  A   or  B 

                      -     stand-by  of  the unit  A   or  B 

 

 

 

 

 

 

 

      𝜏0
∗                𝜏 1

∗         𝜏2
∗       𝜏3

∗            𝜏4
∗       𝜏5

∗     𝜏6
∗      𝜏7

∗       𝜏8
∗         𝜏9

∗              𝑡   

      𝜏0                 𝜏1                   𝜏2            𝜏3                𝜏4                  𝜏5          𝜏6         

Figure 1. The cold standby system operating process  evolution. 

 

 The random process  {𝑋(𝑡):  𝑡 ≥ 0}  determining following way 
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𝑋(𝑡) = 𝑌(𝜏𝑛)    for     𝑡 ∈ [𝜏𝑛, 𝜏𝑛+1),    n = 0, 1, 2, …                                    

is the semi-Markov process. This process is called an  embedded semi-Markov 

process in the stochastic process  {𝑌(𝑡):  𝑡 ≥ 0}. 

To determine semi-Markov process as a model we have to define its initial 

distribution and all elements of its kernel. Recall that the semi-Markov kernel is 

the matrix of transition probabilities of the Markov renewal process  

𝑄(𝑡) = [𝑄𝑖𝑗(𝑡):  𝑖, 𝑗 ∈ 𝑆],                                                                  (1) 

where 

𝑄𝑖𝑗(𝑡) = 𝑃(𝜏𝑛+1 − 𝜏𝑛 ≤ t, 𝑋(𝜏𝑛+1) = 𝑗 | 𝑋(𝜏𝑛) = 𝑖),    𝑡 ≥ 0.                         (2) 

Let us recall that the sequence  {𝑋(𝜏𝑛):  𝑛 = 0,1, … }  is a homogeneous Markov 

chain with transition probabilities 

𝑝𝑖𝑗 = 𝑃(𝑋(𝜏𝑛+1) = 𝑗 | 𝑋(𝜏𝑛) = 𝑖) = lim
𝑡→∞

𝑄𝑖𝑗(𝑡).                                  (3) 

The function  

𝐺𝑖(𝑡) = 𝑃(𝑇𝑖 ≤ 𝑡) = 𝑃(𝜏𝑛+1 − 𝜏𝑛  ≤ 𝑡 | 𝑋(𝜏𝑛) = 𝑖) = ∑ 𝑄𝑖𝑗(𝑡)𝑗∈𝑆                (4) 

is the CDF distribution of a waiting time  𝑇𝑖   denoting the time spent in state  𝑖  
when the successor state is unknown, the function 

𝐹𝑖𝑗(𝑡) = 𝑃(𝜏𝑛+1 − 𝜏𝑛  ≤ 𝑡 | 𝑋(𝜏𝑛) = 𝑖, 𝑋(𝜏𝑛+1) = 𝑗) =
𝑄𝑖𝑗(𝑡)

𝑝𝑖𝑗
                       (5)          

is the CDF of a random variable  𝑇𝑖𝑗   that is called a holding time of a state  𝑖, if 

the next state will be  𝑗. It is easy to see that  

𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝐹𝑖𝑗(𝑡).                                                                     (6) 

In this case the semi-Markov kernel takes the form  

𝑄(𝑡) =

[
 
 
 
 
 
 
 
 
0 0 0 0 0 𝑄05(𝑡) 𝑄06(𝑡)

0 0 0 0 0 𝑄15(𝑡) 𝑄16(𝑡)

0 0 0 0 0 𝑄25(𝑡) 𝑄26(𝑡)

𝑄30(𝑡) 𝑄31(𝑡) 0 0 𝑄34(𝑡) 0 0

𝑄40(𝑡) 0 𝑄42(𝑡) 𝑄43(𝑡) 0 0 0

𝑄50(𝑡) 0 0 𝑄53(𝑡) 0 0 0

𝑄60(𝑡) 0 0 0 𝑄64(𝑡) 0 0
]
 
 
 
 
 
 
 
 

        (7) 

Construction of the semi-Markov model consists in determining of the matrix 

𝑄(𝑡) components on the basis of assumptions. We begin from  determining of the 

transition probabilities from the “dawn” states. According to (2) and (3) we have  
𝑄05(𝑡) = 𝑄15(𝑡) = 𝑄25(𝑡) = 𝑝 𝐻(𝑡) ,                                                               (8) 

𝑄06(𝑡) = 𝑄16(𝑡) = 𝑄26(𝑡) = 𝑞 𝐻(𝑡),          where     𝑝, 𝑞 > 0,      𝑝 + 𝑞 = 1; 

Transition probability from  the state  3 we calculate the following way: 

𝑄30(𝑡) = 𝑃(𝑈 = 0, 𝜁𝐵𝑡) = (1 − 𝑎)𝐹𝐵(𝑡),                                                          (9) 
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𝑄31(𝑡) = 𝑃(𝑈 = 1, 𝜁𝐵 ≤ 𝑡,     𝛾𝐴 > 𝜁𝐵) = 𝑎 ∬
𝐶31

𝑓𝐵(𝑥)𝑑𝑥 𝑑𝐻𝐴(𝑦),           where  

𝐶31 = {(𝑥, 𝑦):  𝑥 ≤ 𝑡, 𝑦 > 𝑥}   

and finally 

𝑄31(𝑡) = 𝑎 ∫
𝑡

0
 𝑓𝐵(𝑥)[1 − 𝐻𝐴(𝑥)]𝑑𝑥 .                                                         (10) 

Similarly 

 𝑄34(𝑡) = 𝑃(𝑈 = 1, 𝜁𝐵 ≤ 𝑡, 𝛾𝐴 < 𝜁𝐵) = 𝑎 ∬
𝐶34

𝑓𝐵(𝑥)𝑑𝑥 𝑑𝐻𝐴(𝑦),     where  

𝐶34 = {(𝑥, 𝑦):  𝑥 ≤ 𝑡, 𝑦 < 𝑥}. 

Hence 

𝑄34(𝑡) = 𝑎 ∫
𝑡

0
 𝑓𝐵(𝑥) 𝐻𝐴(𝑥)𝑑𝑥                                                                        (11) 

In a similar way we get  

𝑄40(𝑡) = 𝑃(𝑈 = 0, 𝜁𝐴 ≤ 𝑡) = (1 − 𝑎)𝐹𝐴(𝑡),                                        (12) 

𝑄42(𝑡) = 𝑃(𝑈 = 1, 𝜁𝐴 ≤ 𝑡,  𝛾𝐵 > 𝜁𝐴) = 𝑎 ∫
𝑡

0
 𝑓𝐴(𝑥)[1 − 𝐻𝐵(𝑥)]𝑑𝑥,          (13) 

𝑄43(𝑡) = 𝑃(𝑈 = 1, 𝜁𝐴 ≤ 𝑡, 𝛾𝐵 < 𝜁𝐴) = 𝑎 ∫
𝑡

0
𝑓𝐴(𝑥) 𝐻𝐵(𝑥)𝑑𝑥,                        (14) 

𝑄50(𝑡) = 𝑃(𝑈 = 0, 𝜁𝐴 ≤ 𝑡) = (1 − 𝑎)𝐹𝐴(𝑡),                                        (15) 

𝑄53(𝑡) = 𝑃(𝑈 = 1, 𝜁𝐴 ≤ 𝑡) = 𝑎 𝐹𝐴(𝑡),                                              (16) 

𝑄60(𝑡) = 𝑃(𝑈 = 0, 𝜁𝐵 ≤ 𝑡) = (1 − 𝑎)𝐹𝐵(𝑡),                                         (17) 

𝑄64(𝑡) = 𝑃(𝑈 = 1, 𝜁𝐵 ≤ 𝑡) = 𝑎 𝐹𝐵(𝑡)                                               (18) 

  

All elements of the kernel  𝑄(𝑡)  have been defined, hence the semi-Markov 

process  {𝑋(𝑡):  𝑡 ≥ 0}  describing the reliability of the cold standby system is 

constructed. 

For all states we need to calculate the transition probabilities of the embedded 

Markov chain and also distributions of the waiting and holding times. Applying 

(3), (7) - (18) we can determine the transition probabilities matrix of the 

embedded Markov chain  {𝑋(𝜏𝑛):  𝑛 = 0,1,… }    

𝑷 =

[
 
 
 
 
 
 
 
0 0 0 0 0 𝑝 𝑞
0 0 0 0 0 𝑝 𝑞
0 0 0 0 0 𝑝 𝑞
𝑝30 𝑝31 0 0 𝑝34 0 0
𝑝40 0 𝑝42 𝑝43 0 0 0
1 − 𝑎 0 0 𝑎 0 0 0
1 − 𝑎 0 0 0 𝑎 0 0

]
 
 
 
 
 
 
 

,                                                (19) 

where  

𝑝30 = 1 − a,   𝑝31 = 𝑎 ∫
∞

0

 𝑓𝐵(𝑥)[1 − 𝐻𝐴(𝑥)]𝑑𝑥,  𝑝34 = 𝑎 ∫
∞

0

𝑓𝐵(𝑥)𝐻𝐴(𝑥) 𝑑𝑥,   
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𝑝40 = 1 − a ,   𝑝42 = 𝑎 ∫
∞

0

𝑓𝐴(𝑥)[1 − 𝐻𝐵(𝑥)]𝑑𝑥,   𝑝43 = 𝑎 ∫
∞

0

 𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥. 

Using formula (4) and equalities (8)-(18)we obtain CDF’s of the waiting times 

for the states   𝑖 ∈ 𝑆. 

 𝐺0(𝑡) = 𝑄05(𝑡) + 𝑄06(𝑡) = 𝑝 𝐻(𝑡) + 𝑞 𝐻(𝑡) = 𝐻(𝑡),                                  (20)                   

 𝐺1(𝑡) = 𝑄15(𝑡) + 𝑄16(𝑡) = 𝑝 𝐻(𝑡) + 𝑞 𝐻(𝑡) = 𝐻(𝑡),                            (21) 

 𝐺2(𝑡) = 𝑄25(𝑡) + 𝑄26(𝑡) = 𝑝 𝐻(𝑡) + 𝑞 𝐻(𝑡) = 𝐻(𝑡),                                (22) 

 𝐺3(𝑡) = 𝑄30(𝑡) + 𝑄31(𝑡) + 𝑄34(t) =                                                   (23) 

= (1 − 𝑎)𝐹𝐵(𝑡) + 𝑎 ∫
𝑡

0

 𝑓𝐵(𝑥)[1 − 𝐻𝐴(𝑥)]𝑑𝑥 + 𝑎 ∫
𝑡

0

 𝑓𝐵(𝑥) 𝐻𝐴(𝑥)𝑑𝑥 = 𝐹𝐵(𝑡), 

 𝐺4(𝑡) = 𝑄40(𝑡) + 𝑄42(𝑡) + 𝑄34(t) =                                               (24) 

= (1 − 𝑎)𝐹𝐴(𝑡) + 𝑎 ∫
𝑡

0

 𝑓𝐴(𝑥)[1 − 𝐻𝐵(𝑥)]𝑑𝑥 + 𝑎 ∫
𝑡

0

 𝑓𝐴(𝑥) 𝐻𝐵(𝑥)𝑑𝑥 =  𝐹𝐴(𝑡), 

𝐺5(𝑡) =  𝑄50(𝑡) + 𝑄53(𝑡)  = (1 − 𝑎)𝐹𝐴(𝑡) + 𝑎 𝐹𝐴(𝑡) = 𝐹𝐴(𝑡) ,                     (25)                                                    

𝐺6(𝑡) =  𝑄60(𝑡) + 𝑄64(𝑡) = (1 − 𝑎)𝐹𝐵(𝑡) + 𝑎 𝐹𝐵(𝑡) =  𝐹𝐵(𝑡).                    (26) 

  

Applying the equality (5) and (8)-(19) we calculate CDF’s of the holding times. 

𝐹05(𝑡) = 𝐹15(𝑡) = 𝐹25(𝑡) =  𝐹06(𝑡) = 𝐹16(𝑡) = 𝐹26(𝑡) =  𝐻(𝑡),          

 𝐹30(𝑡) = 𝐹𝐵(𝑡),    𝐹31(𝑡) =
∫
𝑡
0  𝑓𝐵(𝑥)[1−𝐻𝐴(𝑥)]𝑑𝑥

∫
∞
0  𝑓𝐵(𝑥)[1−𝐻𝐴(𝑥)]𝑑𝑥

  ,                                               (27) 

𝐹34(𝑡) =
∫
𝑡
0  𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥

∫
∞
0  𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥

    

𝐹40(𝑡) = 𝐹𝐴(𝑡),   𝐹42(𝑡) =
∫
𝑡
0  𝑓𝐴(𝑥)[1−𝐻𝐵(𝑥)]𝑑𝑥

∫
∞
0  𝑓𝐴(𝑥)[1−𝐻𝐵(𝑥)]𝑑𝑥

 ,                                             (28) 

𝐹43(𝑡) =
∫
𝑡
0  𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥

∫
∞
0  𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥

 , 

 𝐹50(𝑡) = 𝐹53(𝑡) = 𝐹𝐴(𝑡),        𝐹60(𝑡) = 𝐹64(𝑡) = 𝐹𝐵(𝑡).                                   (29) 

 
. 

4   Reliability characteristics 

Assume that evolution of a system reliability is describe by a finite states pace  𝑆  
semi-Markov process  {𝑋(𝑡): 𝑡 ≥ 0}. Elements of a set   𝑆  represent the reliability 

states of the system. Let  𝑆+  consists of the functioning states (up states) and  𝑆−  
contains all the failed states (down states). The subset  𝑆+  and 𝑆− form a partition 

of   𝑆 , i.e.,  𝑆 = 𝑆+ ∪ 𝑆−  and 𝑆+ ∩ 𝑆− = 0. Suppose that  𝑖 ∈ 𝑆+ is an initial state 

of the process. The conditional reliability function is defined by  

𝑅𝑖(𝑡) = 𝑃(∀𝑢 ∈ [0, 𝑡], 𝑋(𝑢) ∈ 𝑆+|𝑋(0) = 𝑖), 𝑖 ∈ 𝑆+.                                  (30) 
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Let     𝑆− = 𝐷, and  𝑆+ = 𝐷′ . From   (30) and  the Chapman-Kolmogorov property 

of a two dimensional Markov chain {(𝑋(𝜏𝑛), 𝜏𝑛):  𝑛 = 0,1,2, … }, we obtain  

𝑅𝑖(𝑡) = 1 − 𝐺𝑖(𝑡) + ∑𝑗∈𝐷′ ∫
𝑡

0
𝑅𝑗(𝑡 − 𝑢)𝑑𝑄𝑖𝑗(𝑢),    𝑖 ∈ 𝐷′.                            (31) 

Passing to the Laplace transform we get  

�̃�𝑖(𝑠) =
1

𝑠
− �̃�𝑖(𝑠) + ∑𝑗∈𝐷′ �̃�𝑖𝑗(𝑠)�̃�𝑗(𝑠),    𝑖 ∈ 𝐷′,                                   (32) 

where     �̃�𝑗(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑅𝑗(𝑡)𝑑𝑡. 

The matrix form of the equation system is 

 (𝐼 − 𝑞𝐷′(𝑠))𝑅(𝑠) = 𝑊𝐷′(𝑠),                                                                 (33) 

where  

𝑅(𝑠) = [�̃�𝑖(𝑠):  𝑖 ∈ 𝐷′]𝑇 ,    𝑊𝐷′(𝑠) = [
1

𝑠
− �̃�𝑖(𝑠):  𝑖 ∈ 𝐷′]𝑇 

are one column matrices,  and  

𝑞𝐷′(𝑠) = [�̃�𝑖𝑗(𝑠):  𝑖, 𝑗 ∈ 𝐷′,     𝐼 = [𝛿𝑖𝑗:  𝑖, 𝑗 ∈ 𝐷′] 

are square matrices. Note that  

�̃�𝑖(𝑠) =
1

𝑠
∑𝑗∈𝐷′ �̃�𝑖𝑗(𝑠).                                                                                      

Elements of the matrix  �̃�(𝑠)  are the Laplace transforms of the conditional 

reliability functions. We obtain the reliability functions  𝑅𝑖(𝑡),    𝑖 ∈ 𝐷′ by 

inverting the Laplace transforms  �̃�𝑖(𝑠), 𝑖 ∈ 𝐷′. 

Now the equation (33) takes the form 

[
 
 
 
 
1 −�̃�34(𝑠) 0 0

−�̃�43(𝑠) 1 0 0

−�̃�53(𝑠) 0 1 0

0 −�̃�64(𝑠) 0 1
]
 
 
 
 

  

[
 
 
 
 
�̃�3(𝑠)

�̃�4(𝑠)

�̃�5(𝑠)

�̃�6(𝑠)]
 
 
 
 

  =   

[
 
 
 
 
 

 

1

𝑠
− �̃�𝐵(𝑠)

1

𝑠
− �̃�𝐴(𝑠)

1

𝑠
− �̃�𝐴(𝑠)

1

𝑠
− �̃�𝐵(𝑠)]

 
 
 
 
 

                      ( 35) 

The solution is 

 �̃�3(𝑠) =  
�̃�34(𝑠)(1−𝑠 �̃�𝐴(𝑠))+(1−𝑠 �̃�𝐵(𝑠))

𝑠(1−�̃�34(𝑠) �̃�43(𝑠))
,             ( 36)  

 �̃�4(𝑠) =
�̃�43(𝑠)(1−𝑠�̃�𝐵(𝑠))+(1−𝑠 �̃�𝐴(𝑠))

𝑠(1−�̃�34(𝑠) �̃�43(𝑠))
,                                                                        (37)                            

�̃�5(𝑠) =
𝑎(1−𝑠 �̃�𝐵(𝑠)) + 𝑎 �̃�34(𝑠)(1−𝑠 �̃�𝐴(𝑠))+(1−𝑠 �̃�𝐴(𝑠))(1−�̃�34(𝑠) �̃�43(𝑠))

𝑠(1−�̃�34(𝑠)�̃�43(𝑠))
,     (38)                                                

�̃�6(𝑠) =
𝑎(1−𝑠 �̃�𝐴(𝑠)) +𝑎 �̃�43(𝑠)(1−𝑠 �̃�𝐵(𝑠))+(1−𝑠�̃�𝐵(𝑠))(1−�̃�34(𝑠) �̃�43(𝑠))

𝑠(1−�̃�34(𝑠) �̃�43(𝑠))
.          (39)                                                
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The Laplace transform of unconditional reliability function of the system is 

 �̃�(𝑠) = 𝑝 �̃�5(𝑠) + 𝑞�̃�6(𝑠)                                                                      (40) 

A conditional means to failure of the system we can calculate using equalities  

𝐸( 𝛩𝑖) = lim
𝑠→0+

�̃�(𝑠),   𝑠 ∈ (0,∞).                                                                       (41)  

Therefore, from (38) and (39) and (40) we obtain 

E(𝛩5) =
𝑎 𝐸(𝑇3)+𝑎𝑝34 𝐸(𝑇4)+𝐸(𝑇5)−𝑝34𝑝43 𝐸(𝑇5) 

1−𝑝34𝑝43
=  𝐸(𝜁𝐴) +

𝑎 𝐸(𝜁𝐵)+𝑎𝑝34 𝐸(𝜁𝐴) 

1−𝑝34𝑝43
,    (42) 

E(𝛩6) =
𝑎 𝐸(𝑇4)+𝑎𝑝43 𝐸(𝑇3)+𝐸(𝑇6)−𝑝34𝑝43 𝐸(𝑇6) 

1−𝑝34𝑝43
=  𝐸(𝜁𝐵) +

𝑎 𝐸(𝜁𝐴)+𝑎𝑝34 𝐸(𝜁𝐵) 

1−𝑝34𝑝43
.    (43) 

According to  (40), (41) and (42) we get the mean time to failure of the system. 

 𝐸( 𝛩) =  𝑝 𝐸(𝜁𝐴) + 𝑞 𝐸(𝜁𝐵) + 𝑝 𝑎
𝐸(𝜁𝐵)+𝑝34 𝐸(𝜁𝐴) 

1−𝑝34𝑝43
+ 𝑞 𝑎

 𝐸(𝜁𝐴)+𝑝34 𝐸(𝜁𝐵) 

1−𝑝34𝑝43
 ,     (44) 

where 

𝑝34 = 𝑎 ∫
∞

0
𝑓𝐵(𝑥) 𝐻𝐴(𝑥)𝑑𝑥,       𝑝43 = 𝑎 ∫

∞

0
 𝑓𝐴(𝑥) 𝐻𝐵(𝑥)𝑑𝑥.                        (45) 

 

5   An approximate reliability function 

In general case calculating an exactly reliability function of the system by means 

of Laplace transform is a complicated matter. Finding an approximate reliability 

function of that system is possible by using results from the theory of semi-

Markov processes perturbations. The perturbed semi-Markov processes are 

defined in different ways by different authors. We introduce Pavlov and Ushakov 

[9] concept of the perturbed semi-Markov process presented by Gercbakh [3] 

Let  𝐷′ = 𝑆 − 𝐷  be a finite subset of states and  𝐷  be at least countable subset of 

 𝑆. Suppose  {𝑋(𝑡):  𝑡 ≥ 0}  is SM process with the state space  𝑆 = 𝐷 ∪ 𝐷′  and 

the kernel    Q(𝑡) = [𝑄𝑖𝑗(𝑡): 𝑖, 𝑗 ∈ 𝑆], the elements of which have the form  

 𝑄𝑖𝑗(𝑡) = 𝑝𝑖𝑗𝐹𝑖𝑗(𝑡).                                                                   (46) 

Assume that  

𝜀𝑖 = ∑𝑗∈𝐷 𝑝𝑖𝑗    and      𝑝𝑖𝑗
0 =

𝑝𝑖𝑗

1−𝜀𝑖
,    𝑖, 𝑗 ∈ 𝐷′.                                          (47) 

Let us notice that   ∑𝑗∈𝐷′ 𝑝𝑖𝑗
0 = 1                                                                                                    

A semi-Markov process  {𝑋(𝑡):  𝑡 ≥ 0}  with the discrete state space  𝑆  defined 

by the renewal kernel    𝑄(𝑡) = [ 𝑝𝑖𝑗𝐹𝑖𝑗(𝑡): 𝑖, 𝑗 ∈ 𝑆 ], is called the perturbed 

process with respect to SM process  {𝑋0(𝑡): 𝑡 ≥ 0}  with the state space 𝐷′ 
defined by the kernel 

   𝑄0(𝑡) = [ 𝑝𝑖𝑗
0 𝐹𝑖𝑗(𝑡): 𝑖, 𝑗 ∈ 𝐷′ ].                                                                        (48)  
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We  quote our version of I.V. Pavlov and I.A. Ushakov [9] theorem. The random 

variable Θ𝑖𝐷 = inf{𝑡: 𝑋(𝑡) ∈ 𝐷 | 𝑋(0) = 𝑖},    𝑖 ∈ 𝐷′ denotes the first passage 

time from the state  𝑖 ∈ 𝐷′  to the subset  𝐷. The function 𝐺𝑖
0(𝑡) = ∑𝑗∈𝐷′ 𝑄𝑖𝑗

0 (𝑡)  

denotes CDF of the waiting time in the state  𝑖 ∈ 𝐷′. The number 𝑚𝑖
0 =

∫
∞

0
𝑥 𝑑𝐺𝑖

0(𝑡),    𝑖 ∈ 𝐷′,  is the expected value of the waiting time in state  𝑖  for 

the process  {𝑋0(𝑡): 𝑡 ≥ 0}. Denote the stationary distribution of the embedded 

Markov chain in SM process  {𝑋0(𝑡):  𝑡 ≥ 0}   by  𝜋0 = [𝜋𝑖
0:  𝑖 ∈ 𝐷′] . Let  

𝜀 = ∑𝑖∈𝐷′ 𝜋𝑖
0𝜀𝑖 and      𝑚0 = ∑𝑖∈𝐷 𝜋𝑖

0𝑚𝑖
0.                                                 (49) 

 

We are interested in the limiting distribution of the random variable  Θ𝑖𝐷 , 𝑖 ∈ 𝐷′.   

Theorem 1.  If the embedded Markov chain defined by the matrix of transition 

probabilities  𝑃 = [  𝑝𝑖𝑗: 𝑖, 𝑗 ∈ 𝑆]  satisfies following conditions   

 𝑓𝑖𝐴 = 𝑃(Δ𝐷 < ∞|𝑋(0) = 𝑖) = 1,    𝑖 ∈ 𝐷′, 

Δ𝐷 = min {𝑛:  𝑋(𝜏𝑛) ∈ 𝐷} , 

 ∀
𝑖∈𝐷

  𝜇𝑖𝐷 = ∑∞
𝑛=1 𝑛𝑓𝑖𝐷(𝑛) < ∞, and 

 ∃
𝑐>0

  ∀
𝑖,𝑗∈𝑆

  0 < 𝐸(𝑇𝑖𝑗) ≤ 𝑐,                                         

then 

lim
𝜀→0

𝑃(𝜀Θ𝑖𝐷   >   𝑥) = 𝑒
−

𝑥

𝑚0 ,                                                                              (50) 

where  𝜋0 = [𝜋𝑖: 𝑖 ∈ 𝐷′]  is the unique solution of the linear system of equations  

𝜋0 = 𝜋0 𝑃 0,    𝜋0 𝟏 = 1.                         (51) 

The considered SM process  {𝑋(𝑡):  𝑡 ≥ 0}  with the state space  𝑆 =
{0,1,2,3,4,5,6}  we can assume to be the perturbed process with respect to the SM 

process  {𝑋0(𝑡):  𝑡 ≥ 0}  with the state space  𝐷′ = {3,4,5,6}  and the kernel 

 𝑄0(𝑡) =

[
 
 
 
 
 

00)(0

000)(

000)(

00)(0

0

64

0

53

0

43

0

34

tQ

tQ

tQ

tQ

]
 
 
 
 
 

,                                                          (52)      

 where  

𝑄34
0 (𝑡) = 𝑝34

0 𝐹34(𝑡),      𝑄43
0 (𝑡) = 𝑝43

0 𝐹43(𝑡),       𝑄53
0 (𝑡) = 𝑝53

0 𝐹53(𝑡), 

 𝑄34
0 (𝑡) = 𝑝63

0 𝐹63(𝑡).  

From (4) , (7)  and  (52)  we obtain  

𝑝34
0 = 1,    𝑝43

0 = 1,    𝑝53
0 = 1,    𝑝64

0 = 1. 

The transition matrix of the embedded Markov chain of SM process is 

 {𝑋0(𝑡):  𝑡 ≥ 0}  is  
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 𝑃0 =

[
 
 
 
 
 
 

0010

0001

0001

0010

]
 
 
 
 
 
 

 . 

Taking under consideration presented above  the CDF’s   𝐹𝑖𝑗(𝑡),    t ≥ 0 , we get  

𝑄34
0 (𝑡) = 𝐹34(𝑡) =

∫
𝑡
0  𝑓𝐵(𝑥) 𝐻𝐴(𝑥) 𝑑𝑥

∫
∞
0  𝑓𝐵(𝑥)𝐻𝐴(𝑥) 𝑑𝑥

,                                                                 (53) 

𝑄43
0 (𝑡) = 𝐹43(𝑡) =

∫
𝑡
0  𝑓𝐴(𝑥) 𝐻𝐵(𝑥) 𝑑𝑥

∫
∞
0  𝑓𝐴(𝑥)𝐻𝐵(𝑥) 𝑑𝑥

,                                                                 (54) 

𝑄50
0 (𝑡) = 𝐹50(𝑡) = 𝐹𝐴(𝑡),      𝑄60

0 (𝑡) = 𝐹60(𝑡) = 𝐹𝐵(𝑡)           

 

 From (19 ) and (47) we have 

𝜀3 = 𝑝30 + 𝑝31 = 1 − a + 𝑎 ∫
∞

0
 𝑓𝐵(𝑥)[1 − 𝐻𝐴(𝑥)]𝑑𝑥 = 1 − 𝑎 ∫

∞

0
𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥,   (55)  

𝜀4 = 𝑝40 + 𝑝42 = 1 − a + 𝑎 ∫
∞

0
 𝑓𝐴(𝑥)[1 − 𝐻𝐵(𝑥)]𝑑𝑥 = 1 − 𝑎 ∫

∞

0
𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥,   (56) 

𝜀5 = 𝑝50 = 1 − 𝑎,         𝜀6 = 𝑝60 = 1 − 𝑎.   

From the system of equations  

[𝜋1
0    𝜋2

0    𝜋3
0      𝜋4

0 ] 𝑃0 = [𝜋1
0    𝜋2

0    𝜋3        
0 𝜋4

0],      𝜋1
0 + 𝜋2

0 + 𝜋3
0 + 𝜋4

0  = 1 

we get 

𝜋3
0 = 0.5,    𝜋4

0 = 0.5,    𝜋5
0 = 0 ,   𝜋6

0 = 0 .                      

From (47), (48) ,  (50) - (56) and from the presented above  theorem  it follows 

that for small  𝜀   

𝑅(𝑡) = 𝑃(Θ𝑖𝐷 > 𝑡)  =  𝑃(𝜀Θ𝑖𝐷 > 𝜀𝑡) ≈ exp [−
𝜀

𝑚0   𝑡] ,    𝑡 ≥ 0,                    (57) 

where   

𝜀 = 0.5(𝜀3 + 𝜀4) = 1 − 0.5 𝑎(∫
∞

0
𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥 + ∫

∞

0
𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥)                    (58) 

and 

𝑚0 = 0.5(𝑚3
0 + 𝑚4

0) = 0.5
∫
∞
0 𝑥𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥

∫
∞
0 𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥

+ 0.5
∫
∞
0 𝑥𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥

∫
∞
0 𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥

.                (59) 

From the shape of the parameter  𝜀  it follows that we can apply this formula only 

if the numbers  𝑃(𝛾𝐵 ≥ 𝜁𝐴),  𝑃(𝛾𝐴 ≥ 𝜁𝐵) denoting probabilities of the 

components failure during the repair periods of an earlier failed components, are 

small. 
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6   Conclusions  

 

 The reliability model of the cold standby system  consist of two different units 

is constructed by using the concept of the embedded  semi-Markov process.   

 Results  of semi-Markov process theory allowed us to compute reliability 

characteristics of the system. 

 The Laplace transform of unconditional reliability function of the system is 

  

 �̃�(𝑠) = 𝑝 �̃�5(𝑠) + 𝑞�̃�6(𝑠), 

 

where   the Laplace transform of conditional reliability functions  �̃�5(𝑠), �̃�6(𝑠) 

are given by (38)  and  (39). 

 The mean time to failure of the considered cold standby system depend on of 

the both components probability distribution of the lifetimes and renewal times 

and also on initial distribution of the process and  the switch reliability 

  

𝐸( 𝛩) = 𝑝 𝐸(𝜁𝐴) + 𝑞 𝐸(𝜁𝐵) + 𝑝 𝑎
𝐸(𝜁𝐵) + 𝑝34 𝐸(𝜁𝐴) 

1 − 𝑝34𝑝43
+ 𝑞 𝑎

 𝐸(𝜁𝐴) + 𝑝34 𝐸(𝜁𝐵) 

1 − 𝑝34𝑝43
, 

𝑝34 = 𝑎 ∫
∞

0

 𝑓𝐵(𝑥)𝐻𝐴(𝑥) 𝑑𝑥,    𝑝43 = 𝑎 ∫
∞

0

 𝑓𝐴(𝑥)𝐻𝐵(𝑥) 𝑑𝑥. 

 If  operating process starts  from the state  5 with probability  𝑝 = 1 then mean 

time to failure is 

 

𝐸( 𝛩) =   𝐸(𝜁𝐴) +  𝑎
𝐸(𝜁𝐵)+𝑝34 𝐸(𝜁𝐴) 

1−𝑝34𝑝43
. 

 

This results was presented in [5].  

 

 If distributions of times to failure and renewal times of components  𝐴  and 

 𝐵  are identical:   𝑓𝐴(𝑥) = 𝑓𝐵(𝑥) = 𝑓(𝑥),   𝐻𝐴(𝑥) = 𝐻𝐵(𝑥) = 𝐻(𝑥), we obtain  

result shown in [4] 

𝐸(𝛩) = 𝐸(𝜁) + 𝑎 
𝐸(𝜁)

1−𝑐
       where   𝑐 = 𝑎 ∫

∞

0
 𝑓(𝑥)𝐻(𝑥) 𝑑𝑥. 

The cold standby  causes the increase of the mean time to failure   1 +
𝑎 

1−𝑐
   

times in this case.  

 If moreover  the switch is reliable    ( 𝑎 = 1 ) we get well known result 

presented in [1], [2], [7]. 

 

       The approximate reliability function of the system is exponential (58) 

𝑅(𝑡) ≈ exp [−
𝜀

𝑚0   𝑡] ,    𝑡 ≥ 0       

where according to (58) and (59) 

𝜀 = 1 − 0.5 𝑎(∫
∞

0
𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥 + ∫

∞

0
𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥), 
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𝑚0 = 0.5
∫

∞

0
𝑥𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥

∫
∞

0
𝑓𝐵(𝑥)𝐻𝐴(𝑥)𝑑𝑥

+ 0.5
∫

∞

0
𝑥𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥

∫
∞

0
𝑓𝐴(𝑥)𝐻𝐵(𝑥)𝑑𝑥

. 
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Limit theorems for queueing systems with
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Abstract. In this paper a multi-server queueing system with regenerative input flow
and independent service times with finite means is studied. We consider queueing
systems with various disciplines of the service performance: systems with a common
queue and systems with individual queues in front of the servers. In the second case an
arrived customer chooses one of the servers in accordance to a certain rule and stays
in the chosen queue up to the moment of its departure from the system. We define
some classes of disciplines and analyze the asymptotical behaviour of a multi-server
queueing system in a heavy-traffic situation (traffic rate ρ ≥ 1). The main result of
this work is limit theorems concerning the weak convergence of scaled processes of
waiting time and queue length to the process of the Brownian motion for the case
ρ > 1 and its absolute value for the case ρ = 1.
Keywords: Queueing System, Heavy-traffic, Limit Theorems, Service Disciplines.

1 Introduction

A wide class of multi-channel queueing models appears to be useful in prac-
tice. Queues are an everyday occurance: people waiting an available seller in
a supermarket, uploading internet pages. Queues can be used to model many
different systems in various areas of our life: computer systems, supermarkets,
transport systems, finance and insurance and others. There are three basic
characteristics of a queueing process: the input flow of customers, the ser-
vice discipline and the service facilities. The simplest of such systems can be
analysed by assuming Poisson input flow, independent identically distributed
exponential service times and discipline FIFO. The more common but more
complicated case is a regenerative input flow. Note that the most part of the
flows under consideration in the queueing theory are regenerative. For exam-
ple, Double stochastic Poisson process with a regenerative random intensity
(see Grandell[9]), Markov modulated (see Asmussen[4]), semi-markov. Many
others processes belong to this class. The description of such processes and
their properties one may find in Afanasyeva et al.[3].

In this paper we analyze the asymptotical behaviour of a queueing system
with a regenerative input flow and r identical parallel servers in a heavy-traffic
situation (traffic rate ρ ≥ 1). To the best of our knowledge multi-channel
queueing systems in the case when the traffic rate ρ ≥ 1 are studied since the
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late 1970s (see Foley and McDonald[8], Eschenfeldt and Gamarnik[7], Liu et
al.[12]).

Afanasyeva and Bashtova[2] proved the convergence of the scaled processes
of the queue length and waiting time for the queueing system with a single
server.

We extend this result to queueing systems with various disciplines of the
service performance: systems with a single queue and systems with individual
queues in front of the servers. In the second case an arriving customer chooses
one of the servers according to defined rule and stays in the chosen queue up
to the moment of the departure from the system. So we have r single-server
queueing systems.

Although there is a huge literature on multi-channel queueing systems the
asymptotical behaviour for the scaled processes of the waiting time and queue
length in a heavy-taffic situation for a multi-channel queueing system with a
regenerative input flow has not been considered yet. The scientific novelty of
this work is that we consider quite general input flow and broad classses of
disciplines.

2 Model Description

We consider a queueing system with a regenerative input flow. Assume a
stochastic process {A(t), t ≥ 0}, A(0) = 0, taking values 0,1,2,. . . , to be defined
on a probability space (Ω,F, P ). The process has non-decreasing and left-
continuous sample paths.

Definition 1. The input flow A(t) is regenerative if there exists an increasing
sequence of random variables {θj}∞j=1, θ0 = 0, such that the sequence {κj}∞j=1 =
{θj − θj−1, A(θj−1 + t)−A(θj−1), t ∈ [0, θj − θj−1)}∞j=1 consists of independent
identically distributed(iid) random elements.

Then θj is the j-th point of regeneration and τj = θj − θj−1 is the j-th
regeneration period, ξj = A(θj)−A(θj−1) and µ = Eτ1 <∞, a = Eξ1 <∞.

The service times {ηj}∞j=1 are supposed to be independent identically dis-
tributed (iid) random variables with distribution function B(x) and finite mean
b =

∫∞
0
xdB(x). Furthermore, the sequence {ηj}∞j=1 doesn’t depend on A(t).

There are r identical servers in the system. We consider queueing systems with
various rules (disciplines) of the service performance. Firstly, it is the systems
with a single queue. Another case - systems with individual queues in front
of the servers. An arriving customer chooses one of the servers for service ac-
cording to defined rule and stays in the chosen queue up to the moment of the
departure from the system. So we have r single-server queueing systems. For
disciplines with interruptions of the service we assume that the service that was
interrupted is continued after return the customer to a server from the point at
which it was interrupted. So that all the customers are characterized by their
residual service times.

The following disciplines may be considered as examples.
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(i) There exists a single queue. We consider a class of so-called conservative
disciplines such that the number of working servers at time t is equal to
min(r,Q(t)), where Q(t) is the total number of customers at the system at
time t.
Denote D0 discipline FIFO(first in - first out) and introduce two disciplines
D1 and D2 with interruptions of service. For D1 (D2) at any time t the
residual service time of the customer that is on a server is not more(less)
than residual service times of the customers waiting in the single queue(if
there are).

(ii) An arriving customer is served by the j-th server with probability 1
r inde-

pendently of others(discipline D3).
(iii) The n-th customer is directed for service to the j-th server if n = rm + j,

where m = 0, 1, 2, . . . , j = 1, r (cycled discipline D4).
(iv) A server has its own queue and an arriving customer chooses a server with

minimal queue in front of it(discipline D5). If there are several servers with
minimal queues an arriving customer chooses each of them randomly with
equal probabilities.

Let qi(t) be the number of customers which have to be served by the i-
th server at time t in accordance with a discipline under consideration and
ηji(t) be the residual service time of the j-th customer on the i-th server (j =
1, . . . , qi(t), i = 1, . . . , r). We put ηji(t) = 0 if qi(t) = 0.

Denote

−→q (t) = (q1(t), . . . , qr(t)),

−→
W (t) = (W1(t), . . . ,Wr(t)), where Wi(t) =

qi(t)∑
j=1

ηji(t).

We also consider embedded processes

−→
Qn = −→q (θn − 0) = (qn1, . . . , qnr),−→

Wn =
−→
W (θn − 0) = (Wn1, . . . ,Wnr),

and sums of coordinates

W (t) =
r∑
j=1

Wj(t), Wn = W (θn − 0),

Q(t) =
r∑
j=1

qj(t), Qn = Q(θn − 0).

Proposition 1. For each server i = 1, r

P{ξ1 = 0, τ1 > 0}+ P{ξ1 = 1, t1 + ηi1 < τ1} > 0.

Here t1 is the arrival time of the first customer.

To formulate our results we separate classes of disciplines.

Definition 2. Discipline D belongs to the class K0, if the convergence Qn =
r∑
i=1

qni
P−→ ∞ as n → ∞ involves the convergence qni

P−→ ∞ as n → ∞ for all

i = 1, . . . , r. (Property 1a)
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Definition 3. Discipline D belongs to the class K1, if it has property 1a and
additionally the convergence Qn −→ ∞ (w.p.1.)(with probability 1) as n → ∞
involves the convergence qni −→ ∞ (w.p.1) as n→∞ for all i = 1, r (Property
2a)

We say that a discipline has a property of symmetry if for any permutation
(i1, . . . , ir) of numbers (1, 2, . . . , r) and t > 0 following equalities take place in
distribution

(qi1(t), . . . , qir (t))
d
= (q1(t), . . . , qr(t)),

(Wi1(t), . . . ,Wir (t))
d
= (W1(t), . . . ,Wr(t)),

provided that these equalities hold an initial time t = 0.

Definition 4. A symmetry discipline D belongs to the class K2, if the flow
Ai(t) of customers that have to be served by the i-th server is a regenerative

one for any i = 1, r. Additionally, the sequence {θ(i)n }∞n=1 of regeneration points

is a subsequence {θ(i)nα(i)}
∞
α=1 of the sequence of regeneration points {θn}∞n=1 of

the input flow A(t).

3 Limit theorem in the case ρ > 1

A regenerative flow has the following important property (see Afanasyeva and
Bashtova[2]).

Property 1. There exists λ = lim
n→∞

A(t)
t = a

µ (w.p.1) and λ is the intensity of

input flow A(t).

The stability condition for the processes Wn and Qn for the disciplines from
the class K0 is ρ = λbr−1 < 1 as it was shown in Grishunina[10].

Here our problem is to investigate the asymptotical behaviour of the system
in a heavy-traffic situation in a case when ρ > 1.

Theorem 1. Let

Eτ2+δ1 <∞, Eξ2+δ1 <∞, Eη2+δ1 <∞ (1)

for some δ > 0. If ρ > 1 then for any discipline from class K1 processes

W̃T (t) =
W (tT )− (λb− r)tT

σW
√
T

, Q̃T (t) =
Q(tT )− (λ− r

b )tT

σQ
√
T

converge weakly as T →∞ to Brownion motion on any interval [α, β]. Here

σ2
W = b2σ2

Q, σ2
Q = σ2

A+rσ2
ηb
−3, σ2

A = σ2
ξ/µ+a2σ2

τ/µ
3−2acov(ξ, τ)/µ2 (2)

and σ2
ξ and σ2

τ - are variances of ξ and τ respectively.
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Proof. It is sufficient to prove the convergence only for the process Q̃T (t) be-
cause of the results by Borovkov [6] (ch. 4 par. 25) concerning the connection
between processes W (t) and Q(t). Our proof will be based on the result from
Borovkov[5](Par. 2 Th. 1). The process Q̃n(t) converges to Brownian motion
if and only if:

1. Finite-dimensional distributions of the process Q̃n(t) converge weakly to
the finite-dimensional distributions of the Brownian motion;

2. For any ε > 0

lim
∆→0

lim sup
n

P ( sup
|t1−t2|<∆

|Q̃T (t1)− Q̃T (t2)| > ε) = 0

Consider the workload process
◦
W (t) for a single-server system wth input

flow A(t) and B(rt) as a distribution function of the service time. If W (0) =
◦
W (0) = 0, then for any discipline from K1 we have

W (t) ≥
◦
W (t), t ≥ 0. (3)

It was proved in Afanasyeva[1]), that
◦
W (t)→∞ if t→∞ and ρ > 1. In view

of inequality (3) and definition of class K1 we get

qi(t) −−−→
t→∞

∞ (w.p.1), i = 1, r

for any rule of choice from K1. Therefore for any ε there exists tε such that

P (Aε) > 1− ε

where the event Aε is determined as follows

Aε = {qi(t) > 0, i = 1, r, ∀t ≥ tε}.

Let us introduce the sequence {Y (i)
j }∞j=1 of independent random variables.

Here Y
(i)
1 is the residual service time of the customer serving by the ith server

at time tε if qi(tε) > 0 and 0 otherwise.

The sequence {Y (i)
j }∞j=2 consists of service times of customers starting their

service on the ith server after tε. Denote

Yi(t) = max{k ≥ 0 :
k∑
j=1

Y
(i)
j < t}, Yi(0) = 0, i = 1, r and Y (t) =

r∑
i=1

Yi(t).

It follows from the Central Limit Theorem for renewal processes (see Borovkov[6])
that scaled process

ỸT (t) =
Yi(tT )− tT b−1√

Tσ2
η/b

3
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converges weakly to Brownian motion as T →∞ on any finite interval t ∈ [0, h].
Here σ2

η is the variance of ηj . Moreover, from the properties for a regenerative
input flow (see Afanasyeva and Bashtova[2]) we get that

ÃT (t) =
A(tT )− λtT
σA
√
tT

(4)

converges weakly to Brownian motion. Let Z(t) = A(t)−Y (t). Then the scaled
process

Z̃(tT ) =
Z(tT )− (ρ− 1)rb−1tT

σQ
√
T

converges weakly to Brownian motion V (t) as T → ∞. Here σ2
Q is defined by

(2).
We see that the process Z(t) is costructed in such a way that on the set Aε

the following inequality holds

Q(tT ) = Q(tε) + Z(tT )− Z(tε).

We introduce the multi-dimensional distribution functions for t1 ≤ t2 ≤
· · · ≤ tn

F (
−→
t ,−→x ) = P (Z̃(t1) ≤ x1, . . . , Z̃(tn) ≤ xn),

G(
−→
t ,−→x ) = P (Q̃(t1) ≤ x1, . . . , Q̃(tn) ≤ xn),

Φ(
−→
t ,−→x ) = P (V (t1) ≤ x1, . . . , V (tn) ≤ xn).

We remind that V (t) is a standard Brownian motion. Now we have

|G(
−→
t T,−→x )−Φ(

−→
t ,−→x )| ≤ |G(

−→
t T,−→x )−F (

−→
t T,−→x )|+|F (

−→
t T,−→x )−Φ(

−→
t ,−→x )| =

= I1(T ) + I2(t).

Here I2(t)→ 0 as T →∞.
Let t1T > tε.
For the first term we have

I1(t) =

∣∣∣∣∣P
(
Q(tε)− Z(tε)

σQ
√
T

+ Z̃(
−→
t T ) ≤ −→x ; Aε

)
+ P (Q̃(

−→
t T ) < −→x ; Aε)−

−P (Z̃(
−→
t T ) < −→x )

∣∣∣ ≤ 2P (Aε) +

∣∣∣∣∣P
(
Q(tε)− Z(tε)

σQ
√
T

+ Z̃(
−→
t T ) ≤ −→x

)
−

−P (Z̃(
−→
t T ) < −→x )

∣∣∣→ 0 as T →∞

Therefore Condition 1 from the Theorem by Borovkov is fulfilled.
Now we prove that the second condition of the Theorem that is for any

ε > 0

lim
∆→0

lim sup
n

P ( sup
|t1−t2|<∆

|Q̃T (t1)− Q̃T (t2)| > ε) = 0.
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We note that |Q̃T (t1) − Q̃T (t2)| = |Z̃T (t1) − Z̃T (t2)| and since Z̃T (t) con-
verges weakly to Brownian motion then from the mentioned Theorem by Borovkov
for any ε > 0

lim
∆→0

lim sup
n

P ( sup
|t1−t2|<∆

|Z̃T (t1)− Z̃T (t2)| > ε) = 0.

Therefore this statement is true for the process Q̃T (t).
The conditions of Borovkov theorem are fulfilled for the process Q̃T (t) and

thus this process converges weakly to Brownian motion.

4 Corollaries

Corollary 1. Let (1) be fulfilled and ρ > 1. Then for a multi-channel sys-
tem with a single queue and any conservative discipline the statements of the
Theorem 1 are true.

Proof. First we note that disciplines D1 and D2 belong to class K1. Therefore
Theorem 1 is true for these disciplines. Let WD(t) be a process W (t) for a
system with a single queue and conservative discipline D. For the simplicity
let the queue start out empty, i.e. WD(0) = 0. Then one can easy verify that
stochastic inequalities

WD2(t) ≤WD(t) ≤WD1(t), t ≥ 0 (5)

take place for any conservative discipline. Therefore the proof is completed.

Lemma 1. Let ρ > 1 and Proposition 1 be fulfilled. Then for a system with
any discipline from class K2 the convergence

qi(t) −−−→
t→∞

∞ (w.p.1), i = 1, r (6)

takes place, i.e. K2 ∈ K1. Therefore Theorem 1 is fulfilled for disciplines from
class K2.

Proof. Since the proof is almost evident we omit it here.

Corollary 2. Let (1) be fulfilled and ρ > 1. Then the statements from Theo-
rem 1 are true for disciplines D3, D4, D5.

Proof. The result for disciplines D3 and D4 follows from Lemma 1. For D5

this statement is proved by Grishunina[10].

5 Limit theorem for the case ρ = 1

First we consider a system with a single queue and FIFO discipline.
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Theorem 2. Let (1) be fulfilled and ρ = 1. Then for a system with a single
queue and FIFO discipline the scaled process

Q̂T (t) =
Q(tT )

σQ
√
T

converges weakly as T → ∞ to absolute value of the Brownian motion on any
finite interval [α, β]. Here σQ is given by (2).

Proof. In view of Property of the regenerative flow (4) one may apply the
approach proposed in Iglehart and Whitt[11] for a system with a recursive
flow. The modification is perfectly not significance.

For a queueing system with separate queues in front of the servers and with
a discipline D from class K2 denote ADj (t) the input flow for the ith server.

Since ADj (t) is a regenerative flow, under (1) there exists

lim
t→∞

V arADj (t)

t
= σ2

AD

not depending on j for D ∈ K0.

Corollary 3. Let (1) be fulfilled and ρ = 1. Then for a system with discipline
D ∈ K2 scaled number of customers in the jth server

q̂TjD (t) =
qjD (tT )

σqD
√
T

converges weakly as T →∞ to absolute value vj(t)of the Brownian motion on
any finite interval [α, β]. Here

σ2
qD = σ2

AD +
σ2
η

b3
. (7)

Proof. Since D ∈ K2 the process ADj (t) is a regenerative flow the statement of
the Corollary follows from Theorem 2.

To employ the result we have to calculate σ2
AD

. Let us give some examples.

Example 1.

Consider discipline D3. Let ξ
(j)
n be the number of customers arriving to

the jth server during the nth regeneration period of A(t). Then we have the
stochastic equality

ξ(j)n =

ξn∑
i=1

δ
(n)
ij ,

where {δ(n)ij } is a sequance of i.i.d. random variables and P (δ
(n)
ij = 1) = r−1,

P (δ
(n)
ij = 0) = 1 − r−1. One can easily get Eξ

(j)
n = r−1a, V arξ

(j)
n = ar−1(1 −

r−1) + r−2σ2
ξ , cov(τn, ξ

(j)
n ) = r−1cov(τn, ξn). It follows from (2).

σ2
AD3

=
σ2
ξ

r2µ
+
a(r − 1)

r2µ
+
a2σ2

τ

r2µ3
− 2

cov(τ, ξ)

rµ2
. (8)
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For a renewal process A(t) (a = 1, cov(τ, ξ)) = 0, σ2
ξ = 0)

σ2
AD3

=
σ2
τ

r2µ3
+
r − 1

r2µ
(9)

and for a Poisson flow with an intensity λ

σ2
AD3

=
λ

r
. (10)

Corollary 4. Let (1) be fulfilled, ρ = 1 and A(t) be a Poisson process with
an intensity λ. Then for a system with the discipline D3 scaled number of
customers in the system

Q̂D3

T (t) =

r∑
j=1

qjD3
(tT )

σqD3

√
T

converges weakly as T → ∞ to V D3(t) =
r∑
j=1

Vj(t) where Vj(t) (j = 1, r) are

independent processes and each of them is the absolute value of the Brownian
motion. Normalized coefficient is given by the formula

σqD3
=
λ

r
+
σ2
η

b3
. (11)

Proof. We note that input flows AD3
j (t) (j = 1, r) are independent Poisson flows

intensity λ/r. Therefore processes q̂
(T )
jD3

(t) (j = 1, r) are mutially independent

and the statement follows from Corollary 3.

Example 2.

Here we consider a system with the discipline D4 and a renewal input A(t).
Then

σ2
AD4

=
σ2
τ

r2µ3
(12)

and for a Poisson process with the intensity λ

σ2
AD4

=
λ

r2
. (13)

Now assume that A(t) is a renewal process (a = 1, σ2
ξ = 0). Let us compare

mathematical expectation of σQV (t) for a system with a single queue and the

mean of the sum of limiting processes σQD4

r∑
j=1

Vj(t) for disciplines D3 and D4.

Since EV (t) =
√

2
π t, we get from (9), (10) and (11).

mD0(t) = EσQV (t) =

√
2

π
t

√
σ2
τ

µ3
+ r

σ2
η

b3
;
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mD3(t) = EσqD3

r∑
j=1

Vj(t) =

√
2

π
t

√
σ2
τ

µ3
+
r − 1

µ
+ r2

σ2
η

b3
;

mD4
(t) = EσqD4

r∑
j=1

Vj(t) =

√
2

π
t

√
σ2
τ

µ3
+ r2

σ2
η

b3
.

We see that these functions coincide when r = 1 but for the case r > 1

mD0
(t) < mD3

(t) < mD4
(t).

Futhermore, mD0
(t) = mD4

(t) if σ2
η = 0 We also note that all these func-

tions for any fix t tend to infinity as r →∞ if σ2
η > 0. In point of view of this

criteria disciplines D3 and D4 are asimptotically equivalent for large r, namely,

mD3
(t)

mD4(t)
→ 1 as τ →∞.

But discipline D0(general queue) is essentially better since

mD0
(t)

mD3(t)
= O(

1√
r

)→ 0 as τ →∞.

6 Conclusion

In this paper we considered a queueing system with regenerative input flow
and various service disciplines in the heavy-traffic situation(ρ ≥ 1). We proved
the convergence of the scaled queue length and waiting time processes to the
Brownian motion and gave some examples. There are many good directions
for the future research.
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Abstract. Left truncation and right censoring (LTRC) arise frequently in practice
for life data. Under LTRC model, the product limit estimator (PLE) was proposed
and investigated in the i.i.d. case by Tsai et al [11]. In the presence of covariates,
the conditional version was studied in the α-mixing setting by Liang et al [9]. Our
focus in the present paper is to assess strong uniform consistency rates for the cumu-
lative hazard and the product limit estimates when the lifetime observations form an
associated sequence. Then, as an application we derive a strong uniform consistency
rate for the kernel estimator of the hazard rate function introduced and studied in
the i.i.d. case by Uzunoḡullari and Wang [12].
Keywords: Associated data, Left truncation, Right censoring, Strong uniform con-
sistency rate, Truncated-censored data.

1 Introduction

Suppose that {Yi; i = 1, . . . , N} forms a strictly stationary associated sequence.
Recall that a sequence S1, S2, ..., SN is said to be associated if for every pair of
component-wise non-decreasing functions g1 : RN → R and g2 : RN → R , we
have

cov(g1(S), g2(S)) ≥ 0

where S = (S1, S2, ..., SN ). An infinite family {SN , N ≥ 1} of random variables
(r.v’s) is said to be associated if every finite sub-family of r.v’s is associated.
This definition was introduced by Esary et al. [4] in the context of reliability
studies.
In the complete associated data case, there is a vast literature devoted to the
study of the non parametric estimation and numerous are the papers dealing
with survival function and density estimation. To cite only a few of them,
Bagai and Prakasa Rao [1] proposed an estimator of the survival function and
established its consistency. Roussas [10] established its asymptotic normality.
A general method of density estimation for associated random variables has
been proposed by Dewan and Prakasa Rao [3].
In the incomplete data case, there are no much works dealing with this kind
of model under association condition.Recall that among the different forms in
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which incomplete data appear, censoring or/and truncation are two common
ones.
Under random right censoring, Cai and Roussas [2] established uniform strong
consistency and asymptotic normality for the Kaplan-Meier estimator, while
Ferrani et al. [5] established strong consistency rates of kernel density and
mode estimates.
Under random left truncated model, Guessoum et al. [7] established the strong
uniform convergence with a rate of the product limit estimator, the so-called
Lynden-Bell estimator. However, these two types of incomplete data may occur
simultaneously in a study and then, the model we deal with is known as the
left truncated and right censored (LTRC) one. More specifically, let Y denote
the r.v of interest (lifetime) with a continuous distribution function (d.f.) F
and a bounded density f . Let T and X be two absolute continuous r.v’s having
d.f’s G and L, representing the random left truncation and the random right
censoring times, respectively. In the sequel, it will be assumed that Y, T and
X are independent each of others. Let {Yi; i = 1, . . . , N}, {Ti; i = 1, . . . , N}
and {Xi; i = 1, . . . , N} be N copies of Y, T and X, defined on a probability
space (Ω, F, P), where the sample size N is fixed but unknown.
In LTRC model, the variable of interest Y may not always be observable, in-
stead one gets only Z = Y ∧ X := min(Y, X) and the censoring indicator
δ = 1{Y≤X} if Z ≥ T and nothing is observable otherwise. Set α = P(Z ≥ T ),
we shall assume that α > 0 to have at disposal at least one observation.
As a consequence of truncation, the size n :=

∑N
i=1 1{Z≥T} of the actually

observed sample is random. Then without possible confusion, we still denote
{(Zi, Ti, δi); i = 1, . . . , n}, the observed sample. Throughout this study, all
probability statements are to be interpreted as conditional probability state-
ments, that is P(·) = P(·|Z ≥ T ). Likewise E and E will denote the expectation
operators related to P and P.
Note that as the original sequence of interest is associated, then by Lemma
2.2 of Cai and Roussas [2], the r.v’s (Zi; i = 1, . . . , n) are associated. Hence
by property (P1) in Esary et al.[4], the observed sequence remains associated.
Furthermore the sequence of truncation (Ti; i = 1, . . . , n) is still i.i.d. by Propo-
sition 2.1 in Lemdani and Ould Said [8].
Our goal is to extend to associated case some asymptotic results for the cumu-
lative hazard function and the PLE stated in the i.i.d. case by Tsai et al.[11].
Then, as an application, we derive a strong uniform consistency rate for an
estimator of the hazard rate function proposed and studied in the i.i.d. case
by Uzunoḡullari and Wang [12]. It is of interest to recall that the conditional
version of the PLE was investigated by Liang et al. [9] in the α-mixing case.
The rest of the paper is organized as follows: In the next section we introduce
some notations and the estimators. In Section 3 we present our main results
with the assumptions. Section 4 contains some simulations that support our
results. In section 5 we give an application to hazard rate function estimation.
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2 Estimations and notations

Let H(y) = P(Z ≤ y) be the distribution function of Z, then from the inde-
pendence of Y and X, we have 1−H(y) = (1−F (y))(1−L(y)). Conditionally
on n, all estimation results are stated considering n →∞ which hold true with
respect to the probability P since n ≤ N and the distributions of Y, T, X, and
Z become

F(y) = P(Y ≤ y) = P(Y ≤ y | Z ≥ T ), G(y) = P(T ≤ y) = P(T ≤ y | Z ≥ T ),
L(y) = P(X ≤ y) = P(X ≤ y | Z ≥ T ), H(y) = P(Z ≤ y) = P(Z ≤ y | Z ≥ T ).

For k = 0, 1, the sub-distributions of Z are

Hk(y) := P(Z ≤ y, δ = k) and Hk(y) = P(Z ≤ y, δ = k) = P(Z ≤ y, δ = k | Z ≥ T ).

Then H(y) = H1(y) + H0(y) and H(y) = H1(y) + H0(y).
It is straightforward to show that

Hk(y) =
1
α

∫ y

0

G(z) [1− kL(z)− (1− k)F (z)] d [kF (z) + (1− k)L(z)] ,

which gives

dHk(y) =
G(y)

α
[1− kL(y)− (1− k)F (y)] d [kF (y) + (1− k)L(y)] . (1)

And, let us define

C(y) = P(T ≤ y ≤ Z | Z ≥ T ) = G(y)−H(y). (2)

From (2) one may show that

C(y) =
G(y)

α
(1−H(y)) =

G(y)
α

(1− F (y))(1− L(y)). (3)

It is easily seen that F,G,L,H,H0 , H1 and C are readily estimable through
their empirical estimates

Fn(y) =
1
n

n∑
i=1

I{Yi≤y}, Gn(y) =
1
n

n∑
i=1

I{Ti≤y}, Ln(y) =
1
n

n∑
i=1

I{Xi≤y}

Hn(y) =
1
n

n∑
i=1

I{Zi≤y}, Hk,n(y) =
1
n

n∑
i=1

I{Zi≤y,δi=k}; k = 0, 1

and

Cn(y) = Gn(y)−Hn(y). (4)
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The nonparametric maximum likelihood estimator of F based on the data
(Zi, Ti, δi); i = 1, . . . , n is the product limit estimate (PLE) F̂n, defined in Tsai
et al. [11] by

1− F̂n(y) =
∏

i:Zi≤y

(
1− 1

nCn(Zi)

)δi

. (5)

For any df W, let us define aW = inf {u : W (u) > 0} and bW = sup {u : W (u) < 1},
as the endpoints of the W support. As pointed out in Woodroofe [13], in the
case of left truncated model, the df’s F and G can be completely estimated
only if aG ≤ aF , bG ≤ bF and

∫∞
aF

G−1dF < ∞. In our current setting, these
conditions are replaced by aG < aH , bG < bH and

∫∞
aH

G−1dH < ∞ (see,
Gijbels and Wang [6]. The goal of this paper is to state the strong uniform
consistency with a rate of the cumulative hazard function estimate and the
PLE in the case of association. For this purpose, recall that the cumulative
hazard function of the interested variable is defined by

Λ(y) =
∫ y

aH

dF (z)
1− F (z−)

=
∫ y

aH

dH1(z)
C(z)

, .

which can be estimated by

Λn(y) =
∫ y

aH

dH1,n(z)
Cn(z)

=
1
n

n∑
i=1

1{Zi≤y,δi=1}

Cn(Zi)
, (6)

where the sum in the latter formula is taken over the i′s such that Cn(Zi) 6= 0.

3 Assumptions and main results

Let a and b be real numbers satisfying aG < aH ≤ a < b < bH . In the sequel,
D := [a, b] and c will denote respectively, a compact set and a generic positive
constant which may take different value for each appearance. The conditions
needed to establish our results are the following:

A1.
∫

dH(y)
G(y)

< ∞,

A2.
∑

j≥n+1

|cov(Y1, Yj)|1/3 = O(n−
r−2
2 ) for any constant r > 2.

Proposition 1 Under assumptions A1 and A2, we have as n →∞

sup
y∈D

|Hk,n(y)−Hk(y)| = O(n−θ) a.s., k = 0, 1.

where 0 < θ < (r − 2)/(2r + ζ + 2) for any real ζ > 0.

Theorem 1 Under assumptions A1-A2 we have

sup
y∈D

|Λn(y)− Λ(y)| = O

(
n−θ +

√
log log n

n

)
a.s., as n →∞
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Theorem 2 Under assumptions A1-A2 we have

sup
y∈D

∣∣∣F̂n(y)− F (y)
∣∣∣ = O

(
n−θ +

√
log log n

n

)
a.s., as n →∞

4 Simulations

4.1 The model

• The interest variable Y : Generate the associated sequence {Yi, i = 1, · · · , N}
by Yi = exp

[
1
2 (Wi−1 + Wi−2)

]
, where {Wt; t = −1, 0, · · · , N − 1} are

(N + 1) i.i.d. N (0, 1) rv’s, then Yi has a stationary log-normal density
with µ = 0 and σ2 = 1/2 (see Chaubey et al 2011).

• The censoring variable C: Generate N i.i.d. rv’s {Ci; i = 1, · · · , N} with
distribution E(λ).

• The truncated variable T : Generate independently the i.i.d. rv’s {Ti; i =
1, · · · , N} with distribution E(µ). (µ and λ are adapted in order to control
the rates of truncation and censoring,).

• The observed data:
– Let Zi = Yi ∧ Ci.
– The indicator of (no)censoring: δi = I{Yi≤Ci}.
– We keep the n observations {(Zi, Ti, δi) i = 1, · · · , n} satisfying the

condition Zi ≥ Ti, (n ≤ N).

Log-normal distribution and estimated distribution for n = 50 with 10% and
30% Trunc. and Perc.Cens. = 5% (left), with 5% and 25% Perc.Cens. and

Trunc. = 10% (right)
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Log-normal distribution and estimated distribution for n = 50, n = 200 and
n = 500 with Trunc. = 10% and Perc.Cens. = 5% (left), and Perc.Cens.

= 25% (right)

4.2 The Generalized Mean Square Error (GMSE)

n
50 200 500

(no)Trunc.
Perc.Cens.

90% 70% 90% 70% 90% 70%

5% (10−6) 3,88 5,91 2,67 3,13 0,88 1,17

25% (10−5) 5,03 9,48 4,95 5,72 2,63 2,41

Table 1. Table of GMSE

Discussion
We note through the graphs and Table 1 that the more the percentage of
censoring is low the best the estimation curve is. The truncation has virtually
no impact or very few.

5 Application to hazard rate estimation

The hazard function λ(y), say, can be defined through its cumulative hazard
function Λ(y) and then from (6) we have

λ(z)dz =
dH1(z)
C(z)

.

Likewise, proceeding as for the estimator in (6), we define an estimator for λ(y)
by convolving Khn

(y) := 1
hn

K( y
hn

) with Λn(y), namely

λ̂n(y) =
∫

Khn
(y − z)dΛn(z) =

1
nhn

n∑
i=1

δi

Cn(Zi)
K

(
y − Zi

hn

)
, (7)
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where K is a kernel function and hn is a sequence of positive bandwidths
tending to zero as n −→∞.
The following additional assumptions are needed to state asymptotic results
for the hazard rate function estimator defined in (7).

H1. K is a Lipschitz continuous p.d.f. and compactly supported, satisfying∫
uK(u)du = 0,

∫
u2K(u)du < ∞ and

∫
uK2(u)du < ∞.

H2. λ is twice continuously differentiable on D and supy∈D

∣∣λ(p)(y)
∣∣ < ∞ for

p = 1, 2.
H3. The bandwidth hn satisfies: hn → 0, nhn →∞ and log5 n

nhn
→ 0 as n → +∞.

H4. The covariance term defined by ρ(s) := sup
|i−j|≥s

cov(Yi, Yj) for s > 0 , satis-

fies ρ(s) ≤ γ0e
−γs for some positive constants γ0 and γ,

H5. The conditional joint density fi,j of (Yi, Yj) exists and sup
y1,y2∈D

|fi,j(y1, y2)| <
∞.

Theorem 3 Under assumptions A1, H1-H5, we have as n → +∞

sup
y∈D

∣∣∣λ̂n(y)− λ(y)
∣∣∣ = O

(
n−θ +

√
log n

nhn
+ h2

n

)
a.s.

where 0 < θ < γ/(2γ + β + 9) for any real β > 0 and γ is that in H4.

Remark 1 we pointed out that if we set r = 2γ
3 + 2 in condition A2, then H4

implies this last one.

Remark 2 It is well known that the hazard function λ(y) can be written as
λ(y) = f(y)

1−F (y) . Then by using (5) and (7), an estimate of the density function

f is defined as f̂n(y) = λ̂n(y)(1 − F̂n(y)). So, the result in Corollary 1 below,
follows immediately from Theorem 2 and Theorem 3.

Corollary 1 Under assumptions A1, H1-H5, we have as n → +∞

sup
y∈D

∣∣∣f̂n(y)− f(y)
∣∣∣ = O

(
n−θ +

√
log n

nhn
+ h2

n

)
a.s.

References

1. Bagai I, Prakasa Rao BLS. Kernel-type density and failure rate estimation for
associated sequences, Ann. Inst. Stat. Math, 47:253–266, 1995.

2. Cai Z, Roussas GG. Kaplan-Meier estimator under association, J. Multivariate
Anal, 67:318–348, 1998.

3. Dewan I, Prakasa Rao BLS. A general method of density estimation for associated
random variables, J. Nonparametric Stat. 10:405–420, 1999.

4. Esary J, Proschan F, Walkup D. Association of random variables with applications,
Ann. Math. Stat., 38:1466–1476, 1967.

473



5. Ferrani Y, Ould Sad E, Tatachak A. On kernel density and mode estimates for as-
sociated and censored data, Communications in Statistics - Theory and Methods,
45:1853–1862, 2016.

6. Gijbels I, Wang JL. Strong representations of the survival function estimator for
truncated and censored data with applications, J. Multivar. Anal, 47:210–229,
1993.

7. Guessoum Z, Ould Sad E, Sadki O, Tatachak A. A note on the Lynden-Bell esti-
mator under association, Statist. Probab. lett, 82:1994–2000, 2012.

8. Lemdani M, Ould Sad E. Asymptotic Behavior of the Hazard Rate Kernel Estima-
tor Under Truncated and Censored Data, Communications in Statistics - Theory
and Methods, 36:155–173, 2007.

9. Liang HY, de na-lvarez J, Iglesias-Prez MdC. Asymptotic properties of condi-
tional distribution estimator with truncated, censored and dependent data, Test,
21:790-810, 2012.

10. Roussas G. Asymptotic normality of the kernel estimate of a probability density
function under association, Stat. Probab. Lett, 50:1–12, 2000.

11. Tsai WY, Jewell NP, Wang MC. A note on the product-limit estimator under
right censoring and left truncation, Biometrika, 74:883–886, 1987.
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Abstract. To describe the oil spill central point position a two-dimensional 

stochastic process is used and its drift trend curve is determined. The oil spill 

domain movement general model for various hydro-meteorological conditions is 

constructed and the method of this model unknown parameters estimation is 

proposed. These methods are used to predict the spill domain movement and to 

prevent and to mitigate the oil spill consequences by constructing the algorithm 

for oil spill spread limitations. An exemplary application of this procedure is 

given. 

Keywords: Drift trend, Oil spill domain, Spread limitations, Stochastic model. 

 

1  Introduction 
 

Nowadays, approximately 60% of the world’s oil is transported by sea. Thus, 

the important thing is to maintain the highest level of the safety during the oil 

extraction, handling, and storing. Especially, it is very important aspect for 

closed seas such as the Baltic Sea or the Mediterranean Sea, because even small 

pollution gives very high impact for environment. Unfortunately, despite all 

efforts, sometimes a smaller or larger leakage of oil occurs. In that situation, the 

most important thing is time to react and take appropriate actions to minimize 

the negative effects. There are functioning a lot of models of the spill. Some of 

them simulate only the advective processes (Al-Rabeh [1], Huang [6], Reed et. 

al. [12], Spaulding [14]) and some also take into account the spreading 

processes (Fay [3], Guze et. al. [5], Huang [6], NOAA [10], Reed et.al [12]). 

The improvement of the methods of the oil spill domain determination is one of 

real possibilities leading to the maritime environment protection and chermical 

pollution reduction. Therefore it seems to be necessary to start with the new and 

better methods of oil spill domains at sea determination for different hydro-
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meteorological conditions and different kinds of oil spills. The most important 

criterion of new methods should be the attainment time minimising of the 

reaction to oil spills. One of the essential factors that could ensure these criteria 

fulfilment is the accuracy of methods of oil spills domain determination. Those 

methods are a basic part of the integral problem of oil spill and pollution-

fighting at the sea directed to the elaboration of a complete information system 

assisting national maritime environment protection administration to reduce the 

consequences the oil spills at the sea.  

Thus, the main aim of the paper is to propose a probabilistic approach to 

determination of oil spills domains. It is presented in 5 succeeded subsections, 

where oil spill trend and drift domain for different hydro-meteorological 

conditions and oil spill kinds, the pollution-fighting time distribution, and the oil 

spill random position distribution are determined. Furthermore, the oil spill drift 

trend and position distribution parameters statistical identification procedure is 

presented with accordance to the least squares method (Kołowrocki [7], 

Kołowrocki and Soszyńska-Budny [8], Rice [13]). Finally, the algorithm for oil 

spill spread limitations is proposed as the possible stochastic oil spill model 

application. The exemplary results of computer simulation based on introduced 

model and algorithm are showed. 

The suggested probabilistic approach to oil spill domains determination can 

improve the efficiency of pollution combat at the sea.  

 

2 Oil spill basic characteristics 
 

According to the “Trajectory Analysis Handbook” NOAA [11] the parameters 

affecting oil spill movement are as follows: 

a) weather conditions (wind, temperature, and rainfall), 

b) ocean conditions (tides and currents), 

c) physical parameters of the materials which could be spilled, i.e.: 

- specific gravity (or density); 

- evaporation rate; 

- boiling range; 

- viscosity; 

- pour point; 

- emulsification ability;  

- water solubility.  

Some of these factors are related. For example, the evaporation rate is 

dependent on weather conditions (especially wind) and the boiling range of the 

material. Similarly, the spread rate depends on weather, viscosity, and the pour 

point. Emulsification is a very complex parameter since both oil-in-water and 

water-in-oil emulsions can be involved and wind and wave conditions are 

usually controlling NOAA [11].  

In the other hand, there are following characteristics of spills NPC [9]: 

- maximum area of spread [m
2
], 

- maximum radius of a circular slick [m], 

- time to reach maximum radius [min], 
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- spill volume [gallons], 

- spreading coefficient [dynes/cm]. 

According to results of Fay [3], estimates of initial spill volume and a spreading 

equation are required to determine the spreading radius of a hypothetical spill as 

a function of time. Wind speed and direction, local tidal currents, and the 

general circulation along the coast are required to determine the trajectory of the 

slick, and estimates of the general circulation of the water body are needed to 

predict the fate of that fraction of the spill which may mix downward into the 

water column.  

 

3 Stochastic Model of Oil Spill 
 

In this section, the stochastic model of oil spill is proposed. This tool gives the 

possibility to determine the drift trend and the domain of the oil spill. This  

model adapts and transforms the approach and the results concerned with the 

survivor search domain at the sea restricted areas determination considered in 

Blokus and Kołowrocki [2] in the way presented in next five subsections. 

 

3.1 Oil Spill Drift Trend Determination 
 
For each fixed state ck, k = 1,2,…,w, of the climate-weather process C-W(t) we 

define a two-dimensional stochastic process  

 

)),(),(( tYtX kk  t  <0,T>,               (1) 

 

such that   

 

),( kk YX : <0,T>   R
2
,                             (2) 

 

where ),(tX k  )(tY k  respectively are an abscissa and an ordinate of the plane 

Oxy point, in which the central point of the oil spill is placed at the moment t 

while the climate-weather process C-W(t) is at the state ck, k = 1,2,…,w. The 

point in which an accident has happened and an oil spill was placed in the water 

we assume as the origin O(0,0) of the co-ordinate system Oxy. The value of a 

parameter t at the moment of the accident we assume equal to 0. It means that 

the process )),(),(( tYtX kk  is a random two-dimensional co-ordinate (a random 

position) of the oil spill central point after the time t from the accident moment 

and that at the accident moment t = 0 the oil spill is at the point O(0,0), i.e. 

).0,0())0(),0(( kk YX  After some time, the oil spill starts his drift along a 

curve called a drift curve. In further analysis we assume that processes   

 

)),(),(( tYtX kk  t  <0,T>, k = 1,2,…,m,  
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are  two-dimensional normal processes   
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with varying in time expected values  
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where ,),( 2Ryx   t  <0,T>.                  

Then, the points  ))(),(( tmtm k

Y

k

X
, t  <0,T>, create a curve kK  which may be 

described in the following parametric form 

 

kK :
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kk

kk

               (6) 

 

called an oil spill drift trend and presented in Figure 1. 
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Fig. 1. The oil spill drift trend 

 

3.2 Oil Spill Drift Domain Determination  
 

We are interested in finding the domain )(tD k  such that the oil spill is placed 

within it with a fixed probability p. More exactly, we are looking for p such that     
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is the domain bounded by an ellipse being the projection on the plane xy0  of 

the curve rising as the result of intersection of the density function surface   

 

}),(),,(:),,{( 2

1
Ryxyxzzyx k

t

k                 (9)
 

 

and the plane  
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The graph of the domain )(tD k  is given in Figure 2.  
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Fig. 2. Domain of integration D
k
(t) 

 

Since  

 

))())(),((( tDtYtXP kkk  ],
2

1
exp[1 2c            (11) 

 

then for a fixed probability p, the equality  
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holds if  ).1ln(22 pc   Thus, the domain in which at the moment t  the oil 

spill is placed with the fixed probability p is given by  
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3.3 Oil Spill Domain for Fixed Climate-Weather Conditions    
      

We suppose that the climate-weather process )(tWC   is in a fixed state ,
k

c  

.,...,2,1 wk   Assuming a time step t  and a number of steps s, ,1s  such that  

 

,][)1( tsEts
k

                    

 

where ][
k

E   is the expected value of the process )(tWC   sojourn time at the 

state ,
k

c  ,,...,2,1 wk   we receive the following sequence of domains (Figure 3)  
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in which at the moments ,.,..,2, tstt   the oil 

spill is placed with probability .p   
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 Fig. 3. Sequence of oil spill domains 

 

Then the oil spill domain is described by the sum of selected domains (Figure 4)    
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where v  is such that  
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while w  is such that  
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are the expected values of the pollution-fighting unit activation time 
kU , the 

time necessary to reach the oil spill domain by the pollution-fighting unit 
kV and the unit pollution fighting time kT , which are determined in the paper 

Section 3.4. 
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Fig. 4. Oil spill domain for fixed hydro-meteorological conditions 

 

3.4 Oil Spill Domain for Varying Climate-Weather Conditions         
 

We assume that the process of hydro-meteorological conditions changing in 

succession takes the states  .,..,,
21 kk

cc  }..,..,2,1{ wk
i
  For a time step t  we 

determine the oil spill domain as the sum of the domains (Figure 5)   
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are the realisations of the pollution-fighting unit activation time 1k
U , the time 

necessary to reach the oil spill domain by the pollution-fighting unit 1k
V  and the 

process )(tA  sojourn time 
1jjkk

  in the state 
j

k  while the next transition will be 

done to the state 
1j

k  respectively and n  is such that   
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Fig. 5. Oil spill domain for changing hydro-meteorological conditions 

 

3.5 Oil Spill Drift Trend and Position Distribution Parameters 

Statistical Identification   
 

To determine the evaluations of oil spill drift trend and parameters of joint 

density function ),( yx
k

t
  it is necessary to perform the following steps:  

- to fix the number 
kN  and the moments of observations ,.,..,,

21 kN
ttt in which 

the oil spill positions are determined,  

- to fix the numbers of the process ))(),(( tYtX kk  realisations ),1(kn
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- to calculate mean oil spill positions according to the formulae  
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- to calculate oil spill position standard deviations according to the formulae  
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- to calculate oil spill position correlation coefficients according to the formula  
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- to find parametric forms of the oil spill drift trend and remaining parameters of 

oil spill position distribution according to the least squares method 

(Kołowrocki [7], Kołowrocki and Soszyńska-Budny [8], Rice [13]).  

 

4 Oil spills spread limitations algorithm 
 

In this Section, the algorithm for oil spills spread limitations is introduced as the 

possible application of the oil spill stochastic model introduced in Section 3. It 

is done on the basis of the customizing discrete-time oil spill control model 

which was introduced in Guze et. al [5].  

To simplify the considered problem, the water area affected by oil spill is 

represented by the Cartesian grid graph ),( EVG  , where the 

,...},{)(
21

vvGV  is a grid vertex set and ,...},{)(
21

eeGE  is an edge set. 

According to this assumption, the water area is divided into equal-size squares 

and the vertex )(GEv is in central of them. Furthermore, if ),(, GEvv
ji
  

,...,2,1, ji  then we call 
i

v  and 
j

v  adjacent vertices. In Cartesian grid graphs 

every vertex is adjacent to four other vertices.  

The possible states of the vertex in algorithm are: “empty”, “oil-affected”, and 

“barrier-filled”. Moreover, there are two modes of barriers: “attack” and 

“defence”. The both barriers are performed simultaneously with assumption, 

that the barrier in attack mode is use in vertices located on the oil spill drift 

trend and vertices in defence mode in opposite direction. In the algorithm of the 

oil spill spread limitation, the barriers may be set on the “empty” vertices only, 

because a vertex state already “oil-affected” or “barrier-filled” cannot be 

changed.  

First step to introduce the oil spills spread limitations algorithm, it is necessary 

to build the oil spill spread model. In this paper, the discrete-time oil spill spread 

model converts the results mentioned in Section 3.2 without the impact of the 

hydro-meteorological conditions is showed. This model uses the cycles as the 

measure of the time. It is built according to following steps: 

- Oil spill appears on the water area in cycle 0 .  

- First vertex changes its state from “empty” to “oil-affected” is the oil 

spill source. 

- The oil spill source designates the grid centre as the central vertex 

 0,0 . Additionally, it divides the grid into four quarters and sets the 

system of coordinates.  

484



- In each subsequent cycle, the oil spill spreads from the “oil-affected” 

vertices to every adjacent “empty” vertex. 

The exemplary results of the oil slick in cycle 3, 7, 11 received on the basis of 

the above procedure are presented in the Fig. 6.  

 

   

(A) (B) (C) 

 

Fig. 6. The spreading of the oil spill in cycles: N=3 (A), N=7 (B), N=11 (C) 

 

After introducing the all necessary notations, procedures and assumptions the 

proposed algorithm is as follows:  

Algorithm for oil spills spread limitations 

Input: The water area affected by oil spill and represents by the Cartesian grid 

graph ),( EVG  .  

Steps: 

1. To find, on the beginning and in the end of the oil spill drift, the empty 

vertices adjacent to “oil-affected” ones and to put the barriers in 

defence mode and next to, simultaneously, the barriers in attack mode, 

according to general assumption about their location.  

2. To change the state of the selected vertices on “barrier-filled”. 

3. For every empty vertex, adjacent to “oil-affected”, and while oil spill is 

not encircled do: 

a. If empty vertex is on the way of the oil spill drift trend  

i. to put:  

- the barrier in attack mode;  

- and simultaneously the barrier in defence mode in 

opposite direction; 

ii. to change the vertex state on “barrier-filled”; 

b. else   

i. to put:  

- the barrier in defence mode;  

- and simultaneously the barrier in attack mode in 

opposite direction; 

ii. to change the vertex state on “barrier-filled”. 

Results: A series of barriers surrounds the oil-affected area and an oil slick 

without possibility to spread further. 
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The surrounding of the oil spill is performed according to above algorithm built 

on the basis of “firefighter algorithm” (Fogarty[4]). According to this approach 

if the action of surrounding the oil spill starts in cycle 1N  and 2  barriers are 

available in each cycle on the Cartesian grid graphs the number of cycles needed 

to go around the oil slick is equal 132 N  and the number of square of a spill 

area is equal 114318 2  NN (Fogarty [4]). 

The exemplary simulation results given in Fig. 7 represents an oil slick on the 

Cartesian grid graph (oil spill source marked with black).  

 

 
 

Fig. 7. The resulting Cartesian grid graph model. The red squares represent 

barriers in attack mode and the yellow squares represent barriers in defense 

mode 

 

The action started in cycle 3 and lasted for 65 cycles. The number of 130 

barriers is used. Oil spill spreads to 1301 vertices. On the Cartesian grid graph 2 

barriers in each cycle are minimum number of barriers allowing to surround the 

oil spill. 

 

Conclusions 
 

In the paper the oil spill domains have been determined for different hydro-

meteorological conditions and oil spill kinds by the oil spill drift trend, the 

pollution-fighting time distribution and the oil spill random position 

distribution.   

Furthermore, the oil spills spread limitations algorithm has been introduced. The 

exemplary results of proposed algorithm have been presented according to the 

time-discrete oil spill control model. It has been used to present the possible 

application of proposed stochastic model.  

In practically point of view a weak point of the presented method is large cost of 

the experiment necessary to perform at the sea in order to identify particular 

components of the model.  

In the other side, a strong point of this method is the fact that the experiments 

for a restricted sea region should be done only once and the model may be used 

for all pollution combat actions at this sea region.  
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The suggested probabilistic approach to oil spill domains determination would 

surely improve the efficiency of pollution combat at the sea.  

 

Acknowledgements 
The paper presents the 

results developed in the 

scope of the HAZARD 

project titled “Mitigating the Effects of Emergencies in Baltic Sea Region Ports” 

that has received funding from the Interreg Baltic Sea Region Programme 2014-

2020 under grant agreement  No #R023. https://blogit.utu.fi/hazard/ 

 

References 
 

1. A.H. Al-Rabeh, H.M. Cekirge, N. Gunay. A stochastic simulation model of oil spill 

fate and transport Applied Mathematical Modelling, pp. 322-329, 1989. 

2. A. Blokus and K. Kołowrocki. On determination of survivor search domain at sea 
restricted areas. Risk Decision and Policy, 8, 81-89, 2003. 

3. J. A. Fay. Physical Processes in the Spread of Oil on a Water Surface. Proceedings of 

Joint Conference on Prevention and Control of Oil Spills, sponsored by American 

Petroleum Industry, Environmental Protection Agency, and United States Coast 
Guard, 1971. 

4. P. Fogarty. Catching the Fire on Grids, Master of Science Thesis, University of 

Vermont, 2003. 

5. S. Guze, J. Mazurek and L. Smolarek. Use of random walk in two-dimensional 
lattice graphs to describe influence of wind and sea currents on oil slick movement. 

Journal of KONES Powertrain and Transport, Vol. 23, No. 2, 2016.  

6. J. C. Huang. A review of the state-of-the-art of oil spill fate/behavior models. 

International Oil Spill Conference Proceedings: February 1983, Vol. 1983, No. 1, pp. 
313-322, 1983. 

7. K. Kołowrocki. Reliability of Large and Complex Systems, Amsterdam, Boston, 

Heidelberd, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, 

Sidney, Tokyo, Elsevier, 2014. 

8. K. Kołowrocki and J. Soszyńska-Budny. Reliability and Safety of Complex 

Technical Systems and Processes: Modeling - Identification - Prediction - 

Optimization, London, Dordrecht, Heildeberg, New York, Springer, 2011 

9. National Petroleum Council. Committee on Environmental Conservation. 
Environmental Conservation: The Oil and Gas Industries. Vol. 2. 1972. 

10. NOAA. Oil Spill Case Histories 1967-1991; Summaries of Significant U.S. and 

International Spills. Hazardous Material Response and Assessment Division Report 

HMRAD 92-11. Seattle, WA. September 1992. 

11. NOAA. Trajectory Analysis Handbook. NOAA Hazardous Material Response 

Division. Seattle, WA, undated (see http://www.response.restoration.noaa.gov/  for 

further information). 

487

https://blogit.utu.fi/hazard/
http://www.response.restoration.noaa.gov/


12. M. Reed, Ø. Johansen, P. J. Brandvik, P. Daling, A. Lewis, R. Fiocco, D. Mackay, R. 
Prentki. Oil Spill Modeling towards the Close of the 20th Century: Overview of the 

State of the Art. Spill Science & Technology Bulletin, 1999, pp. 3-16, 1999. 

13. J. A. Rice. Mathematical statistics and data analysis. Duxbury. Thomson 
Brooks/Cole. University of California. Berkeley, 2007. 

14.  M. L. Spaulding. A state-of-the-art review of oil spill trajectory and fate modeling, 

Oil and Chemical Pollution, Volume 4, Issue 1, pp. 39-55, 1988. 

488



_________________ 

17
th

  ASMDA Conference Proceedings, 6 - 9 June 2017, London, UK 
 

© 2017 CMSIM               

 

 

Cluster validation by measurement of clustering
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Abstract. There are many cluster analysis methods that can produce quite different
clusterings on the same dataset. Cluster validation is about the evaluation of the
quality of a clustering; “relative cluster validation” is about using such criteria to
compare clusterings. This can be used to select one of a set of clusterings from
different methods, or from the same method ran with different parameters such as
different numbers of clusters.

There are many cluster validation indexes in the literature. Most of them attempt
to measure the overall quality of a clustering by a single number, but this can be
inappropriate. There are various different characteristics of a clustering that can be
relevant in practice, depending on the aim of clustering, such as low within-cluster
distances and high between-cluster separation.

In this paper, a number of validation criteria will be introduced that refer to
different desirable characteristics of a clustering, and that characterise a clustering
in a multidimensional way. In specific applications the user may be interested in
some of these criteria rather than others. A focus of the paper is on methodology to
standardise the different characteristics so that users can aggregate them in a suitable
way specifying weights for the various criteria that are relevant in the clustering
application at hand.
Keywords: Number of clusters, separation, homogeneity, density mode, random
clustering.

1 Introduction

The aim of the present paper is to present a range of cluster validation in-
dexes that provide a multivariate assessment covering different complementary
aspects of cluster validity. Here I focus on “internal” validation criteria that
measure the quality of a clustering without reference to external information
such as a known “true” clustering. Furthermore I am mostly interested in
comparing different clusterings on the same data, which is often referred to as
“relative” cluster validation. This can be used to select one of a set of clus-
terings from different methods, or from the same method ran with different
parameters such as different numbers of clusters.

In the literature (for an overview see Halkidi et al.[6]) many cluster val-
idation indexes are proposed. Usually these are advertised as measures of
global cluster validation in a univariate way, often under the implicit or ex-
plicit assumption that for any given dataset there is only a single best cluster-
ing. Mostly these indexes are based on contrasting a measure of within-cluster
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homogeneity and a measure of between-clusters heterogeneity such as the fa-
mous index proposed by Calinski and Harabasz[2], which is a standardised ratio
of the traces of the pooled within-cluster covariance matrix and the covariance
matrix of between-cluster means.

In Hennig[10] (see also Hennig[9]) I have argued that depending on the
subject-matter background and the clustering aim different clusterings can be
optimal on the same dataset. For example, clustering can be used for data
compression and information reduction, in which case it is important that all
data are optimally represented by the cluster centroids; or clustering can be
used for recognition of meaningful patterns, which are often characterised by
clear separating gaps between them. In the former situation, large within-
cluster distances are not desirable, whereas in the latter situation large within-
cluster distances may not be problematic as long as data objects occur with
high density and without gap between the objects between which the distance
is large. See Figure 1 for two different clusterings on an artificial dataset with
3 clusters that may be preferable for these two different clustering aims.

Given a multivariate characterisation of the validity of a clustering, for
a given application a user can select weights for the different characteristics
depending on the clustering aim and the relevance of the different criteria.
A weighted average can then be used to choose a clustering that is suitable
for the specific application. This requires that the criteria measuring different
aspects of cluster validity and normalised in such a way that their values are
comparable when doing the aggregation. Although it is easy in most cases to
define criteria in such a way that their value range is [0, 1], this is not necessarily
enough to make their values comparable, because within this range the criteria
may have very different variation. The idea here is that the expected variation
of the criteria can be explored using resampled random clusterings (“stupid
K-centroids”, “stupid nearest neighbour clustering”) on the same dataset, and
this can be used for normalisation and comparison.
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Fig. 1. Artificial dataset. Left side: Clustering by 3-means. Right side: clustering
by Single Linkage with 3 clusters.

The approach presented here can also be used for benchmarking cluster
analysis methods. Particularly, it does not only allow to show that methods
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are better or worse on certain datasets, it also allows to characterise the specific
strength and weaknesses of clustering algorithms in terms of the properties of
the found clusters.

Section 2 introduces the general setup and defines notation. In Section 3, all
the indexes measuring different relevant aspects of a clustering are presented.
Section 4 defines an aggregated index that can be adapted to practical needs.
The indexes cannot be suitably aggregated in their raw form, and Section 5
introduces a calibration scheme using randmly generated clusterings. Section
6 applies the methodology to two datasets, one illustrative artificial one and a
real dataset regarding species delimitation. Section 7 concludes the paper.

2 General notation

Generally, cluster analysis is about finding groups in a set of objects D =
{x1, . . . , xn}. There is much literature in which the objects x1, . . . , xn are
assumed to be from Euclidean space IRp, but in principle the could be from
any space X .

A clustering is a set C = {C1, . . . , CK} with Cj ⊆ D, j = 1, . . . ,K. The
number of clusters K may be fixed in advance or not. For j = 1, . . . ,K,
let nj = |Cj | be the number of objects in Cj . Obviously not every such C
qualifies as a “good” or “useful” clustering, but what is demanded of C differs
in the different approaches of cluster analysis. Here C is required to be a
partition, e.g., j 6= k ⇒ Cj ∩ Ck = ∅ and

⋃K
j=1 Cj = D. For partitions,

let γ : {1, . . . , n} 7→ {1, . . . ,K} be the assignment function, i.e., γ(i) = j
if xi ∈ Cj . Some of the indexes introduced below could also by applied to
clusterings that are not partitions (particularly objects that are not a member
of any cluster could just be ignored), but this is not treated here to keep things
simple. Clusters are here also assumed to be crisp rather than fuzzy, i.e., an
object is either a full member of a cluster or not a member of this cluster at
all. In case of probabilistic clusterings, which give as output probabilities pij
for object i to be member of cluster j, it is assumed that objects are assigned
to the cluster j maximising pij ; in case of hierarchical clusterings it is assumed
that the hierarchy is cut at a certain number of clusters K to obtain a partition.

Most of the methods introduced here are based on dissimilarity data. A
dissimilarity is a function d : X 2 7→ IR+

0 so that d(x, y) = d(y, x) ≥ 0 and
d(x, x) = 0 for x, y ∈ X . Many dissimilarities are distances, i.e., they also fulfil
the triangle inequality, but this is not necessarily required here. Dissimilari-
ties are extremely flexible, they can be defined for all kinds of data, such as
functions, time series, categorical data, image data, text data etc. If data are
Euclidean, obviously the Euclidean distance can be used. See Hennig[10] for a
more general overview of dissimilarity measures used in cluster analysis.

3 Aspects of cluster validity

In this Section I introduce measurements for various aspects of cluster validity.
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3.1 Small within-cluster dissimilarities

A major aim in most cluster analysis applications is to find homogeneous clus-
ters. This often means that all the objects in a cluster should be very similar to
each other, although it can in principle also have different meanings, e.g., that a
homogeneous probability model (such as the Gaussian distribution, potentially
with large variance) can account for all observations in a cluster.

The most straightforward way to formalise that all objects within a cluster
should be similar to each other is the average within-cluster distance:

Iwithindis(C) =
2∑K

j=1 nj(nj − 1)

K∑
j=1

∑
x6=y∈Cj

d(x, y).

Smaller values are better. Knowing the data but not the clustering, the
minimum possible value of Iwithindis is zero and the maximum is dmax =

maxx,y∈D d(x, y), so I∗withindis(C) = 1 − Iwithindis(C)
dmax

∈ [0, 1] is a normalised
version. When different criteria are aggregated (see Section 4), it is useful to
define them in such a way that they point in the same direction; I will define all

normalised indexes so that larger values are better. For this reason Iwithindis(C)
dmax

is subtracted from 1.
There are alternative ways of measuring whether within-cluster dissimilari-

ties are overall small. All of these operationalise cluster homogeneity in slightly
different ways. The objective function of K-means clustering can be written
down as a constant times the average of all squared within-cluster Euclidean
distances (or more general dissimilarities), which is an alternative measure,
giving more emphasis to the biggest within-cluster dissimilarities. Most rad-
ically, one could use the maximum within-cluster dissimilarity. On the other
hand one could use quantiles or trimmed means in order to make the index
less sensitive to large within-cluster dissimilarities, although I believe that in
most applications in which within-cluster similarity is important, these should
be avoided and the index should therefore be sensitive against them.

3.2 Between-cluster separation

Apart from within-cluster homogeneity, the separation between clusters is most
often taken into account in the literature on cluster validation (most univariate
indexes balance separation against homogeneity in various ways). Separation
as it is usually understood cannot be measured by averaging all between-cluster
dissimilarities, because it refers to what goes on “between” the clusters, i.e.,
the smallest between-cluster dissimilarities, whereas the dissimilarities between
pairs of farthest objects from different clusters should not contribute to this.

The most naive way to measure separation is to use the minimum between-
cluster dissimilarity. This has the disadvantage that with more than two clus-
ters it only looks at the two closest clusters, and also in many applications
there may be an inclination to tolerate the odd very small distance between
clusters if by and large the closest points of the clusters are well separated.

I propose here an index that takes into account a portion p, say p = 0.1, of
objects in each cluster that are closest to another cluster.
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For every object xi ∈ Cj , i = 1, . . . , n, j ∈ {1, . . . ,K} let dj:i = miny 6∈Cj d(xi, y).
Let dj:(i) ≤ . . . ≤ dj:(nj) be the values of dj:i for xi ∈ Cj ordered from the
smallest to the largest, and let bpnjc be the largest integer ≤ pnj . Then the
p-separation index is defined as

Ip−sep(C) =
1∑K

j=1bpnjc

K∑
j=1

bpnjc∑
i=1

dj:(i).

Obviously, Ip−sep(C) ∈ [0, dmax] and large values are good, therefore I∗p−sep(C) =
Ip−sep(C)
dmax

∈ [0, 1] is a suitable normalisation.

3.3 Representation of objects by centroids

In some applications clusters are used for information reduction, and one way
of doing this is to use the cluster centroids for further analysis rather than
the full dataset. It is then relevant to measure how well the observations in
a cluster are represented by the cluster centroid. The most straightforward
method to measure this is to average the dissimilarities of all objects to the
centroid of the cluster they’re assigned to. Let c1, . . . , cK be the centroids of
clusters C1, . . . , CK . Then,

Icentroid(C) =
1

n

n∑
i=1

d(xi, cγ(i)).

Some clustering methods such as K-means and Partitioning Around Medoids
(PAM, Kaufman and Rousseeuw[14]) are centroid-based, i.e., they compute the
cluster centroids along with the clusters. Centroids can also be defined for the
output of non-centroid-based methods, most easily as

cj = arg min
x∈Cj

∑
γ(i)=j

d(xi, x),

which corresponds to the definition of PAM. Again, there are possible vari-
ations. K-means uses squared Euclidean distances, and in case of Euclidean
data the cluster centroids do not necessarily have to be members of D, they
could also be mean vectors of the observations in the clusters.

Again, by definition, Icentroid(C) ∈ [0, dmax]. Small values are better, and

therefore I∗centroid(C) = 1− Icentroid(C)
dmax

∈ [0, 1].

3.4 Representation of dissimilarity structure by clustering

Another way in which the clustering can be used for information reduction is
that the clustering can be seen as a more simple summary or representation of
the dissimilarity structure. This can be measured by correlating the vector of
pairwise dissimilarities d = vec ([d(xi, xj)]i<j) with the vector of a “clustering
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induced dissimilarity” c = vec ([cij ]i<j), where cij = 1(γ(i) 6= γ(j)), and 1(•)
denotes the indicator function. With r denoting the sample Pearson correlation,

IPearsonΓ (C) = r(d, c).

This index goes back to Hubert and Schultz[13], see also Halkidi et al.[6] for
alternative versions. IPearsonΓ ∈ [−1, 1], and large values are good, so it can
be normalised by I∗PearsonΓ = IPearsonΓ+1

2 ∈ [0, 1].

3.5 Small within-cluster gaps

The idea that a cluster should be homogeneous can mean that there are no
“gaps” within a cluster, and that the cluster is well connected. A gap can
be characterised as a split of a cluster into two subclusters so that the min-
imum dissimilarity between the two subclusters is large. The corresponding
index measures the “length” (dissimilarity) of the widest within-cluster gap
(an alternative would be to average widest gaps over clusters):

Iwidestgap(C) = max
C∈C,D,E: C=D∪E

min
x∈D,y∈E

d(x, y).

Iwidestgap ∈ [0, dmax] and low values are good, so it is normalised as I∗widestgap =

1− Iwidestgap
dmax

∈ [0, 1].
A version of this taking into account density values is defined in Section 3.6.

Widest gaps can be found computationally by constructing the within-cluster
minimum spanning trees; the widest distance occurring there is the widest gap.

3.6 Density modes and valleys

A very popular idea of a cluster is that it corresponds to a density mode, and
that the density within a cluster goes down from the cluster mode to the outer
regions of the cluster. Correspondingly, there should be density valleys between
different clusters.

The definition of indexes that measure such a behaviour is based on a
density function h that assigns a density value h(x) to every observation. For
Euclidean data, standard density estimators such as kernel density estimators
can be used. For general dissimilarities, I here propose a simple kernel density
estimator. Let qd,p be the p-quantile of the vector of dissimilarities d, e.g., for
p = 0.1, the 10% smallest dissimilarities are ≤ qd,0,1. Define the kernel and
density as

k(d) =

(
1− 1

qd,p
d

)
1(d ≤ qd,p), h(x) =

n∑
i=1

k(d(x, xi)).

These can be normalised to take a maximum of 1:

h∗(x) =
h(x)

maxy∈D h(y)
.
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Alternatively, hk−nn(x) = 1
dk(x)

with dk(x) being the dissimilarity to the kth

nearest neighbour would be another simple dissimilarity-based density estima-
tor, although this has no trivial upper bound (h, even before normalising by
its within-cluster maximum, is bounded by n). One could also standardise h
by the within-cluster maxima if clusters with generally lower densities should
have the same weight as high density clusters, but lower density values rely on
fewer observations and are therefore less reliable.

Three different aspects of density-based clustering are measured by three
different indexes:

1. The density should decrease within a cluster from the density mode to the
“outskirts” of the cluster (Idensdec).

2. Cluster boundaries should run through density “valleys”, i.e., high density
points should not be close to many points from other clusters (Idensbound).

3. There should not be a big gap between high density regions within a cluster
(Ihighdgap; gaps as measured by Iwidestgap may be fine in the low density
outskirts of a cluster).

The idea for Idensdec is as follows. For every cluster, starting from the clus-
ter mode, i.e., the observation with the highest density, construct a growing
sequence of observations that eventually covers the whole cluster by always
adding the closest observation that is not yet included. Optimally, in this pro-
cess, the within-cluster density of newly included points should always decrease.
Whenever actually the density goes up, a penalty of the squared difference of
the densities is incurred. The index Idensdec aggregates these penalties. The
following algorithm computes this, and it also constructs a set T that collects
information about high dissimilarities between high density observations and
is used for the definition of Ihighdgap below:

Initialisation Id1 = 0, T = ∅. For j = 1, . . . ,K:
Step 1 Sj = {x}, where x = arg max

y∈Cj
h∗(y).

Step 2 Let Rj = Cj \ Sj . If Rj = ∅: j = j + 1, if j ≤ K go to Step 1, if
j +K = 1 then go to Step 5. Otherwise:

Step 3 Find (x, y) = arg min
(z1,z2):z1∈Rj ,z2∈Sj

d(z1, z2). Sj = Sj ∪ {x}, T = T ∪

{maxz∈Rj h
∗(z)d(x, y)}.

Step 4 If h∗(x) > h∗(y) : Id1 = Id1 + (h∗(x)− h∗(y))2, back to Step 2.

Step 5 Idensdec(C) =
√

Id1
n .

Idensdec collects the penalties from increases of the within-cluster densities dur-
ing this process.

The definition of Idensdec does not take into account whether the neigh-
bouring observations that produce high density values h∗(x) for x are in the
same cluster as x. But this is important, because it would otherwise be easy
to achieve a good value of Idensdec by cutting through high density areas and
distributing a single high density area to several clusters.

A second index can be defined that penalises a high contribution of points
from different clusters to the density values in a cluster (measured by ho below),
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because this means that the cluster border cuts through a high density region.

For xi, i = 1, . . . , n : ho(xi) =
n∑
k=1

k(d(xi, xk))1(γ(k) 6= γ(i)).

Normalising:

h∗o(x) =
ho(x)

maxy∈D h(y)
.

A penalty is incurred if for observations with a large density h∗(x) there is a
large contribution h∗o(x) to that density from other clusters:

Idensbound(C) =
1

n

K∑
j=1

∑
x∈Cj

h∗(x)h∗o(x).

Both Idensdec and Idensbound are by definition ≥ 0. Also, the maximum contri-
bution of any observation to any of Idensdec and Idensbound is 1

n , because the
normalised h∗-values are ≤ 1. These are penalties, so low values are good, and
normalised versions are defined as

I∗densdec(C) = 1− Idensdec(C), I∗densbound(C) = 1− Idensbound(C).

An issue with Idensdec is that it is possible that there is a large gap between
two observations with high density, which does not incur penalties if there are
no low-density observations in between. This can be picked up by a version of
Iwidestgap based on the density-weighted gap information collected in T above.
This is suggested instead of Iwidestgap if a density-based cluster concept is of
interest:

Ihighdgap(C) = maxT.

Ihighdgap(C) ∈ [0, dmax] and low values are good, so it is normalised as I∗highdgap(C) =

1− Ihighdgap(C)
dmax

∈ [0, 1].

3.7 Uniform within-cluster density

Sometimes different clusters should not (only) be characterised by gaps between
them; overlapping regions in data space may be seen as different clusters if they
have different within-cluster density levels, which in some applications could
point to different data generating mechanisms behind the different clusters,
which the researcher would like to discover. Such a cluster concept would
require that densities within clusters are more or less uniform.

This can be characterised by the coefficient of variation CV of either the
within-cluster density values or the dissimilarities to the kth nearest within-
cluster neighbour dkw(x) (say k = 4). The latter is preferred here because as
opposed to the density values, dkw(x) is clean from the influence of observations
from the other clusters. Define for j = 1, . . . , k, assuming nj > k:

m(Cj ; k) =
1

nj

∑
x∈Cj

dkw(x), CV(Cj) =

√
1

nj−1
∑
x∈Cj (d

k
w(x)−m(Cj ; k))2

m(Cj ; k)
.
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Using this,

Icvdens(C) =

∑K
j=1 njCV(Cj)1(nj > k)∑K

j=1 nj1(nj > k)
.

Low values are good. The maximum value of the coefficient of variation based
on n observations is

√
n (Katsnelson and Kotz[15]), so a normalised version is

I∗cvdens(C) = 1− Icvdens(C)√
n

.

3.8 Entropy

In some clustering applications, particularly where clustering is done for “or-
ganisational” reasons such as information compression, it is useful to have clus-
ters that are roughly of the same size. This can be measured by the entropy:

Ientropy(C) = −
K∑
j=1

nj
n

log
(nj
n

)
.

Large values are good. The entropy is maximised for fixed K by emax(K) =

− log
(

1
K

)
, so it can be normalised by I∗entropy(C) =

Ientropy(C)
emax(K) .

3.9 Parsimony

In case that there is a preference for a lower number of clusters, one could
simply define

I∗parsimony = 1− K

Kmax
,

(already normalised) with Kmax the maximum number of clusters of interest. If
in a given application there is a known nonlinear loss connected to the number
of clusters, this can obviously be used instead, and the principle can be applied
also to other free parameters of a clustering method, if desired.

3.10 Similarity to homogeneous distributional shapes

Sometimes the meaning of “homogeneity” for a cluster is defined by a homoge-
neous probability model, e.g., Gaussian mixture model-based clustering models
all clusters by Gaussian distributions with different parameters, requiring Eu-
clidean data. Historically, due to the Central Limit Theorem and Quetelet’s
“elementary error hypothesis”, measurement errors were widely believed to be
normally/Gaussian distributed (see Stigler[17]). Under such a hypothesis it
makes sense in some situations to regard Gaussian distributed observations as
homogeneous, and as pointing to the same underlying mechanism; this could
also motivate to cluster observations together that look like being generated
from the same (approximate) Gaussian distribution. Indexes that measure
cluster-wise Gaussianity can be defined, see, e.g., Lago-Fernandez and Cor-
bacho[16]. One possible principle is to compare a one-dimensional function
of the observations within a cluster to its theoretical distribution under the
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data distribution of interest; e.g., Coretto and Hennig[3] compare the Maha-
lanobis distances of observations to their cluster centre with their theoretical
χ2-distribution using the Kolmogorow-distance. This is also possible for other
distributions of interest.

3.11 Stability

Clusterings are often interpreted as meaningful in the sense that they can
be generalised as substantive patterns. This at least implicitly requires that
they are stable. Stability in cluster analysis can be explored using resampling
techniques such as bootstrap and splitting the dataset, and clustering from dif-
ferent resampled datasets can be compared. This requires to run the clustering
method again on the resampled datasets and I will not treat this here in detail,
but useful indexes have been defined using this principle, see, e.g., Tibshirani
and Walther[18] and Fang and Wang[4].

3.12 Further Aspects

Hennig[10] lists further potentially desirable characteristics of a clustering, for
which further indexes could be defined:

• Areas in data space corresponding to clusters should have certain charac-
teristics such as being linear or convex.
• It should be possible to characterise clusters using a small number of vari-

ables.
• Clusters should correspond well to an externally given partition or values of

an external variable (this could for example imply that clusters of regions
should be spatially connected).
• Variables should be approximately independent within clusters.

4 Aggregation of indexes

The required cluster concept and therefore the way the validation indexes can
be used depends on the specific clustering application. The users need to
specify what characteristics of the clustering are desired in the application.
The corresponding indexes can then be aggregated to form a single criterion
that can be used to compare different clustering methods, different numbers of
clusters and other possible parameter choices of the clustering.

The most straightforward aggregation is to compute a weighted mean of s
selected indexes I1, . . . , Is with weights w1, . . . , ws > 0 expressing the relative
importance of the different methods:

A(C) =
s∑

k=1

wkIk. (1)

Assuming that large values are desirable for all of I1, . . . , Is, the best clustering
for the application in question can be found by maximising A. This can be
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done by comparing different clusterings from conventional clustering methods,
but in principle it would also be an option to try to optimise A directly.

The weights can only be chosen to directly reflect the relative importance
of the various aspects of a clustering if the values (or, more precisely, their
variations) of the indexes I1, . . . , Is are comparable, and give the indexes equal
influence on A if all weights are equal. In Section 3 I proposed tentative normal-
isations of all indexes, which give all indexes the same value range [0, 1]. Un-
fortunately this is not good enough to ensure comparability; on many datasets
some of these indexes will cover almost the whole value range whereas other
indexes may be larger than 0.9 for all clusterings that any clustering method
would come up with. Therefore, Section 5 will introduce a new computational
method to standardise the variation of the different criteria.

Another issue is that some indexes by their very nature favour large num-
bers of clusters K (obviously large within-cluster dissimilarities can be more
easily avoided for large K), whereas others favour small values of K (separation
is more difficult to achieve with many small clusters). The method introduced
in Section 5 will allow to assess the extent to which the indexes deliver sys-
tematically larger or smaller values for larger K. Note that this can also be an
issue for univariate “global” validation indexes from the literature, see Hennig
and Lin[11].

If the indexes should be used to find an optimal value of K, the indexes
in A should be chosen in such a way that indexes that systematically favour
larger K and indexes that systematically favour smaller K are balanced.

The user needs to take into account that the proposed indexes are not
independent. For example, good representation of objects by centroids will
normally be correlated with having generally small within-cluster dissimilari-
ties. Including both indexes will assign extra weight to the information that
the two indexes have in common (which may sometimes but not always be
desired).

There are alternative ways to aggregate the information from the different
indexes. For example, one could use some indexes as side conditions rather than
involving them in the definition of A. For example, rather than giving entropy a
weight for aggregation as part of A, one may specify a certain minimum entropy
value below which clusterings are not accepted, but not use the entropy value to
distinguish between clusterings that fulfil the minimum entropy requirement.
Multiplicative aggregation is another option.

5 Random clusterings for calibrating indexes

As explained above, the normalisation in Section 3 does not provide a proper
calibration of the validation indexes. Here is an idea for doing this in a more
appropriate way. The idea is that random clusterings are generated on D and
index values are computed, in order to explore what range of index values
can be expected on D, so that the clusterings of interest can be compared to
these. So in this Section, as opposed to conventional probability modelling, the
dataset is considered as fixed but a distribution of index values is generated
from various random partitions.
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Completely random clusterings (i.e., assigning every observation indepen-
dently to a cluster) are not suitable for this, because it can be expected that
indexes formalising desirable characteristics of a clustering will normally give
much worse values for them than for clusters that were generated by a clus-
tering method. Therefore I propose two methods for random clusterings that
are meant to generate clusterings that make some sense, at least by being
connected in data space. The methods are called “stupid K-centroids” and
“stupid nearest neighbours”; “stupid” because they are versions of popular
clustering methods (centroid-based clustering like K-means or PAM, and Sin-
gle Linkage/Nearest Neighbour) that replace optimisation by random decisions
and are meant to be computable very quickly. Centroid-based clustering nor-
mally produces somewhat compact clusters, whereas Single Linkage is notorious
for prioritising cluster separation totally over within-cluster homogeneity, and
therefore one should expect these two approaches to explore in a certain sense
opposite ways of clustering the data.

5.1 Stupid K-centroids clustering

Stupid K-centroids works as follows. For fixed number of cluster K draw a set
of K cluster centroids Q = {q1, . . . , qK} from D so that every subset of size K
has the same probability of being drawn. CK−stupidcent(Q) = {C1, . . . , Ck} is
defined by assigning every observation to the closest centroid:

γ(i) = arg min
j∈{1,...,K}

d(xi, qj), i = 1, . . . , n.

5.2 Stupid nearest neighbours clustering

Again, for fixed number of cluster K draw a set of K cluster initialisation points
Q = {q1, . . . , qK} fromD so that every subset of sizeK has the same probability
of being drawn. CK−stupidnn(Q) = {C1, . . . , Ck} is defined by successively
adding the not yet assigned observation closest to any cluster to that cluster
until all observations are clustered:

Initialisation Let Q∗ = Q. Let

C∗(Q) = C∗(Q∗) = {C∗1 , . . . , C∗L} = {{q1}, . . . , {qK}} .

Step 1 Let R∗ = D \ Q∗. If R∗ 6= ∅, find (x, y) = arg min
(z,q):z∈R∗,q∈Q∗

d(z, q),

otherwise stop.

Step 2 Let Q∗ = Q∗ ∪ {x}. For the C∗ ∈ C∗(Q∗) with y ∈ C∗, let C∗ =
C∗ ∪ {x}, updating C∗(Q∗) accordingly. Go back to Step 1.

At the end, CK−stupidnn(Q) = C∗(Q∗).
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5.3 Calibration

The random clusterings can be used in various ways to calibrate the indexes.
For any value K of interest, 2B clusterings CK−collection = (CK:1, . . . , CK:2B) =

(CK−stupidcent(Q1), . . . , CK−stupidcent(QB), CK−stupidnn(Q1), . . . , CK−stupidnn(QB))

on D are generated, say B = 100.
As mentioned before, indexes may systematically change over K and there-

fore may show a preference for either large or small K. In order to account for
this, it is possible to calibrate the indexes using stupid clusterings for the same
K, i.e., for a clustering C with |C| = K. Consider an index I∗ of interest (the
normalised version is used here because this means that large values are good
for all indexes). Then,

IcK(C) =
I∗(C)−m∗(CK−collection)√

1
2B−1

∑2B
j=1 (I∗(CK:j)−m∗(CK−collection))

2
, (2)

where m∗(CK−collection) = 1
2B

∑2B
j=1 I

∗(CK:j). A desired set of calibrated in-
dexes can then be used for aggregation in (1).

An important alternative to (2) is calibration by using random clusterings
for all values of K together. Let K = {2, . . . ,Kmax} be the numbers of clusters
of interest (most indexes will not work for K = 1), Ccollection = {CK:j : K ∈
K, j = 1, . . . , 2B}, m∗(Ccollection) = 1

2B(Kmax−1)
∑Kmax
K=2

∑2B
j=1 I

∗(CK:j). With

this,

Ic(C) =
I∗(C)−m∗(Ccollection)√

1
2B(Kmax−1)−1

∑Kmax
K=2

∑2B
j=1 (I∗(CK:j)−m∗(Ccollection))

2
. (3)

Ic does not correct for potential systematic tendencies of the indexes over K,
but this is not a problem if the user is happy to use the uncalibrated indexes
directly for comparing different values of K; a potential bias toward large or
small values of K in this case needs to be addressed by choosing the indexes
to be aggregated in (1) in a balanced way. This can be checked by computing
the aggregated index A also for the random clusterings and check how these
change over the different values of K.

Another alternative is to calibrate indexes by using their rank value in the
set of clusterings (random clusterings and clusterings to compare) rather than a
mean/standard deviation-based standardisation. This is probably more robust
but comes with some loss of information.

6 Examples

6.1 Artificial dataset

The first example is the artificial dataset shown in Figure 1. Four cluster-
ings are compared (actually many more clusterings with K between 2 and 5
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were compared on these data, but the selected clusterings illustrate the most
interesting issues).

The clusterings were computed by K-means with K = 2 and K = 3, Single
Linkage cut at K = 3 and PAM with K = 5. The K-means clustering with
K = 3 and the Single Linkage clustering are shown in Figure 1. The K-means
clustering with K = 2 puts the uniformly distributed widespread point cloud
on top together in a single cluster, and the two smaller populations are the
second cluster. This is the most intuitive clustering for these data for K = 2
and also delivered by most other clustering methods. PAM does not separate
the two smaller (actually Gaussian) populations for K = 2, but it does so for
K = 5, along with splitting the uniform point cloud into three parts.

kmeans-2 kmeans-3 Single Linkage-3 PAM-5

I∗withindis 0.654 0.799 0.643 0.836
I∗0.1−sep 0.400 0.164 0.330 0.080
I∗centroid 0.766 0.850 0.790 0.896
I∗PearsonΓ 0.830 0.900 0.781 0.837
I∗widestgap 0.873 0.873 0.901 0.901
I∗densdec 0.977 0.981 0.981 0.985
I∗densbound 1.000 0.999 1.000 0.997
I∗highdgap 0.879 0.879 0.960 0.964
I∗cvdens 0.961 0.960 0.961 0.959
I∗entropy 0.863 0.993 0.725 0.967

Table 1. Normalised index values for four clusterings on artificial data.

Table 1 shows the normalised index values for these clusterings. Particularly
comparing 3-means and Single Linkage, the different virtues of these cluster-
ings are clear to see. 3-means is particularly better for the homogeneity-driven
I∗withindis and I∗centroid, whereas Single Linkage wins regarding the separation-
oriented I∗0.1−sep and I∗widestgap, with 3-means ignoring the gap between the two
Gaussian populations. I∗PearsonΓ tends toward 3-means, too, which was per-
haps less obvious, because it does not like too big distances within clusters. It is
also preferred by I∗entropy because of joining two subpopulations that are rather
small. The values for the indexes, I∗densdec, I

∗
densbound, I

∗
highdgap, and I∗cvdens

illustrate that that the naive normalisation is not quite suitable for making the
value ranges of the indexes comparable. For the density-based indexes, many
involved terms are far away from the maximum used for normalisation, so the
index values can be close to 0 (close to 1 after normalisation). This is amended
by calibration.

Considering the clusterings with K = 2 and K = 5, it can be seen that with
K = 5 it is easier to achieve within-cluster homogeneity (I∗withindis, I

∗
centroid),

whereas with K = 2 it is easier to achieve separation (I∗0.1−sep).

Table 2 shows the index values IcK calibrated against random clustering
with the same K. This is meant to account for the fact that some indexes
differ systematically over different values of K. Indeed, using this calibration,
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kmeans-2 kmeans-3 Single Linkage-3 PAM-5

IcKwithindis 0.906 1.837 -0.482 0.915
IcK0.1−sep 1.567 0.646 3.170 -0.514
IcKcentroid 1.167 1.599 0.248 1.199
IcKPearsonΓ 1.083 1.506 0.099 0.470
IcKwidestgap 1.573 1.156 1.364 0.718
IcKdensdec 1.080 1.191 1.005 1.103
IcKdensbound 0.452 0.449 0.519 0.647
IcKhighdgap 1.317 0.428 2.043 1.496
IcKcvdens 1.153 0.836 0.891 0.286
IcKentropy 0.246 1.071 -0.620 0.986

Table 2. Calibrated index values (using random clusterings with same K) for four
clusterings on artificial data.

PAM with K = 5 is no longer best for IcKcentroid and IcKwithindis, and 2-means
is no longer best for IcK0.1−sep. It can now be seen that 3-means is better than

Single Linkage for IcKdensdec. This is because density values show much more
variation in the widely spread uniform subpopulation than in the two small
Gaussian ones, so splitting up the uniform subpopulation is better for creating
densities decreasing from the modes, despite the gap between the two Gaussian
subpopulations. On the other hand, 3-means has to cut through the uniform
population, which gives Single Linkage, which only cuts through clear gaps,
an advantage regarding IcKdensbound, and particularly 3-means incurs a large dis-
tance between the two Gaussian high density subsets within one of its clusters,
which makes Single Linkage much better regarding IcKhighdgap. Ultimately, the
user needs to decide here whether small within-cluster dissimilarities and short
dissimilarities to centroids are more important than separation and the ab-
sence of within-cluster gaps. The K = 5-solution does not look very attractive
regarding most criteria (although calibration with the same K makes it look
good regarding IcKdensbound); the K = 2-solution only looks good regarding two
criteria that may not be seen as the most important ones here.

Table 3 shows the index values IcK calibrated against all random clus-
terings. Not much changes regarding the comparison of 3-means and Single
Linkage, whereas a user who is interested in small within-cluster dissimilarities
and centroid representation in absolute terms is now drawn toward PAM with
K = 5 or even much larger K, indicating that these indexes should not be
used without some kind of counterbalance, either from separation-based crite-
ria (Ic0.1−sep and Icdensbound) or taking into account parsimony. A high density
gap within a cluster is most easily avoided with large K, too, whereas K = 2
achieves the best separation, unsurprisingly.

As this is an artificial dataset and there is no subject-matter information
that could be used to prefer certain indexes, I do not present specific aggrega-
tion weights here.
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kmeans-2 kmeans-3 Single Linkage-3 PAM-5

Icwithindis -0.483 1.256 -0.607 1.694
Ic0.1−sep 2.944 0.401 2.189 -0.512
Iccentroid -0.449 0.944 -0.059 1.712
IcPearsonΓ 0.658 1.515 0.058 0.743
Icwidestgap 0.939 0.939 1.145 1.145
Icdensdec -0.279 0.832 0.697 1.892
Icdensbound 0.614 0.551 0.609 0.417
Ichighdgap 0.464 0.464 1.954 2.025
Iccvdens 0.761 0.692 0.748 0.615
Icentropy 0.208 1.079 -0.720 0.904

Table 3. Calibrated index values (using all random clusterings) for four clusterings
on artificial data.

6.2 Tetragonula bees data

Franck et al.[5] published a data set giving genetic information about 236 Aus-
tralasian tetragonula bees, in which it is of interest to determine the number
of species. The data set is incorporated in the package “fpc” of the software
system R (www.r-project.org) and is available on the IFCS Cluster Bench-
mark Data Repository http://ifcs.boku.ac.at/repository. Bowcock et
al.[1] defined the “shared allele dissimilarity” formalising genetic dissimilarity
appropriately for species delimitation, which is used for the present data set.
It yields values in [0, 1]. See also Hausdorf and Hennig[7] and Hennig[8] for
earlier analyses of this dataset including a discussion of the number of clusters
problem. Franck et al.[5] provide 9 “true” species for these data, although this
manual classification (using morphological information besides genetics) comes
with its own problems and may not be 100% reliable.

In order to select indexes and to find weights, some knowledge about species
delimitation is required, which was provided by Bernhard Hausdorf, Museum
of Zoology, University of Hamburg. The biological species concept requires
that there is no (or almost no) genetic exchange between different species,
so that separation is a key feature for clusters that are to be interpreted as
species. For the same reason, large within-cluster gaps can hardly be tolerated
(regardless of the density values associated to them); in such a case one would
consider the subpopulations on two sides of a gap separate species, unless a
case can be made that potentially existing connecting individuals could not
be sampled. Gaps may also occur in regionally separated subspecies, but this
cannot be detected from the data without regional information. On the other
hand, species should be reasonably homogeneous; it would be against biological
intuition to have strongly different genetic patterns within the same species.
This points to the indexes Iwithindis, I0.1−sep, and Iwidestgap. On the other
hand, the shape of the within-cluster density is not a concern here, and neither
are representation of clusters by centroids, entropy, and constant within-cluster
variation. The index IPearsonΓ is added to the set of relevant indexes, because
one can interpret the species concept as a representation of genetic exchange as
formalised by the shared allele dissimilarity, and IPearsonΓ measures the quality
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of this representation. All these four indexes are used in (1) with weight 1 (one
could be interested in stability as well, which is not taken into account here).

AL-5 AL-9 AL-10 AL-12 PAM-5 PAM-9 PAM-10 PAM-12

IcKwithindis 0.68 -0.04 1.70 1.60 1.83 2.45 2.03 1.80
IcK0.1−sep 1.79 2.35 2.00 2.42 0.43 1.59 2.12 0.94
IcKPearsonΓ 1.86 2.05 1.92 2.28 1.43 1.84 1.75 0.61
IcKwidestgap 0.45 4.73 4.90 4.86 -1.03 0.41 0.42 -0.09
A(C) 4.78 9.09 10.51 11.13 2.66 6.30 6.32 3.30
ARI 0.53 0.60 0.95 0.94 0.68 0.84 0.85 0.64

Table 4. Calibrated index values (using random clusterings with same K) for eight
clusterings on Tetragonula bees data with aggregated index and adjusted Rand index.

Again I present a subset of the clusterings that were actually compared
for illustrating the use of the approach presented in this paper. Typically
clusterings below K = 9 were substantially different from the ones with K ≥ 9;
clusterings with K = 10 and K = 11 from the same method were often rather
similar to each other, and I present clusterings from Average Linkage and
PAM with K = 5, 9, 10, and 12. Table 4 shows the four relevant index values
IcK calibrated against random clustering with the same K along with the
aggregated index A(C). Furthermore, the adjusted Rand index (ARI; Hubert
and Arabie[12]) comparing the clusterings from the method with the “true”
species is given (this takes values between -1 and 1 with 0 expected for random
clusterings and 1 for perfect agreement). Note that despite K = 9 being
the number of “true” species, clusterings with K = 10 and K = 12 yield
higher ARI-values than those with K = 9, so these clusterings are preferable
(it does not help much to estimate the number of species correctly if the species
are badly composed). Some “true” species in the original dataset are widely
regionally dispersed with hardly any similarity between subspecies.

The aggregated index A(C) is fairly well related to the ARI (over all 55
clusterings that were compared the correlation between A(C) and ARI is about
0.85). The two clusterings that are closest to the “true” one also have the
highest values of A(C). The within-cluster gap criterion plays a key role here,
preferring Average Linkage with 9-12 clusters clearly over the other clusterings.
A(C) assigns its highest value to AL-12, whereas the ARI for AL-10 is very
slightly higher. PAM delivers better clusterings regarding small within-cluster
dissimilarities, but this advantage is dwarfed by the advantage of Average Link-
age regarding separation and within-cluster gaps.

Table 5 shows the corresponding results with calibration using all random
clusterings. This does not result in a different ranking of the clusterings, so
this dataset does not give a clear hint which of the two calibration methods is
more suitable, or, in other words, the results do not depend on which one is
chosen.
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AL-5 AL-9 AL-10 AL-12 PAM-5 PAM-9 PAM-10 PAM-12

Icwithindis 0.10 0.59 1.95 2.00 0.83 2.13 2.17 2.16
Ic0.1−sep 1.98 1.54 1.05 1.02 0.53 1.01 1.13 0.21
IcPearsonΓ 1.79 1.87 1.86 1.87 1.38 1.71 1.73 0.72
Icwidestgap 0.39 5.08 5.08 5.08 -1.12 0.39 0.39 -0.08
A(C) 4.26 9.08 9.93 9.97 1.62 5.24 5.41 3.01
ARI 0.53 0.60 0.95 0.94 0.68 0.84 0.85 0.64

Table 5. Calibrated index values (using all random clusterings) for eight clusterings
on Tetragonula bees data with aggregated index and adjusted Rand index.

7 Conclusion

The multivariate array of cluster validation indexes presented here provides the
user with a detailed characterisation of various relevant aspects of a clustering.
The user can aggregate the indexes in a suitable way to find a useful clustering
for the clustering aim at hand.

The indexes can also be used to provide a more detailed comparison of
different clustering methods in benchmark studies, and a better understanding
of their characteristics.

The methodology is currently partly implemented in the “fpc”-package of
the statistical software system R and will soon be fully implemented there.

Most indexes require K ≥ 2 and the approach can therefore not directly be
used for deciding whether the dataset is homogeneous as a whole (K = 1). The
individual indexes as well as the aggregated index could be used in a parametric
bootstrap scheme as proposed by Hennig and Lin[11] to test the homogeneity
null hypothesis against a clustering alternative.

Research is still required in order to compare the different calibration meth-
ods and some alternative versions of indexes. A theoretical characterisation of
the indexes is of interest as well as a study exploring the strength of the infor-
mation overlap between some of the indexes, looking at, e.g., correlations over
various clusterings and datasets. Random clustering calibration may also be
used together with traditional univariate validation indexes. Further methods
for random clustering could be developed and it could be explored what collec-
tion of random clusterings is most suitable for calibration (some work in this
direction is currently done by my PhD student Serhat Akhanli).
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Abstract. The gaseous pollutant emissions are considered as one of the major en-
vironmental problems. The countries’ collective action on greenhouse gas emission
mitigation, is of crucial importance for the climate sustainability. A climate agree-
ment in order to be effective, has to inspire fairness and equity to its members. This
sense of fairness is often suspended by the existing inequalities of carbon emissions
between countries. The measurement of inequality of carbon emissions using dissimi-
larity indices is extensively studied in literature. The current paper contributes to the
related literature by proposing a method for monitoring the compliance of countries
on emission mitigation, using dissimilarity indices. That method will not only exam-
ine the effective measurement of emissions’ dissimilarity among members, but it will
also contribute to the identification of the ”free rider” problem in climate coalitions.
Keywords: climate agreements, dissimilarity indices, inequality measures, Gini in-
dex, CO2 emissions.

1 Introduction

Climate change is the greatest environmental threat that humanity has ever
faced. It is caused by the build up of the greenhouse gases (GHGs) from
burning fossil fuels. Greenhouse gases are the gases that trap heat into the
atmosphere. Carbon dioxide holds the largest proportion of greenhouse gases.
Thus it is imperative need for all countries to take collective action in the di-
rection of carbon emission mitigation, in order to moderate the consequences
of the climate change. Collective action could be taken through voluntary cli-
mate agreements. Climate agreements must ensure fairness and equity among
its members, in order to be ratified by both the developed and the developing
countries [1]. Therefore, the environmental inequality in terms of emissions
mitigation is urgently needed to be treated. According to Boyce (2016)[2], en-
vironmental inequality has also some social welfare implications. It is intrinsic,
that is every person has the right to a healthful environment. Moreover, it
can have impacts on equal opportunities and on other economic outcomes for
individual and countries.
_________________ 
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The main contribution of this paper is the proposal of a method, related to
the measurement of environmental inequality, by monitoring the compliance of
countries to carbon emission mitigation. The measurement of the reduction of
environmental inequality on carbon emissions is important for policy makers, in
order to promote global cooperation. The first attempt for an agreement that
set targets on carbon emissions, was made in 1997, with the Kyoto Protocol.
Therefore, we apply our method in this agreement. Although, Kyoto protocol
didn’t manage to ensure the required number of members in order to come into
force, it would be useful to see the mitigation policies of the member states,
throughout that after-signature period. Some of the country members which
eventually didn’t ratify the protocol, withdrew from its ratification process
close to the first control target emissions’ period. The main reason that led to
that withdrawal was probably the failure to reach their mitigation targets on
time.

The effort for the emission mitigation can be accelerated by the reduction of
inequality of the emissions mitigation between the member states. An increase
of the inequality of the emission mitigation during a period or an unchanged
inequality while there are sensible emissions mitigations from some countries,
indicates that a ”free rider” problem occurs. ”Free riding” exists for two main
reasons. The countries act in the direction of maximizing their individual wel-
fare, that is they have incentives to produce more, while saving the mitigation
costs. Also, the countries outside the coalition benefit form the coallition’s
collective emission mitigation, while they continue to derive benefits from their
emissions, receiving this way a competitive advantage. In the climate coaliton
formation literature this is called the ”carbon leakage” problem [3].

Dissimilarity indices, that are commonly used in measuring economic in-
equality, have been also suggested as an appropriate measure for environmen-
tal inequality in terms of per capita emissions [4],[5],[6],[7],[8],[9]. In this paper
we propose a method for measuring environmental inequality between coun-
tries related to their mitigation on carbon emissions. Moreover, the proposed
method is extended for grouped countries. Through our proposal, it can be
identified the ”free rider” problem, in terms of environmental inequality be-
tween countries.

2 The Proposed Method

It is commonly known that the sense of fairness and equity, that a climate
agreement must have, can be well expressed by the way in which countries mit-
igate their GHG emissions. A climate agreement may not be easily succeeded
since the industrialised countries cannot directly alter their production process
and the developing countries are trying to improve their financial position. A
key issue is the confidence and the will for cooperation between its members.
The necessary condition to promote the cooperation between countries is to
decrease the observed inequality regarding the emissions mitigation. In order
to measure the compliance of countries on their emission targets, Gini index
is applied on the differences between the emissions of the base year and the
target year, of each country, as it was agreed by the Kyoto protocol. Initially it
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is described the method considering the countries as individual cases and then
considering that countries are grouped by a specific characteristic.

Let us denote: ei be the CO2 emissions of gaseous pollutants in kilotons
(kt) of country i at a given time, eti the CO2 emissions of gaseous pollutants
in kilotons that the country i aims to achieve according to its target, ebi the
CO2 emissions in kilotons recorded for the base year, as it was defined for the
i country from the Kyoto protocol and pi the projected rate of quantified mit-
igation on carbon emissions. It can be easily derived that the target emissions
are the product of the base year emissions and the projected rate of quantified
mitigation,

eti = ebi · pi. (1)

Denoting yi the difference between the current emissions and the target emis-
sions, of a country i at a given time,

yi = ei − eti. (2)

2.1 Description of method for individual data

We examine whether there is a dissimilarity in the differences that the countries
have from their target emissions. The value of the Gini index for n countries
derives from the following expression,

IG =
1

(2n2µ)

n∑
i=1

n∑
j=1

|yi − yj |, (3)

where µ, is the mean value of the differences yi [11]. The Gini index is commonly
used as a measure of income inequality. The data used for its computation are
positive, since the income data refer to real values. The differences in the
measurement of emission mitigation might also have negative values, when a
country manages to fulfil its obligation at a time before the target year but
it continues to mitigate its emissions well below the target. Therefore, we
compute two expressions of the Gini index, in order to take into account the
cases where the differences become negative.

In the first case we compute the Gini index, for positive values. To achieve
that, we set yi = 0 for negative differences. That happens when a country
achieves its unilateral emission target. In the second case, we consider that
a country could contribute to the aggregate emission target, taking into ac-
count the negative values as well. Therefore, we propose the Gini index, to be
calculated by the following expression [12],

Gp =
∆

2µpy
, (4)

where the ∆ and µpy are given by the following relations,

∆ =
1

n2

n∑
i=1

n∑
j=1

|yi − yj |,

µpy =
1

2
∆p,

(5)
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where,

∆p = 2[
(n− 1)

n2
](T+ + T−), T+ =

∑n
i=1max(0, yi), T

− = |
∑n
i=1min(0, yi)|.

2.2 Description of method for grouped data

Denotes nh, while i = 1, 2, ...,m, the number of individuals that belong to the
group h, it is already known [13] that Gini index is given from the following
expression,

IG = e
′
GS (6)

where,
e
′

=
(
e
′
(n1) e

′
(n2) ... e

′
(nm)

)
,

S =


s(n1)
s(n2)

...
s(nm)

 ,

G =


G(n1, n1) G(n1, n2) · · · G(n1, nm)
G(n2, n1) G(n2, n2) · · · G(n2, nm)

...
...

. . .
...

G(nm, n1) G(nm, n2) · · · G(nm, nm)

 .

Denoting e(nh) the column vectors of nh elements which are equal to 1/n.
G(nκ, nλ) are the nκ by nλ matrices while κ, λ = 1, 2, · · · ,m. If κ = λ, then
the nκ by nλ G(nκ, nλ) matrices have 0 on their diagonals (−1)′s in their upper
right triangle and (+1)′s in their lower left triangle. The nκ by nλ G(nκ, nλ)
matrices where the κ < λ have all their elements equal to −1 and the nκ by nλ
G(nκ, nλ) matrices where the κ > λ have all their elements equal to 1. S(nh)
is the column vector of the nh elements s(i, h), where s(i, h) is the share of the
individual i belonging to class h in total income.

Expression (6) can be written as a sum of two components, Iw and IB , that
corresponds to the within classes inequality and between classes inequality.
Thus we take the expression,

IG = e
′
GS =

m∑
p=1

[

m∑
q=1

e
′
(np) ·G(np, nq) · S(np)] =

=
m∑
p=1

e
′
(np) ·G(np, np) · S(np) +

m∑
p=1

[
m∑
q 6=p

e
′
(np) ·G(np, nq) · S(np)] =

= IW + IB

(7)

3 Application of the method

Let us consider the 39 countries, that participated in the negotiations for the
signature of the Kyoto protocol (Annex I countries), presented in Table 3 (Ap-
pendix). Moreover, Table 3 contains the mitigation’s percentage target of each
country, the base year and the recorder carbon emissions of the base year.
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In this section, it is described an application of the proposed method for
The Annex I countries. The data correspond to the CO2 emissions of each
country from the year 2005 to the year 2012. We will distinguish the two cases
in our application.

3.1 Application of the method for individual data

Initially, we measure the inequality considering countries as individuals. Our
objective in this case is twofold. First we calculate the dissimilarity for each
year and then compare it through years. Secondly we detect whether the choice
of expression (3) or (4) of the Gini index affects the results.

Year 2005 2006 2007 2008 2009 2010 2011 2012

Only positive values 0.87 0.87 0.88 0.88 0.88 0.88 0.90 0.90

Positive and negative values 0.91 0.90 0.91 0.91 0.90 0.90 0.90 0.90

Table 1. Dissimilarity measurement for individual countries

According to Table 1, the values of the Gini index are close to upper limit.
This indicates that there is a big inequality in the differences of the mitiga-
tion policy. Studying the data we can easily derive that by 2005, the 1/3 of
the examined member states had already managed to achieve their mitigation
targets. 2005 was the formal starting period for the Kyoto protocol. Until
2012, which was the target year, only 22/39 members, had managed to reach
their targets. Some of the Kyoto members had shown selfish behaviour. The
countries with the biggest differences from their targets by 2012, were: Canada
(120464.64 kt), Japan (200128.96 kt) and USA (632002.9 kt). Moreover, we
derive from Fig 1, that there is no significant difference on the results, by the
use of either the restricted to positive values expression (3) or the expression
calculating Gini with both positive and negative values (4). That means that
our assumption setting yi = 0 for the negative values in the first case, doesn’t
affect the results.

3.2 Application of the method for grouped data

In this part of the section we separate the countries into four groups. These
groups have a geographical orientation. We chose the 15 countries of the Euro-
pean Community, to be the first group. These countries had signed and ratified
the Kyoto protocol, as members of the premature European Union. They also
set a collective target of mitigation. We chose the other group, to be the coun-
tries which they belong geographically in the European continent, but at 1997
they were not yet considered as members of the European Union. The third
regional group, constitutes by the countries of the North American continent,
which in our case are USA and Canada. These two countries, are the bigger
emitters which have signed in the Kyoto protocol. But their policies were al-
ways mistrust in the Protocol. As a consequence was the non-ratification of the
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Fig. 1. Comparing methods for inequality measurement of Annex I countries, 2005-
2012 period on individual data

Protocol by the USA and the withdrawal of Canada from the coalition, in 2011.
The fourth regional group, are the countries of East Asia and Pacific, which
includes Australia, New Zealand and Japan. Table 2, shows the values of the
Gini index calculated for both between groups and within groups. Calculating
the between groups Gini index, it is derived that the index takes the similar
high values, across the years. That means that the inequality between groups
remain the same despite the effort made by countries on emission mitigation.
The same results are obtained for inequality measured within groups.

Year 2005 2006 2007 2008 2009 2010 2011 2012

B.G.G.I. 0.7915 0.7891 0.8026 0.8037 0.8113 0.8205 0.8386 0.8294

W.G.G.I. 0.0707 0.0679 0.0663 0.0666 0.0645 0.0568 0.0538 0.0566

Table 2. Dissimilarity measurement for grouped countries

In this section applying the proposed method we derive that either calcu-
lating the Gini index considering the countries as individuals or considering
them as groups, the inequality remains high over the examined period of years.
This means that some of the country members act as ”free riders” throughout
the time period and exploit the benefits from mitigation of the other countries.
Thus, the proposed method is capable of detecting ”free riding”, in existed
climate coalitions.

Regional grouping follows the World Bank documentation (http://databank.
worldbank.org/data/reports.aspx?Code=NY.GDP.MKTP.CD&id=1ff4a498&report_

name=Popular-Indicators&populartype=series&ispopular=y)
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Fig. 2. Between and within group inequality measurement of Annex I countries, 2005-
2012 period, on grouped data

4 Conclusions

The dissimilarity in GHG emissions mitigation is an obstacle that undercuts
the countries from reaching a significant environmental agreement. This study
proposes a method of calculating environmental inequality. The measurement
of environmental inequality is a major issue, as it is directly linked to the
impacts of climate change. The climate change burdens not only the natural
environment but also the budgets of the countries. Applying the method, using
different expressions of the Gini index, we reached in some interesting results.
First of all, the use of either of the two different expressions of the Gini index,
does not significant affect the results. It is also noticed that the values of the
Gini index remain high through the time period. This indicates that there is
not any difference in emission mitigation, although that some countries claimed
that they have mitigate their emissions in this period. Thus, we found that the
”free riding” is strongly implied in both cases, either applying the expression
which uses positive and negative differences or the expression which uses only
the positive ones. Furthermore, when applying the method for grouped data
we find out that the Gini index, between groups remain high but it is extremely
low within a group, indicating that the environmental policy is affected by the
relationships that countries hold to each others.
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5 Appendix

Annex I Percent of quantified Base year Base
countries emission mitigation emissions year

pi ebi
Australia 1.08 277802.53 1990
Austria * 0.92 61932.64 1990
Belgium * 0.92 118684.50 1990
Bulgaria 0.92 98815.11 1988
Canada 0.94 457534.00 1990
Croatia 0.95 23080.45 1990

Czech Republic 0.92 163864.20 1990
Denmark * 0.92 53342.45 1990

Estonia 0.92 37677,86 1990
Finland * 0.92 56767.66 1990
France * 0.92 392627.00 1990

Germany * 0.92 1032776.20 1990
Greece * 0.92 84313.57 1990
Hungary 0.94 85795.50 (1987-1985)/3
Iceland 1.10 2158.64 1990

Ireland * 0.92 32559.50 1990
Italy * 0.92 434781.95 1990
Japan 0.94 1144129.51 1990
Latvia 0.92 18622.93 1990

Lichtenstein 0.92 203.06 1990
Lithuania 0.92 36168.80 1990

Luxembourg * 0.92 12219.20 1990
Monaco 0.92 105.37 1990

Netherlands * 0.92 159389.50 1990
New Zealand 1.00 25462.57 1990

Norway 1.01 34766.97 1990
Poland 0.94 469143.82 1988

Portugal * 0.92 40261.95 1990
Romania 0.92 192407.79 1989

Russian Federation 1.00 2500352.09 1990
Slovakia 0.92 6022.70 1990
Slovenia 0.92 16281.84 1986
Spain * 0.92 228511.44 1990

Sweden * 0.92 56301.08 1990
Switzerland 0.92 44553.30 1990

Ukraine 1.00 714310.07 1990
United Kingdom * 0,92 590319.32 1990

United States of America 0.93 5100000.00 1990

Table 3. Kyoto Annex I countries’ quantified emissions targets. Countries with (*)
are members of the 1997’s European Community.
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Abstract. The procedure for numerical approach allowing finding the main practically 

important safety characteristics of the critical infrastructures at the variable operation 

conditions including operating environment threats is applied to the safety evaluation  

of the port oil piping transportation system. It is assumed that the conditional safety 
functions are different at various operation states and have the exponential forms. Using 

the procedure and the program written in Mathematica, the considered port oil piping 

transportation system main characteristics including: the conditional and the 

unconditional expected values and standard deviations of the system lifetimes, the 
unconditional safety function and the risk function are determined. 

Keywords: safety, operating environment threat, port oil piping transportation system. 

 

1  Introduction 
 

The critical infrastructure safety and operation process analysis is of the vital 

importance for industrial practice. The convenient tools for analyzing this 

problem are given in [1-10]. Moreover, there are many internal or external 

factors that the systems are exposed to. The outside-system dependencies 

include operating environment threats, which are the unnatural events that may 

change the critical infrastructure operation activity in the unsafe way or even 

cause the critical infrastructure damage [9]. 

The main objective of the paper is to present a general procedure for numerical 

approach applied to determine safety characteristics of the port oil piping 

transportation system and its components, related to its operation process 

including operating environment threats. The procedure is based on the model 

given in [5]. On the basis of the proposed procedure, the computer calculations 

in Mathematica environment determining these characteristics are performed. 
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2  System operation at variable conditions including operating 

environment threats 
 

We assume as in [2, 11], that the system during its operation process is taking ν', 

ν  N, different operation states z'1,z'2,...,z'ν'. Further, we define the critical 

infrastructure new operation process Z'(t), t  <0,+∞) related to the critical 

infrastructure operating environment threats with discrete operation states from 

the set {z'1,z'2,...,z'ν'}. Moreover, we assume that the critical infrastructure 

operation process Z'(t) related to its operating environment threats is a semi-

Markov process with the conditional sojourn times θ'bl at the operation states z'b 

when its next operation state is z'l, b,l = 1,2,...,ν', b ≠ l. Under these assumptions, 

the critical infrastructure operation process may be described by [2]: 

- the vector [p'b(0)]1×ν' of the initial probabilities p'b(0) = P(Z'(0) = z'b), 

b = 1,2,...,ν', of the system operation process Z'(t) staying at particular operation 

states at the moment t = 0; 

- the matrix [p'bl]ν'×ν' of probabilities p'bl, b,l = 1,2,...,ν', b ≠ l, of the system 

operation process Z'(t) transitions between the operation states z'b and z'l;  

- the matrix [H'bl(t)]ν'×ν' of conditional distribution functions H'bl(t) = P(θ'bl < t), 

t  <0,+∞), b,l = 1,2,...,ν', b ≠ l, of the system operation process Z'(t) conditional 

sojourn times θ'bl at the operation states. 

 

2  Port oil piping transportation system operation process 

related to operating environment threats 
 

The oil piping transportation system is composed of three subsystems: S1, S2 and 

S3 linked series [1]. The system scheme is shown in Figure 1. 

 

 
 

Fig. 1. The scheme of a port oil transportation system 

 
The subsystem S1 consists of two identical pipelines, each composed of 178 

components. The subsystem S2 consists of two identical pipelines, each 

composed of 719 components. The subsystem S3 consists of three, pipelines, 
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two identical pipelines of the first type and one of the second type, each of them 

composed of 362 components. 

In this report, we assume that the port oil piping transportation system operation 

process and safety may depend on its operating environment threats and we 

distinguish the following 3 unnatural threats:  

 ut1 – a human error,  

 ut2 – a terrorist attack, 

 ut3 – an act of vandalizm and/or theft.  

Taking into account expert opinions on the operation process without  

of separation the operating environment threats of the considered piping system, 

in [1, 11], there were distinguished seven operation states. Taking into account 

expert opinions on the varying in time operation process Z'(t) of the considered 

piping system and assuming that the threats are disjoint, according to [2], we 

distinguish the following as its 28 operation states, respectively marked by: 

 

z'b = z1, for b = 1, z'b = z2, for b = 5,..., z'b = z7, for b = 25;                                 (1) 

 

where z'b, b = 1,5,...,25, are the operation states without including operating 

environment threats ut1, ut2, ut3 and 

 

z'b, for b = 2,3,4, 6,7,8,..., 26,27,28.                                                                    (2) 

 

are the operation states including state zb, b = 1,2,...,7, and successively the 

threats ut1, ut2, ut3. 

The influence of the above system operation states changing on the changes  

of the pipeline system safety structure is similar to that described in [1]. 

For the new operation states numeration), we have the following system 

structures: 

- at the system operation states z'b, b = 1,2,3,4,9,10,...,28, the system is 

composed of two series-parallel subsystems S1, S2 and one series-“2 out  

of 3” subsystem S3;  

- at the system operation states z'b, b = 5,6,7,8, the system is composed of two 

series-parallel subsystems S1, S2 and one series-parallel subsystem S3. 

Considering expert opinions coming from Baltic Oil Terminal in Dębogórze that 

at all operation states zb, b = 1,2,…,7, of the port oil piping system,  

the probability of a human error, a terrorist attack and an act of vandalism 

and/or theft can be approximately and respectively evaluated as [2, 11] 

 

Pb(ut1) = P(ut1) = 1/1158h = 0.00086,   Pb(ut2) = P(ut2) = 0, 

Pb(ut3) = P(ut3) = 1/13100h = 0.000076.                                                           (3) 

 

According to [2], it was possible to predict the limit transient probabilities of the 

port oil piping transportation system operation process Z'(t) including operating 

environment threats at particular states: 

 

p'1 = 0.394064,   p'2 = 0.00086,   p'3 = 0,   p'4 = 0.000076,  
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p'5 = 0.059064,   p'6  = 0.00086,   p'7 = 0,   p'8 = 0.000076,  

p'9 = 0.002064,   p'10 = 0.00086,   p'11 = 0,   p'12 = 0.000076, 

p'13 = 0.001064,   p'14 = 0.00086,   p'15 = 0,   p'16 = 0.000076,  

p'17 = 0.199064,   p'18 = 0.00086,   p'19 = 0,   p'20 = 0.000076,  

p'21 = 0.057064,   p'22 = 0.00086,   p'23 = 0,   p'24 = 0.000076, 

p'25 = 0.281064,   p'26 = 0.00086,   p'27 = 0,   p'28 = 0.000076.                             (4) 

3  Safety of port oil piping transportation system related to its 

operating process including operating environment threats 
 

3.1  Port oil piping transportation system safety parameters 

 

After considering the comments and opinions coming from experts, taking into 

account the effectiveness and safety aspects of the operation of the oil pipeline 

transportation system, we fix the number of pipeline system safety states 3 

(z = 2) and we distinguish the following three safety states:  

 a safety state 2 – piping operation is fully safe,  

 a safety state 1 – piping operation is less safe and more dangerous because  

of the possibility of environment pollution,  

 a safety state 0 – piping is destroyed. 

Moreover, by the expert opinions, we assume that there are possible the 

transitions between the components safety states only from better to worse ones. 

Considering the assumptions and agreements from Section 3, we assume that 

the components of the subsystem S,  = 1,2,3, at the system operation states z'b, 

b = 1,2,...,28, have the exponential safety functions, i.e. the coordinates of the 

vector (1) given in [9] are determined in Mathematica using the formula [11] 

 

S[lambda_]:=Exp[-lambda*t], t  <0,∞)                                                           (5) 

 

where lambda is the ageing intensity of the port oil piping transportation system 

component at the system operation process state z'b, b = 1,2,...,28. 

According to expert opinions, changing the port oil piping transportation system 

operation process states including operating environment threats have influence 

on changing the system safety structures and its selected components‘ safety 

parameters as well. For this system, the intensities of components departure 

from the safety states subset {1,2}, {2}, without of operation impact (the input 

data for Mathematica), are given as follows: 
 for subsystem S1: 

lambdaS1u = {0.00002, 0.00002, 0.00005}, for u = 1, 

lambdaS1u = {0.00003, 0.00003, 0.00006}, for u = 2;                                  (6) 
 

 for subsystem S2: 

 

lambdaS2u = {0.00002, 0.00002, 0.00005}, for u = 1, 

lambdaS2u = {0.00003, 0.00003, 0.00006}, for u = 2;                                  (7) 
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 for subsystem S3 (both piping types) 

 

lambdaS3uI
 = {0.00002, 0.00005}, for u = 1, 

lambdaS3uII
 = {0.000024, 0.00005}, for u = 2, 

lambdaS3uI
 = {0.000025, 0.00006}, for u = 1, 

lambdaS3uII
 = {0.000027, 0.00006}, for u = 2.                                              (8) 

The coefficients related to the operation process impact in addition with the 

operating environment threats influence on the port oil piping transportation 

system safety are given as follows: 

 

 If[b==1||b==5||b==25,{roS1={1,1,1}; roS2={1,1,1}; roS3={1.2,1.2};}]; 

 If[b==9||b==17,{roS1={1.2,1.2,1.2}; roS2={1.2,1.2,1.2}; roS3={1,1};}]; 

 If[b==13||b==21,{roS1={1.2,1.2,1.2}; roS2={1.2,1.2,1.2}; roS3={1.2,1.2};}]; 

 If[b==2||b==3||b==6||b==7||b==26||b==27,{roS1={1,1,1} * {1,100,1};  

     roS2={1,1,1} * {1,100,1}; roS3={1.2,1.2};}]; 

 If[b==10||b==11||b==18||b==19,{roS1={1.2,1.2,1.2} * {1,100,1};  

     roS2={1.2,1.2,1.2} * {1,100,1}; roS3={1,1};}]; 

 If[b==14||b==15||b==22||b==23,{roS1={1.2,1.2,1.2} * {1,100,1};  

     roS2={1.2,1.2,1.2} * {1,100,1}; roS3={1.2,1.2};}]; 

 If[b==4||b==8||b==28,{roS1={1,1,1} * {1,1.1,1}; roS2={1,1,1} * {1,1.1,1};  

     roS3={1.2,1.2};}]; 

 If[b==12||b==20,{roS1={1.2,1.2,1.2} * {1,1.1,1};  

     roS2={1.2,1.2,1.2} * {1,1.1,1}; roS3={1,1};}]; 

 If[b==16||b==24,{roS1={1.2,1.2,1.2} * {1,1.1,1};  

     roS2={1.2,1.2,1.2} * {1,1.1,1}; roS3={1.2,1.2};}]; 

 

The new intensities of components departure from the safety states subset {1,2}, 

{2} with the operation impact and also the operating environment threats impact 

on port oil piping transportation system safety are calculated as a multiplication  

of the intensities (6)-(8) and the coefficients roS1, roS2 and roS3 for the particular  

operation states using the formulae: 
 

 for subsystem S1: 

newlambdaS1u = lambdaS1u * roS1, for u = 1,2, 

 
 for subsystem S2: 

newlambdaS2u = lambdaS2u * roS2, for u = 1,2, 

 
 for subsystem S3: 

newlambdaS3uI
 = lambdaS3uI

 * roS3, for u = 1,2, 

newlambdaS3uII
 = lambdaS3uII

 * roS3, for u = 1,2.                                          (9) 
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Considering the agreements and assumptions from Section 2, the port oil piping 

transportation system is composed of subsystems S1 and S2, which components 

form a series-parallel structure and a subsystem S3, which components form  

a series-"2 out of 3" structure or a series-parallel structure. Thus, the following 

procedures determining the system safety functions coordinates considering (5) 

are constructed: 

 for the series-parallel structure (n = 2): 

 

Ss–p = 1 – ((1 – S[newlambdaS1u[[1]] * 174 + newlambdaS1u[[2]] * 2  

                             + newlambdaS1u[[3]] * 2])^n), for subsystem S1, u = 1,2, 

 

Ss–p = 1 – ((1 – S[newlambdaS2u[[1]] * 716 + newlambdaS2u[[2]] * 1  

                             + newlambdaS2u[[3]] * 2])^n), for subsystem S2, u = 1,2, 

 

where [[x]] gives the x's element of the appropriate list (6)-(7); 

 

 for the series-parallel structure (n = 3): 

 

Ss–p = 1 – ((1 – S[newlambdaS3uI
[[1]] * 360 + newlambdaS3uI

[[2]] * 2])^2 

                  * (1 – S[newlambdaS3uII
[[1]] * 360 + newlambdaS3uII

[[2]] * 2])),  

 

for subsystem S3, u = 1,2, where [[x]] gives the x's element of the 

appropriate list (8); 

 

 for the series-"m out of k" (m = 2, k = 3) structure: 

 

Sm,k = (S[newlambdaS3uI
[[1]] * 360 + newlambdaS3uI

[[2]] * 2])^2  

           * (1 – S[newlambdaS3uII
[[1]] * 360 + newlambdaS3uII

[[2]] * 2])  

           + 2* S[newlambdaS3uI
[[1]] * 360 + newlambdaS3uI

[[2]] * 2]  

               * (1 – S[newlambdaS3uI
[[1]] * 360 + newlambdaS3uI

[[2]] * 2]) 

               * S[newlambdaS3uII
[[1]] * 360 + newlambdaS3uII

[[2]] * 2] 

           + (S[newlambdaS3uI
[[1]] * 360 + newlambdaS3uI

[[2]] * 2])^2  

               * S[newlambdaS3uII
[[1]] * 360 + newlambdaS3uII

[[2]] * 2], 

 

for subsystem S3, u = 1,2, 

 

where newlambdaS1u, newlambdaS2u, newlambdaS3uI
, newlambdaS3uII

, are the 

intensities of components departure from the safety states subset {u,u + 1,...,z}, 

u = 1,2, with the operation impact and also the climate-weather impact for the 

particular subsystem, given by (9). 
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3.2  Port oil piping transportation system safety characteristics 

 

In [8], it is fixed that the port oil piping transportation system safety structure  

and its subsystems and components safety depend on its changing in time 

operation states. The influence of the system operation states changing  

on the changes of the system safety structure and its components safety 

functions is given in [2, 5]. Thus, in the case when the operation time is large 

enough [7, 11], the port oil transportation system unconditional safety function 

is given by the vector 

 

S'(t,·) = [1, S'(t,1), S'(t,2)], t  <0,+∞),                                                          (10) 

 

where according to (7) and considering the pipeline system operation process 

transient probabilities at the operation states given by (11), the vector 

coordinates are given respectively by 

 

S'(t,u) = 0.394064 [S'(t,u)]
(1)

 + 0.00086 [S'(t,u)]
(2)

 + 0.000076 [S'(t,u)]
(4)

  

+ 0.059064 [S'(t,u)]
(5)

 + 0.00086 [S'(t,u)]
(6)

 + 0.000076 [S'(t,u)]
(8)

 

+ 0.002064 [S'(t,u)]
(9)

+ 0.00086 [S'(t,u)]
(10)

 + 0.000076 [S'(t,u)]
(12)

 

+ 0.001064 [S'(t,u)]
(13)

 + 0.00086 [S'(t,u)]
(14)

 + 0.000076 [S'(t,u)]
(16)

 

+ 0.199064 [S'(t,u)]
(17)

+ 0.00086 [S'(t,u)]
(18)

+ 0.000076 [S'(t,u)]
(20)

 

+ 0.057064 [S'(t,u)]
(21)

+ 0.00086 [S'(t,u)]
(22)

 + 0.000076 [S'(t,u)]
(24)

 

+ 0.281064 [S'(t,u)]
(25)

 + 0.00086 [S'(t,u)]
(26)

 + 0.000076 [S'(t,u)]
(28)

,  

t  <0,+∞), u = 1,2,                                                                                         (11) 

 

where [S'(t,u)]
(b)

, u = 1,2, b = 1,2,...,28, are given in [5]. 

The graph of the three-state port oil piping transportation system safety function 

is presented in Figure 1. 

 

 
Fig. 1. The graph of the pipeline system safety function S'(t,·) coordinates [11] 
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The expected values and standard deviations (in years) of the system 

unconditional lifetimes in the safety state subsets {1,2}, {2}, calculated from the 

above results given by (11), respectively are:  

 

μ'(1)   58.23, σ'(1)   39.49, μ'(2)   42.74, σ'(2)   28.95,                         (12) 

and further, considering (12), the mean values (in years) of the unconditional 

lifetimes in the particular safety states 1, 2, respectively are: 

 

)(' u (1) = μ'(1) – μ'(2) = 15.49,   )(' u (2) = μ'(2) = 42.74.                                    (13) 

Since the critical safety state is r = 1, then the system risk function is given by  

 

r'(t) = 1 – S'(t,1), for t  <0,+∞),                                                           (14) 

 

where S'(t,1) is given by (11). Hence, the moment when the system risk function 

exceeds a permitted level, for instance δ = 0.05, is  

 = r'
1

(δ)   11.19 year.                                                                                 (15) 

 

The graph (the fragility curve) of the port oil piping transportation system risk 

function r'(t) is presented in Figure 2. 

 

 
Fig. 2. The graph of the pipeline system risk function r'(t) [11] 

 

Conclusions 
 
The integrated general model of critical infrastructure is applied to the port oil 

piping transportation system safety evaluation. The predicted safety 

characteristics of this system operating at the variable conditions including 

' 
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operating environment threats are different from those determined for the 

considered system without of considering the impact of operating environment 

threats on the system safety. This fact justifies the sensibility of considering real 

systems at the variable operation conditions that is appearing out in a natural 

way from practice. 
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Abstract. The paper is devoted to the climate influence on the safety of a critical 

infrastructure defined as a complex system in its operating environment that in 

the case of its degradation have significant destructive influence on the health, 

safety and security, economics and social conditions of large human 

communities and territory areas. The method based on the joint model linking a 

multistate approach to critical infrastructure safety with a semi-Markov 

modelling of the climate-weather change process at the critical infrastructure 

operation area is proposed to the safety analysis and prediction of critical 

infrastructures impacted by the climate hazards.  

 

Keywords: critical infrastructure, climate change, safety, climate impact, safety 

indicator, prediction, oil piping transport 

 
1 Introduction  

 
Most real critical infrastructures are strongly influenced by changing in time the 

climate-weather conditions at their operating area that increasing their 

degradation/ageing. The time dependent interactions between the climate-

weather states varying at the critical infrastructure operating area and the critical 

infrastructure components/assets safety states changing are evident features of 

most real technical critical infrastructures [1]. The common analysis of critical 

infrastructures safety and the climate-weather change at their operating area is 

of great value in the industrial practice. The convenient tools for analyzing this 

problem are the critical infrastructure multistate safety modelling [2], [3], [4]-

[7] commonly used with the semi-Markov modelling [8], [9], [10], [3] the 

climate-weather change process at the critical infrastructure operating area, 

leading to the construction of the joint general safety model of the critical 

infrastructure related to climate-weather change process at its operating area 
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[11]-[13]. In everyday practice, there are needed the tools that could be applied 

to evaluating the climate-weather hazards influence on the safety characteristics 

of a critical infrastructure defined as a complex system in its operating 

environment that significant features are inside-system dependencies and 

outside-system dependencies, that in the case of its degradation have significant 

destructive influence on the health, safety and security, economics and social 

conditions of large human communities and territory areas [1], [14]. In the 

safety analysis of the critical infrastructure impacted by climate hazards, the 

determination of its safety function and its risk function which graph 

corresponds to the fragility curve [15] are crucial indicators/indices for safety 

practitioners. Other practically significant critical infrastructure safety indices 

defined in the paper are its mean lifetime up to the exceeding a critical safety 

state, the moment when its risk function value exceeds the acceptable safety 

level, the critical infrastructure intensity of ageing/degradation, the coefficient 

of climate-weather change process impact on critical infrastructure intensities of 

ageing and the coefficient of critical infrastructure resilience to climate-weather 

change process impact. The knowledge of these critical infrastructure safety 

indicators is of great value in the industrial practice. Thus, there are needed the 

tools for finding the critical infrastructure safety and resilience indicators and 

the procedures allowing for changing the critical infrastructure features,  leading 

to the strengthening its resilience to climate change [11].  

In the paper, to satisfy those needs, the simplified procedures based on the 

authors’ theoretical results [2], [3] developments are proposed directly to users 

dealing with, and assuring critical infrastructure safety in everyday practice. The 

procedures are applied to safety analysis and safety indicators prediction for the 

port oil piping transportation system, the part of the Baltic oil pipeline critical 

infrastructure network. 

 

2  Multistate system safety analysis  
 

Multistate approach to safety analysis is presented in [16].   

 

3  Critical infrastructure safety indicators   

 

We assume that the changes of the climate-weather change process C(t) states at 

the critical infrastructure operating area have an influence on its multistate 

components/assets 
i

E , ,,...,2,1 ni   safety. Consequently, we denote the system 

multistate component 
i

E , ,,...,2,1 ni   conditional lifetime in the safety state 

subset },...,1,{ zuu   while the climate-weather change process C(t) at the 

system operating area is at the state ,
b

c ,,...,2,1 wb   by )('' )( uT b

i
 and its 

conditional safety function by the vector 

)()],(''[ b

i tS  = [1, ,)]1,(''[ )(b

i tS ..., 
)()],(''[ b

i ztS ], ),,0 t  ,,...,2,1 wb   

,,...,2,1 ni                                                                                                         (1)                                      

530



 

with the coordinates defined by 

))()(''()],(''[ )()(

b

b

i

b

i ctCtuTPutS                                                                        

 

for ),,0 t  ,,...,2,1 zu  .,...,2,1 wb   

The safety function )()],(''[ b

i
utS

 
is the conditional probability that the 

component 
i

E  lifetime )('' )( uT b

i
 in the safety state subset },...,1,{ zuu   is 

greater than t, while the climate-weather change process C(t) at the system 

operating area is at the state ,
b

c .,...,2,1 wb   

In the case, the system components ,
i

E  ,,...,2,1 ni   at the climate-weather 

change process C(t) at the system operating area  states ,
b

c ,,...,2,1 wb   have 

the exponential safety functions, the coordinates of the vector (1) are given by    
 

])](''[exp[))()(''()],(''[ )()()( tuctCtuTPutS b

ib

b

i

b

i  , ),,0 t     

(2)   

 ,,...,2,1 wb   .,...,2,1 ni                                                                                   
 

Existing in (2) the intensities of ageing of the system components ,
i

E  

,,...,2,1 ni   (the intensities of  the system components ,
i

E  ,,...,2,1 ni   

departure from the safety state subset },...,1,{ zuu  ) at the climate-weather 

change process C(t) at the system operating area states ,
b

c ,,...,2,1 wb   i.e. 

the coordinates of the vector  
 

)('' )]([ b

i
  = [0, 

)('' )]1([ b

i
 , …,

)('' )]([ b

i
z  ], ),,0 t  ,,...,2,1 wb                   

(3)            

,,...,2,1 ni                                                                                                          
 

are given by  
 

)()](''[ b

i
u ),()('' )( uu i

b

i    ,,...,2,1 zu   ,,...,2,1 wb   i = 1,2,...,n,     (4)                          
 

where )(u
i

  are the intensities of ageing of the system components ,
i

E  

,,...,2,1 ni   (the intensities of the system components ,
i

E  ,,...,2,1 ni   

departure from the safety state subset },...,1,{ zuu  ) without climate-weather 

change impact, i.e. the coordinate of the vector   
  

)( 
i

  = [0, )1(i , …, )([ zi  ], ,,...,2,1 ni                                                    
 

and  
 

,)](''[ )(b

i u  ,,...,2,1 zu   ,,...,2,1 wb   i = 1,2,...,n,                                    
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are the coefficients of climate-weather impact on the system components Ei, i = 

1,2,...,n, intensities of ageing (the coefficients of climate-weather impact on 

critical infrastructure component E, i = 1,2,...,n, intensities of departure from the 

safety state subset },...,1,{ zuu  ) at the climate-weather change process 

operating area states ,
b

c ,,...,2,1 wb   i.e. the coordinate of the vector   
 

)('' )]([ b

i   = [0, 
)('' )]1([ b

i , …,
)('' )]([ b

i z  ], ,,...,2,1 wb   .,...,2,1 ni               

(5) 
 

The system component safety function (1), the system components intensities of 

ageing (3) and  the coefficients of the climate-weather impact on the system 

components intensities of ageing (5) are main system component safety indices. 

Further, we denote the critical infrastructure conditional lifetime in the safety 

state subset },...,1,{ zuu  while the climate-weather change process C(t) at the 

critical infrastructure operating area is at the climate-weather state ,
b

c

,,...,2,1 wb   by )('' )( uT b
 and the conditional safety function (SI1) of the 

critical infrastructure by the vector [3] 
 

)()],([ bt 'S'  = [1, ,)]1,([ )(bt'S' ..., ])],([ )(bzt'S' ,                                                

                

with the coordinates defined by 

)()],([ but'S' ))()(''( )(

b

b ctCtuTP                                                                                      

for ),,0 t  ,,...,2,1 zu  .,...,2,1 wb    
 

The safety function 
)()],([ but'S'  is the conditional probability that the critical 

infrastructure lifetime )('' )( uT b  in the safety state subset },...,1,{ zuu   is 

greater than t, while the climate-weather change process C(t)  is at the climate-

weather state ,
b

c .,...,2,1 wb   

Further, we assume that the critical infrastructure has the exponential 

conditional safety function (SI1), i.e.  
 

)()],([ but'S' ],)]([exp[ )( tu b
'λ'  ),,0 t  ,0)]( )( bu'λ'[  

u = 1,2,…,z.                                                                                                       
 

Under this assumption, the mean lifetime of the critical infrastructure in the 

safety state subset },,...,1,{ zuu   is given by  
 

)('' u
b

  = ,
)](

1
)(bu'λ'[

 u = 1,2,...,z,    '.',...,2,1 b                              (6) 
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We denote the critical infrastructure unconditional lifetime in the safety state 

subset },...,1,{ zuu   by )('' uT  and the unconditional safety function of the 

critical infrastructure  (SI1) by the vector   

),( t'S'  = [1, ),1,(t'S' ..., ),( zt'S' ],                                                                 (7) 

 

with the coordinates defined by 
 

),( ut'S' ))(''( tuTP   for ),,0 t  .,...,2,1 zu                                     (8) 
 

In the case when the critical infrastructure operation time C is large enough, the 

coordinates (8) of the unconditional safety function (SI1) of the critical 

infrastructure defined by (7) are given by  

),( ut'S'  ]])([exp[ )(

1

tuq b
w

b
b 



'λ'  for 0t , ,,...,2,1 zu                          (9) 

 

where bq , ,,...,2,1 wb   are the climate-weather change process C(t) limit 

transient probabilities (C-WCPC1) defined in [12].  

The mean value of the critical infrastructure unconditional lifetime )('' uT  in 

the safety state subset },...,1,{ zuu   is given by [3], [13] 
 

,)('')(''
1




w

b
bb

uqu   ,,...,2,1 zu                                                                (10) 

 

where )('' u
b

 are the mean values of the critical infrastructure conditional 

lifetimes )('' )( uT b
 in the safety state subset },...,1,{ zuu   at the climate-

weather state ,
b

c ,,...,2,1 wb   given by (10) and 
b

q  are defined in [13].    

Moreover, according  to [3], if r is the critical safety state, then the critical 

infrastructure risk function (SI2) 

 

r’’(t) = P(S’’(t) < r  S’’(0) = z) = P(T’’(r)  t),                             

 

defined as a probability that the critical infrastructure is in the subset of safety 

states worse than the critical safety  state r, r {1,...,z} while it was in the safety 

state z at the moment t = 0 is given by [3] , [13] 

r’’(t) = 1  ]])([exp[ )(

1

trq b
w

b
b 



'λ' , ).,0 t                                         (11)                              

 

The critical infrastructure safety function (SI1), the critical infrastructure risk 

function (SI2) and its graph called the critical infrastructure fragility curve (SI3) 

are main critical infrastructure safety indicators (SI).  

Other practically useful critical infrastructure safety factors are: 

),,0 t
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- the mean value of the unconditional critical infrastructure lifetime )('' rT  up 

to the exceeding the critical safety state r (SI4) given by  
 

,)('')(''
1




w

b
bb

rqr                                                                                       (22) 

 

where )('' r
b

 are the mean values of the critical infrastructure conditional 

lifetimes )('' )( rT b
 in the safety state subset },...,1,{ zrr   at the climate-

weather state ,
b

c  ,,...2,1 wb   according to (6), given by 
 

)()](

1
)(''

bb
r

r
'λ'[

  ,,...,2,1 wb                                                                 (13) 

 

and 
b

q  are defined in [22];  

- the standard deviation of the critical infrastructure lifetime )('' rT  up to the 

exceeding the critical safety state r (SI5) given by  

2)](''[)('')('' rrnr   ,                                                                            

(14) 

 

where   

 


0

2)('' trn S’’ (t,r)dt,                                                                                    (15) 

 

where ),( rt'S'  is given by (9) for ru   and )('' r  is given by (12);   

-  the moment ’’ when  the critical infrastructure risk function exceeds a 

permitted level   (SI6) given by  

'' r’’ ),(1 
                                                                                                    

 

where r’’ )(1 t
, is the inverse function of the risk function r’’(t) given by (11). 

Other critical infrastructure safety indices are:  

- the intensities of ageing (degradation) of the critical infrastructure impacted by 

the climate-weather change process /the intensities of critical infrastructure 

departure from the safety state subset },...,1,{ zuu   impaced by the climate-

weather change process (SI7), i.e. the coordinates of the vector   
  

),( t'λ'  = [0, )1,(t'λ' , …, ),( zt'λ'  ], ),,0 t                                        
 

where  
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),( ut'λ' ]]])(''[exp[)]([[[ )(

1

)( tuuq b
w

b

b

b 


λ'λ' /

]],])([exp[[ )(

1

tuq b
w

b
b 



'λ' ),,0 t  ;,...,2,1 zu                                 (16) 

 

- the coefficients of the climate-weather change process impact on the critical 

infrastructure intensities of ageing /the coefficients of the climate-weather 

change process impact on critical infrastructure intensities of departure from the 

safety state subset },...,1,{ zuu  ) (SI8), i.e. the coordinates of the vector   

 

),( t'ρ'  = [0, )1,(t'ρ' , …, ),( zt'ρ'  ], ),,0 t                                      
 

where   
 

),( ut'λ'  = ),,(),( utut 0
λ'ρ'   ),,0 t  ),,0 t  ,,...,2,1 zu           (17)                          

 

and ),( ut0
λ  are the intensities of ageing of the critical infrastructure (the 

intensities of the critical infrastructure departure from the safety state subset 

},...,1,{ zuu  ) without of climate-weather change process impact, i.e. the 

coordinate of the vector   
  

),( t0
λ  = [0, ),1,(t0

λ , …, ),( zt0
λ ], ).,0 t                                          

 

Additionally, we define the critical infrastructure resilence indicaator (RI), i.e. 

the coefficient of critical infrastructure resilience to climate-weather change 

process impact  
 

)(tRI  = ),,( rt'ρ'1/  ),,0 t                                                                   (18) 
 

where ),( rt'ρ'  is the coefficients of the climate-weather change process 

impact on the critical infrastructure intensity of ageing ),( rt'λ' , i.e. the 

coefficients of the climate-weather change process impact on critical 

infrastructure intensities of departure from the safety state subset },...,1,{ zrr 

of states not worse than the critical safety state r . 

                                                                             

4  Safety and risk prediction of port oil piping transportation 

system  
 

4.1 Port oil piping transportation system description    

 
The considered oil piping transportation system operating at one of the Baltic 

Oil Terminals and is describe in [16].   

 

4.2 Safety parameters of port oil piping transportation system      
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After considering the comments and opinions coming from experts [17], [18], 

taking into account the effectiveness and safety aspects of the operation of the 

oil pipeline transportation system, we fix: 

 -  the number of pipeline system safety states  
 

    2z ,                                                                                                            
 

and we distinguish the following three safety states:  

 a safety state 2 - piping operation is fully safe,  

 a safety state 1 - piping operation is less safe and more dangerous 

because of the possibility of environment pollution,  

 a safety state 0 - piping is destroyed,  

and, we assume that:   

 there are possible the transitions between the components safety 

states only from better to worse ones,  

 the critical safety state of the system is  
 

r = 1,                                                                                             
 

 the system risk permitted level  
 

 = 0.05;                                                                                       
 

- the number of the port oil piping transportation subsystems:  
 

n = 3;                                                                                            
 

- the mean values of the port oil piping transportation subsystems lifetimes in 

the safety state subsets },2,1{  },2{  are as follows: 

- subsystem S1 

 for safety state subset }2,1{  
 

               )1(  = 400 years,                                                                                  

(19) 
 

 for safety state subset }2{  
 

               )2(  = 300 years.                                                                               

(20) 
 

- subsystem S2 

 for safety state subset }2,1{  
 

               )1(  = 140 years,                                                                                

(21) 
 

 for safety state subset }2{  
 

               )2(  = 100 years.                                                                             (22) 
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- subsystem S3 

 for safety state subset }2,1{  
 

               )1(  = 160 years,                                                                              (23) 
 

 for safety state subset }2{  
 

               )2(  = 120 years.                                                                             (24) 

 

From (19)-(24), it follows that the intensities of the subsystems departure from 

the safety states subset },2,1{  },2{  are:  
 

- subsystem S1 

 for safety state subset }2,1{  
 

               )1()1(  = 0.002500,                                                                           (25) 
 

 for safety state subset }2{  
 

               )2()1(  = 0.003333;                                                                            

(26) 
 

- subsystem S2 

 for safety state subset }2,1{  
 

               )1()2(  = 0.007143,                                                                            

(27) 
 

 for safety state subset }2{  
 

               )2()2(  = 0.010000;                                                                           

(28) 
 

- subsystem S3 

 for safety state subset }2,1{  
 

               )1()3(  = 0.006250,                                                                           (29) 
 

 for safety state subset }2{  
 

               )2()3(  = 0.008333.                                                                          (30) 

 

4.3 Parameters and characteristics of climate-weather change process at port 

oil piping transportation system operating area 

On the basis of the statistical data collected in February during 5 years [19], it is 
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possible to evaluate the following unknown basic parameters of the climate-

weather change process in this month [12]: 

 subsystem S1 operating area  

– the number of climate-weather states (C-WCPP1)  
 

    w = 6                                                                                                              
 

and the climate-weather states:  
the climate-weather state c1 – the wave height from 0 up to 2 m and the wind 
speed from 0 m/s up to 17 m/s, 
the climate-weather state c2 – the wave height from 2 m up to 5 m and the wind 

speed from 0 m/s up to 17 m/s, 

the climate-weather state c3 – the wave height from 5 m up to 14 m and the wind 

speed from 0 m/s up to 17 m/s, 

the climate-weather state c4 – the wave height from 0 up to 2 m and the wind 

speed from 17 m/s up to 33 m/s, 

the climate-weather state c5 – the wave height from 2 m up to 5 m and the wind 

speed from 17 m/s up to 33 m/s. 

the climate-weather state c6 – the wave height from 5 m up to 14 m and the wind 

speed from 17 m/s up to 33 m/s; 
 

 subsystems S2 and S3 operating areas   

– the number of climate-weather states (C-WCPP1)  
 

   w = 16                                                                                                             
 

and the climate-weather states:  
the climate-weather state c1 – the air temperature from -25°C up to -15°C and 
the soil temperature from -30°C up to -5°C, 
the climate-weather state c2 – the air temperature from -15°C up to 5°C and the 
soil temperature from  -30°C up to -5°C, 
the climate-weather state c3 – the air temperature from 5°C up to 25°C and the 
soil temperature from  -30°C up to -5°C, 
the climate-weather state c4 – the air temperature from 25°C up to 35°C and the 
soil temperature from  -30°C up to -5°C, 
the climate-weather state c5 – the air temperature from -25°C up to -15°C and 
the soil temperature from -5°C up to 5°C, 
the climate-weather state c6 – the air temperature from -15°C up to 5°C and the 
soil temperature from -5°C up to 5°C, 
the climate-weather state c7 – the air temperature from 5°C up to 25°C and the 
soil temperature from -5°C up to 5°C, 
the climate-weather state c8 – the air temperature from 25°C up to 35°C and the 
soil temperature from -5°C up to 5°C, 
the climate-weather state c9 – the air temperature from -25°C up to -15°C and 
the soil temperature from 5°C up to 20°C, 
the climate-weather state c10 – the air temperature from -15°C up to 5°C and the 
soil temperature from 5°C up to 20°C, 
the climate-weather state c11 – the air temperature from 5°C up to 25°C and the 
soil temperature from 5°C up to 20°C, 

538



the climate-weather state c12 – the air temperature from 25°C up to 35°C and the 
soil temperature from 5°C up to 20°C, 
the climate-weather state c13 – the air temperature from -25°C up to -15°C and 
the soil temperature from 20°C up to 37°C, 
the climate-weather state c14 – the air temperature from -15°C up to 5°C and the 
soil temperature from 20°C up to 37°C, 
the climate-weather state c15 – the air temperature from 5°C up to 25°C and the 
soil temperature from 20°C up to 37°C, 
the climate-weather state c16 – the air temperature from 25°C up to 35°C and the 

soil temperature from 20°C up to 37°C; 

The calculated climate-weather change process characteristics are [12]:   

 

 for subsystem S1 operating area  

- the vector of the limit values of transient probabilities (C-WCPC1) of the 

climate-weather change process C(t) at the particular states bc  

 

611 ][ xq  = [ 1q , 2
q , 3

q , 4
q , 5

q , 6
q ],                                                              

where  
 


1

q  0.839, 
2

q  0.137, 
3

q  0.005, 
4

q 0, 
5

q  0.009, 
6

q  0.010.     
 

 subsystems S2 and S3 operating areas  

- the vector of the limit values of transient probabilities (C-WCPC1) of the 

climate-weather change process C(t) at the particular operation states bc  
 

611 ][ xq  = [ 1
q , 2q , …, 16

q ],                                                                             
 

where  
 


1

q  0.001, 
2

q  0.038, 
3

q  0, 
4

q  0, 
5

q  0, 
6

q  0.867, 
7

q 0.031, 


8

q 0, 
9

q 0, 
10

q 0.011, 
11

q 0.052, 
12

q 0, 
13

q 0, 
14

q 0, 
15

q 0, 


16

q 0.                                                                                                            

 

4.4 Parameters of climate-weather change process impact on port oil piping 

transportation system safety 

 

The coefficients of the climate-weather impact on the port oil piping 

transportation subsystems ,S ,3,2,1  intensities of ageing / the coefficients 

of the climate-weather impact on the port oil piping transportation subsystems 

,S ,3,2,1  intensities of departure from the safety state subset },2,1{  }2{  at 

the climate-weather change process operating area states ,
b

c ,,...,2,1 wb   are 

as follows:  
 

- subsystem S1: 
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)()1( )]1(''[ b  = 1.30, )()1( )]2(''[ b  = 1.30, ,6,5,4,3b  

)()1( )]1(''[ b  = 1, )()1( )]2(''[ b  = 1, ,2,1b                                                   (31) 

 

- subsystem S2: 
 

)()2( )]1(''[ b  = 1.10, )()2(
)]2(''[ b  = 1.10, ,16,15,14,13,12,9,8,5,4,3,2,1b    

)()2( )]1(''[ b  = 1, )()2(
)]2(''[ b  = 1, ,11,10,7,6b                                          (32) 

 

- subsystem S3: 

 
)()3( )]1(''[ b  = 1, )()3( )]2(''[ b  = 1, .16,...,2,1b                                         (33) 

 

4.5 Prediction of Safety Indicators of Port Oil Piping Transportation System 

 

We assume that the subsystems ,
i

S  ,3,2,1i  of the port oil piping 

transportation system at the climate-weather change process C(t) states ,
b

c

),16(6,...,2,1b  conditional safety functions (1) are exponential with the 

coordinates ,)],([ )(b

i utS  ),,0 t  ,2,1u  ),16(6,...,2,1b  ,3,2,1i  given 

by (2). Whereas, the intensities of ageing ,)]([ )(b

i
u ,2,1u  ),16(6,...,2,1b  

,3,2,1i  for the subsystems ,
i

S  ,3,2,1i  of the port oil piping transportation 

system at the climate-weather change process C(t) states ,
b

c ),16(6,...,2,1b  

existing in (2) are given by (4), where ),(u
i

  ,2,1u   ,3,2,1i  are the 

intensities of ageing of the port oil piping transportation system subsystems ,
i

S  

,3,2,1i  without operation process impact and ,)]([ )(b

i u  ,2,1u  

),16(6,...,2,1b  ,3,2,1i  are the coefficients of climate-weather impact on the 

port oil piping transportation system subsystems Si, ,3,2,1i  intensities of 

ageing at the climate-weather change process C(t) states ,
b

c ).16(6,...,2,1b  

After that, from (4), considering (25)-(30) and (31)-(33), it follows that the 

intensities of subsystems departure from the safety states subset },2,1{  },2{  

with the climate-weather impact on their safety are:  

- subsystem S1: 
 

)()1( )]1(''[ b  = 0.003250, 
)()1( )]2(''[ b  = 0.004333, ,6,5,4,3b  

)()1( )]1(''[ b  = 0.002500, 
)()1( )]2(''[ b  = 0.003333, ,2,1i  ,2,1b          (34) 

 

- subsystem S2: 
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)()2( )]1(''[ b  = 0.007857, 
)()2( )]2(''[ b  = 0.011000,  

,16,15,14,13,12,9,8,5,4,3,2,1b    
)()2( )]1(''[ b  = 0.007143, )()2( )]2(''[ b  = 0.010000, ,11,10,7,6b              (35) 

 

- subsystem S3: 
 

)()3( )]1(''[ b  = 0.006250, )()3( )]2(''[ b  = 0.008333, .16,...,2,1b                 (37) 

 

Considering (34)-(36), as the pipeline system is a three-state (z = 2) series 

system [3], then its safety function (SI1) is given by [13]  

 

),( t'S' )1,(,1[ t'S' )],2,(t'S'
 
t  0,                                                           

where  
 

)1,(t'S' {0.976exp[-0.002500t] + 0.024exp[-0.003250t]}  

                  {0.961exp[-0.007143t] + 0.039exp[-0.0092859t]}                  

                  {0.961exp[-0.006250t] + 0.039exp[-0.008125t]}  

               = 0.9013565exp[-0.015893t] + 0.0365795exp[-0.017768t]  

               + 0.0365795exp[-0.0180359t] + 0.0014844exp[-0.0199109t] 

               + 0.0221645exp[-0.016643t] + 0.0008994exp[-0.018518t] 

               + 0.0008994exp[-0.0187859t] + 0.0000365exp[-0.0206609t],         (37) 
                                                                                                                                                                                 

)2,(t'S' {0.976exp[-0.003333t] + 0.024exp[-0.0043329t]}  

                   {0.961exp[-0.01000t] + 0.039exp[-0.013t]}  

                   {0.961exp[-0.008333t] + 0.039exp[-0.010829t]}  

               = 0.9013565exp[-0.021666t] + 0.0365795exp[-0.024162t]  

               + 0.0365795exp[-0.024666t] + 0.0014844exp[-0.027162t] 

               + 0.0221645exp[-0.0226659t] + 0.0008994exp[-0.0251619t] 

               + 0.0008994exp[-0.0281619t] + 0.0000365exp[-0.0281619t],         (38) 
 

The graph of the three-state port oil piping transportation system safety function 

is shown in Figure 1.   

 

 

 

 

 

 

 

 

0

0,2

0,4

0,6

0,8

1

0 50 100 150 200 250 300

S'
'(t
,u
)

t

 

  

 

541



Fig. 1. The graph of the port oil piping transportation system safety function 

),( t'S'
 
coordinates 

 

Applying (10), (12)-(15) and (37)-(38), the expected values and standard 

deviations of the pipeline system lifetimes in the safety state subsets },2,1{ },2{

respectively are:  
 

)1(''   62.31, )2(''   45.70 years,                                                           (39) 
 

)1(''    62.36, )2(''    45.73 years,                                                         (40) 

and further, it follows that the mean values of the pipeline lifetimes in the 

particular safety states are [17]:  

 )1(''  16.61 , )2(''  45.70 year.                                                              
 

As the critical safety state is r =1, then by (11) and (37), the pipeline system risk 

function (SI2), is given by  

 

)(t'r'  = )1,(1 t'S'  

            = 1- [0.9013565exp[-0.015893t] + 0.0365795exp[-0.017768t]  

            + 0.0365795exp[-0.0180359t] + 0.0014844exp[-0.0199109t] 

            + 0.0221645exp[-0.016643t] + 0.0008994exp[-0.018518t] 

            + 0.0008994exp[-0.0187859t] + 0.0000365exp[-0.0206609t]], t  0. (41)  

 

The graph of the risk function )(t'r'  of the pipeline system, the fragility curve 

(SI3), is shown in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.. The graph of the risk function )(t'r'  (the fragility curve) of the port oil 

piping transportation system 
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)1(''   62.31 years,                                                                                        
 

and the standard deviation of the pipeline system lifetime up to exceeding 

critical safety state r = 1 (SI5) is  
 

)1(''    62.36,                                                                                                
 

From (41), the moment when the pipeline system risk function exceeds a 

permitted level   = 0.05 (SI6), is  
 

 = )(1 
'r'   3.19 years.                                                                                

 

According to (16) and (37)-(38), the pipeline system intensities of ageing (SI7) 

are:  
 

)1,(t'λ'  {0.015893  0.9013565exp[-0.015893t]  

                     + 0.017768  0.0365795exp[-0.017768t]  

                     + 0.0180359  0.0365795exp[-0.0180359t]  

                     + 0,0199109  0.0014844exp[-0.0199109t] 

                     + 0.016643  0.0221645exp[-0.016643t] 

                     + 0.018518  0.0008994exp[-0.018518t] 

                     + 0.0187859  0.0008994exp[-0.0187859t]  

                     + 0.0206609  0.0000365exp[-0.0206609t]} 

                  /{0.9013565exp[-0.015893t] + 0.0365795exp[-0.017768t]  

                     + 0.0365795exp[-0.0180359t] + 0.0014844exp[-0.0199109t]  

                     + 0.0221645exp[-0.016643t] + 0.0008994exp[-0.018518t] 

                     + 0.0008994exp[-0.0187859t] + 0.0000365exp[-0.0206609t]}  

               0.0160487,                                                                                      (42) 
 

)1,(t'λ'  {0.021666  0.9013565exp[-0.021666t]  

                     + 0.024162  0.0365795exp[-0.024162t]  

                     + 0.024666  0.0365795exp[-0.024666t]  

                     + 0.027162  0.0014844exp[-0.027162t] 

                     + 0.0226659  0.0221645exp[-0.0226659t]  

                     + 0.0251619  0.0008994exp[-0.0251619t] 

                     + 0.0281619  0.0008994exp[-0.0281619t]  

                     + 0.0251619  0.0000365exp[-0.0281619t]} 

                  /{0.9013565exp[-0.021666t] + 0.0365795exp[-0.024162t]  

                     + 0.0365795exp[-0.024666t] + 0.0014844exp[-0.027162t] 

                     + 0.0221645exp[-0.0226659t] + 0.0008994exp[-0.0251619t] 

                     + 0.0008994exp[-0.0281619t] + 0.0000365exp[-0.0281619t]} 

               0.0218818.                                                                                      (43) 

 

Considering (25)-(30) and (42)-(43) and applying (17), the coefficients of the 

climate-weather impact on the port oil piping transportation system (SI8) are:  
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)1,(t'ρ'  
)1,(

)1,(

t

t
0λ

'λ'


0158932.0

0160487.0
1.01,                                                       (44) 

 

)2,(t'ρ'  
)2,(

)2,(

t

t
0λ

'λ'


0216638.0

0218818.0
1.01.                                                      

 

Finally, by (18) and (44), the port oil terminal critical infrastructure resilence 

indicator (RI), i.e. the coefficient of the port oil terminal critical infrastructure 

resilience to climate-weather change process impact, is 

 

)(tRI  = %.9999.0)1,( tρ1/                                                                                                                                                     

 

Conclusions 
 

The paper delivers procedures that allow to find the main an practically 

important safety characteristics of the critical infrastructures impacted by the 

climate-weather change process at their operation area. The safety 

characteristics of the port oil piping transportation system, using these 

procedures, are different from that obtained without considering the climate-

weather impacts. This fact justifies the sensibility of analysing the technical 

critical infrastructures safety related to the climate-weather change process that 

improve the accuracy of their safety evaluation. Presented tools can be useful in 

safety evaluation of a very wide class of real technical critical infrastructures 

impacted by climate hazards at their operating areas that have an influence on 

changing their components safety parameters. The results can be interesting for 

safety practitioners from various industrial sectors.  
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Abstract. The method based on the multistate approach to critical infrastructure 

safety modelling is proposed and practically useful critical infrastructure safety 

indicators are created. The proposed method is applied to the safety analysis of 

the port oil piping transportation system. Safety indicators of this critical 

infrastructure are approximately evaluated on the basis of data coming from 

experts. 

 
Keywords: critical infrastructure, safety, safety indicator, prediction, port oil 

transport 

 
1 Introduction  

 
Most real complex technical systems are strongly influenced by changing in 

time their operation conditions that initiate their degradation/ageing. The time 

dependent interactions between the critical infrastructure safety structure and its 

components/assets safety states changing concerned with their processes of 

aging are evident features of most real technical critical infrastructures [1], [2]. 

The convenient tool for analysing this problem is the critical infrastructure 

multistate safety modelling [3], [4]-[8], [9]-[12]. In everyday practice, there are 

needed the tools that could be applied to analyse and evaluation of the safety 

characteristics of critical infrastructure defined as a complex system in its 

operating environment that significant features are inside-system dependencies 

and outside-system dependencies, that in the case of its degradation have 

significant destructive influence on the health, safety and security, economics 

and social conditions of large human communities and territory areas. In the 

critical infrastructure safety analysis, the determination of its safety function and 

its risk function which graph corresponds to the fragility curve [13] defined in 

the paper are crucial indicators/indices for safety practitioners. Other practically 
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significant critical infrastructure safety indices are its mean lifetime up to the 

exceeding a critical safety state, the moment when its risk function value 

exceeds the acceptable safety level and the critical infrastructure intensity of 

ageing/degradation. The knowledge of these critical infrastructure safety 

indicators is of great value in the industrial practice. In the paper, simplified 

procedures of finding those all safety indexes based on the authors’ theoretical 

results, mainly given in [7], are proposed directly to operators dealing with and 

ensuring safety of critical infrastructures in everyday practice. The procedures 

are applied to safety analysis and safety indicators determination for the port oil 

piping transportation system, the part of the Baltic oil pipeline critical 

infrastructure network.    

 

2  Theoretical backgrounds  
 

2.1 Multistate approach 

 

In the multistate safety analysis to define the system with degrading 

components, we assume that: 

– all components and a system under consideration have the safety state set 

{0,1,...,z},  

– the safety states are ordered, the safety state 0 is the worst and the safety 

state z is the best,  

– T(u) is a random variable representing the lifetime of a system in the safety 

state subset  {u,u+1,...,z} while it was in the safety state z at the moment t = 

0, 

– the system states degrades with time t, 

– s(t) is a system S safety state at the moment t, ),,0 t  given that it was 

in the safety state z at the moment t = 0.  

The above assumptions mean that the safety states of the system with degrading 

components may be changed in time only from better to worse [5], [7], [15], [9]-

[12]. The way in which the components and the system safety states change is 

illustrated in Figures 1 and 2. 
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Fig. 1. Illustration of a system safety states changing 
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Fig. 2. The relationship between the realizations t(u),  u = 1, 2, …, z, of the 

critical infrastructure lifetime T(u), u = 1, 2, …, z,  in the safety state subsets  

{u, u+1, …, z}, u = 1, 2, …, z 

 
2.2 Critical infrastructure safety indicators   
 

We denote the critical infrastructure unconditional lifetime in the safety state 

subset },...,1,{ zuu   by )(uT  and define the critical infrastructure safety 

function (SI1) by the vector [7] 

),( tS  = [1, ),1,(tS ..., ),( ztS ],                                                                           

 

with the coordinates defined by 

 

),( utS ))(( tuTP   for ),,0 t  .,...,2,1 zu                                             

 

The safety function coordinate ),,( utS ,,...,2,1 zu   is the probability that the 

system lifetime )(uT  in the safety state subset },...,1,{ zuu   is greater than t, 

).,0 t  

Further, we assume that the critical infrastructure has the exponential safety 

function (SI1), i.e.  

 

),( utS ],)(exp[ tuλ  ),,0 t  ,0)( uλ  u = 1,2,…,z.                               

     

Under this assumption, the mean lifetime of the system in the safety state subset 

},,...,1,{ zuu   is given by  
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)(u  = ,
)(

1

uλ
 u = 1,2,...,z.                                                                            

 

The exemplary graph of a five-state (z = 4) critical infrastructure safety function 

S(t ) = [1, S(t,1), S(t,2), S(t,3), S(t,4)]  

= [1, ])1(exp[ tλ , ])2(exp[ tλ , ])3(exp[ tλ , ])4(exp[ tλ , ),,0 t  

 

 is shown in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The graphs of a four-state critical infrastructure safety function 

coordinates 

 

Moreover, if r is the  critical safety state, then the critical infrastructure risk 

function (SI2)  

 

r(t) = P(S(t) < r  S(0) = z) = P(T(r)  t), ),,0 t                                          

 

is defined as a probability that the critical infrastructure in the subset of safety 

states worse than the critical safety state r, r {1,...,z} while it was in the best 

safety state z at the moment t = 0 and given by [7]  

 

r(t) ],)(exp[1 trλ  ).,0 t                                                                     (1) 

 

The graph of the system risk function presented in Figure 4 is called the critical 

infrastructure fragility curve (SI3).  
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Fig. 4. The graph (The fragility curve) of a system risk function )(tr  

 

The critical infrastructure safety function (SI1), the critical infrastructure risk 

function (SI2) and the critical infrastructure fragility curve (SI3) are proposed as 

main critical infrastructure safety indicators (SI).  

Other practically useful critical infrastructure safety factors are: 

- the critical Infrastructure mean lifetime  )(rT up to exceeding critical safety 

state r  (SI4) given by  

 

;
)(

1
)(

r
r

λ
                                                                                                       (2) 

 

- the standard deviation of the critical infrastructure lifetime )(rT  up to the 

exceeding the critical safety state r (SI5) given by  

;
)(

1
)(

r
r

λ
                                                                                                 (3)                        

                                                                                                                            

- the moment   of exceeding acceptable value of critical infrastructure risk 

function level  (SI6) given by  

  )1ln(
)(

1


rλ
                                                                                          (4) 
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- the intensities of ageing (degradation) of the critical infrastructure / the 

intensities of critical infrastructure departure from the safety state subset 

},...,1,{ zuu   (SI7), i.e. the coordinates of the vector   

 

 )( λ  = [0, )1(λ , …, )(zλ  ],                                                                             

 

where according to (2)  

 

,
)(

1
)(

u
u


λ  .,...,2,1 zu                                                                               (5) 

                                                                             

4  Safety and risk prediction of port oil piping transportation 

system  
 

4.1 Port oil piping transportation system description    

 
The considered oil piping transportation system is operating at one of the Baltic 

Oil Terminals that is designated for the reception from ships, the storage and 

sending by carriages or cars the oil products. It is also designated for receiving 

from carriages or cars, the storage and loading the tankers with oil products such 

like petrol and oil. The considered terminal is composed of three parts A, B and 

C, linked by the piping transportation system with the pier. The scheme of this 

terminal is presented in Figure 5 [7], [16].  

 

 

Fig. 5. The scheme of the port oil piping transportation system 

 

Thus, the port oil pipeline transportation system consists of three subsystems:  

- the subsystem 1S  composed of two pipelines, each composed of 176 pipe 

segments and 2 valves,  

- the subsystem 2S  composed of two pipelines, each composed of  717 pipe 

segments and 2 valves, 

- the subsystem 3S  composed of three pipelines, each composed of 360 pipe 

segments and 2 valves.  
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The subsystems ,1S  ,2S  ,3S  indicated in Figure 9.1 are forming a general 

series port oil pipeline system safety structure presented in Figure 6.  

 

 

 

Fig. 6. General scheme of the port oil pipeline system safety structure 

 

4.2 Parameters of port oil piping transportation system safety model    

 

After considering the comments and opinions coming from experts, taking into 

account the effectiveness and safety aspects of the operation of the oil pipeline 

transportation system, we fix [14]: 

 -  the number of pipeline system safety states  

 

    2z ,                                                                                                            

 

and we distinguish the following three safety states:  

 a safety state 2 - piping operation is fully safe,  

 a safety state 1 - piping operation is less safe and more dangerous 

because of the possibility of environment pollution,  

 a safety state 0 - piping is destroyed,  

and, we assume that:   

 there are possible the transitions between the components safety 

states only from better to worse ones,  

 the critical safety state of the system is  

 

r = 1,                                                                                             

 

 the system risk permitted level  

 

 = 0.05;                                                                                       

 

- the number of the port oil transportation system subsystems 

 

                     n = 3;                                                                                            

 

- the mean values of the port oil piping transportation subsystems lifetimes in 

the safety state subsets },2,1{  },2{  are as follows: 

- subsystem S1 

 for safety state subset }2,1{  

 

               )1(  = 400 years,                                                                               

 

 for safety state subset }2{  

    S1 S2    S3 
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               )2(  = 300 years.                                                                              

 

- subsystem S2 

 for safety state subset }2,1{  

 

               )1(  = 140 years,                                                                               

 

 for safety state subset }2{  

 

               )2(  = 100 years.                                                                              

 

- subsystem S3 

 for safety state subset }2,1{  

 

               )1(  = 160 years,                                                                               

 

 for safety state subset }2{  

 

               )2(  = 120 years.                                                                             

 

4.3 Prediction of port oil piping transportation system safety indicators     

 

Considering that the pipeline system is a three-state (z = 2) series system, its 

safety function (SI1) is given by [7], [16]  

 

),( tS )1,(,1[ tS )],2,(tS
 
t  0,                                                                     

where  

 

)1,(tS  exp[-0.002500t]exp[-0.007143t]exp[-0.006250t]  

            = exp[-0.015893t],                                                                                 

 

)2,(tS  exp[-0.003333t]exp[-0.01000t]exp[-0.008333t]  

             = exp[-0.021666t].                                                                                

 

The graph of the three-state pipeline system safety function is shown in Figure 

7.  
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Fig. 7. The graph of the port oil piping transportation system safety function 

),( tS
 
coordinates 

 

The expected values and standard deviations of the pipeline system lifetimes in 

the safety state subsets },2,1{ },2{ according (2)-(3), respectively are [16]:  

 

)1(  62.92, )2(   46.16 years,                                                                 

 

)1(   62.92, )2(   46.16 years,                                                                

and further, it follows that the mean values of the pipeline lifetimes in the 

particular safety states are [7]:  

)1(  16.76, )2(  46.16 years.                                                                  

 

As the critical safety state is r =1, then by (1), the pipeline system risk function 

(SI2), is given by  

 

r(t) = )1,(1 tS  

 

= 1 -  exp[-0.015893t] for t  0.                                                                        
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The graph of the risk function )(tr  of the pipeline system, the fragility curve 

(SI3), is shown in Figure 8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The graph of the risk function )(tr  (the fragility curve) of the port oil 

piping transportation system 

 

By (2) and (3), the pipeline system mean lifetime up to exceeding critical safety 

state r = 1 (SI4) is  

 

)1(  62.92 years,                                                                                          

 

and the standard deviation of the pipeline system lifetime up to exceeding 

critical safety state r = 1 (SI5) is  

 

)1(σ   62.92 years.                                                                                           

 

From (9), the moment when the pipeline system risk function exceeds a 

permitted level   = 0.05 (SI6), is  

 

  =  )05.01ln(
015893.0

1
3.23 years.                                                     

 

The pipeline system intensities of ageing (SI7) are  
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 (1),1)( λλ t  0.015893,                                                                                

 

 (2),2)( λλ t  0.021666.                                                                               

 

The graphs of the intensities of ageing of the port oil piping transportation 

system are given in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The graphs of the intensities of ageing of the port oil piping 

transportation system 

 

Conclusions 
 

The paper delivers the simplified procedures that allow to find the main an 

practically important safety characteristics of the critical infrastructures. The 

safety indicators of the port oil transport critical infrastructure are predicted on 

the basis of data coming from experts. Although the results are approximate, 

they justify the sensibility of the performed analysis and evaluation of the port 

oil transport critical infrastructure safety indicators as their knowledge can help 

in ensuring and improving its safety and making its operation safer. Presented in 

this paper tool can be useful in safety and operation prediction of a very wide 

class of real technical critical infrastructures. The results can be interesting for 

safety practitioners from various industrial sectors. 
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Abstract. The method based on the joint model linking a multistate approach to 

critical infrastructure safety with a semi-Markov modelling of the critical 

infrastructure operation process is proposed to the safety prediction of critical 

infrastructures changing in time their structure and their components safety. The 

proposed method is applied to the safety indicators approximate evaluation of 

the port oil transport critical infrastructure changing its safety structure and its 

components safety parameters at variable operation conditions. 

 

Keywords: critical infrastructure, operation, safety, operation influence, safety 

indicator, prediction, port oil transport 

 
1 Introduction  

 
The critical infrastructures operating at a fixed area may be vulnerable to 

damage caused by external threats and on the other hand, they may cause threats 

to other critical infrastructures [1]. This fact should be considered to construct a 

global network of interconnected and interdependent critical infrastructure 

networks existing at this operating area what is highly reasonable as usually the 

critical infrastructures are not isolated and they create a system of 

interconnected and interdependent critical infrastructures. The proposed 

approach, taking into account threats associated with critical infrastructures and 

their components/assets operation [1]-[3], [4]-[5] can help to indicate which of 

critical infrastructures can be affected by and which ones can affect other 

critical infrastructures in their operating area. In this context, the safety analysis 

and prediction of a single critical infrastructure composed of a number of assets 

impacted by its operation process is very important [4]-[11]. Therefore, in the 

paper, the method of a single critical infrastructure related to its operation 

process safety prediction is proposed.    

Most real critical infrastructures are strongly influenced by changing in time 

their operation conditions that initiate their degradation/ageing. The time 
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dependent interactions between the operation process states varying at the 

critical infrastructure operating area and the critical infrastructure safety 

structure and its components/assets safety states changing are evident features of 

most real technical systems including critical infrastructures [1]-[2]. The 

common safety and operation analysis of critical infrastructures is of great value 

in the industrial practice. The convenient tools for analyzing this problem are 

the critical infrastructure multistate safety modelling [12]-[13], [4]-[11], [14]-

18], commonly used with the semi-Markov modelling [5], [7], [13] the critical 

infrastructures operation processes, leading to the construction the joint general 

safety model of the critical infrastructure related to its operation process [13], 

[19]. Especially, in everyday practice, there are needed the tools that could be 

applied to evaluate approximately the safety characteristics of critical 

infrastructures defined as a complex system in its operating environment that 

significant features are inside-system dependencies and outside-system 

dependencies, that in the case of its degradation have significant destructive 

influence on the health, safety and security, economics and social conditions of 

large human communities and territory areas. In the critical infrastructure safety 

analysis, the determination of its safety function and its risk function which 

graph corresponds to the fragility curve [20] are crucial indicators/indices for 

safety practitioners. Other practically significant critical infrastructure safety 

indices defined in the paper are its mean lifetime up to the exceeding a critical 

safety state, the moment when its risk function value exceeds the acceptable 

safety level, the critical infrastructure intensity of ageing/degradation, the 

coefficient of operation process impact on critical infrastructure intensities of 

ageing and the coefficient of critical infrastructure resilience to operation 

process impact. These critical infrastructure safety indicators evaluation is of 

great value in the industrial practice. Thus, there are needed the tools for finding 

the critical infrastructure safety and resilience indicators and the procedures of 

their practical usage [4]-[5].  

In the paper, to satisfy those needs, the simplified procedures based on the 

authors’ theoretical results [7], [10] developments are proposed directly to users 

dealing with, assuring critical infrastructure safety in everyday practice. The 

procedures are applied to operation and safety analysis and safety indicators 

prediction for the port oil terminal critical infrastructure, the part of the Baltic 

oil pipeline critical infrastructure network [3], [9]. 

 

2  Multistate approach to critical infrastructure safety   
 

Multistate approach to safety analysis is presented in [21].   

 

3  Critical infrastructure safety indicators   

We denote the critical infrastructure conditional lifetime in the safety state 

subset },...,1,{ zuu  while the critical infrastructure is at the operation process 
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Z(t) state ,
b

z ,,...,2,1 vb   by )(' )( uT b  and the conditional safety function 

(SI1) of the system by the vector [4]-[5] 
 

)()],([ bt S  = [1, ,)]1,([ )(btS ..., ])],([ )(bztS ,                                                      
                

with the coordinates defined by 

)()],([ butS ))()('( )(

b

b ztZtuTP   for ),,0 t                                                          

,,...,2,1 zu  .,...,2,1 b   
 

The safety function  coordinate 
)()],([ butS  is the conditional probability that 

the critical infrastructure lifetime )(' )( uT b  in the safety state subset 

},...,1,{ zuu   is greater than t, while the critical infrastructure  operation 

process Z(t) is at the operation state .
b

z  

Further, we assume that the critical infrastructure has the exponential 

conditional safety function (SI1), i.e.  
 

)()],([ butS ],)]([exp[ )( tu b
λ  ),,0 t  ,0)]( )( buλ[  u = 1,2,…,z.           

 

Under this assumption, the mean lifetime of the critical infrastructure in the 

safety state subset },,...,1,{ zuu   is given by  
 

)(u
b

  = ,
)](

1
)(buλ[

 u = 1,2,...,z, .,...,2,1 b                                        (1) 

 

We denote the critical infrastructure unconditional lifetime in the safety state 

subset },...,1,{ zuu   by )(' uT  and the unconditional safety function of the 

critical infrastructure (SI1) by the vector   

),( tS  = [1, ),1,(tS ..., ),( ztS ],                                                                           
 

with the coordinates defined by 
 

),( utS ))(( tuTP      for ),,0 t  .,...,2,1 zu                                                

(2)                                                                                                                                        
 

In the case when the critical infrastructure operation time   is large enough, the 

coordinates of the unconditional safety function (SI1) of the critical 

infrastructure defined by (2) are given by  

),( utS  ]])([exp[ )(

1

tup b
v

b
b 



λ  for 0t , ,,...,2,1 zu                                 (3) 
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where 
b

p , ,,...,2,1 b  are the critical infrastructure operation process limit 

transient probabilities (OPC1) defined in [5].  

The mean value of the critical infrastructure unconditional lifetime )(' uT  in the 

safety state subset },...,1,{ zuu   is given by [10] 
 

,)()(
1







b

bb
upu  ,,...,2,1 zu                                                                    (8) 

  

where )(u
b

 are the mean values of the critical infrastructure conditional 

lifetimes )(' )( uT b
 in the safety state subset },...,1,{ zuu   at the operation 

state ,
b

z  ,,...,2,1 b  given by (1) and 
b

p  are the transient probabilities at 

these operation states [15].  

Moreover, according to [8], if r is the critical safety state, then the critical 

infrastructure risk function (SI2) 

 

r(t) = P(S(t) < r  S(0) = z) = P(T(r)  t), ),,0 t                                          

 

is defined as a probability that the critical infrastructure is in the subset of safety 

states worse than the critical safety state r, r {1,...,z} while it was in the safety 

state z at the moment t = 0 is given by [10]   

r(t) = 1  ]])([exp[ )(

1

trp b
v

b
b 



λ , ).,0 t                                                (4) 

 

The critical infrastructure unconditional safety function (SI1), the critical 

infrastructure risk function (SI2) and its graph called the critical infrastructure 

fragility curve (SI3) are main critical infrastructure safety indictors (SI).  

Other practically useful critical infrastructure safety factors are: 

- the mean value of the unconditional critical infrastructure lifetime )(rT  up to 

the exceeding the critical safety state r (SI4) given by  
 

,)()(
1







b

bb rpr  ,,...,2,1 zu                                                                       (5) 

 

where )(rb are the mean values of the critical infrastructure conditional 

lifetimes )(' )( uT b
 in the safety state subset },...,1,{ zuu   at the operation state 

,
b

z  ,,...,2,1 b according to (1), given by 
 

)()](

1
)(

bb
r

r
λ[

 , ,,...,2,1 b                                                                      (6) 

 

and 
b

p  are the transient probabilities at these operation states [5];  
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- the standard deviation of the critical infrastructure lifetime )(' rT  up to the 

exceeding the critical safety state r (SI5) given by  

2)]([)()( rrnr   ,                                                                                       

(7) 

where   


0

2)( trn S (t,r)dt,                                                                                                                       

and ),( rtS  is given by (3) for ru   and )(r  is given by (5);   

-  the moment   when the critical infrastructure risk function exceeds a 

permitted level  (SI6) given by  

 r ),(1 
                                                                                                        

 

where r )(1 t
, is the inverse function of the risk function r(t) given by (4). 

Other critical infrastructure safety indices are:  

- the intensities of ageing (degradation) of the critical infrastructure impacted by 

the operation process /the intensities of critical infrastructure departure from the 

safety state subset },...,1,{ zuu  ) impacted by the operation process (SI7), i.e. 

the coordinates of the vector   

  

),( tλ  = [0, )1,(tλ , …, ),( ztλ  ], ),,0 t                                                 (8) 
 

where  
 

),( utλ ]])([exp[)]([[[ )(

1

)( tuup b
v

b

b

b 


λ ]/ ]],])([exp[[ )(

1

tup b
v

b
b 



λ               (9) 

),,0 t  ;,...,2,1 zu                                                                                
 

- the coefficients of the operation process impact on the critical infrastructure 

intensities of ageing /the coefficients of operation process impact on critical 

infrastructure intensities of departure from the safety state subset 

},...,1,{ zuu   (SI8), i.e. the coordinates of the vector   
 

),( tρ  = [0, )1,(tρ , …, ),( ztρ  ], ),,0 t                                                  
 

where   
 

),( utλ  = ),,(),( utut 0
λρ   ),,0 t  ,,...,2,1 zu                                        (10)                          

 

and ),( ut0
λ  are the intensities of ageing of the critical infrastructure (the 

intensities of the critical infrastructure departure from the safety state subset 

},...,1,{ zuu  ) without of operation impact, i.e. the coordinate of the vector   

  

),( t0
λ  = [0, ),1,(t0

λ , …, ),( zt0
λ ], ).,0 t                                          
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Additionally, we define the critical infrastructure resilence indicaator (RI1), i.e. 

the coefficient of critical infrastructure resilience to operation process impact  

 

)(tRI  = ),,( rtρ1/  ),,0 t                                                                         

(11) 
 

where ),( rtρ  is the coefficients of the operation process impact on the critical 

infrastructure intensity of ageing ),( rtλ , i.e. the coefficients of operation 

process impact on critical infrastructure intensities of departure from the safety 

state subset },...,1,{ zrr  of states not worse than the critical safety state r . 

                                                                             

4  Safety and risk prediction of port oil piping transportation 

system  
 

4.1 Port oil piping transportation system description    

 
The considered oil piping transportation system operating at one of the Baltic 

Oil Terminals and is describe in [21].   

 

4.2 Parameters of port oil piping transportation system safety     

 

After considering the comments and opinions coming from experts, taking into 

account the effectiveness and safety aspects of the operation of the oil pipeline 

transportation system, we fix [2]: 

 -  the number of pipeline system safety states  
 

    2z ,                                                                                                            
 

and we distinguish the following three safety states:  

 a safety state 2 - piping operation is fully safe,  

 a safety state 1 - piping operation is less safe and more dangerous 

because of the possibility of environment pollution,  

 a safety state 0 - piping is destroyed,  

and, we assume that:   

 there are possible the transitions between the components safety 

states only from better to worse ones,  

 the critical safety state of the system is  
 

r = 1,                                                                                            
 

 the system risk permitted level  
 

 = 0.05;                                                                                       
 

- the mean values of the port oil piping transportation system lifetimes in the 

safety state subsets },2,1{  },2{  are as follows: 
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 for safety state subset }2,1{  
 

               )1(  = 63 years,                                                                                  

(12) 
 

 for safety state subset }2{  
 

               )2(  = 46 years.                                                                               (13) 

 

4.3 Parameters and characteristics of port oil piping transportation system 

operation process    

On the basis of the statistical data and expert opinions [2], it is possible to 

evaluate the following unknown basic parameters of the port oil piping 

transportation system operation process [4]-[5]: 

– the number of operation process states (OPP1)  
 

 =  7                                                                                                                 
 

and the operation process states:  

the operation state 1z  transport of one kind of medium from the terminal part 

B to part C using two out of three  pipelines of the subsystem 3S ,   

the operation state 2z  transport of one kind of medium from the terminal part 

C to part B using one out of three pipelines of the subsystem 3S ,   

the operation state 3z  transport of one kind of medium from the terminal part 

B through part A to pier using one out of two pipelines of the subsystem 1S  and 

one out of two pipelines of the subsystem 2S ,  

the operation state 4z  transport of one kind of medium from the pier through 

parts A and B to part C using one out of two pipelines of the subsystem 1S , one 

out of two pipelines in subsystem 2S  and two out of three pipelines of the 

subsystem 3S ,  

the operation state 5z  transport of one kind of medium from the pier through 

part A to B using one out of two pipelines of the subsystem 1S  and one out of 

two pipelines of the subsystem 2S ,  

the operation state 6z  transport of one kind of medium from the terminal part 

B to C using two out of three pipelines of the subsystem 3S , and simultaneously 

transport one kind of medium from the pier through part A to B using one out of 

two pipelines of the subsystem 1S  and one out of two pipelines of the 

subsystem 2S ,  
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the operation state 7z  transport of one kind of medium from the terminal part 

B to C using one out of three  pipelines of the subsystem 3S , and 

simultaneously transport second kind of medium from the terminal part C to B 

using one out of three  pipelines of the subsystem 3S . 

Calculated operation process characteristics are [4]-[5]:   

- the vector of the limit values of transient probabilities (OPC1) of the port oil 

ping transportation system operation process Z(t) at the particular operation 

states 
b

z  

 

[pb]1X7 = [p1, p2,…, p7],                                                                                      

 

where  
 

,395.01 p  ,060.02 p  ,003.03 p  ,002.04 p  ,20.05 p   

,058.06 p  .282.07 p                                                                                   

 

4.4 Parameters of operation process impact on port oil piping transportation 

system safety 

 

The coefficients of the operation process impact on the port oil piping 

transportation system intensities of ageing / the coefficients of the operation 

process impact on the port oil piping transportation system intensities of 

departure from the safety state subset },2,1{  }2{  at the operation states ,
b

z

,,...,2,1 b  are as follows:  
 

)()]1([ b  = 1.10, 
)()]2([ b  = 1.10, 7,2,1b  

)()]1([ b  = 1.20, 
)()]2([ b  = 1.20, ,5,3b  

)()]1([ b  = 1.30, 
)()]2([ b  = 1.30, .6,4b                                                     

 

4.5 Prediction of safety indicators of port oil piping transportation system 

Considering that the pipeline system is a three-state (z = 2) system, its safety 

function (SI1) is given by [4]-[5]  
 

),( tS )1,(,1[ tS )],2,(tS
 
t  0,                                                                      

 

where  
 

)1,(tS 0.395exp[-0.017460t] + 0.060exp[-0.017460t] + 0.003exp[-0.019048t]   

            + 0.002exp[-0.020635t] + 0.200exp[-0.019048t] + 0.058exp[-0.020635t]  

            + 0.282exp[-0.017460t]  

            = 0.737exp[-0.017460t] + 0.203exp[-0.019048t]  

            + 0.060exp[-0.020635t],                                                                        
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)2,(tS 0.395exp[-0.023913t] + 0.060exp[-0.023913t] + 0.003exp[-0.026087t] 

             + 0.002exp[-0.028261t] + 0.200exp[-0.026087t]  

             + 0.058exp[-0.028261t] + 0.282exp[-0.023913t]  

             = 0.737exp[-0.023913t] + 0.203exp[-0.026087t]  

             + 0.060exp[-0.028261t].                                                                       
 
 

The expected values and standard deviations of the pipeline system lifetimes in 

the safety state subsets },2,1{ },2{ according (5)-(7), respectively are [4]-[5]:  
 

)1(   55.78, )2(   40.72 years,                                                               (14) 
 

)1(    55.90, )2(    40.82 years,                                                             (15) 

and further, it follows that the mean values of the pipeline lifetimes in the 

particular safety states are:  

 )1(  15.06 , )2(  40.72 years.                                                               
 

As the critical safety state is r =1, then the pipeline system risk function (SI2) by 

(4), is given by  

 

)(tr  = )1,(1 tS  

         = 1 – [0.737exp[-0.017460t] + 0.203exp[-0.019048t]  

         + 0.060exp[-0.020635t]]for t  0.                                                            (16) 
 

The graph of the risk function )(tr  of the pipeline system, the fragility curve 

(SI3), is shown in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The graph of the risk function )(tr  (the fragility curve) of the port oil 

piping transportation system 

 

By (14) and (15), the pipeline system mean lifetime up to exceeding critical 

safety state r = 1 (SI4) is  

)1(  55.78 years,                                                                                           
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and the standard deviation of the pipeline system lifetime up to exceeding 

critical safety state r = 1 (SI5) is  

)1(    55.90,                                                                                                  
 

From (16), the moment when the pipeline system risk function exceeds a 

permitted level   = 0.05 (SI6), is  
 

 = )(1 
r   2.85 years.                                                                                  

 

The pipeline system intensities of ageing (SI7) by (8)-(9) are:  
 

)1,(tλ  {0.017460  0.737exp[-0.017460t] + 0.019048  0.203exp[-0.019048t]  

            + 0.020635  0.060exp[-0.020635t]}/{0.737exp[-0.017460t]  

            + 0.203exp[-0.019048t] + 0.060exp[-0.020635t]} 

            0.017928,                                                                                           (17) 
 

)2,(tλ  {0.023913  0.737exp[-0.023913t] + 0.026087  0.203exp[-0.026087t]  

            + 0.028261  0.060exp[-0.028261t]}/{0.737exp[-0.023913t]  

            + 0.203exp[-0.026087t] + 0.060exp[-0.028261t]} 

            0.024558.                                                                                           (18) 
 

Considering (12)-(13) and (17)-(18) and applying (10), the coefficients of the 

operation process impact on the port oil piping transportation system intensities 

of ageing (SI8) are:  
  

)1,(tρ  
)1,(

)1,(

t

t
0λ

λ


63/1

78.55/1
1.13,                                                              (19) 

 

)2,(tρ  
)2,(

)2,(

t

t
0λ

λ


46/1

72.40/1
1.13.                                                            

 

Finally, by (11) and (19), the port oil terminal critical infrastructure resilence 

indicator (RI1), i.e. the coefficient of the port oil terminal critical infrastructure 

resilience to operation process impact, is 
 

)(tRI  = %.5.88885.0)1,( tρ1/  ),,0 t                                                                                                                       
 

Conclusions 
 

The paper delivers procedures that allow to find the main an practically 

important safety characteristics of the critical infrastructures impacted by their 

operation processes. The safety characteristics of the port oil terminal critical 

infrastructure predicted in this paper using this procedures are different from 

that obtained without considering the operation impact. This fact justifies the 

sensibility of analysing the technical critical infrastructures related to the 

operation processes. Presented in this paper tools can be useful in safety analysis 
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and prediction of a very wide class of real technical critical infrastructures 

operating at the varying conditions that have an influence on changing their 

safety structures and their components safety parameters. The results can be 

interesting for safety practitioners from various industrial sectors. 
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Abstract. We analyzed seasonally adjusted quarterly data for the V4 countries
Czech Republic (Cz), Hungary (Hu), Poland (Pl) and Slovakia (Sk) for the period
1995/Q1 – 2016/ Q3. We investigated parallel changes of GDP of these countries using
4–dimensional Vine copula models. We applied ARIMA – GARCH filters to loga-
rithms of the above countries’ data. The obtained residuals have pairwise Kendall’s
correlation coefficients in the interval (0.1, 0.2) (the maximal value was achieved for
the couple (Cz, Sk)). Subsequently, we applied to those residuals (country specific)
linear transformations in order to map them in the unit interval. The results served
as inputs to calculations of 4–dimensional Vine copulas. The optimal Vine copulas
help to obtain more insight in the detailed development of the investigated GDPs.
Keywords: GDP, Correlation, ARIMA-GARCH filter, Vine copula.

1 Introduction

We analyzed seasonally adjusted quarterly data (provided by EUROSTAT)
for the V4 countries Czech Republic (Cz), Hungary (Hu), Poland (Pl) and
Slovakia (Sk) (that underwent similar historical and economic development
during the last 70 years) for the period 1995/Q1 – 2016/ Q3. We investigated
parallel changes of GDP of these countries using 4–dimensional Vine copula
models. We applied ARIMA – GARCH filters to logarithms of the above
countries data. The obtained residuals have pairwise Kendall’s correlation
coefficients in the interval (0.1, 0.2) (the maximal value was achieved for the
couple (Cz, Sk)). Subsequently, we applied to those residuals (country specific)
linear transformations in order to map them in the unit interval. Results served
as inputs to calculation of 4–dimensional Vine copulas. The computations were
performed in R with the help of package VineCopula.

The paper is organized as follows. The second section is devoted to a brief
overview of the theory of Vine copulas and methodology of copula fitting to
multi–dimensional time series. The third section contains application to real
data modeling. Finally, some conclusions are presented.
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2 Theory

Copulas are fundamental tools for modeling dependence between/among ran-
dom variables leaving alone their marginal distributions. Due to Sklar [13]

F (x1, ..., xn) = C [F1(x1), ..., Fn(xn)] ,

where F is joint cumulative distribution function of random vector (X1, ..., Xn),
Fi is marginal cumulative distribution function of Xi, and C : [0, 1]n → [0, 1]
is a copula which is a n-increasing function with 1 as neutral element and 0 as
annihilator, see e.g. monograph Nelsen (2006) [9]. Besides three fundamental
copulas

M(x1, ..., xn) = min(x1, ..., xn), W (x1, x2) = max(x1 + x2 − 1, 0),

Π(x1, ..., xn) =

n∏
i=1

xi,

which model perfect positive dependence, perfect negative dependence (not
applicable for n > 2) and independence, respectively, there exist numerous
parametric classes, such as Archimedean, Extreme-Value and elliptical copu-
las. Within the last one there belong such important parametric families as
Gaussian copulas

CG(x1, ..., xn) = Φ
[
Φ−11 (x1), ..., Φ−1n (xn)

]
and Student t-copulas

Ct(x1, ..., xn) = t
[
t−11 (x1), ..., t−1n (xn)

]
,

(where Φ and t are joint distribution functions of multivariate normal and Stu-
dent t distributions, similarly Φ−1i and t−1i , i = 1, ..., n are univariate quantile
functions related to Xi), able to flexibly describe dependence in multidimen-
sional random vector.

An n–dimensional regular vine tree structure S = {T1, ..., Tn} is a sequence
of n− 1 linked trees with properties (see [2,3]):

• Tree T1 is a tree on nodes 1 to n;
• Tree Tj has n+ 1− j nodes and d− j edges;
• Edges in tree Tj become nodes in tree Tj+1;
• Two nodes in tree Tj+1 can be joined by an edge only if the corresponding

edges in tree Tj share a node.

Except for 2–dimensional product, Gaussian and Student copulas we uti-
lized numerous 2–dimensional families of copulas (Clayton, Gumbel, Frank,
Joe, BB1, BB6, BB7, BB8, Tawn [8,15] and their rotations) as building block
of Vine copulas [1,12] and [3]. Vine copulas are constructed as lego using bi-
variate copulas as construction blocks picked by default for stronger correlated
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random variable pairs, the estimated model structure can be visualized and in-
terpreted. We outline the construction of three-dimensional probability density
function f

f(x1, x2, x3) = f1(x1) · f2|1(x1, x2) · f3|12(x1, x2, x3) =

= f1(x1) · c12 [F1(x1), F2(x2)] · f2(x2) · (1)

·c31|2
[
Fx3|x2

(x2, x3), Fx1|x2
(x1, x2)

]
· c23 [F2(x2), F3(x3)] · f3(x3)

where fi is a (marginal) probability density function of Xi, i = 1, 2, 3,

fi|j(xi, xj) =
f(xi, xj)

fj(xj)

is conditional density function of Xi given Xj . A copula density cij couples
Xi and Xj while cij|k couples bivariate conditional distributions of Xi|Xk and
Xj |Xk, i, j, k ∈ {1, 2, 3} , i 6= j 6= k 6= i. Finally,

Fxi|xj
=
∂Cij [Fi(xi), Fj(xj)]

∂Fj(xj)

is a conditional cumulative distribution function of Xi given Xj .
The construction (1) represented by Figure 2 is one of the three possible

pair–copula decompositions, which, graphically, are both [4] (see Figure 1)

• canonical (C–) vine trees: each tree has a unique node connected to d− j
edges (use only star like tree - useful for ordering by importance);
• drawable (D–) vine trees: no node is connected to more than 2 edges (use

only path like trees - useful for temporal ordering of variables);

In more than three dimensions, C–vines and D–vines are just small subsets of
a more general class - regular vines.

Fig. 1. C-Vine tree (left) and D-Vine tree (right) [4]
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Fig. 2. Vine tree corresponding to construction (1) with the 2nd variable as a root
node

The construction (1) has been naturally generalized for larger dimensions
(see [3]).

Within the above mentioned classes of 2–dimensional copulas, the optimal
models were selected using the Maximum likelihood estimation (MLE) method.
Recall that for given m observations {Xj,i}i=1,...,m of j -th random variable
Xj , j = 1, ..., 4, the parameters θ of all copulas under consideration were
estimated by maximizing the likelihood function

L(θ) =
m∑
i=1

log [cθ(U1,i, U2,i, U3,i, U4,i)] , (2)

where cθ denotes density of a parametric copula family Cθ, and

Uj,i =
1

m+ 1

m∑
k=1

1(Xj,k ≤ Xj,i), i = 1, ...,m,

are so-called pseudo-observations. Goodness-of-fit was performed by a test
proposed by Genest et al. [6] and based on empirical copula process using
Cramer-von Misses test statistic

SCM =

m∑
i=1

[Cθ(U1,i, U2,i, U3,i, U4,i)− Cm(U1,i, U2,i, U3,i, U4,i)]
2

(3)

with empirical copula Cm(x) = 1
m

∑m
i=1

∏4
j=1 1(Xj,i ≤ xj) and indicator func-

tion 1(A) = 1 whenever A is true, otherwise 1(A) = 0.
All calculations were done in R [10], some with the help of package VineCop-

ula [11]. Besides the usual parametric families of Archimedean class such as
Gumbel, Clayton, Frank, Joe, BB1, BB6, BB7, BB8, Tawn copulas (see e.g.
[7–9]) in bivariate case we used also their rotations Cα by angle α defined

C90(x1, x2) = x2 − C(1− x1, x2),

C180(x1, x2) = x1 + x2 − 1 + C(1− x1, 1− x2) survival copula,

C270(x1, x2) = x1 − C(x1, 1− x2),
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that are implemented in the package VineCopula.
Comparisons of optimal models between different 4–dimensional classes of

Vine copulas were based on the BIC criterion ([11,14])

BIC = −2 ∗ L(θ) + log(m) ∗ npar,

where npar represents the number of parameters in the fitted model and m
being the number of observations.

As a preliminary analysis of dependence between random variables, we em-
ploy classical measures of dependence such as Pearson’s and Kendall’s correla-
tion coefficients, moreover to inspect the conditional (in)dependence (which is
further investigated parametrically with Vines) the partial correlation matrix
comes handy. Given a Pearson’s correlation matrix Σ, the partial correla-
tion between variables Xi, Xj conditional on all the other variables in vector
(X1, . . . , Xn) can be computed

ρij|−ij =
−pij√
piipjj

where pij (i, j = 1, . . . , n) are elements of the matrix P = Σ−1. Recall that
partial correlation is a measure of the strength and direction of a linear re-
lationship between two continuous random variables that takes into account
(removes) the influence of some other continuous random variables. Condi-
tional correlations are important, e.g., a) when building (gaussian) graphical
models, where insignificant connections are removed to obtain more parsimo-
nious model, as well as b) to better understand the structure of estimated Vine
copula.

3 Results

We analyzed seasonally and calendar adjusted quarterly GDP data (provided
by EUROSTAT) for the V4 countries Czech Republic (Cz), Hungary (Hu),
Poland (Pl) and Slovakia (Sk) (that underwent similar historical and economic
development during the last 70 years) for the period 1995/Q1 – 2016/ Q3 (see
Figure 3). We investigated parallel changes of GDP of these countries using
4–dimensional Vine copula models. First we applied ARIMA – GARCH filters
([5]) to logarithms of the above countries data:

(1−ϕ1B−ϕ2B
2−...−ϕPBP ) (1−B)dXt = c0+(1+θ1B+θ2B

2+...+θQB
Q)et,

et = htηt,

h2t = ω0 +

q∑
i=1

α0,ie
2
t−i +

p∑
j=1

β0,jh
2
t−j ,

where B is the shift operator, X1, ..., Xm are the observations, c0 = E[Xt], t =
1, ...,m, ϕi, i = 1, ..., P are the AR coefficients, θj , j = 1, ..., Q are the MA
coefficients, d ≥ 1 is the degree of a polynomial trend, (ηt) is a sequence of

577



Table 1. ARIMA–GARCH filters

P Q q p d c0 ϕ1 θj ω0 α0,1 β0,1

Cz 1 2 1 1 1 0.025 -0.509 (1.027, 0.494) 0.004 0.156 0.118

Hu 0 2 1 1 1 0.014 - (0.302, -0.149) 0.001 0.274 0.010

Pl 0 1 1 1 1 0.016 - 0.195 0.001 0.356 0.002

Sk 1 0 1 1 1 0.016 0.210 - 0.004 0.250 0.095

independent and identically distributed (i.i.d.) random variables such that
E[ηt] = 0, E[η2t ] = 1, ω0 > 0, α0,i ≥ 0, i = 1, ..., q and β0,j ≥ 0, j = 1, ..., p.

The obtained residuals have pairwise Pearson correlation coefficients in the
interval (0.028, 0.601) (the maximal value was achieved for the couple (Pl, Hu),
see Table 2) and Kendall correlation coefficients in the interval (0.1, 0.2) (the
maximal value was achieved for the couple (Sk, Cz), see Table 3).

Fig. 3. Seasonally and calendar adjusted quarterly data for the V4 countries (left)
and their logarithms (right)

Table 2. Pearson’s correlation coefficients for the residuals

Cz Hu Pl Sk

Cz 1 0.495 0.493 0.028

Hu 0.495 1 0.601 0.298

Pl 0.493 0.601 1 0.270

Sk 0.028 0.298 0.270 1

Figure 5 reveals conditional correlations, showing that the relations Cz-Hu,
Sk-Hu and Cz-Pl can be probably explained (and modeled) by other relations.

Subsequently, we applied to those residuals (country specific) linear trans-
formations in order to map them in the unit interval (see Figure 4). Results
served as inputs to calculations of 4–dimensional Vine copulas.

The best 4–dimensional Vine copula (based on the BIC information crite-
rion) is summarized in Table 4. We observe that at the lowest tree there reveal
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Table 3. Kendall’s correlation coefficients for the residuals

Cz Hu Pl Sk

Cz 1 0.119 0.106 0.193

Hu 0.1195 1 0.157 0.112

Pl 0.106 0.157 1 0.178

Sk 0.193 0.112 0.178 1

Fig. 4. Residuals transformed to the unit interval

Fig. 5. Partial correlation coefficients for the residuals

stronger links between Slovak and Polish, Slovak and Czech and Polish and
Hungarian GDP. The middle trees represent weak or no dependence between
Slovak and Hungarian GDP, conditioned on Polish GDP and between Czech
and Polish GDP, conditioned on Slovak GDP. The top level tree represents
weak or no dependence between Czech and Hungarian GDP when conditioning
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Fig. 6. The tree structure of the optimal Vine copula with pair copula family and
Kendall’s correlation indicated on edges.

on Slovak and Polish GDP. This is to say that the relations within V4 fellowship
is mainly bipolar when adapting national economies to changes.

The graphical visualization of the optimal Vine copula in terms of trees
is presented on Figure 6 while the densities of the copula building blocks are
depicted on Figure 7 as contour plot, supplemented by an undirected graph
encoding independence in Gaussian graphical model.

Table 4. The summary of the best 4–dimensional Vine copula

tree edge family par1 par2 τ λU λL

1 Pl - Hu t 0.25 2.00 0.16 0.27 0.27

Sk - Cz t 0.27 2.10 0.17 0.27 0.27

Sk - Pl t 0.31 2.00 0.20 0.30 0.30

2 Sk - Hu; Pl I - - 0 0 0

Pl - Cz; Sk I - - 0 0 0

3 Cz - Hu; Sk - Pl I - - 0 0 0

type: D-vine logLik: 27.04 AIC: -42.07 BIC: -27.35

The above analysis shows that the relations between GDP shocks are faint,
yet significant. Graphical structure of dependence does not follow geographical
relationship of the countries (D-vine is preferred instead of a C-vine, that would
have Sk as root node). Further, relationships co-moves entirely if Sk is involved
suggesting tighter touch of Slovak economic with that of western and northern
neighbors.

4 Conclusion and future work

We analyzed seasonally and calendar adjusted quarterly data for the V4 coun-
tries for the period 1995/Q1 – 2016/ Q3. We have seen that in the optimal
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Fig. 7. Contour plots of the optimal Vine copula and a corresponding Gaussian graph-
ical model.

Vine copula model, the Student type copulas dominate at the lowest tree, while
the independence copulas prevail at the upper levels.

We also started to analyze local models for the system of subsequent time
subintervals with durations of 5 years (20 quarters) and overlaps 2.5 years (10
quarters) between neighboring intervals. We can conclude that the optimal
local Vine copulas provide (except for the neighborhood of the crisis years
2008, 2009) comparable levels of Goodness of fit with the local 4–dimensional
Student class models. However, the structure of Vine copula models is more
interesting to investigate and interpret (since they contain several non-classical
partial copulas).

Acknowledgement The support of the grants APVV-0013-14 and VEGA
1/0420/15 is kindly announced.
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Abstract. Known since the 19th century, the Pintograph has recently become popular 

due to its simple mechanical implementation that uses inexpensive servo motors 

controlled by an inexpensive microcontroller. Despite the simplicity of the mechanical 

design, the mathematical model of the real-life Pintograph contains a large number of 
mechanical and electronic parameters. Hence, to evaluate the accuracy of the Pintograph, 

the Monte-Carlo software simulator was created. Relevant math equations were created 

and solved using MAPLE symbolic software. The simulator takes into account rod 

length, joint tolerance, and servo motor accuracy. The simulator operation results are the 
drawing zone map and in the accuracy map in the drawing zone. Simulator runs reveal 

that for the “4-rod” design with unit length of 100 mm xy, an accuracy of 0.3 mm can be 

achieved in the center of the drawing zone, which is good enough for an inexpensive 

laser cutting do-it-yourself (DIY) machine. Modified sizes and tolerances of the 
Pintograph elements can be input into the simulation to evaluate the drawing zone and 

the cutting accuracy. 

Keywords: Monte-Carlo simulator, Harmonograph, Pintograph, MAPLE, Laser cutting 

 

1  Introduction 
 

A Harmonograph is a mechanical  device that operates pendulums to create a 

geometric image (Doan [1]). A Pintograph is a lateral (2D) implementation of 

the Harmonograph; it uses a number of rods to move a pen or another 

instrument relative to a flat drawing surface (Pinterest [2]). Fig. 1 compares the 

operation of the 2D robotic arm with the operation of a Pintograph.  

 
Fig. 1. Pintograph (right) as an alternative tool to a 2D robotic arm (left). 
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Compared to a 2D robotic arm, the mechanical design of the Pintograph has an 

advantage;  Motor #1 of the 2D robotic arm must move rods, instruments (pen, 

laser, etc.) and heavy Motor #2; whereas the motors of a Pintograph must move 

only lightweight rods and the instrument. 

The Pintograph is known since the 19th century,  and recently became popular 

because of its simple mechanical implementation that uses inexpensive actuators 

(servo motors) controlled by an inexpensive microcontroller (Joostens [3]). 

 

2  Mathematical Model of a Pintograph 
 

Mechanical design and parameters of a Pintograph are used to create its 

mathematical model presented in Fig. 2. Two motors (marked “M#1” and 

“M#2”) are positioned on the axis “X”. The distance of Motor #1 from the 

origin {0,0} is marked as “L1”, so that absolute coordinates of the Motor #1 

shaft (axis) are {L1, 0}. The distance between Motor #1 and Motor #2 is marked 

as “L2”, so that absolute coordinates of the Motor #2 shaft are {(L1+L2), 0}.  

 

 
 

Fig. 2. Mechanical design and parameters of a Pintograph. 

 

The Pintograph contains four rigid rods that are assumed to have equal length. 

However, to take assembly errors into account, slack (luft) in the motor shafts 

and joint rod lengths are marked as “L3”, “L4”, “L5”, and “L6”.  

The bottom left rod is connected to the shaft of the Motor #1, so that the angle 

between axis “X” and the bottom left rod is marked as “a”, whereas the bottom 

right rod is connected to the Motor #2, so that the angle between axis “X” and 

the bottom right rod is marked as “b”. 
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Coordinates of the left joint are marked as {X1, Y1}, whereas coordinates of the 

right joint are marked as {X2, Y2}. Coordinates of the top joint are marked as 

{X, Y}. We assume that the instrument (for example, a laser) is positioned at 

this point (the top joint). Considering the mechanical design presented in Fig. 1, 

angles “a” and “b” define the position of the instrument {X, Y}, so controlled 

rotating motors shafts  can position the instrument{X, Y} in a predictable 

manner. 

The mathematical model of a Pintograph must be able to calculate {X, Y} by 

{a, b} and vice versa. {L1,L6} are model parameters. Unfortunately, the current 

design has an inherited mathematical ambiguity; for the same angles {a, b}, two 

possible sets of {X, Y} exist, as can be seen in Fig. 3: “upper” position {X, Y} 

and “bottom” position {X, Y}. To prevent this ambiguity, the mathematical 

model of a Pintograph  enforces use of the “upper” configuration only.  

 

 
Fig. 3. Ambiguity in {X, Y}. 

 

Fig. 4 specifies the basic Pintograph equations derived from Fig. 2. 

 
Fig. 4. Basic Pintograph equations. 

Considering that the derived mathematical model of a Pintograph is to be used 

in computer microcontroller software, MAPLE symbolic software was used to 

solve and rearrange relevant mathematical equations and convert derived 
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formulae to C or C# code. For example, {x,y} were found using MAPLE 

software. (See Fig. 5 for “X” and Fig. 6 for “Y”). 

 

 
Fig. 5. Formula for “X”. “Y” from Fig. 6 must be substituted into this formula. 

 

As stated before, the mechanical design used here has a mathematical 

ambiguity. To eliminate this ambiguity, MAPLE was instructed to use a solution 

with a plus (+) sign before the square root, as shown in the formula presented in 

Fig 6.   

 
Fig. 6. Formula for “Y”. 

 

Geometry formulae were used (see Fig. 7) to get dependency between {X,Y} 

and {a,b}. Then, MAPLE was instructed to derive positions of the instrument's 

“X” and “Y” as functions of the shaft’s angles: “a” for Motor #1 and “b” for 

Motor #2.  

Finally, C# code was generated using the CSharp function from the MAPLE 

software. Because the computer code for the derived formulae is very long (for 

example, C# code of the mathematical model of Pintograph contains more than 

one hundred lines), it is not presented here. 
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Fig. 7. Geometry formulae in accordance with Fig. 1. 

 

Despite the simple mechanical design of a Pintograph, the resultant 

mathematical model of the real-life Pintograph is not trivial. Additionally, the 

real-life model has to take into account the fact that a number of mechanical and 

electronic parameters have pseudo-random tolerance. The mathematical model 

of a Pintograph design, presented  in Fig. 2, has eight parameters to consider: six 

lengths {L1..L6} and two angles “a” and “b”. A preferable (and inexpensive) 

implementation of a Pintograph utilizes two servo motors that can change the 

shaft angles in the range {0,180
o
}. However, possible angles of the servo motor 

shaft, controlled by a microcontroller, can only be set to a limited number of 

values. These angles have some tolerance, which have to be considered in the 

real-life model of a Pintograph in addition to tolerances of {L1..L6}. As a result, 

the actual position {X,Y} of the instrument differs from the position calculated 

on the basis of the Pintograph model described above.  

 

3  Monte-Carlo Simulator 
 

The operation of a real-life Pintograph was simulated with a software simulator 

designed for this purpose using the mathematical model described in the 

previous section. The simulator was implemented using Visual Studio 2015 as a 

C# .NET desktop application. The simulator considers rod length, joint 

tolerance, and servo motor accuracy. Joint tolerance was simulated as changes 

in rod length. Using inexpensive and simple-to-operate servo motors is 

generally considered a preferable option. However, the digital control of the 

servo motor results in a discrete number of possible angles. Considering that 

angles {a, b} in the mathematical model are arguments of nonlinear functions, 

the simulator operation results are a non-trivial map of the points that can be 

reached by the instrument. Additionally, not all the points on the XY plane can 

be reached by the instrument, so that “points that can be reached” effectively 

creates a “drawing zone”, which is a function of the selected {L1..L6}. 

Considering that variations of the model parameters have a pseudo-random 

character, simulations utilize the Monte-Carlo approach by running a predefined 

number of times, while changing the parameter values for every run in a 

pseudo-random way within the predefined ranges. For simplicity, flat 

distributions of the tolerances in the predefined ranges were used in the Monte-

Carlo loop.  
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4  Simulation Results 
 

Some exemplary simulation results for a different parameters of a Pintograph 

are presented in Fig. 8, Fig. 9, Fig. 10, and Fig. 11.  

 

 
Fig. 8. Drawing map for L1=L2=L3=L4=L5=L6=100 mm 

 

 
Fig. 9. Zoom in to the bottom portion of the drawing map presented in Fig.8. 

 

Fig. 8 presents a “symmetrical design” where all rod lengths are equal to 100 

mm and the distance between motors (L2) also equals 100 mm. The drawing 

zone is clearly seen, and the obvious conclusion is that the Pintograph’s 
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instrument cannot reach points that are outside this drawing zone. Additionally, 

it can be seen that even inside the drawing zone not all the points can be reached 

by the instrument. This effect (discrete nature of the drawing maps attributed to 

the digital nature of the servo motors control) is better seen in Fig. 9. The 

average “distance” between points can be used as an estimation of the accuracy 

of drawing/engraving/cutting. When planning even the simplest route of the 

instrument—i.e., a straight cutting line—it must be taken into account that 

resulting line will be jagged. The Monte-Carlo simulator can predict ranges of 

the cutting line depending on the selected accuracy of the servo motors, so that 

the customer can decide if the expected accuracy of the real laser cutting 

machine is adequate.  

Symmetrical design (according to which all rods of the Pintograph and the 

distance between motors are equal) is not the only possible option. Shortening 

the distance between motors (L2=10mm) significantly increases the drawing 

zone of a Pintograph (see Fig. 10). This can be useful in some specific cutting 

cases.  

 
Fig. 10. Drawing map for the modified distance between motors  

(L2=10mm; L1=L3=L4=L5=L6=100 mm). 

 

By modifying parameters of the Pintograph (modifying the values in the 

simulator’s toolbox) one can select optimal customization for the specific task 

requirements and evaluate the expected drawing zone and accuracy of the 

resulting Pintograph.  
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5  Conclusions 
 

The software developed for the Monte-Carlo simulator enables evaluation of the 

drawing zone and drawing accuracy of the 4-rod Pintograph for the selected set 

of parameters. Simulator runs reveal that the 4-rod Pintograph with unit length 

of 100 mm achieves accuracy of 0.3 mm in the center of the drawing zone, 

which is good enough for an inexpensive DIY  laser cutting machine or laser 

engraving machine. When better accuracy is required, designs with the 

customer’s selected sizes and tolerances of Pintograph elements can be tested. 
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Abstract 

In the present work we develop some new results for the distribution of order statistics coming from 

a sample of random variables, with random sample size. Let   be a non-negative integer valued 

random variable and denote by         an infinite sequence of independent and identically distributed 

random variables, independent of  . Our interest focuses on the distribution of the r-th order statistic 

     of a random sample            whose length   is a random variable. Besides some new results 

pertaining to the exact distribution of     , several interesting outcomes are developed when N belongs 

to wide class of discrete distributions such as the family of power series distributions and the Panjer 

Family. Finally, we illustrate how the stochastic model under study can be exploited for modeling 

problems arising in the monitoring of non-performing loans, a procedure of crucial importance in 

financial risk management. 

Keywords: Non-performing loans; Panjer family; power series distributions; random order statistics; risk 

management; samples of random size. 

1. Introduction 

The motivation of the model studied in the present article stems from several applications 

of order statistics in numerous areas of applied science such as financial risk management, 

actuarial science, quality control, reliability, data mining, engineering etc; to mention a few  

a. in financial risk management and actuarial science one may be interested in the 

minimum and maximum loss generated by a portfolio of loans, securities, insurance 

contracts etc. 

b. in outlier and anomaly detection, one would naturally be interested in answering the 

question what is the probability that the largest observation or the   larger 

observations of a randomly collected sample are as large as the suspiciously large value 

he/she has observed;  

c. in engineering reliability, the life of the   out of n system is clearly associated to the 

     largest or      smallest of the component lifetimes.  

                                                             
1 vkoutras@icloud.com, mkoutras@unipi.gr 
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d. in Statistical Quality Control, two popular classes of control charts are the  ̅    chart 

and the median   chart which are making use of the smallest, largest and the median 

observation of a sample 

For a more detailed list of theory and applications of order statistics, the interested reader 

may refer to Arnold et al. (1992)), Balakrishnan and Rao (1998a), (1998b) and David and 

Nagaraja (2003). 

In many biological, mechanical engineering, agricultural and quality control problems 

some observations may get lost, for a variety of reasons, and therefore the sample size is not 

fixed. In another setup, the sample size may depend on the occurrence of some random 

events, which makes the sample size random.  

The probabilistic framework for this case can be described as follows. Let   be a non-

negative integer valued random variable and denote by         a (infinite) sequence of 

independent and identically distributed random variables, independent of  . Our interest 

focuses on the distribution of the r-th order statistic      of a random sample            

whose length   is a random variable. For     we have the smallest observation in the 

sample, while     produces the largest one. 

As an example let us consider the following experiment described by Consul (1984). A 

sample of animals is exposed to a dose of radiation and the interest then focuses on the times 

that the first and the last die. Since the animals that we observe after the radiation is not the 

whole population but a random number of them (assume for example, that we mark-up the 

radiated animals and after some time we recapture N of them), we are in fact looking at the 

maximum and minimum of a sample with a random size. The time till the first and the last 

animal dies is described is                 and                 respectively, while 

the time till r of the recaptured animals die equals     .  

Under another setting, in a transportation problem (see Shaked and Wong (1997a), 

(1997b))                 describes the accident-free distance of a shipment of explosives, 

with N of them being defective (N is a random variable); each of the defective items may 

explode and cause an accident after           miles, respectively.  

A third example comes from the area of biostatistics, and refers to the so-called cure rate 

models, see e.g. the recent article of Koutras and Milienos (2007) and references therein. Let 

N denote the number of clonogens (carcinogenic cells) left active after a cancer treatment, and 

assume that N follows a specific discrete distribution. A non-negative random variable    is 

assigned to each surviving clonogen, denoting the time for the   th clonogenic cell to 

produce a detectable cancer mass. Then,                 accounts for the population 

time-to-event. Note that under this scenario, adopting the convention      almost surely, 
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the probability of tumor cure is defined as the probability of the event    , i.e. no 

clonogens survived by the end of the treatment. 

Random minima, maxima and more generally order statistics arise also in the study of 

floods, droughts, and breaking strength experiments as well as in financial risk management, 

actuarial science, biostatistics, educational psychology, statistical quality control, reliability, 

etc. In Section 4 we describe in detail some problems encountered in financial risk 

management which call for the study of random order statistics and illustrate how the results 

developed in the present MS can be fruitfully used to handle them. 

An early study of order statistics associated with a sample of random size was provided by 

Epstein (1949); his study was focused in the case when the random sample size N follows a 

Poisson distribution. His work was motivated from the need to study particles that are 

distributed over unit areas in such a way that the number of particles to be found in each areas 

is a random variable following the Poisson law; the particles themselves are assumed to vary 

in magnitude according to a prespecified size distribution (independently of the particular unit 

area chosen) and the problem is to find the distribution of the smallest, largest, or more 

generally the   th smallest or      largest particle in a randomly chosen unit area. 

Raghunandanan and Patil (1972) presented some results for the distribution function of the 

   order statistic when the sample size N has a binomial or a negative binomial distribution, 

while Consul (1984) and Gupta and Gupta (1984) considered the case when N follows a 

generalized negative binomial distribution, generalized Poisson and generalized logarithmic 

series distribution,. For more general results, see Rohatgi (1987).  

Berman (1962), Barndorff-Nielsen (1964), Silvestrov and Teugels (1998), Barakat and El-

Shandidy (1990) and Voorn (1989) studied the limiting distributions of the maximum of a 

random number of dependent and independent random variables. Ahsanullah (1988), 

Grudzien and Szynal (1998) and Voorn (1987) used order statistics from a sample with 

random size for characterization of distributions.  

Recently, many researchers have studied stochastic comparisons of order statistics 

associated to random sample sizes; see Nanda et. al (2005), Nanda and Shaked (2008) and 

references therein. 

The present paper is organized as follows. In Section 2, we introduce some definitions and 

notations and present a few preliminary results on the distribution of a random order statistic, 

namely the r-th order statistic      of a random sample            whose length   is a 

random variable. Section 2 provides some new general results for the cumulative distribution 

function and probability mass function of random order statistics while Section 3 presents 

several interesting outcomes when   belongs to classical discrete distributions or wide classes 

of discrete distributions such as the power series and the Panjer family. Finally, in Section 4 

we illustrate how the stochastic model under study can be exploited for modeling problems 

593



arising in financial risk management, and more specifically in the study of non-performing 

loans. 

2. Definitions and Preliminaries 

In this section we shall present the notations that will be used in the MS and some 

preliminary results on the distribution of order statistics coming from a sample with random 

size.  

To fix our notations, assume that         is a sequence of positive valued iid random 

variables and denote by              their common cumulative distribution function 

(cdf) and by      the respective probability mass function (pmf). Let also   be a discrete 

random variable independent of        . with support              or a subset of    and 

denote by             ∑          
    the probability generating function (pgf) of 

N. The random variable of interest in the present article is defined as follows 

  {
                           

                   
 

that is, we are looking at the r-th order statistic of a random sample            of random 

length, under the assumption that, when the number of observed values in the random sample 

are not sufficient to compute the r-th order statistic (   ) we conventionally set the value 

of   to be zero.  

Since                , the random variable T has a mixed-type distribution 

with support        . More specifically, a part of the distribution of T is concentrated at 

the discrete set        and the rest 

of it is continuously spread over the 

interval         . 

Denoting by              the 

cdf of T (see Figure 1) and by       

the respective pmf, we shall have 

                    and 

        
     for all         . 

Needless to say, if the support of 

  is a subset of              then                and the distribution of T reduces 

to a classical continuous distribution. 

In this case, the cdf of T can be expressed in terms of the cdf of the order statistic      (see 

e.g. Arnold et al. (1992) or David and Nagaraja (2003)) 

     
    

  

            
∫                              

    

 

 

Figure 1. The pdf       of the random variable T. 
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as follows 

      ∑         |          

 

   

 ∑      
          ∑                      

 

   

 

   

 

where         denotes the incomplete Beta ratio function with parameters     (see also 

Nanda et al. (2005)). Apparently, if the support of   is            then we may write 

   |             |     
 

      
     

    for all      and    . 

3 Main Results 

In the present section we shall present some results pertaining to the evaluation of the cdf 

and pmf of the random variable  .  

Proposition 1. The cdf of T is given as follows 

      {

                                                                         

       ∑
 

  
  

   
(      )     

 

   

           
 

Proof. Manifestly                    . Assume next that      Conditioning on 

the value of the random variable   we may write 

      ∑      |          

   

   

 ∑      |          

 

   

 

and taking into account that 

     |     {
                                   

    
                                        

 

we may easily arrive at the expression 

             ∑                 

 

   

 

Substituting the well-known expression for the cdf of the r-th order statistic in a fixed 

length sample (see e.g. Arnold et al. (1992) or David and Nagaraja (2003)) 

          ∑ (
 
 
)      (      )

   
 

   

  

we obtain  

             ∑ ∑ (
 
 
)     (      )

   
 

   

       

 

   

 

and interchanging the order of summation we deduce the expression 
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) (      )

   
         

 

   

)      

 

   

                

Note next that, by differentiating   times the formula             ∑       
  
   

   we obtain 

  
   

    ∑     
         

 

   

 

and therefore  

 

  
  

   
(      )  ∑ (

 
 
) (      )

   
      

 

   

  

Thus formula (1) may be rewritten in the equivalent form 

             ∑
 

  
  

   
(      )     

 

   

                                    

It is worth noting that the infinite sum appearing in the formula of Proposition 1 may be 

evaluated easier through a finite sum, since  

∑
 

  
  

   
(      )     

   

   

 ∑
 

  
  

   
(      )     

 

   

          

Note also that, as expected since we are dealing with a mixed-type distribution with 

positive mass at 0, the cdf       is not continuous at    . Manifestly               

             while                . Needless to say, if the support of the discrete 

random variable   is           or a subset of that set, then the distribution of   becomes 

absolutely continuous.  

The next Corollary follows immediately from Proposition 1, after some elementary algebra. 

Corollary 1. The cdf of T obeys the next recurrence 

                     
 

  
  

   
(      )      

with initial condition 

      {
                              

  (      )         
 

In the next Proposition we provide a closed formula for the pmf of     

Proposition 2. The pmf of T is given as follows: 

      {

                                                                   
 

      
  

   
(      )                     
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Proof. The first part of the formula is obvious (results from the definition of   ). In order to 

get an expression for     we recall the result stated after the proof of Proposition 1, to write 

      as 

               ∑
 

  
  

   
(      )     

   

   

            

and then differentiate this expression to get 

        
     

 

  
(            ∑

 

  
  

   
(      )     

   

   

)  

Therefore 

        
 (      )    

 ∑
 

  
   

     
(      )            

   
(      )             

   

   

     

Note next that  

∑
 

  
  

   
(      )            

   

   

   
 (      )     ∑

 

  
  

     
(      )          

   

   

 

a fact that leads to the cancelation of all the terms of the sum appearing in (2), apart from the 

last term 
 

      
  

   
(      )           . This concludes the proof.     

The formula given in Proposition 2 for     is closely related to the expression provided 

by Rohatgi (1987) for the conditional distribution of   given that    .  

3. Families of random order statistics distributions 

In this section we shall present some results pertaining to the evaluation of the probability 

mass function of   for some well known families of distributions. Let us consider first the 

cases where   follows the Poisson, Binomial and Negative binomial distributions. 

a. Poisson distribution 

If   follows a Poisson distribution with parameter  , i.e.  

              
  

  
                 

then the pgf of   will be given by the formula                           and it is 

not difficult to verify that  

  
   

         (       )  

Applying Proposition 2 we get 
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     (      )            

or equivalently 

        (    )     

where       denotes the pmf of a Gamma distribution with parameters   and  .  

In the special case where   follows the power distribution with cdf              , 

the pmf of   takes on the form 

      
   

    
                              

It is of interest to note that, the continuous part of the mixed distribution that has been 

produced, is proportional to the pmf of Stacy’s (1962) generalized gamma distribution. The 

new distribution, however, has its support limited in the interval [0,1) with a positive mass 

placed at      

Note alos that, for     (in which case the random variable   follows a uniform 

distribution in the interval (0, 1)), the pmf of  , for       becomes proportional to the 

pmf of the typical gamma distribution. 

b. Binomial distribution 

If   follows a binomial distribution with pmf  

       (
 
 

)                     

then the pgf of   is given by the formula                     where       and 

it’s   th derivative reads  

  
   

                        for       

Applying Proposition 2 we arrive at the formula 

       (
 
 
) (       )

   
            

In the special case where   follows the power distribution with cdf              , 

the pmf of   takes on the form 

        (
 
 
)                                  

It is worth noting that, in this case, the distribution of     has a continuous part that is 

proportional to the continuous part of the beta distribution with parameters       and  . 

For a similar result pertaining to a conditional distribution see Raghunandanan and Patil 

(1972). 

c. Negative Binomial distribution 
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If   follows a Negative Binomial distribution with pmf  

       
      

      
                 

then the pgf of   will be given by the formula             (
 

    
)
 

 and it is easy to 

verify that  

  
   

    
      

    

     

           

Applying Proposition 2 we get 

      
      

        

     

(       )
                

In the special case where   follows the power distribution with cdf              , 

the pmf of   takes on the form 

      
       

        

          

                  

Before closing this section we shall provide some general results for two families that 

contain all three distributions mentioned above, more specifically the family of Power series 

distributions and the Panjer family.  

Suppose that              is a sequence of nonnegative real numbers such that the 

series       ∑      
    converges for all         . A discrete random variable   has the 

power series distribution associated with the function      (or equivalently with the sequence 

            ) if it has pmf of the form 

       
    

    
            

(see Johnson et al. (2005)). In this case, the pgf of   takes on the form 

      
     

    
 

and differentiating it   times we obtain 

  
       

          

    
  

It is now easy to verify that the pmf of   is given by the formula 

      
  

          
     (      )            
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(compare to a similar formula provided by Rohatgi (1987) for the conditional distribution of 

  given that    ). Since the Poisson, Binomial and Negative Binomial distributions are 

members of the family of Power Series distributions, it is not difficult to check that the 

formulae provided above for the pmf of  , can be obtained as well by a direct  application of 

the last expression. 

Another wide family of discete distributions, with many applications in the Actuarial 

Science  is the celebrated Panjer family (see e.g. Panjer (1981) or Bowers et al. (1997)). A 

discrete random variable N is a member of the Panjer family, otherwise known as the         

class of distributions (          ), if the pmf                    of N satisfies the 

recurrence relation 

   (  
 

 
)                    

 

with initial condition             

The Panjer family          includes as special cases many classical discrete distributions; 

see next table where the values of the parameters     as well as the initial condition are 

provided for the three distributions mentioned earlier.  

Distribution                  

Binomial (
 
 

)            
 

   
 

      

   
        

Poisson   
  

  
 0       

Negative binomial 
       

      
                           

Table 1. Classical discrete distributions as special cases of the Panjer Family. 

Hess et al. (2002) proved that the pgf of            satisfies the differential equation 

        
               . One may easily verify by induction that   

       can be 

expressed in terms of   
     

    by the formula 

        
               

          

A direct application of Proposition 2 yields the next result. 

Proposition 3. If             then the pmf            of T satisfies the next recurrence 

relation 

      
    

   

    

   (      )
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with initial condition 

      
   

           
      

A repeated application of Proposition 3, leads to the following closed formula for the pmf 

of      . 

Proposition 4. If             then the pmf            can be expressed as 

      
∏        

   

      

        

(   (      ))
   (      )                          

Needless to say, by applying the formula of Proposition 4 for the special case of a Poisson, 

Binomial and Negative Binomial distribution (Table 1 provides the appropriate values of the 

parameters     for each case), we may reproduce again the results obtained earlier for the 

three classical discrete distributions. 

4. An application to financial risk management 

The European Banking Authority (EBA, http://www.eba.europa.eu/), established on 

January 1
st
, 2011 as part of the European System of Financial Supervision (ESFS), is an 

independent EU Authority which works to ensure effective and consistent prudential 

regulation and supervision across the European banking sector. Its overall objectives are to 

maintain financial stability in the EU and to safeguard the integrity, efficiency and orderly 

functioning of the banking sector. The main task of the EBA is to contribute to the creation of 

the European Single Rulebook in banking whose objective is to provide a single set of 

harmonised prudential rules for financial institutions throughout the EU. The Authority also 

plays an important role in promoting convergence of supervisory practices and is mandated to 

assess risks and vulnerabilities in the EU banking sector. 

One of the major activities of EBA is to set rules and supervise the actions of the European 

banking sector for the “non-performing exposures” (NPE’s). According to paragraph 145 of 

Annex V of the EBA FINAL draft Implementing Technical Standards on Supervisory 

reporting on forbearance and non-performing exposures under article 99(4) of Regulation 

EU575/2013, non-performing exposures are those that satisfy either or both of the following 

criteria: 

a. material exposures which are more than 90 days past-due; 

b. the debtor is assessed as unlikely to pay its credit obligations in full without realization 

of collateral, regardless of the existence of any past-due amount or of the number of 

days past due. Therefore, the definition of NPE’s is based on the “past-due” criterion 

and the “unlikely-to-pay” criterion. 
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Let us next set up a probabilistic model associated with the monitoring of the “health” a 

portfolio of non-performing loans (NPL’s). At the start of the monitoring period we have at 

our disposal a portfolio of performing loans. At a specific time point in the future, a number 

  of the loans will have transitioned to a non-performing status. Apparently   is a discrete 

random variable. After restructuring each one of the N NPL’s, the stochastic behavior of the 

portfolio is associated to the following variables: 

  : time elapsed until the i-th restructured loan returns to a Non-Performing status (becomes 

again an NPL) 

  : loss incurred by the i-th restructured loan that returned to a Non-Performing status. 

Apparently, a monetary financial institution will be primarily interested in the stochastic 

behavior of the following random variables: 

           : the minimum time elapsed until a restructured loan of the portfolio 

returns to a Non-Performing status. 

           : the time until all portfolio restructured loans return to a Non-

Performing status. 

           : the minimum loss incurred by a restructured loan, that returned to a 

Non-Performing status. 

           : the maximum loss incurred by a restructured loan, that returned to a 

Non-Performing status. 

Under a more general setup, one may look at the   th smallest or the   th largest of the 

random variables      . 

Manifestly the simplest scenario for the problem described above, is to assume that at the 

start of the monitoring period we have at our disposal a portfolio of   performing loans and 

each of them has a fixed probability   to transition to a non-performing status at a specific 

time point in the future. Under these assumptions, the number   of the loans that will have 

transitioned to a non-performing status by the time we are focusing on, will follow a Binomial 

distribution with pmf  

       (
 
 

)                             

Taking into account Proposition 1 and the analysis carried out for the Binomial model in 

Section 3, we may state that the cdf of the random variable describing the time till the      

worst restructured loan has transitioned again to non-performing status, is given by the 

following formula  

             ∑ (
 
 

)                    

 

   

             

or equivalently 
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        ∑ (
 
 

) [           (       )
   

(     )
 
]

 

   

              

Therefore, should we have an estimate of the cdf      of the time    until a restructured 

loan returns to non-performing status (e.g. through the empirical cdf calculated by the use of 

past data), it is easy to compute the future behavior of the portfolio for all time instances  . 

The same analysis can be repeated by exploiting the random variable    describing the 

loss incurred by the i-th restructured loan that returned to a Non-Performing status instead of 

the time    elapsed until the i-th restructured loan returns to a Non-Performing status. By this 

approach we shall create a model describing the stochastic behavior of the minimum, 

maximum or, more generally, the   th smallest loss incurred by the restructured loan 

portfolio. 

In closing we mention that if the probability   to have a transition to a non-performing 

status is very small (this is a plausible assumption in some banking activities, e.g. in Project 

financing), one may use the Poisson model instead of the Binomial model for the random 

variable    In this case the cdf of the random variable describing the time till the      worst 

restructured project loan has transitioned again to non-performing status, will be given by the 

formula  

                        ∑
(     )

 

  

 

   

 

for    , or equivalently 

             ∑
  

  

   

   

            ∑
(     )

 

  

 

   

  

Acknowledgment  

Work funded by National Matching Funds 2014-2016 of the Greek Government, and more 

specifically by the General Secretariat for Research and Technology (GSRT), related to EU 

project “ISMPH: Inference for a Semi-Markov Process” (GA No 329128). 

 

References 

Ahsanullah, M. (1988). Characteristic properties of order statistics based on random sample 

size from an exponential distribution. Statistica Neerlandica, 42,193–197. 

Arnold, B., Balakrishnan, N., Nagaraja, H. (1992). A First Course in Order Statistics. New 

York, John Wiley & Sons. 

Balakrishnan, N., Rao, C. R. (1998a). Handbook of Statistics 16 – Order Statistics, Theory 

and Methods. Amsterdam, Elsevier Science B. V. 

Balakrishnan, N., Rao, C. R. (1998b). Handbook of Statistics 17 – Order Statistics, 

Applications. Amsterdam, Elsevier Science B. V. 

603



Barakat, H. M. and El-Shandidy, M. A. (1990). On the limit distribution of the extremes of a 

random number of independent random variables. Journal of Statistical Planning and 

Inference, 26, 353-361. 

Barndorff-Nielsen, O. (1964). On the limiting distribution of the maximum of a random 

number of independent random variables. Acta Mathematica Academiae Scientiarum 

Hungaricae, 15,399–403. 

Berman, S. M. (1962). Limiting distribution of the maximum term in sequences of dependent 

random variables. Annals of Mathematical Statistics, 33,894–908. 

Bowers, N. L., Hickman, J. C., Gerber, H. U., Nesbitt, C. J. and Jones D. A. (1997). Actuarial 

Mathematics (2
nd

 Edition). Society of Actuaries. 

Consul, P. C. (1984). On the distributions of order statistics for a random sample size. 

Statistica Neerlandica, 38,249–256. 

David, H. A., Nagaraja, H. (2003). Order Statistics (3rd edition). John Wiley & Sons, 

Hoboken,  NJ. 

Epstein, B. (1949). A modified extreme value problem. Annals of Mathematical Statistics, 20, 

99–103. 

Grudzien, Z., Szynal, D. (1998). On characterizations of continuous distributions in terms of 

moments of order statistics when the sample size is random. Journal of Mathematical 

Science, 92, 4017–4022. 

Gupta, D., Gupta, R. C. (1984). On the distribution of order statistics for a random sample 

size. Statistica Neerlandica, 38, 13–19. 

Johnson, N. L., Kotz, S. and Kemp, A. W. (2005). Univariate Discrete Distributions. John 

Wiley & Sons, N. Y. 

Koutras, M.V., Milienos, F.S. (2017). A flexible family of transformation cure rate models. 

Statistics in Medicine, 36, 2559-2575. 

Nanda, A. K., Misra, N., Paul, P. , Singh, H. (2005). Some properties of order statistics when 

the sample size is random. Communications in Statistics-Theory and Methods, 34, 2105-

2113. 

Nanda, A. K., Shaked, M. (2008). Partial ordering and aging properties of order statistics 

when the sample size is random: A brief review. Communications in Statistics-Theory and 

Methods, 38, 1710- 1720.  

Panjer, H. H. (1981). Recursive evaluation of a family of compound distributions. ASTIN 

Bulletin, 12, 22–26. 

Raghunandanan, K., Patil, S. A. (1972). On order statistics for random sample size. Statistica 

Neerlandica, 26, 121–126. 

Rohatgi, V. K. (1987). Distribution of order statistics with random sample size. 

Communications in Statistics-Theory and Methods, 16, 3739–3743. 

Shaked, M., Wong, T. (1997a). Stochastic orders based on ratios of Laplace transforms. 

Journal of Applied Probability, 34, 404–419. 

Shaked, M., Wong, T. (1997b). Stochastic comparisons of random minima and maxima. 

Journal of Applied Probability , 34, 420–425. 

Silvestrov, D. S., Teugels, J. L. (1998). Limit theorems for extremes with random sample 

size. Advances in Applied Probability, 30, 777–806. 

Stacy, E. W. (1962). A Generalization of the Gamma Distribution. The Annals of 

Mathematical Statistics, 33, 1187-1192. 

Voorn, W. J. (1987). Characterization of the logistic and loglogistic distributions by extreme 

value related stability with random sample size. Journal of Applied Probability, 24,838–

851. 

Voorn, W. J. (1989). Stability of extremes with random sample size. Journal of Applied 

Probability, 26,734–743. 

604



_________________ 

17
th

  ASMDA Conference Proceedings, 6 - 9 June 2017, London, UK 
 

© 2017 CMSIM               

 

Climate-weather change process realizations 

uniformity testing for maritime ferry operating area 
 

Ewa Kuligowska
1
 and Mateusz Torbicki

2
 

 

1
  Gdynia Maritime University, Gdynia, Poland 

     (E-mail: e.kuligowska@wn.am.gdynia.pl) 
2

  Gdynia Maritime University, Gdynia, Poland 

     (E-mail: m.torbicki@wn.am.gdynia.pl) 

 

Abstract. The paper is concerned with a method for statistical data uniformity testing 

applied to the realizations of the climate-weather change process empirical conditional 

sojourn times coming from different measurement points for maritime ferry operating at 
Baltic Sea open waters. The collected empirical data sets during Februaries of the years 

1988-1993 at the four measurement points are under consideration. Assuming that the 

statistical data sets are separate, the verification of the non-parametric hypotheses on the 

basis of Kolmogorov-Smirnov test and Wald-Wolfowitz runs test is prepared. In the case 
when the null hypothesis about the uniformity data sets for two measurement points is 

not rejected, corresponding to each other statistical data sets of realisations are joined. 

After using this approach, the climate-weather change process at the fixed area is better 

described. 
Keywords: climate-weather change process, uniformity testing, maritime ferry. 

 

1  Introduction 
 

The model of the climate-weather change processes is proposed in [2].  

The statistical data for estimating the unknown parameters of the climate-

weather change process very often come from different experiments of the same 

climate-weather change process and are collected into separate data sets. 

Furthermore, these data sets may be collected at different measurement points  

of the critical infrastructure operating area with some of the points located close 

to each other. Thus, before the climate-weather change process identification, 

the investigation of these empirical data uniformity is necessary. In this paper, 

the uniformity test is described in general and applied to the data sets including 

climate-weather change process realisations coming from four measurement 

points at maritime ferry operating area. 

 

2  Modeling of climate-weather change process 
 

We assume, as in [2], that the climate-weather change process for the critical 

infrastructure operating area is taking w, w  N, different climate-weather states 

c1, c2, ..., cw. Next, we mark by C(t), t  <0,+∞), the climate-weather change 
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process, that is a function of a continuous variable t, taking discrete values in the 

set {c1, c2, ..., cw} of the climate-weather states. We assume a semi-Markov 

model [1,4-9] of the climate-weather change process C(t) and we mark by Cbl its 

random conditional sojourn times at the climate-weather states cb, when its next 

climate-weather state is cl, b,l  1,2,…,w, b  l. 

Consequently, the climate-weather change process may be described by the 

following parameters [3]: 

- the vector [qb(0)]1×w of the initial probabilities of the climate-weather change 

process C(t) staying at the particular climate-weather states cb,  

b = 1,2,…,w, at the moment t = 0; 

- the matrix [qbl(t)]w×w of the probabilities of the climate-weather change 

process transitions between the climate-weather states cb and cl, 

b,l = 1,2,…,w, b  l; 

- the matrix [Cbl(t)]w×w of the distribution functions of the climate-weather 

change process conditional sojourn times Cbl at the climate-weather states, 

b,l = 1,2,…,w, b  l. 

 

3  Procedure of statistical data uniformity analysis 
 

3.1  Uniformity analysis of two realizations samples 

 

We consider Kolmogorov-Smirnov test and Wald-Wolfowitz runs test [3] that 

can be used for testing whether two independent samples of realizations of the 

conditional sojourn times at the climate-weather states of the climate-weather 

change process are drawn from the population with the same distribution. We 

assume as in [7], that we have two independent samples of non-decreasing 

ordered realizations 

 

,1k
blC  ,,...,2,1 1

bl
nk   and ,2k

blC  ,,...,2,1 2

bl
nk                                                      (1) 

 

of the sojourn times 1
blC  and ,2

blC  b,l  {1,2,...,w}, b ≠ l, respectively 

composed of 1

bl
n  and 2

bl
n  realizations and we mark their empirical distribution 

functions by 
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n
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n
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3.1.1  Kolmogorov-Smirnov test for homogeneity 

 

The Kolmogorov-Smirnov test for two independent samples is used to check 

whether the maximum absolute difference between two distribution functions is 

significant. According to Kolmogorov-Smirnov theorem, we can use the test, if 

both sample sizes are large, i.e., we assume that each statistical data set contains 

at least 30 realizations. 

The sequence of distribution functions given by the equation [7] 
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                                                                         (6) 

 

is convergent, as ,n  to the limit distribution function  

,)1()(
222







k

kk eQ   .0                                                                         (7) 

 

The distribution function )(Q  given by (7) is called   distribution and its 

tables of values are available.  

The convergence of the sequence )(21 nnQ  to the   distribution )(Q  means 

that for sufficiently large 
1

n  and 
2

n  we may use the following approximate 

formula  

).()(21  QQ nn                                                                                                  (8) 

 

Hence, it follows that if we define the statistic 

 

,21 nDU nnn                                                                                                     (9) 
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where 21nnD  is defined by (6), then by (7) and (8), we have 

 

)()( 21 unDPuUP nnn  )( 21

n

u
DP nn  )()(21 uQuQ nn  , for .0u  (10) 

 

This result means that in order to formulate and next to verify the hypothesis 

that the two independent samples of the realizations of the climate-weather 

change process conditional sojourn times 1
blC  and ,2

blC  b,l  {1,2,...,w}, b ≠ l, 

at the climate-weather state cb, when the next transition is to the climate-weather 

state cl, b,l  {1,2,…,w}, b  l, are coming from the population with the same 

distribution, it is necessary to proceed according to the following scheme:  

- to fix the numbers of realizations 
1

bl
n  and 

2

bl
n  in the samples; 

- to collect the realizations (1) of the conditional sojourn times 1
blC  and 2

blC  of 

the climate-weather change process in the samples; 

- to find the realization of the empirical distribution functions )(1 tCbl  and )(2 tCbl  

defined by (2) and (3) respectively, in the following forms: 
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and 
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- to calculate the realization of the statistic 

n
u  defined by (9) according to the 

formula                           
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- to formulate the null hypothesis H0: The samples of realizations (1) are coming 

from the populations with the same distributions. In the case when the null 

hypothesis H0 is not rejected we may join the statistical data from the considered 

two separate sets into one new set of data. 

 

3.1.1  Wald–Wolfowitz runs test for homogeneity 

 

The Wald–Wolfowitz test utilizes a runs approach to examine the similarity 

between two statistical data sets in the case, when one or both samples contain 

more than 4 and less than 30 realisations [3]. 
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We consider two separate sets of independent random variables of the sojourn 

times 
1
blC  and 

2
blC , b,l  {1,2,…,w}, b  l, coming from two different 

experiments, respectively composed of 1
bln  and 2

bln  realizations [3]. A run  

of a sequence is a non-empty segment of the sequence consisting  

of adjacently ranked realisations. Assuming the continuous probability 

distributions of the sojourn times 
1
blC  and 

2
blC  given by (11), a unique ordering 

is always possible, since the ties do not exist [3]. 

We define the test statistics Un as the total number of runs in the combined 

ordered arrangement of 
1
bln  realisations of the climate-weather change process 

conditional sojourn time 
1
blC  and 

2
bln  realisations of the climate-weather change 

process conditional sojourn time 
2
blC . 

If 
1
bln  ≥ 20 and 

2
bln  ≥ 20, then the distribution of Un can be approximated  

to normal distribution with the mean 1
2 21


bl

blbl

n

nn  and variance 
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where 21 , blbl nnr  is the total number of runs in the combined ordered arrangement, 

1
bln  and 

2
bln  are the numbers of realisations in the samples and nbl is the total 

number of runs in the combined ascending ordered arrangement, i.e.  

nbl = 
1
bln  + 

2
bln . 

In order to formulate and next to verify the hypothesis that the two independent 

samples of the realizations of the climate-weather change process conditional 

sojourn times 
1
blC  and 

2
blC , b,l  {1,2,…,w}, b  l, at the climate-weather state 

cb when the next transition is to the climate-weather state cl are coming from the 

population with the same distribution, it is necessary to proceed according to the 

following scheme: 

- to fix the numbers of realizations 
1
bln  and 

2
bln  in the samples, 

- to collect the realizations (11) of the conditional sojourn times 
1
blC  and 

2
blC   

of the climate-weather change process in the samples, 
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- to combine two samples of realisations into a single ascending ordered 

sequence, keeping track of which realisations correspond to the conditional 

sojourn time 
1
blC  and which to the conditional sojourn time 

2
blC , 

- if both samples contain different realisations, rank the combined sample 

realisations and compute the number 21 , blbl nnr  of runs, 

- if the same value occur in both samples, arrange the realisations twice: first, to 

yield the fewest runs and again to yield the most runs, rank both combined 

sample realisations and compute the number 21 , blbl nnr  of runs as an average of the 

most and the fewest runs, 

- to calculate the realization of the statistic un = 21 , blbl nnr , 

- to formulate the null hypothesis H0: The samples of realizations (11) are 

coming from the populations with the same distributions. To verify the 

hypothesis, we use the tables of standard normal distribution values, if  
1
bln  ≥ 20 and 

2
bln  ≥ 20 or we use the tables of critical values for the Runs Test, if 

1
bln  ≥ 4, 

2
bln  ≥ 4 and 

1
bln  < 20 or 

2
bln  < 20. In the case when the null hypothesis 

H0 is not rejected, we may join the statistical data from the considered two 

separate sets into one new set of data. 

 

3.2  Uniformity analysis of data from two and more different 

measurement points 

 

Using Kolmogorov-Smirnov test or Wald-Wolfowitz runs test, we check the 

homogeneity of each pair of samples containing at least 4 realisations. 

Otherwise, because of the lack of sufficient numbers of realizations of the 

climate-weather change process conditional sojourn times at the climate-

weather states, it is not possible to identify statistically their distributions and 

perform the procedure of statistical data uniformity analysis. Thus, if there are 

no other sets of statistical data from two different measurement points or one of 

the samples contains less than 4 realisations, we assume the distributions' 

homogeneity and we can join the corresponding sojourn times realisations from 

the considered measurement points into new sets of data. 

To perform the procedure for three different measurement points containing the 

independent realisations samples, we consider the new joined data sets coming 

from the two successful uniformity tested measurement points and the data sets 

coming from the third measurement point. In the case when the all possible null 

hypotheses for all the climate-weather change process conditional sojourn times 

realisations are not rejected, we may join the corresponding statistical data sets 

into new sets of data. If there are more different measurement points, we repeat 

the steps presented above. 

 

4  Climate-weather change process realisations uniformity 

testing for maritime ferry operating area 
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The empirical data sets during Februaries of the years 1988-1993 at the four 

different measurement points at Baltic Sea open waters (Figure 1) were 

collected [2]. 

 

 

Point 1458. Maritime 
Ferry Operating at Baltic 

Sea Open Waters 

Point 1389. Maritime 
Ferry Operating at Baltic 

Sea Open Waters Point 1422. Maritime 
Ferry Operating at Baltic 

Sea Open Waters 

Point 1353. Maritime 
Ferry Operating at Baltic 

Sea Open Waters 

 
 

Fig. 1. Maritime ferry operating area between Karlskrona and Gdynia ports 

 

The procedure of statistical data sets uniformity testing will be applied to the 

empirical realizations of sojourn times at climate-weather states coming from 

realizations of a maritime ferry climate-weather change process collected in four 

different measurement points. 

 

The statistical data for the conditional sojourn times Cbl at the climate-weather 

states cb when the next climate-weather state is cl, b,l  {1,2,...,8}, b ≠ l, are as 

follows: 

- point 1353 

 the realizations C12: 6, 6, 15, 6, 21, 15, 123, 117, 93, 69, 45, 21, 93, 81, 57, 33, 

9, 51, 48, 24, 15, 3, 30, 27, 3, 96, 90, 15, 84, 69, 45, 21, 9, 30, 15, 21, 3, 69, 

51, 27, 3, 45, 27, 3, 261, 48, 27, 3, 3, 33, 9, 6, 3, 165, 141, 117, 93, 69, 45, 21, 

6, 6, 3, 78, 54, 30, 6, 45, 30, 6, 6, 18, 12, 81, 72, 48, 24, 69, 51, 27, 3, 30, 15, 

51, 27, 3, 42, 24, 69, 63, 12, 24, 21, 66, 63, 39, 15, 45, 39, 15, 57, 48, 24, 9, 6, 

114, 105, 81, 57, 33, 9, 12, 144, 129, 105, 81, 57, 48, 24, 264, 258, 234, 210, 

186, 162, 138, 114, 90, 66, 42, 18, 42, 21, 30, 18, 15, 12, 57, 54, 30, 6, 498, 

483, 459, 435, 411; 

 the realizations C15: 6, 6; 

 the realizations C21: 75, 57, 33, 9, 24, 15, 39, 18, 51, 42, 18, 15, 12, 12, 12, 42, 

21, 15, 9, 15, 9, 39, 36, 12, 30, 27, 3, 12, 9, 57, 54, 30, 6, 3, 3, 3, 3, 12, 6, 36, 

24, 33, 18, 24, 21, 30, 27, 3, 6, 12, 3, 18, 60, 42, 18, 3, 30, 6, 6, 33, 24, 51, 30, 

6, 18, 9, 48, 45, 21, 27, 18, 24, 15, 36, 12, 12, 9, 24, 15, 3, 18, 9, 9, 9, 3, 15, 

12, 3, 9, 3; 

 the realizations C25: 15, 27, 3, 36, 18, 9, 6, 15, 9, 21, 12, 6, 15, 12, 27, 18, 9, 3, 

15, 3, 3, 9, 51, 27, 3; 
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 the realizations C52: 6, 3, 3, 27, 21, 36, 18, 9, 12, 9, 6, 9, 3, 9, 3, 3, 3, 12, 3, 6, 

30, 24, 6; 

 the realizations C56: 9, 9, 9; 

 the realizations C62: 6; 

 the realizations C65: 24, 24, 15; 

 

- point 1389 

 the realizations C12: 6, 9, 18, 6, 21, 15, 129, 117, 93, 69, 45, 21, 93, 81, 57, 33, 

9, 78, 75, 51, 27, 3, 30, 27, 3, 99, 93, 9, 84, 69, 45, 21, 9, 27, 15, 93, 75, 51, 

27, 3, 45, 27, 3, 261, 45, 24, 3, 6, 33, 9, 6, 6, 165, 141, 117, 93, 69, 45, 21, 6, 

6, 3, 126, 102, 78, 54, 30, 6, 9, 105, 96, 72, 48, 24, 63, 48, 24, 24, 12, 51, 27, 

3, 12, 21, 18, 162, 159, 12, 18, 15, 33, 12, 45, 39, 15, 51, 45, 21, 3, 3, 114, 

105, 81, 57, 33, 9, 9, 141, 129, 105, 81, 57, 48, 24, 261, 258, 234, 210, 186, 

162, 138, 114, 90, 66, 42, 18, 39, 18, 15, 3, 9, 12, 42, 18, 6, 3, 498, 483, 459, 

435, 411; 

 the realizations C15: 6; 

 the realizations C21: 75, 57, 33, 9, 18, 12, 39, 18, 45, 36, 12, 15, 12, 12, 42, 21, 

15, 12, 15, 9, 42, 39, 15, 18, 3, 15, 12, 57, 54, 30, 6, 3, 3, 3, 15, 6, 36, 24, 33, 

18, 24, 18, 30, 27, 3, 6, 12, 18, 54, 39, 15, 21, 9, 12, 36, 24, 36, 30, 6, 3, 27, 

21, 12, 54, 48, 24, 12, 3, 30, 18, 27, 18, 42, 39, 15, 18, 12, 24, 15, 6, 21, 12, 

12, 9, 3, 18, 12, 6, 6, 12, 3, 6; 

 the realizations C25: 15, 30, 27, 3, 36, 18, 9, 6, 6, 18, 12, 3, 24, 15, 3, 6, 45, 42, 

18, 9, 15, 3, 3, 3, 3, 12, 12, 51, 27, 3; 

 the realizations C52: 6, 3, 3, 27, 21, 36, 18, 3, 9, 3, 3, 6, 3, 9, 9, 3, 9, 12, 3, 6, 3, 

3, 3, 6, 6; 

 the realizations C56: 12, 3, 6, 12, 9, 12, 9; 

 the realizations C62: 3; 

 the realizations C65: 6, 9, 24, 15, 9. 

 

- point 1422 

 the realizations C12: 6, 9, 21, 6, 21, 15, 132, 120, 96, 72, 48, 24, 93, 81, 57, 33, 

9, 78, 75, 51, 27, 3, 33, 30, 6, 99, 96, 9, 84, 69, 45, 21, 9, 27, 15, 459, 441, 

417, 393, 369, 345, 321, 45, 24, 3, 33, 9, 6, 6, 168, 165, 141, 117, 93, 69, 45, 

21, 9, 6, 3, 123, 99, 75, 51, 27, 3, 6, 63, 54, 30, 6, 39, 24, 63, 48, 24, 21, 12, 

51, 27, 3, 9, 15, 183, 180, 12, 15, 6, 30, 12, 45, 39, 15, 51, 45, 21, 3, 114, 105, 

81, 57, 33, 9, 12, 138, 129, 105, 81, 57, 48, 24, 261, 258, 234, 210, 186, 162, 

138, 114, 90, 66, 42, 18, 42, 21, 15, 3, 9, 12, 39, 18, 6, 3, 498, 483, 459, 435, 

411; 

 the realizations C15: 3,  6; 

 the realizations C21: 75, 57, 33, 9, 15, 9, 42, 18, 45, 36, 12, 12, 12, 42, 21, 15, 

12, 15, 9, 42, 39, 15, 21, 6, 15, 12, 57, 54, 30, 6, 3, 15, 6, 36, 24, 33, 18, 24, 

15, 27, 24, 6, 12, 21, 57, 39, 15, 3, 21, 9, 15, 36, 24, 36, 30, 6, 9, 30, 21, 15, 3, 

60, 54, 30, 6, 18, 6, 30, 18, 27, 18, 63, 60, 36, 12, 24, 15, 6, 21, 15, 12, 9, 3, 

15, 12, 6, 6, 15, 3, 3, 6; 
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 the realizations C25: 15, 30, 27, 3, 39, 21, 9, 6, 6, 24, 18, 24, 15, 6, 45, 42, 18, 

9, 3, 15, 3, 3, 3, 9, 12, 54, 30, 6; 

 the realizations C52: 3, 3, 12, 36, 18, 3, 9, 3, 6, 6, 6, 9, 3, 3, 3, 3, 3, 6, 3, 3; 

 the realizations C56: 9, 6, 9, 9, 9, 12, 9, 9, 6; 

 the realizations C62: 6, 3; 

 the realizations C65: 3, 27, 3, 30, 21, 15; 

 

- point 1458 

 the realizations C12: 9, 48, 33, 9, 30, 15, 132, 120, 96, 72, 48, 24, 93, 81, 57, 

33, 9, 75, 51, 27, 3, 36, 30, 6, 138, 135, 12, 84, 69, 45, 21, 9, 3, 30, 18, 462, 

444, 420, 396, 372, 348, 324, 48, 24, 6, 33, 9, 9, 3, 6, 171, 165, 141, 117, 93, 

69, 45, 21, 3, 12, 6, 3, 123, 99, 75, 51, 27, 3, 6, 63, 54, 30, 6, 39, 24, 63, 48, 

24, 21, 12, 57, 51, 27, 3, 12, 15, 201, 12, 18, 6, 30, 12, 45, 39, 15, 54, 48, 24, 

6, 18, 12, 90, 81, 57, 33, 9, 9, 138, 129, 105, 81, 57, 48, 24, 264, 261, 237, 

213, 189, 165, 141, 117, 93, 69, 45, 21, 42, 21, 18, 3, 12, 15, 39, 18, 507, 483, 

459, 435, 411; 

 the realizations C14: 6; 

 the realizations C21: 72, 57, 33, 9, 48, 33, 9, 45, 36, 12, 12, 15, 39, 18, 15, 12, 

15, 9, 42, 39, 15, 21, 6, 15, 12, 60, 54, 30, 6, 15, 3, 36, 24, 33, 18, 21, 12, 36, 

33, 9, 27, 24, 6, 9, 21, 57, 39, 15, 3, 21, 9, 15, 30, 18, 36, 30, 6, 6, 33, 24, 15, 

3, 57, 54, 30, 6, 18, 6, 30, 18, 27, 18, 60, 36, 12, 24, 18, 3, 9, 21, 15, 69, 45, 

21, 6, 3, 12, 9, 6, 3, 12, 3, 6; 

 the realizations C25: 69, 45, 21, 9, 6, 6, 3, 24, 18, 21, 15, 6, 6, 12, 12, 3, 3, 3, 

12, 12; 

 the realizations C32: 3; 

 the realizations C45: 3; 

 the realizations C52: 3, 15, 3, 6, 3, 3, 3, 3, 3, 3, 3, 3; 

 the realizations C53: 9,  3; 

 the realizations C56: 6, 3, 12, 6, 9, 9, 9, 6; 

 the realizations C62: 6, 48, 39, 15, 18; 

 the realizations C65: 15, 9, 3, 33, 30, 6. 

 

4.1  Uniformity testing for two measurement points 
 

We verify the hypotheses that the conditional sojourn times Cbl, b,l  {1,2,...,8}, 

b ≠ l, realizations of the maritime ferry climate-weather change process at the 

climate-weather states for the points 1353 and 1389 are from the populations 

with the same distribution. We use the two-sample   test for the conditional 

sojourn times C12 and C21 realisations (
1
12n  = 146, 

2
12n  = 141, 

1
21n  = 90,  

2
21n  = 92) and the Wald–Wolfowitz runs test for the conditional sojourn times 

C25, and C52 realisations (
1
25n  = 25, 

2
25n  = 30, 

1
52n  = 23, 

2
52n  = 25). To illustrate 

the application of the procedure of testing the data uniformity described in 
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section 3, we perform it for the conditional sojourn time C21. The conditional 

sojourn times 1
21C  and 2

21C  have the empirical distribution functions 
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0, t ≤ 3, 

12/90, 3 < t ≤ 6, 

18/90, 6 < t ≤ 9, 

28/90, 9 < t ≤ 12, 

38/90, 12 < t ≤ 15, 

45/90, 15 < t ≤ 18, 

53/90, 18 < t ≤ 21, 

56/90, 21 < t ≤ 24, 

62/90, 24 < t ≤ 27, 

65/90, 27 < t ≤ 30, 

70/90, 30 < t ≤ 33, 

73/90, 33 < t ≤ 36, 

76/90, 36 < t ≤ 39, 

78/90, 39 < t ≤ 42, 

81/90, 42 < t ≤ 45, 

82/90, 45 < t ≤ 48, 

83/90, 48 < t ≤ 51, 

85/90, 51 < t ≤ 54, 

86/90, 54 < t ≤ 57, 

88/90, 57 < t ≤ 60, 

89/90, 60 < t ≤ 75, 

90/90, t > 75; 
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The null hypothesis H0: The samples of conditional sojourn times 1
21C  and 2

21C  

realizations are coming from the population with the same distribution.  

To verify this hypothesis we will apply the two-sample   test at the 

significance level .05.0  Using the above empirical distributions (20),  

we form a common Table 1 composed of all their values. In Table 1, the values 

k
t  are joint together all realizations ,1

21
kC ,,...,2,1 1

21nk   and ,2
21

kC  

,,...,2,1 2
21nk   of the conditional sojourn times 1

21C  and 2
21C , i.e. they are all 

discontinuity points of the empirical distribution function )(1
21 tC  and )(2

21 tC  

were they have jumps in their values )(1
21 ktC  and )(2

21 ktC . 

 

Next, according to (16) and from Table 1, we get 



































)(2
21 tC

  

  

0, t ≤ 3,  

9/92, 3 < t ≤ 6, 

17/92, 6 < t ≤ 9, 

21/92, 9 < t ≤ 12, 

36/92, 12 < t ≤ 15, 

45/92, 15 < t ≤ 18, 

55/92, 18 < t ≤ 21, 

59/92, 21 < t ≤ 24, 

64/92, 24 < t ≤ 27, 

67/92, 27 < t ≤ 30, 

71/92, 30 < t ≤ 33, 

73/92, 33 < t ≤ 36, 

77/92, 36 < t ≤ 39, 

81/92, 39 < t ≤ 42, 

84/92, 42 < t ≤ 45, 

85/92, 45 < t ≤ 48, 

86/92, 48 < t ≤ 51, 

89/92, 51 < t ≤ 54, 

91/92, 54 < t ≤ 57, 

92/92, 57 < t ≤ 60, 

0, 60 < t ≤ 75, 

9/92, t > 75. 
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Table 1. Joint empirical distribution function 

k
k Ct 1

21 kC2
21   )(1

21 ktC  )(2
21 ktC  | )(1

21 ktC – )(2
21 ktC | 

3 0 0 0 

6 12/90 9/92 0.036 

9 18/90 17/92 0.015 

12 28/90 21/92 0.083 

15 38/90 36/92 0.031 

18 45/90 45/92 0.011 

21 53/90 55/92 0.009 

24 56/90 59/92 0.019 

27 62/90 64/92 0.007 

30 65/90 67/92 0.006 

33 70/90 71/92 0.006 

36 73/90 73/92 0.018 

39 76/90 77/92 0.007 

42 78/90 81/92 0.014 

45 81/90 84/92 0.013 

48 82/90 85/92 0.013 

51 83/90 86/92 0.013 

54 85/90 86/92 0.01 

57 86/90 89/92 0.012 

60 88/90 91/92 0.011 

75 89/90 91/92 0 

>75 90/90 92/92 0 

 

Thus, the realization nu  of  the statistics (9) is  

 

.560.049.45083.0219290  ndun  

 

From the table of the  distribution for the significance level ,05.0  we get 

the critical value .442.10  u  Since ,442.1560.0  uun  then we do not 

reject the null hypothesis H0. 

After proceeding in an analogous way with data in the remaining climate-

weather states we can obtain the same conclusions that the data sets composed 

of the conditional sojourn times 1
12C  and 2

12C  realizations are from the 
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populations with the identical distributions. To verify the hypotheses for the 

conditional sojourn times C25, and C52 realisations, we use the Wald–Wolfowitz 

runs test, described in section 3. Unless the numbers of realisations in the 

samples are greater than 20, the distribution of Un can be approximated to 

normal distribution, according to (19).  

It is not possible to verify the uniformity hypothesis for the conditional sojourn 

times C15, C56, C62 and C65 realizations because of the lack of sufficient numbers 

of those realizations. 

In the case when the all possible null hypotheses for all the climate-weather 

change process conditional sojourn times realisations are not rejected, we may 

join the corresponding statistical data sets into new sets of data. Finally, we 

obtain that for the points 1353 and 1389 the each considered pair  

of the conditional sojourn times realizations at the climate-weather states are 

from the populations with the same distribution. 
 

4.2  Uniformity testing for three measurement points 
 

We verify the hypotheses that the conditional sojourn times Cbl, b,l  {1,2,...,8}, 

b ≠ l, realizations of the maritime ferry climate weather change process at the 

climate-weather states for the joined samples (points 1353 and 1389) and the 

point 1422 are from the populations with the same distribution. We use the 

Kolmogorov-Smirnov test for the conditional sojourn times C12 and C21 

realisations (
1
12n  = 287, 

2
12n  = 138, 

1
21n  = 182, 

2
21n  = 91) and the Wald–

Wolfowitz runs test for the conditional sojourn times C25, C52, C56 and C65 

realisations (
1
25n  = 55, 

2
25n  = 28, 

1
52n  = 48, 

2
52n  = 20, 

1
56n  = 10, 

2
56n  = 9,  

1
65n  = 8, 

2
65n  = 6), according to the procedure described in section 3. The 

remaining conditional sojourn times at the particular climate-weather states have 

less than 4 realisations, thus, we cannot verify the hypotheses. 

In the case when the all possible null hypotheses for all the climate-weather 

change process conditional sojourn times realisations are not rejected, we may 

join the corresponding statistical data sets into new sets of data. Finally, we 

obtain that for the joined samples (points 1353 and 1389) and the point 1422 the 

each considered pair of the conditional sojourn times realizations at the climate-

weather states are from the populations with the same distribution. 
 

4.3  Uniformity testing for four measurement points 
 

We verify the hypotheses that the conditional sojourn times Cbl, b,l  {1,2,...,8}, 

b ≠ l, realizations of the maritime ferry at the climate-weather states for the 

joined samples (points 1353, 1389 and 1422) and the point 1458 are from the 

populations with the same distribution. We use the Kolmogorov-Smirnov test 

for the conditional sojourn times C12 and C21 realisations (
1
12n  = 425, 

2
12n  = 139,  

1
21n  = 273, 

2
21n  = 93) and the Wald–Wolfowitz runs test for the conditional 
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sojourn times C25, C52, C56 and C65 realisations (
1
25n  = 83, 

2
25n  = 20, 

1
52n  = 68, 

2
52n  = 12, 

1
56n  = 19, 

2
56n  = 8, 

1
62n  = 4, 

2
62n  = 5, 

1
65n  = 14, 

2
65n  = 6), according to 

the procedure described in section 3. The remaining conditional sojourn times at 

the particular climate-weather states have less than 4 realisations, thus, we 

cannot verify the hypotheses. 

In the case when the all possible null hypotheses for all the climate-weather 

change process conditional sojourn times realisations are not rejected, we may 

join the corresponding statistical data sets into new sets of data. Finally, we 

obtain that for the joined samples (points 1353, 1389 and 1422) and the point 

1458 the each considered pair of the conditional sojourn times realizations at the 

climate-weather states are from the populations with the same distribution. 
 

Conclusions 
 
The procedure of the uniformity testing of statistical data coming from different 

sets of realizations of the same climate-weather change process before joining 

them into one common set of data was practically applied for four different 

measurement points of the maritime ferry operating area. The results of this 

application to the climate-weather change process' empirical data uniformity 

testing justifies the proposed procedures practical importance in everyday 

practice. Considering the new joined data sets uniformly tested, we may improve 

the accuracy of the climate-weather change processes identification and prediction. 
 

Acknowledgments 
 

The paper presents the results developed in the scope of the EU-

CIRCLE project titled “A pan – European framework  

for strengthening Critical Infrastructure resilience to climate 

change” that has received funding from the European Union’s 

Horizon 2020 research and innovation programme under grant agreement  

No 653824. http://www.eu-circle.eu/. 
 

References 
 
1. V. Barbu and N. Limnios, Empirical estimation for discrete-time semi-Markov 

processes with applications in reliability. Journal of Nonparametric Statistics, 18, 7-
8, 483{498, 2006. 

2. EU-CIRCLE Report D2.1-GMU3, Modelling Climate-Weather Change Process 
Including Extreme Weather Hazards, 2016. 

3. EU-CIRCLE ReportD6.4-GMU1-12, Identification Methods and Procedures of 
Climate-Weather Change Process Including Extreme Weather Hazards, 2017. 

4. F. Ferreira and A. Pacheco. Comparison of level-crossing times for Markov and 
semi-Markov processes. Stat & Probab Lett vol. 77, 2, 151{157, 2007. 

5. F. Grabski. Semi-Markov Processes: Applications in System Reliability and 
Maintenance, 1st Edition, Elsevier Science & Technology, 2014. 

6. K. Kołowrocki. Reliability of Large and Complex Systems. Elsevier, 2014. 

618

http://www.eu-circle.eu/


7. K. Kołowrocki and J. Soszyńska-Budny. Complex system operation process 
realizations uniformity testing. 16th ASMDA Conference Proceedings, Applied 
Stochastic Models and Data Analysis 2015, Pireus, Greece, 2015. 

8. K. Kołowrocki and J. Soszyńska-Budny. Reliability and Safety of Complex 
Technical Systems and Processes: Modeling-Identification-Prediction-Optimization. 
Springer, 2011. 

9. N. Limnios and G. Oprisan. Semi-Markov Processes and Reliability. Birkhauser, 
Boston, 2005. 

619



 

620



_________________ 

17
th

  ASMDA Conference Proceedings, 6 - 9 June 2017, London, UK 
 

© 2017 CMSIM               

 

Identification and prediction of climate-weather 

change processes for port oil piping transportation 

system and maritime ferry operation areas  

after their realisations successful uniformity testing 
 

Ewa Kuligowska
1
 and Mateusz Torbicki

2
 

 

1
  Gdynia Maritime University, Gdynia, Poland 

     (E-mail: e.kuligowska@wn.am.gdynia.pl) 
2

  Gdynia Maritime University, Gdynia, Poland 

     (E-mail: m.torbicki@wn.am.gdynia.pl) 

 

Abstract. The paper is concerned with unknown climate-weather change process 

parameters identification after successful uniformity testing of data sets including its 

realisations coming from different measurement points. The data coming from points at 
port oil piping transportation system operating area and at the maritime ferry operating 

the area are under consideration. Finally, those identified climate-weather change 

processes are applied to their characteristics prediction. 

Keywords: climate-weather change process, port oil piping transportation system, 
maritime ferry. 

 

1  Introduction 
 

The general joint model linking the critical infrastructure safety model with the 

model of climate-weather change process at its operating area is constructed  

in [1]. To apply this model practically to the evaluation and prediction of the 

real critical infrastructure safety it is necessary to elaborate the statistical 

methods concerned to determining the unknown parameters of the climate-

weather change process [4-8]. In the case when the statistical data are coming 

from different experiments or the data sets may be collected at different, but 

close to each other measurement points at the critical infrastructure operating 

area, before the identification of parameters, the investigation of these data 

uniformity is necessary. The uniformity testing procedure for the climate-

weather change process data including its realisations from different 

experiments or the data sets is presented in [7,10]. Moreover, the methods of 

estimating the probabilities of the initial climate-weather states, the probabilities 

of transitions between the climate-weather states and the distributions of the 

sojourn times of the climate-weather change process at the particular climate-

weather states should be proposed. Fortunately, after successful uniformity 

testing and joining realisations of conditional sojourn times from different 
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experiments or the data sets into new sets of data, we can apply similar methods 

of investigations unknown parameters from [3]. 

 

2  Theoretical Background 
 
We assume that the climate-weather change process C(t), t  <0,+∞), is a semi-

Markov process and for the critical infrastructure operating area takes w, w  N, 

different climate-weather states c1, c2, ..., cw. We mark by Cbl its random 

conditional sojourn times at the climate-weather states cb, when its next climate-

weather state is cl, b,l  1,2,…,w, b  l. 

Under those assumptions, the climate-weather change process can be described 

by the following unknown parameters: the vector [qb(0)]1×w of probabilities  

of the climate-weather change process staying at the particular climate-weather 

states at the initial moment t = 0, the matrix [qbl(t)]w×w of the probabilities of the 

climate-weather change process transitions between the climate-weather states 

and the matrix [Cbl(t)]w×w of the distribution functions of the conditional sojourn 

times Cbl of the climate-weather change process at the climate-weather states, 

b,l = 1,2,…,w, b  l. 

Moreover, we assume that the statistical data for estimating the above 

parameters of the climate-weather change process C(t) is coming from κ, κ  N, 

different, but located close to each other, measurement points of the critical 

infrastructure operating area and the uniformity testing for the realisations of 

conditional sojourn times i
blC , i = 1,...,

 
κ, b,l  {1,...,w}, b ≠ l, coming from 

considered points, presented in [9-10], is successful.  

Then, to identify the climate-weather change process C(t) parameters, we have 

to perform the following steps: 

- to join the realisations of conditional sojourn times i
blC , i = 1,...,

 
κ, 

b,l  {1,...,w}, b ≠ l, from measurement points into new sets of data Cbl; 

- to evaluate vectors of the realizations ),0(i
bn  i = 1,...,

 
κ, b = 1,...,w, of the 

numbers of staying of the climate-weather change process C(t), respectively at 

the climate-weather states c1, c2, ..., cw, at the initial moment t = 0 of n
i
(0),  

i = 1,...,
 
κ, observed realizations of the climate-weather change process 

 

[ )0(i
bn ] = [ )0(1

in , )0(2
in , …, )0(i

wn ], i = 1,...,
 
κ,            (1) 

 

where  

 

)0(1
in  + )0(2

in +…+ )0(i
wn  = n

i
(0), i = 1,...,

 
κ;             (2) 

 

- to determinate the vector of the realizations of the probabilities qb(0),  

b = 1,2,...,w, of the climate-weather change process staying at the climate-

weather states c1, c2, ..., cw, at the initial moment t = 0, according to the formula 
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  b = 1,...,w;                      (4) 

 

- to determinate the matrix [qbl(t)]w×w of the probabilities of the climate-weather 

change process transitions between the climate-weather states and the matrix 

[Cbl(t)]w×w of the distribution functions of the conditional sojourn times Cbl  

of the climate-weather change process at the climate-weather states, 

b,l = 1,2,…,w, b  l, using the proposed procedures given in [3]. 

After that, we can predicted the limit values qb, b = 1,…,w, of the climate-

weather change process at critical infrastructure operating area transient 

probabilities at the states cb, and the mean values bN̂  of the climate-weather 

change process total sojourn times at the particular operation states during θ 

days. 

 

3  Climate weather change process at port oil piping 

transportation system operation area 
 

In the following subsections, we will analyze the climate-weather change 

process for the port oil piping transportation system operating at underwater 

Baltic Sea area. The statistical climate-weather data sets were collected during 

Februaries of the years 1988-1993 at three different measurement points [9]. 

 

3.1  Statistical identification of climate-weather change process 

for piping operation area 
 

To identify all parameters of the considered climate-weather change process [3] 

for the port oil piping transportation system area the statistical data coming from 

this process is needed. The joined statistical data sets are: 

- the number of the climate-weather change process states w = 6; 

- the climate-weather change process observation time Θ = 6 years (1988-1993); 

- the number of the climate-weather change process realizations n(0) = 510; 

- the vectors of realizations of the numbers ),0(i
bn  i = 1,...,

 
3, b = 1,...,6, of the 

climate-weather change process staying at the climate-weather states cb at the 

initial moment t = 0 

 

[ )0(1
bn ]1×6 = [120, 40, 1, 0, 4, 5]; 

[ )0(2
bn ]1×6 = [124, 36, 1, 0, 6, 3]; 
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[ )0(3
bn ]1×6 = [122, 39, 0, 0, 8, 1];                  (5) 

 

- the matrix of realizations nbl of the numbers of the climate-weather change 

process C(t) transitions from the state cb into the state cl during the observation 

time Θ = 6 years 

  

[nbl]6×6 = 



























0401420

12004321

010000

200090

043100205

07004660

;             (6) 

 

- the vector of realizations of the total numbers of the climate-weather change 

process transitions from the climate-weather state cb during the observation time  

Θ = 6 years 

 

[nb]6×1 = [473, 249, 11, 1, 49, 20]
T
.                        (7) 

 

On the basis of the above statistical data it is possible to evaluate  

- after applying (3)-(4) and using (5), the vector of realizations  

 

[qb(0)] = [0.718, 0.225, 0.004, 0, 0.035, 0.018],            (8) 

 

of the initial probabilities qb(0), b = 1,2,…,6, of the climate-weather change 

process transitions at the climate-weather states cb at the moment t = 0  

- the matrix of realizations  

 

[qbl] = 



























02.007.01.00

24.00008.066.002.0

010000

18.000082.00

017.000083.0

001.00099.00

.                                                    (9) 

 

of the transition probabilities qbl, b,l = 1,2,…,6, of the climate-weather change 

process C(t) from the climate-weather state cb into the climate-weather state cl. 

The statistical data allow that applying the same methods as in [3], we may 

verify the hypotheses about the conditional distribution functions Cbl(t) of the 

climate-weather change process sojourn times C12, C15, C21, C24, C25, C32, C36, 

C45, C51, C52, C53, C56, C62, C63, C65, on the base of their joint realizations. For 
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instance, the conditional sojourn time C25 has an exponential distribution with 

the density function    

 

c25(t) = 0.067 exp[–0.067t], for t > 0,           (10) 

 

the conditional sojourn time C52 has a chimney distribution with the density 

function 

 

c52(t) = 








.8.466.15,125.0

6.150,875.0

t

t
            (11) 

 

Next for the verified distributions, the matrix of the mean values Nbl = E[Cbl],  

b,l = 1,2,…,6, ,lb   of the system operation process C(t) conditional sojourn 

times at the climate-weather states can be determined: 

 

[Nbl] = 



























05.7057.1460

1000672.103

030000

600067.30

093.1430051.21

086.120035.2550

.                                           (12) 

 

3.2  Prediction of climate-weather change process for piping 

operation area 
 

After applying (5.11) from [2] and the results (8), (12), the unconditional mean 

sojourn times of the climate-weather change process at the particular climate-

weather states are given in the matrix:  

 

[Nb] = [252.93, 20.39, 4.09, 3, 10.02, 12.3]                                                      (13) 

 

Considering (8) in the system of equations (5.13) from [2], we get its following 

solution  

 

π1  0.391, π2  0.469, π3  0.025, π4  0, π5  0.089, π6  0.026.        (14) 

 

Hence and from (13), after applying (5.12) form [2], it follows that the limit 

values of the climate-weather change process transient probabilities at the 

climate-weather states cb, b = 1,2,…,6, are:  
 

q1 = 0.901, q2 = 0.087, q3 = 0.001, q4 = 0, q5 = 0.008, q6 = 0.003.        (15) 
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The expected values of the total sojourn times of the climate-weather change 

process C(t) at the particular climate-weather states cb, b = 1,2,…,6, during the 

fixed operation time C = 1 month (February) = 29 days, are given in the vector 

(its coordinates are measured in days):  

 

 6161 ]]ˆ[[]ˆ[ xbxb CEN [26.129, 2.523, 0.029, 0, 0.232, 0.087].        (16) 

 

4  Climate weather change process for maritime ferry 

operation area 
 

In the following subsections, we will analyze the climate-weather change 

process for the maritime ferry technical system operating at Baltic Sea open 

waters area. The statistical climate-weather data sets were collected during 

Februaries of the years 1988-1993 at four different measurement points [10]. 

 

4.1  Statistical identification of climate-weather change process 

for maritime ferry operation area 
 

To identify all parameters of the considered climate-weather change process [3] 

for the port oil piping transportation system area the statistical data coming from 

this process is needed. The joined statistical data sets are: 

- the number of the climate-weather change process states w = 6; 

- the climate-weather change process observation time Θ = 6 years (1988-1993); 

- the number of the climate-weather change process realizations n(0) = 680; 

- the vectors of realizations of the numbers ),0(i
bn  i = 1,...,

 
4, b = 1,...,6, of the 

climate-weather change process staying at the climate-weather states cb at the 

initial moment t = 0 

 

[ )0(1
bn ]1×6 = [103, 57,  0,  0,  8,  2]; 

[ )0(2
bn ]1×6 = [101, 59,  0,  0,  9,  1]; 

[ )0(3
bn ]1×6 = [99, 62, 0, 0, 6, 3]; 

[ )0(4
bn ]1×6 = [102, 59, 0, 0, 4, 5];            (17) 

 

- the matrix of realizations nbl of the numbers of the climate-weather change 

process C(t) transitions from the state cb into the state cl during the observation 

time Θ = 6 years 
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[nbl]6×6 = 



























0200090

27002800

010000

000010

0103000366

05105640

;           (18) 

 

- the vector of realizations of the total numbers of the climate-weather change 

process transitions from the climate-weather state cb during the observation time  

Θ = 6 years 

 

[nb]6×1 = [570, 469, 1, 1, 109, 29]
T
.                    (19) 

 

On the basis of the above statistical data it is possible to evaluate  

- after applying (3)-(4) and using (17), the vector of realizations  

 

[qb(0)] = [0.595, 0.349, 0, 0, 0.04, 0.016],           (20) 

 

of the initial probabilities qb(0), b = 1,2,…,6, of the climate-weather change 

process transitions at the climate-weather states cb at the moment t = 0  

- the matrix of realizations  

 

[qbl] = 



























069.00031.00

25.00002.073.00

010000

000010

022.000078.0

001.00099.00

                                                   (21) 

 

of the transition probabilities qbl, b,l = 1,2,…,6, of the climate-weather change 

process C(t) from the climate-weather state cb into the climate-weather state cl. 

The statistical data allow that applying the same methods as in [3], we may 

verify the hypotheses about the conditional distribution functions Cbl(t) of the 

climate-weather change process sojourn times C12, C14, C15, C21, C25, C32, C45, 

C52, C53, C56, C62, C65, on the base of their joint realizations. For instance, the 

conditional sojourn time C15 has an empirical distribution function 

 

C15(t) = 














.6,1

63,2.0

3,0

t

t

t

                (22) 
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the conditional sojourn time C25 has a gamma distribution with the density 

function    

 

c25(t) = 0.039t
0.357

 · exp(– 0.085 t), t ≥ 0.           (23) 

 

Next for the verified distributions, the matrix of the mean values Nbl = E[Cbl],  

b,l = 1,2,…,6, ,lb   of the system operation process C(t) conditional sojourn 

times at the climate-weather states can be determined: 

 

[Nbl] = 



























005.1600160

44.800601.90

030000

000030

002.1600056.30

04.56053.1510

.                                                (24) 

 

4.2  Prediction of climate-weather change process for maritime 

ferry operation area 
 

After applying (5.11) from [2] and the results (21), (24), the unconditional mean 

sojourn times of the climate-weather change process at the particular climate-

weather states are given in the matrix:  

 

[Nb] = [150.07, 27.36, 3, 3, 8.81, 16.03]                                                      (25) 

 

Considering (21) in the system of equations (5.13) from [2], we get its following 

solution  

 

π1  0.366, π2  0.47, π3  0.003, π4  0, π5  0.129, π6  0.032.               (26) 

 

Hence and from (25), after applying (5.12) from [2], it follows that the limit 

values of the climate-weather change process transient probabilities at the 

climate-weather states cb, b = 1,2,…,6, are:  
 

q1 = 0.792, q2 = 0.185, q3 = 0, q4 = 0, q5 = 0.016, q6 = 0.007.               (27) 

 

The expected values of the total sojourn times of the climate-weather change 

process C(t) at the particular climate-weather states cb, b = 1,2,…,6, during the 

fixed operation time C = 1 month (February) = 29 days, are given in the vector 

(its coordinates are measured in days):  

 

 6161 ]]ˆ[[]ˆ[ xbxb CEN [22.968, 5.365, 0, 0, 0.464, 0.203].                           (28) 
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Conclusions 
 

The statistical identification methods of the unknown parameters of the climate-

weather change process was practically applied for the statistical climate-

weather data coming from different measurement points after their realisations 

successful uniformity testing at the port oil piping transportation system 

operating area and at the maritime ferry operating area. 

The results allow us for further practical applications in evaluation real complex 

critical infrastructures safety. After using this approach, the climate-weather 

change process at the fixed area is better described. 
 

Acknowledgments 
 

The paper presents the results developed in the scope of the EU-

CIRCLE project titled “A pan – European framework  

for strengthening Critical Infrastructure resilience to climate 

change” that has received funding from the European Union’s 

Horizon 2020 research and innovation programme under grant agreement  

No 653824. http://www.eu-circle.eu/. 

 

References 
 
1. EU-CIRCLE ReportD3.3-GMU3, Integrated Model Of Critical Infrastructure Safety 

(IMCIS) Related To Climate-Weather Change Process Including Extreme Weather 
Hazards (EWH) – Model 3, 2017. 

2. EU-CIRCLE ReportD3.3-GMU3-C-WCP-MODEL-V1.0, Critical Infrastructure 

Operating Area Climate-Weather Change Process (C-WCP) Including Extreme Weather 

Hazards (EWH) - C-WCP Model, 2017.  
3. EU-CIRCLE ReportD6.4-GMU1-12-Part0, Identification Methods And Procedures Of 

Climate-Weather Change Process Including Extreme Weather Hazards - Part 0 - 

Theoretical Backgrounds, 2017.  
4. EU-CIRCLE ReportD6.4-GMU1-12, Identification Methods and Procedures of 

Climate-Weather Change Process Including Extreme Weather Hazards, 2017. 

5. F. Ferreira and A. Pacheco. Comparison of level-crossing times for Markov and 
semi-Markov processes. Stat & Probab Lett vol. 77, 2, 151-157, 2007. 

6. F. Grabski. Semi-Markov Processes: Applications in System Reliability and 

Maintenance, 1st Edition, Elsevier Science & Technology, 2014. 

7. K. Kołowrocki. Reliability of Large and Complex Systems. Elsevier, 2014. 
8. K. Kołowrocki and J. Soszyńska-Budny. Complex system operation process 

realizations uniformity testing. 16th ASMDA Conference Proceedings, Applied 

Stochastic Models and Data Analysis 2015, Pireus, Greece, 2015. 

9. K. Kołowrocki and J. Soszyńska-Budny. Reliability and Safety of Complex 
Technical Systems and Processes: Modeling-Identification-Prediction-Optimization. 

Springer, 2011. 

10. E. Kuligowska and M. Torbicki. Climate-weather change process realizations 

uniformity testing for port oil piping transportation system operating area. 17th 
ASMDA Conference Proceedings, Applied Stochastic Models and Data Analysis 

2017, London, United Kingdom, 2017. 

629

http://www.eu-circle.eu/


11. E. Kuligowska and M. Torbicki. Climate-weather change process realizations 
uniformity testing for maritime ferry operating area. 17th ASMDA Conference 

Proceedings, Applied Stochastic Models and Data Analysis 2017, London, United 

Kingdom, 2017. 

 

630



_________________ 

17
th

  ASMDA Conference Proceedings, 6 - 9 June 2017, London, UK 
 

© 2017 CMSIM               

 

Climate-weather change process realizations 

uniformity testing for port oil piping  

transportation system operating area 
 

Ewa Kuligowska
1
 and Mateusz Torbicki

2
 

 

1
  Gdynia Maritime University, Gdynia, Poland 

     (E-mail: e.kuligowska@wn.am.gdynia.pl) 
2

  Gdynia Maritime University, Gdynia, Poland 

     (E-mail: m.torbicki@wn.am.gdynia.pl) 

 

Abstract. The paper is concerned with a method for statistical data uniformity testing 
applied to the realizations of the climate-weather change process empirical conditional 

sojourn times coming from different measurement points for port oil piping 

transportation system operating under Baltic Sea waters area. The collected empirical 

data sets during Februaries of the years 1988-1993 at the three different measurement 
points are under consideration. Assuming that the statistical data sets are separate, the 

verification of the non-parametric hypotheses on the basis of Kolmogorov-Smirnov test 

and Wald-Wolfowitz runs test is prepared. In the case when the null hypothesis about the 

uniformity data sets for two measurement points is not rejected, corresponding to each 
other statistical data sets of realisations are joined. After using this approach, the climate-

weather change process at the fixed area is better described. 

Keywords: climate-weather change process, uniformity testing, port oil piping 

transportation system. 

 

1  Introduction 
 

The model of the climate-weather change processes is proposed in [2].  

The statistical data for estimating the unknown parameters of the climate-

weather change process very often come from different experiments of the same 

climate-weather change process and are collected into separate data sets. 

Furthermore, these data sets may be collected at different measurement points  

of the critical infrastructure operating area with some of the points located close 

to each other. Thus, before the climate-weather change process identification, 

the investigation of these empirical data uniformity is necessary. In this paper, 

the uniformity test is applied to the data sets including climate-weather change 

process realisations coming from three measurement points at port oil piping 

transportation system operating area. 
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2  Modeling of climate-weather change process 
 

The climate-weather change process for port oil piping transportation system 

operating under Baltic Sea waters area is modeled in [2]. It is taking 6 different 

climate-weather states c1, c2, ..., c6, and is marked by process C(t), t  <0,+∞), 

taking discrete values in the set {c1, c2, ..., c6} of the climate-weather states. We 

assume a semi-Markov model [1, 4-10] of the climate-weather change process 

C(t) and we mark by Cbl its random conditional sojourn times at the climate-

weather states cb, when its next climate-weather state is cl, b,l  1,2,…,6, b  l. 

Under these assumptions, the climate-weather change process may be described 

by the vector [qb(0)]1×6 of probabilities of the climate-weather change process 

staying at the particular climate-weather states at the initial moment t = 0, the 

matrix [qbl(t)]6×6 of the probabilities of the climate-weather change process 

transitions between the climate-weather states and the matrix [Cbl(t)]6×6 of the 

distribution functions of the conditional sojourn times Cbl of the climate-weather 

change process at the climate-weather states, b,l = 1,2,…, 6, b  l. 

 

3  Climate-weather change process realisations uniformity 

testing for port oil piping transportation system operating area 
 

The empirical data sets during Februaries of the years 1988-1993 at the three 

different measurement points at under water Baltic Sea area (Figure 1) were 

collected [2]. 

 

Middle Point (East) of Port 
Oil Piping at Under Water 

Baltic Sea Area 

Middle Point (West) of Port 
Oil Piping at Under Water 

Baltic Sea Area 

Initial Point of Port Oil 

Piping at Under Water Baltic 

Sea Area 

 
Fig. 1. The port oil piping transportation system alignment in the Gdynia Port 
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The procedure of statistical data sets uniformity testing will be applied to the 

empirical realizations of sojourn times at climate-weather states coming from 

realizations of a port oil piping transportation system climate-weather change 

process collected in three different measurement points. 

 

The statistical data for the conditional sojourn times Cbl at the climate-weather 

states cb when the next climate-weather state is cl, b,l  {1,2,...,6}, b ≠ l, are as 

follows: 

- initial point 

 the realizations C12: 60, 36, 12, 60, 42, 18, 336, 324, 300, 276, 252, 228, 204, 

180, 156, 132, 108, 84, 60, 36, 12, 84, 81, 57, 33, 9, 486, 477, 453, 429, 24, 

12, 81, 69, 45, 21, 18, 6, 6, 3, 6, 45, 33, 9, 3, 474, 456, 432, 408, 384, 360, 

336, 54, 30, 6, 36, 33, 9, 225, 219, 195, 171, 147, 123, 99, 75, 51, 27, 3, 6, 18, 

15, 9, 6, 192, 168, 144, 120, 96, 72, 48, 24, 114, 96, 72, 48, 24, 60, 48, 24, 18, 

12, 63, 54, 30, 6, 15, 12, 495, 15, 24, 3, 33, 18, 51, 45, 21, 63, 54, 30, 6, 9, 12, 

39, 21, 84, 60, 36, 12, 18, 6, 153, 138, 114, 90, 66, 54, 30, 6, 6, 6, 345, 342, 

318, 294, 270, 246, 222, 198, 174, 150, 126, 102, 78, 54, 30, 6, 33, 21, 594, 

576, 552, 528, 504, 480, 456; 

 the realizations C15: 21, 9; 

 the realizations C21: 18, 6, 18, 12, 9, 30, 15, 12, 33, 12, 39, 36, 12, 3, 6, 6, 42, 

36, 12, 24, 9, 42, 30, 6, 6, 33, 21, 33, 18, 30, 9, 36, 21, 3, 6, 6, 15, 12, 18, 27, 

15, 48, 30, 6, 3, 36, 24, 9, 57, 33, 9, 21, 9, 24, 18, 18, 15, 27, 9, 15, 9, 9, 6, 3, 

6, 3, 3, 12, 3, 36, 21, 6, 9, 6; 

 the realizations C25: 60, 48, 24, 9, 6, 6, 3, 6, 3, 9, 3, 6, 3, 12; 

 the realizations C32: 3, 3, 3, 6, 6, 3; 

 the realizations C36: 3, 9; 

 the realizations C52: 3, 3, 3, 6, 3; 

 the realizations C53: 3, 12, 6, 3; 

 the realizations C56: 6, 9, 9, 6, 9, 6; 

 the realizations C62: 3; 

 the realizations C63: 3, 30, 6, 30, 24, 3, 21, 3; 

 the realizations C65: 3, 6; 

 

- west point 

 the realizations C12: 15, 27, 15, 51, 36, 12, 81, 66, 42, 18, 249, 228, 204, 180, 

156, 132, 108, 84, 60, 36, 12, 156, 153, 129, 105, 81, 57, 33, 9, 441, 432, 42, 

18, 84, 72, 48, 24, 3, 24, 12, 6, 6, 30, 21, 6, 480, 459, 435, 411, 387, 363, 339, 

54, 30, 6, 12, 39, 33, 9, 12, 6, 207, 195, 171, 147, 123, 99, 75, 51, 27, 3, 6, 24, 

18, 312, 288, 264, 240, 216, 192, 168, 144, 120, 96, 72, 48, 24, 60, 51, 27, 3, 

108, 105, 81, 57, 33, 9, 30, 12, 501, 51, 27, 3, 3, 33, 21, 57, 48, 24, 69, 60, 36, 

12, 6, 15, 42, 21, 87, 63, 39, 15, 174, 162, 138, 114, 90, 66, 87, 63, 39, 15, 9, 

3, 990, 987, 963, 939, 915, 891, 867, 843, 819, 795, 771, 747, 723, 699, 675, 

651, 627, 603, 579, 555, 531, 507, 483, 459; 

 the realizations C15: 6; 
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 the realizations C21: 21, 12, 18, 9, 21, 9, 9, 3, 9, 6, 33, 12, 3, 30, 12, 6, 6, 45, 

39, 15, 36, 33, 9, 36, 27, 3, 6, 3, 27, 18, 36, 18, 6, 30, 9, 36, 18, 15, 18, 15, 18, 

45, 30, 6, 36, 24, 54, 33, 9, 24, 12, 18, 15, 15, 24, 12, 15, 9, 3, 3, 6, 3, 18; 

 the realizations C25: 54, 48, 24, 3, 21, 15, 3, 6, 9, 6, 30, 12, 6, 6, 9; 

 the realizations C32: 3, 3, 3; 

 the realizations C52: 9, 6, 12, 3, 3, 6, 6, 6, 3; 

 the realizations C56: 24, 15, 9, 6, 12; 

 the realizations C62: 9; 

 the realizations C63: 12, 3, 27, 24, 15, 3; 

 

- east point 

 the realizations C12: 60, 36, 12, 60, 42, 18, 339, 324, 300, 276, 252, 228, 204, 

180, 156, 132, 108, 84, 60, 36, 12, 84, 81, 57, 33, 9, 486, 477, 453, 429, 33, 

15, 90, 75, 51, 27, 3, 6, 6, 45, 33, 9, 6, 477, 456, 432, 408, 384, 360, 336, 51, 

27, 3, 42, 36, 12, 225, 219, 195, 171, 147, 123, 99, 75, 51, 27, 3, 9, 21, 15, 9, 

6, 177, 153, 129, 105, 81, 57, 33, 9, 114, 96, 72, 48, 24, 63, 48, 24, 33, 24, 72, 

54, 30, 6, 30, 12, 495, 15, 21, 9, 33, 18, 57, 45, 21, 66, 54, 30, 6, 9, 15, 126, 

108, 84, 60, 36, 12, 174, 159, 135, 111, 87, 63, 54, 30, 6, 6, 9, 6, 384, 378, 

354, 330, 306, 282, 258, 234, 210, 186, 162, 138, 114, 90, 66, 42, 18, 597, 

579, 555, 531, 507, 483, 459; 

 the realizations C15: 18, 6, 21, 9; 

 the realizations C21: 18, 6, 15, 9, 9, 30, 15, 6, 30, 9, 33, 12, 15, 6, 42, 36, 12, 

21, 6, 39, 27, 3, 9, 30, 18, 33, 18, 27, 6, 39, 18, 9, 9, 21, 6, 18, 9, 15, 6, 48, 30, 

6, 36, 24, 9, 57, 54, 30, 6, 18, 9, 18, 12, 15, 12, 27, 9, 12, 6, 9, 6, 9, 3, 9, 9, 18, 

12, 6; 

 the realizations C24: 3; 

 the realizations C25: 57, 48, 24, 3, 12, 6, 6, 3, 3, 3, 9, 3, 3, 12; 

 the realizations C45: 3; 

 the realizations C51: 3; 

 the realizations C52: 9, 6, 3, 12, 3, 3, 3, 42, 33, 9, 9, 3, 12, 18, 3, 9, 12, 24; 

 the realizations C56: 9; 

 the realizations C65: 12, 9. 

 

Using Kolmogorov-Smirnov test or Wald-Wolfowitz runs test, we check the 

homogeneity of each pair of samples containing at least 4 realisations. 

Otherwise, because of the lack of sufficient numbers of realizations of the 

climate-weather change process conditional sojourn times at the climate-

weather states, it is not possible to identify statistically their distributions and 

perform the procedure of statistical data uniformity analysis. Thus, if there are 

no other sets of statistical data from two different measurement points or one of 

the samples contains less than 4 realisations, we assume the distributions' 

homogeneity and we can join the corresponding sojourn times realisations from 

the considered measurement points into new sets of data. 
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3.1  Uniformity testing for two measurement points 
 

We verify the hypotheses that the conditional sojourn times Cbl, b,l  {1,2,...,6}, 

b ≠ l, realizations of the port oil piping transportation system climate-weather 

change process at the climate-weather states for the initial point and west point 

are from the populations with the same distribution. We use the two-sample 

Kolmogorov-Smirnov test for the conditional sojourn times C12 and C21 

realisations (
1
12n  = 156, 

2
12n  = 157, 

1
21n  = 74, 

2
21n  = 63) and the Wald–

Wolfowitz runs test for the conditional sojourn times C25, C52, C56 and C63 

realisations (
1
25n  = 14, 

2
25n  = 15, 

1
52n  = 5, 

2
52n  = 9, 

1
56n  = 6, 

2
56n  = 5, 

1
63n  = 8, 

2
63n  = 6). To illustrate the application of the procedure of testing the data 

uniformity described in [8], we perform it for the conditional sojourn time C25. 

The sorted conditional sojourn times 1
25C  and 2

25C  realisations are given as 

follows: 

 the realizations 1
25C : 3, 3, 3, 3, 6, 6, 6, 6, 9, 9, 12, 24, 48, 60; 

 the realizations 2
25C : , , , , , , , , , , , , , , . 

 

The null hypothesis H0 is formulated as follows: the samples of conditional 

sojourn times 1
25C  and 2

25C  realizations are coming from the population with 

the same distribution. To verify this hypothesis we will apply the Wald–

Wolfowitz runs test at the significance level .05.0   

 

We mark by a the realisations which correspond to the conditional sojourn time 
1
25C  and we mark by b the realisations which correspond to the conditional 

sojourn time 2
25C . Further, we have to combine two samples of realisations into 

a single ascending ordered sequence. There is more than one the same 

realisation occurring in both samples (i.e. 3, 6, 9, 12, 24, 48), thus, we arrange 

and rank the combined sample realisations to yield the fewest runs 

 

3,  ,  3,  ,  3, 3, 6,  ,  6,  ,  6,  ,  6,  , ,  9,  ,  9,  12,  , , , ,  24,  , ,  48,  ,  60,   
a b a b aaa b a b a b a bb a b aa bbbb a bb a b a        

 

and again to yield the most runs 

 

3,  ,  3,  ,  3, 3,   ,  6,  ,  6,  ,  6,  ,  6,  ,  9,  ,  9,  ,  12,  , ,  24,  , ,  48,  , ,  60.  
a  b  a  b  aa  b  a  b  a  b  a  b  a  b  a  b  a  b  a  bb  a  bb  a  bb  a          

 

Then we compute the number of runs for each combined sample 

 

a, b, a, b, a, a, a, b, a, b, a, b, a, b, b, a, b, a, a, b, b, b, b, a, b, b, a, b, a  
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21  

 

a, b, a, b, a, a, b, a, b, a, b, a, b, a, b, a, b, a, b, a, b, b, a, b, b, a    
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r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23  

 

and the number of runs is an average of the most and the fewest runs 

 

15,14r  = 
2

2521
 = 23. 

 

From the tables of critical values for the runs test, the get the value rα = u = 11. 

Since ,1123  uun  then we do not reject the null hypothesis H0. 

After proceeding in an analogous way with data in the remaining climate-

weather states we can obtain the same conclusions that the data sets composed 

of the corresponding pairs of conditional sojourn times C52, C56 and C63 

realizations are from the populations with the identical distributions. To verify 

the hypotheses for the conditional sojourn times C12, and C21 realisations, we 

use the Kolmogorov-Smirnov test, described in [8, 9]. 

It is not possible to verify the uniformity hypothesis for the conditional sojourn 

times C15, C32, C36, C53, C62, and C65 realizations because of the lack of 

sufficient numbers of those realizations. 

Finally, we obtain that for the initial point and the west point the each 

considered pair of the conditional sojourn times realizations at the climate-

weather states are from the populations with the same distribution. 

 

3.2  Uniformity testing for three measurement points 
 

To perform the procedure for three different measurement points containing the 

independent realisations samples, we consider the new joined statistical data sets 

for the conditional sojourn times Cbl at the climate-weather states cb when the 

next climate-weather state is cl, b,l  {1,2,...,6}, b ≠ l, from section 3.1 and the 

data sets coming from the third measurement point. 

The new joined statistical data sets are as follows: 

 the realizations C12: 60, 36, 12, 60, 42, 18, 336, 324, 300, 276, 252, 228, 204, 

180, 156, 132, 108, 84, 60, 36, 12, 84, 81, 57, 33, 9, 486, 477, 453, 429, 24, 

12, 81, 69, 45, 21, 18, 6, 6, 3, 6, 45, 33, 9, 3, 474, 456, 432, 408, 384, 360, 

336, 54, 30, 6, 36, 33, 9, 225, 219, 195, 171, 147, 123, 99, 75, 51, 27, 3, 6, 18, 

15, 9, 6, 192, 168, 144, 120, 96, 72, 48, 24, 114, 96, 72, 48, 24, 60, 48, 24, 18, 

12, 63, 54, 30, 6, 15, 12, 495, 15, 24, 3, 33, 18, 51, 45, 21, 63, 54, 30, 6, 9, 12, 

39, 21, 84, 60, 36, 12, 18, 6, 153, 138, 114, 90, 66, 54, 30, 6, 6, 6, 345, 342, 

318, 294, 270, 246, 222, 198, 174, 150, 126, 102, 78, 54, 30, 6, 33, 21, 594, 

576, 552, 528, 504, 480, 456, 15, 27, 15, 51, 36, 12, 81, 66, 42, 18, 249, 228, 

204, 180, 156, 132, 108, 84, 60, 36, 12, 156, 153, 129, 105, 81, 57, 33, 9, 441, 

432, 42, 18, 84, 72, 48, 24, 3, 24, 12, 6, 6, 30, 21, 6, 480, 459, 435, 411, 387, 

363, 339, 54, 30, 6, 12, 39, 33, 9, 12, 6, 207, 195, 171, 147, 123, 99, 75, 51, 

27, 3, 6, 24, 18, 312, 288, 264, 240, 216, 192, 168, 144, 120, 96, 72, 48, 24, 

60, 51, 27, 3, 108, 105, 81, 57, 33, 9, 30, 12, 501, 51, 27, 3, 3, 33, 21, 57, 48, 

24, 69, 60, 36, 12, 6, 15, 42, 21, 87, 63, 39, 15, 174, 162, 138, 114, 90, 66, 87, 
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63, 39, 15, 9, 3, 990, 987, 963, 939, 915, 891, 867, 843, 819, 795, 771, 747, 

723, 699, 675, 651, 627, 603, 579, 555, 531, 507, 483, 459; 

 the realizations C15: 21, 9, 6; 

 the realizations C21: 18, 6, 18, 12, 9, 30, 15, 12, 33, 12, 39, 36, 12, 3, 6, 6, 42, 

36, 12, 24, 9, 42, 30, 6, 6, 33, 21, 33, 18, 30, 9, 36, 21, 3, 6, 6, 15, 12, 18, 27, 

15, 48, 30, 6, 3, 36, 24, 9, 57, 33, 9, 21, 9, 24, 18, 18, 15, 27, 9, 15, 9, 9, 6, 3, 

6, 3, 3, 12, 3, 36, 21, 6, 9, 6, 21, 12, 18, 9, 21, 9, 9, 3, 9, 6, 33, 12, 3, 30, 12, 6, 

6, 45, 39, 15, 36, 33, 9, 36, 27, 3, 6, 3, 27, 18, 36, 18, 6, 30, 9, 36, 18, 15, 18, 

15, 18, 45, 30, 6, 36, 24, 54, 33, 9, 24, 12, 18, 15, 15, 24, 12, 15, 9, 3, 3, 6, 3, 

18; 

 the realizations C25: 60, 48, 24, 9, 6, 6, 3, 6, 3, 9, 3, 6, 3, 12, 54, 48, 24, 3, 21, 

15, 3, 6, 9, 6, 30, 12, 6, 6, 9; 

 the realizations C32: 3, 3, 3, 6, 6, 3, 3, 3, 3; 

 the realizations C36: 3, 9, 9, 6, 12, 3, 3, 6, 6, 6, 3; 

 the realizations C52: 3, 3, 3, 6, 3; 

 the realizations C53: 3, 12, 6, 3; 

 the realizations C56: 6, 9, 9, 6, 9, 6, 24, 15, 9, 6, 12; 

 the realizations C62: 3, 9; 

 the realizations C63: 3, 30, 6, 30, 24, 3, 21, 3, 12, 3, 27, 24, 15, 3; 

 the realizations C65: 3, 6; 

 

We verify the hypotheses that the conditional sojourn times Cbl, b,l  {1,2,...,6}, 

b ≠ l, realizations of the port oil piping transportation system climate weather 

change process at the climate-weather states for the joined samples (initial point 

and west point) and the east point are from the populations with the same 

distribution. We use the Kolmogorov-Smirnov test for the conditional sojourn 

times C12 and C21 realisations (
1
12n  = 313, 

2
12n  = 153, 

1
21n  = 137, 

2
21n  = 68) and 

the Wald–Wolfowitz runs test for the conditional sojourn times C25 and C52 

realisations (
1
25n  = 29, 

2
25n  = 14, 

1
52n  = 14, 

2
52n  = 18), according to the 

procedure described in [8, 9]. The remaining conditional sojourn times at the 

particular climate-weather states have less than 4 realisations, thus, we cannot 

verify the hypotheses. 

The new sorted data sets containing conditional sojourn times 1
25C  (initial point 

and west point) and the data sets containing conditional sojourn times 2
25C  

realisations (east point) are given as follows: 

 the realizations 1
25C :  3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9, 9, 9, 9,  

 12, 12, 15, 21, 24, 24, 30, 48, 48, 54, 60; 

 the realizations 2
25C : , , , , , , , , , , , , , . 

 

The null hypothesis H0 is formulated as follows: the samples of conditional 

sojourn times 1
25C  and 2

25C  realizations are coming from the population with 
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the same distribution. To verify this hypothesis we will apply the Wald–

Wolfowitz runs test at the significance level .05.0   

 

We mark by a the realisations which correspond to the conditional sojourn time 
1
25C  and we mark by b the realisations which correspond to the conditional 

sojourn time 2
25C . Further, we have to combine two new samples of realisations 

into a single ascending ordered sequence. There is more than one the same 

realisation occurring in both samples (i.e. 3, 6, 9, 12, 24, 48), thus, we arrange 

and rank the combined sample realisations to yield the fewest runs 

 

3,  ,  3,  ,  3,  ,  3,  ,  3,  ,  3,  , ,  6,  ,  6, 6, 6, 6, 6, 6, 6, 9,  ,  9, 9, 9, 12,  ,  12,  ,  
a b a b a b a b a b a bb a b aaaaaaaa b aaaa b a b 

 

15, 21, 24,  ,  24, 30, 48,  ,  48, 54,  ,  60,  
aaa b aaa b aa b a 

 

and again to yield the most runs 

 

3,  ,  3,  ,  3,  ,  3,  ,  3,  ,  3,  ,  6,  ,  6,  ,  6, 6, 6, 6, 6, 6,  ,  9, 9, 9, 9,  ,  12,  ,  
a b a b a b a b a b a b a b a b aaaaaa b aaaa b a b 

 

12, 15, 21,  ,  24, 24, 30,  ,  48, 48, 54,  ,  60. 
aaa b aaa b aaa b a 

 

Then we compute the number of runs for each combined sample 

 

a, b, a, b, a, b, a, b, a, b, a, b, b, a, b, a, a, a, a, a, a, a, a, b, a, a, a, a, b, a, b, 
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 

 

a, a, a, b, a, a, a, b, a, a, b, a, 
r21 r22 r23 r24 r25 r26 r27 

 

and 

 

a, b, a, b, a, b, a, b, a, b, a, b, a, b, a, b, a, a, a, a, a, a, b, a, a, a, a, b, a, b, 
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 

 

a, a, a, b, a, a, a, b, a, a, a, b, a. 
r23 r24 r25 r26 r27 r28 r29 

 

The number of runs is an average of the most and the fewest runs 

 

14,29r  = 
2

2927 
 = 28. 

 

From the tables of critical values for the runs test, the get the value rα = u = 11. 

Since ,1528  uun  then we do not reject the null hypothesis H0. 
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If the numbers of realisations in the samples 
1
bln  and 

2
bln  are greater or equal to 

20, then, according to [9], the distribution of Un can be approximated to normal 

distribution with the mean 1
2 21


bl

blbl

n

nn  and variance 

)1()(

)2(2
2

2121





blbl

blblblblbl

nn

nnnnn . 

However, that choice for a boundary is a rule of thumb. Thus, to make the 

procedure familiar to the reader, we perform it for the conditional sojourn time 

C25. 

We compute the total number of runs in the combined ascending ordered 

arrangement 

 

n25 = 
1
25n  + 

2
25n  = 29 + 14 = 43, 

 

the mean and the variance of the approximate normal distribution 

 

m = 1
2

25

2
25

1
25 
n

nn
 = 1

43

14292



  19.884 

 

s
2
 = 

)1()(

)2(2

25
2

25

25
2
25

1
25

2
25

1
25





nn

nnnnn .= 
)143(43

)4314292(14292
2 

   8.041. 

 

Thus, the realisation of the statistic Un is given as follows 

2

,
2

1
2
25

1
25

s

mr

u
nn

n




041.8

2

1
884.1928 

  2.686.                                   (19) 

 

From the tables of standard normal distribution, the get the critical value  

u = –1.645. Since ,645.1686.2  uun  then we do not reject the null 

hypothesis H0. 

In the case when the all possible null hypotheses for all the climate-weather 

change process conditional sojourn times realisations are not rejected, we may 

join the corresponding statistical data sets into new sets of data. 

Finally, we obtain that for the joined samples (initial point and west point) and 

the east point, the each considered pair of the conditional sojourn times 

realizations at the climate-weather states are from the populations with the same 

distribution. 

 

Conclusions 
 

The procedure of the uniformity testing of statistical data coming from different 

sets of realizations of the same climate-weather change process before joining 

them into one common set of data was practically applied for three different 

measurement points of the port oil piping transportation system operating area. 

The results of this application to the climate-weather change process' empirical 
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data uniformity testing justifies the proposed procedures practical importance in 

everyday practice. Considering the new joined data sets uniformly tested, we 

may improve the accuracy of the climate-weather change processes 

identification and prediction. 
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Abstract. We generalize to the case of a Bilaplacian on a Riemannian manifold the
classical relation in stochastic analysis between the Brownian motion on a Riemannian
manifold and its horizontal lift.
Keywords: Horizontal lift. Bilaplacian.

1 Introduction

It is classical in stochastic analysis that the horizontal lift of a diffusion is
useful in order to construct canonically the Brownian motion on a Riemannian
manifold ([1], [2]). We extend in this note this classical relation on the Brownian
motion and the (degenerated) process associated to the horizontal Laplacian
to the case of a Bilaplacian. See [7] in the subelliptic case.

We consider a compact Riemannian oriented manifold M endowed with its
normalized Riemannian measure dx. x is the generic element of M which is
of dimension m. We consider the special orthonormal frame bundle SO(M)
endowed with the Levi-Civita connection with canonical projection π on M . u
is the generic element of SO(M). We consider the canonical vector fields Xi

on SO(M) and the associated horizontal Laplacian

L =
m∑
i=1

X2
i (1)

∆ is the Laplace-Beltrami operator on M and ∆2 the associated Bilaplacian.
The Bilaplacian is elliptic, symmetric on L2(dx) and by elliptic theory ([5],
[6])generates a unique contraction semi group P∆t on L2(dx) with generic ele-
ment f : ∂

∂tP
∆
t = −∆2Pt.

We can glue on the fiber the normalized ”Haar” measures (See appendix
for the details) such that we get a probability measure du on SO(M). L2

is symmetric, densely defined on L2(du) and therefore admits a self-adjoint
extension which generates a contraction semi-group PLt on L2(du): ∂∂tP

L
t =

−L2Pt.

Theorem 1. If f is a smooth function on M , we have if πu = x

P∆t [f ](x) = PLt [f ◦ π](u) (2)

This theorem enters in our general program to extend stochastic analysis tools
to the general theory of linear semi-group (See [8] and [9] for reviews).
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2 Proof of the theorem

If g0 belongs to SO(Rm) we get clearly

PLt [f ◦ π](ug0) = PLt [f ◦ π(.g0)](u) = PLt [f ◦ π](u) (3)

Therefore, u→ PLt [f ◦ π](u) defines a function on M . This function when t is
moving defines a semi-group. Namely

PLt+s[f ◦ π](u) = PLt [PLs [f ◦ π]](u) = PLt [PLs [f ◦ π] ◦ π](u) (4)

where is the right-hand side PLs [f ◦ π] is seen as a function on M .
We are therefore in presence of two semi-groups on L2(dx). But

L(f ◦ π) = (∆f) ◦ π (5)

such that
L2(f ◦ π) = (∆2f) ◦ π (6)

Since there is only one semi-group generated by ∆2, the result holds.
♦
Remark: It is possible to extend this theorem when we replace ∆2 by

Q(∆) where Q(∆) =
∑n
i=0 ai∆

i, an > 0 and L2 by Q(L)2.

3 Appendix: A brief review on Riemannian geometry

Let M be the compact oriented manifold of dimension m. It is homeomorphic
locally to Rm and the change of charts are local diffeomrphism. When we will
write the formulas in local coordinates, we won’t write the change of formulas
coming for a change of chart. A smooth function function on M is called f . A
vector field Y is a smooth derivation acting on smooth functions:

X(fg) = gX(f) + fX(g) (7)

and is linear in f . In local coordinates xi X =
∑m
i=0 ai(x) ∂

∂xi
. Therefore X can

be a smooth function of the tangent bundle T (M) ofM : each fibers Tx(M) are
transformed as X when we do a change of charts. A Riemannian metric can
be seen as a smooth section of T ∗(M) ⊗ T ∗(M), where T ∗(M) is the bundle
of 1-form. This section is assume definite positive. In local coordinates, we we
can write

< ., . > (x) =
∑
i,j

gi,j(x)dxi ⊗ dxj (8)

From the metric, we deduce naturally a positive measure which is unique mod-
ulo a constant. It is called the Riemannian measure dx.

A connection is a map ∇ such that:
-)∇XY is a smooth vector field if X and Y are smooth vector fields.
-)If X,Y1, Y2 are smooth vector fields

∇X(Y1 + Y2) = ∇XY1 +∇XY2 (9)
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-)If X,Y are smooth vector fields and f is a smooth function

∇X(fY ) = f∇XY +X(f)Y (10)

-)X → ∇XY is linear in X.
A connection is said to be without torsion if

∇XY −∇YX = [X,Y ] (11)

where [X,Y ] is the Lie bracket of the two vector fields X and Y (which is still
a vector field).

A connection is said metric if

X < Y,Z >=< ∇XY,Z > + < Y,∇XZ > (12)

for any vector fields X,Y, Z.
The main theorem of Riemannian geometry is that there exists a unique

metric connection without torsion on a Riemannian manifold called the Levi-
Civita connection ∇0.

If ω is a one-form (a 1-form forn TxM which depends smoothly on x or
equivalently a smooth section of the cotangent bundle T ∗(M)), we can define
its covariant derivative with respect of the connection ∇ by

Xω(Y ) = ω(∇XY ) + (∇Xω)(Y ) (13)

If f is a smooth function, df is a 1-form. The Laplace-Beltrami operator ∆ is
defined by

∆f = Tr(∇0)2f =
m∑
i=1

∇Yi
∇Yi

f −
m∑
i=1

∇∇Yi
Yi
f (14)

where Yi is a local smooth orthonormal basis of the tangent bundle. The
problem is that there is no canonical orthonormal basis of the tangent bundle.

The price to pay is to consider the restricted frame bundle SO(M). It is
constituted of the space of directl isometries u of Rm oriented into Tx(M) ori-
ented. SO(M) is a principal bundle: SO(Rm) acts on SO(M) on the right.π
is the projection from SO(M) onto M . From this action, we deduce a sub-
bundle of TSO(M) called the vertical bundle. We can splitt the tangent space
Tu(S0(M) into the vertical bundle and a lift of Tπu(M) compatible with the
right action of SO(Rm) called the horizontal subspace compatible with the
Levi-Civita connection.

Let be Yi(x) be a direct orthonormal basis of tx(M) in a neighborhood O
of M . The matrix < Yj ,∇0

XYi > is an antisymmetrix matrix called SY.
. which

depends tensorially from the vector field X. We remark that Yi = uxei where
ei is the direct orthonormal basis of Rm. x → ux is called a local gauge of
SO(M). A system of local coordinates of SO(M) is given by (x, g)→ (x, uxg)
where (x, g) belongs to O × SO(Rm). In this gauge, the horizontal lift of the
vector field X is given by (X,−SY.

X (x)g).
From the oriented standard basis ei of Rm, we deduce a direct orthonormal

basis of Tπu(M). We consider its horizontal lift and we get the canonical vector
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fields Xi of SO(M). If SY.(πx) is equal to zero in x for some gauge, we will
deduce that

F (f ◦ π) = (∆f) ◦ π (15)

We consider the Riemannian distance between x and y:

d2(x, y) = inf
h(0)=x;h(1)=y

∫ 1

0

< h′s), h′(s) >h(s) ds (16)

where s→ h(s) is a smooth curve joining x to y. In a small open neighborhood
of x, there is only one curve h(y) joining x and y satisfying (16) defined by
its speed h′(y). The map h′(y) defined a local system of coordinates, called
normal coordinates. We consider the horizontal lift of the speed h′(y)s and the
dynamical system associated u(y)s = (h(y)s, τ(y)s)). The parallel transport
Y .(y) = τ(y)1(.) between x and y along the curve satisfies our requirement.

Moreover the vector fields Xi commute with the right action of SO(Rm).
Therefore L does the same, and therefore PLt does the same.

In a local gauge, we can consider the Haar measure in the fiber of SO(M).
When we change of gauge, the measure does not change.
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Abstract. Life-table databases have been established for developed countries and effectively used for various purposes. For 

developing countries of which the deaths counted 78% that of the world in 2010-2015, however, reliable life tables can hardly be 

found. Indirect estimates of life tables using empirical data on child and adult mortality are available for developing countries. 

But more than half of all deaths already occurred at age 60 and higher in developing countries in 2010-2015, which leads to the 

irony that worldwide the number of deaths at old-ages is the biggest, and also the least reliable. This reality indicates 

that improving the estimates of old-age mortality for individual developing countries is not enough, and that 

establishing a life-table database for all developing countries, which utilizes the improved estimations of old-age 

mortality, is necessary. To fulfill this task, we introduce two methods: (1) the Census Method that uses populations 

enumerated from census to estimate old-age mortality, and (2) the three-input model life table that utilizes child, adult, and old-

age mortality to calculate life tables. Compared to using only child and adult mortality, applying the two methods to the data 

from the Human Mortality Database after 1950, the errors of fitting old-age mortality are reduced for more than 70% of all the 

countries. For the three non-European-origin populations in the Human Mortality Database the errors are reduced by 17% for 

Chile, 48% for Japan, and 17% for Taiwan, which is more relevant for developing countries. These results indicate that the 

methodology is adequate and empirical data are available to establish a mortality database for developing countries.       

 

1 Introduction 

Empirical data used in estimating life tables are collected from three types of source: (1) death registration that 

counts deaths by sex and age in a certain period, usually a calendar year; (2) census that enumerates the numbers of 

population by age and sex at a certain time point, and sometimes also death by age and sex during a period before 

the census time; and (3) sample survey that, in principle, could collect data on both death and population but cover 

only a small portion of the population in a country. Censuses are conducted in almost all the countries of the world. 

Besides providing middle-year populations to compute death rates for countries with reliable death registration, 

some developing countries rely also on census to obtain life tables directly. Since census interviewers must visit 

every household in a country to enumerate the number of residents at a certain time point, they could also ask just 

one more question about whether there was a death, or were deaths, in the household in past year; and if yes what is 

the gender and age of the death, or the genders and ages of the deaths (United Nations Statistics Division (UNSD), 

2008). Furthermore, using population data of two successive censuses, some mortality indicators of the period 

between the two censuses could be estimated, especially for old ages at which the effect of migration is negligible 

(Li and Gerland, 2013). For many countries, census data on population by age and sex can be found from the United 
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Nations Demographic Yearbook (e.g., UNSD, 2013a). Occasionally, surveys using large sample size could also 

provide life tables.         

 Typical sample surveys often collect information only from a small portion of the population. Subsequently, 

they cannot produce life tables. This is because death rates at some ages, for example 10-20 years, could be very 

low, and hence require a large population to be estimated reliably. Nonetheless, sample surveys could provide 

reliable indicators of mortality for certain age groups when death is not a rare event or when the age group is wide 

enough. The most commonly sampled mortality indicator is child mortality, which is the probability of dying 

between birth and age 5, and is often denoted as 05 q . The United Nations Children’s Fund (UNICEF) as part of the 

United Nations Inter-agency Group for Child Mortality Estimation (IGME) has been regularly collecting, analyzing, 

and publishing child mortality for most of the countries back to the 1970s or earlier  (see United Nations Children’s 

Fund, 2013; http://www.childmortality.org). Based on the same principles used to estimate child mortality using 

birth histories, surveys such as the Demographic and Health Surveys (DHS, http://www.measuredhs.com/) have 

been collecting sibling histories since the 1990s to measure adult mortality, allowing to derive the probability of 

dying between age 15 and 50 or 60 years, namely 1535 q  or 1545 q , respectively, for an increasing number of 

developing countries (Timæus, 2013). Combining data of surveys and other sources, Wang and colleagues (2012) at 

the Institute for Heath Metrics and Evaluation (IHME) estimated adult mortality for 187 countries from 1970 to 

2010. 

Life-table databases have been established for developed countries (e.g., Human Mortality Database (HMD), 

2016) and effectively used for various purposes. For developing countries of which the deaths counted 78% that of 

the world in 2010-2015 (United Nations Population Division (UNPD), 2015), however, reliable life tables can 

hardly be found. Indirect estimates of life tables have been provided by the UNPD (2015) and IHME (Wang and 

colleagues, 2012) for developing countries, using empirical data on child mortality ( 05 q ) and adult mortality 

( 1545 q ). But more than half of all deaths already occurred at age 60 and higher in developing countries in 2010-

2015. Thus, estimating old-age mortality ( 6015 q ), and using it together with the 05 q  and 1545 q estimated by the 

UNICEF and IHME mentioned above, to establish a life-table database for developing countries is a relevant and 

urgent task. To fulfil this task, this paper introduces two methods: (1) the Census Method that uses populations 

enumerated in census to estimate 6015 q , and (2) the three-input model life table that utilizes 05 q , 1545 q , and 6015 q  

to calculate life tables. Compared to using only child and adult mortality, applying the two methods to the data of 

HMD after 1950, the errors of fitting old-age mortality are reduced for more than 70% of all the countries. To be 

more specific to developing countries, the errors are reduced by 17% for Chile, 48% for Japan, and 17% for Taiwan, 

for two sexes combined, which are the three non-European-origin populations in Human Mortality Database. These 

results indicate that, in order to establish a life-table database for developing countries, the methodology is adequate 

and the empirical data are available.       

 

2 Methods  

The methods include the Census Method and the three-input model life table (three-input MLT). 

2.1 The Census Method 

The Census Method utilizes populations enumerated from census to estimate 6015 q , and includes two models. 

The first is the Census Method with variable-r model (Bennett.andHoriuchi,1981;Li and Gerland, 2013), which is more 

suitable when the period between the two successive censuses is not close to 10 years; and the second is the Census 

Method with survival model, which should work better when the period is close to 10 years.    

2.1.1 The Census Method with variable-r model 

The variable-r model (Bennett.andHoriuchi,1981) assumes zero migration and evenly distributed enumeration 

errors over age. Let p(x, t) be the observed number of population in age group [x,x+5) enumerated from a census 

conducted at time t, where x=60, 65, 70. The growth rates at age x are computed as 
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where 1t  and 2t represent the date of the first and second census, respectively. And the accumulated growth rates are  
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Further, the middle-point population in age group [x,x+5), N(x), are estimated as 

70,65,60,),(),()( 21  xtxptxpxN .    (3) 

Furthermore, the person-years lived in 5-year age group [x,x+5), xL , in the underlying stationary population, are 

obtained as (Bennett And Horiuchi, 1981) 

.70,65,60)],(exp[)(  xxsxNLx      (4) 

At old ages such as 60 and over, migrants are negligible comparing to deaths. Thus, the zero-migration 

assumption is naturally satisfied.  In developing countries, however, the errors in enumerating population often 

occur unevenly across age. A typical example is age heaping. When such errors are severe, the xL resulted from (4), 

would show implausible patterns of increasing with age, which cannot occur in a stationary population. When such 

implausible situations occur, adjusting xL is necessary. Li and Gerland (2013) proposed such an adjustment as is 

shown in the appendix A, which provides the adjusted xL̂ . After adjusting the age-reporting errors, the number of 

survivors at age x, xl , can be estimated using nonlinear optimization and a Gompertz model (Li and Gerland, 2013), 

or  it can be estimated locally linearly as below: 
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In (5), the 
5.2

ˆˆ
6560 LL 

and 
5.2

ˆˆ
7065 LL 

are the first-step estimates of  65l and 70l , which are linear interpolations 

between 60L̂ , 65L̂ and 70L̂ . The 
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ˆ
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L


is an adjustment that makes 656560

ˆ)(5.2 Lll   . The 

last two lines in (5) are linear formulas of calculating 60L̂ and 70L̂ . 

Finally, after estimating xl , 6015 q is obtained as  
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2.1.2 The Census Method with survival model 

When the period between the two successive censuses is close to 10 years, the populations between the period 

of exactly 10 years can be reliably estimated assuming over-time constant growth rates and using (1). Consequently, 

the 10-year survival ratio of the stationary population is estimated as 
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Assuming that the over-age survival ratio is constant, the 1-year and 15-year survival ratios are therefore 10

1

S and 

10

15

S ,  respectively. Subsequently, the 15-year probability of death between age 60 and 75 can be estimated as 

.1 10

15

Sq          (8) 

The assumption of constant over-age survival ratio can be adjusted using the United Nations general model life table 

(UNPD, 1982), which leads to a more accurate estimate of old-age mortality as  
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2.2 The three-input model life table  

 The three-input model life table is an augmentation of the flexible two-dimensional model life table (two-

input MLT, Wilmoth et al, 2012), which is expressed as 

,)][log()log()log( 2

0505 kvqcqbam xxxxx     (10) 

where xm stands for the five-year age-specific death rates with x=0,1,5,10,…; coefficient vectors xa , xb , xc , and 

xv are obtained from fitting mortality data of the Human Mortality Database; and parameter k is flexible, which can 
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be solved to fit an additional 1545 q . Obviously, the two-input MLT can be used to produce a life table when 05 q

and 1545 q are used as two inputs.  

How to utilize the estimated old-age mortality ( 6015q̂ )? A simple answer (Li, 2014) can be found by following 

the logic of the Logit transformation: )]1/(log[)]ˆ1/(ˆlog[ 0000 qqqq xxxx   , in which the standard 

0qx  is naturally that of the two-input MLT, and level   and pattern   can be chosen to fit some function of 

observed probability of death ( 0q̂x ). When there is only 6015 q̂ , a customary is to set 1  and solve  to fit

6015 q̂ (see Preston, Heuveline and Guillot, 2001; p.200). The rationale for using the Logit transformation is that 

)]1/(log[ 00 qq xx  would be close to linear at all the ages. It is worth noting that, at old ages, )ˆlog( xm  would be 

close to linear according to the Gompertz law. Thus, at old ages, the linear relationship of the Logit transformation 

can be simplified as:  

 )log()ˆlog( xx mm  .      (11) 

Because 

)]ˆˆˆ(5exp[1ˆ
7065606015 mmmq  ,    (12) 

 is solved by inserting (11) to (12): 
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where 6015 q  is the old-age mortality of the two-input MLT. Subsequently, (10) is augmented to the three-input MLT: 
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which will exactly fit the three inputs: child, adult, and old-age mortality. 

3 Validations 

We use the data of HMD to test whether or not the three-input MLT (with 05 q , 1545 q , and 6015 q ) can 

improve the performance of the two-input MLT with only 05 q and 1545 q . We choose the periods after 1950 to 

avoid the irregular effect of World War II, and all the countries or areas except Israel, for which the Census Method 

could not work because of territory change. In HMD, all ‘census’ dates are adjusted to January first. Consequently, 

periods 1950-1959, 1960-1969, …, and 2000-2009, and the Census Method with survival model, are chosen to carry 

649



out the validations.  In real census, there are undercounts. Nonetheless, these undercounts tend to cancel each other 

in causing the errors of estimating mortality level, as is indicated in appendix B.   

We first choose the observed 05 q and 1545 q of a certain population in a certain period as the inputs of two-input 

MLT, which will produce a life table that includes an estimated 6015
~q . This 6015

~q  will differ from the observed old-

age mortality, 6015q . We then use the ‘census’ populations at the two ends of each period to estimate the values of 

old-age mortality, and use an exponential model to smooth them. The results are denoted as 6015q̂ .  

 

The purpose of two-input MLT is to use the 05 q and 1545 q to best describe the corresponding life table, 

including particularly the 6015q , using the mortality patterns of the HMD populations. Thus, 6015
~q is the best 

estimated 6015q that the two-input MLT could provide. We believe that for developing countries 6015
~q should also be 

reasonable to some extent. Therefore, we use 

 

 

]~)1(ˆ[ 601560156015 qwqwq       (16) 

 

as the estimated old-age mortality of the three-input MLT, where the w stands for the weight that can be determined 

flexibly, and is taken as 0.5 in all the validations here.  The values of 6015q are input to the three-input model life 

tables, which will have the same 05 q and 1545 q  as that of two-input MLT. But the values of old-age mortality of 

these life tables are 6015q , which will differ from the observed 6015q .   

 

For a given population, we use the root-mean-squared error (RMSE) to measure errors. More specifically, we 

use RMSE2 to indicate the difference between 6015
~q and 6015q , and RMSE3 to show the distance between 6015q and 

6015q . Let the ith estimates be  )(~
6015 iq and )(6015 iq , and the total number of periods be n, there are 
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If RMSE3<RMSE2for a given population, we conclude that the three-input MLT fits this population better than does 

the two-input MLT, and vice versa.  

 

  The validations use HMD data. If reliable life tables for developing countries were not rare, we would 

choose them to carry out the validation.  For the 37 (excluding Israel) countries’ 74 populations by sex in HMD, the 

results of validation are summarized in figure 1, in which the position of a population is marked by its RMSE2 on 

the horizontal axis and RMSE3on the vertical axis. When the three-input MLT improves the performance of two-

input MLT for a given population, the position of this population is below the equal line, and vice versa.  
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Figure 1. Root-mean-squared errors in predicting 6015 q  for the 74 populations by sex in HMD 

 

 We see that the three-input MLT improved the performance of the two-input MLT for most of the populations. 

To be more specific, the three-input MLT improved the performance of the two-input MLT for 55 of the 74 

populations. We also see from figure 1 that the chance for the improvement to occur is bigger when the RMSE2 is 

larger. Since the two-input MLT is based on the data of HMD of which the populations are almost exclusively of 

European origin, we expect that for non-European-origin populations the error of two-input MLT are more likely to 

be larger and therefore improvements are more likely to occur. This expectation turned to be true within the HMD 

populations. The errors are reduced by 17% for Chile, 48% for Japan, and 17% for Taiwan, which are the three non-

European-origin populations in HMD. Furthermore, since developing countries are all non-European origin, we 

expect that the three-input should provide greater improvements than that in the validations. 

 To see more details of the improvement, we choose Japanese women as an example, and show the fittings of 

old-age mortality in figure 2. We see that the three-input MLT performed slightly worse than did the two-input 

MLT for years before 1980, but remarkably better later. Overall, the three-input MLT reduced the errors of the two-

input MLT by 49% (48% for both men and women).   

Figure 2. Old-age mortality ( 6015 q ) of Japanese women  

   

 Our final target is not only to better fit 6015 q , but to improve the estimates of life tables at old ages. To see how 

this target is reached, we choose Japanese women in 2000-2009 as an example, and show the result in figure 3. We 

see that the three-input MLT remarkably improved the estimates of age-specific death rate at old ages.    
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Figure 3. Age-specific death rates of Japanese women, 2000-2009  

 

  

4Summary 

In 2010-2015, for example, the deaths at age 60 and older already reached 60% of all deaths worldwide (UNPD, 

2015). Compared to the numbers of deaths at child and adult ages, the number of deaths at old ages is the biggest 

and, ironically, also the least reliable. This is because, for most developing countries, the numbers of old-age deaths 

are not estimated on the basis of empirical data. They are extrapolations of mortality at younger ages. This reality 

indicates that improving the estimates of old-age mortality for individual developing countries is not enough, and 

that establishing a life-table database for all developing countries, which utilizes the improved estimations of old-

age mortality, is necessary.   

At old ages, migrants are rare comparing to deaths. Thus, census data on population by age and sex could be 

used to estimate old-age mortality; and such data are available for almost all the countries of the world. For example, 

among the 233 countries and areas (UNPD, 2015), 220 have conducted the 2010-round census between 2005 and 

2014 (United Nations Statistics Division, 2013b). Moreover, some developing countries had surveys or censuses that 

collected information on old-age mortality, which can be used as supplementary data to more reliably estimate old-

age mortality. 

In recent years, new methodological developments have been made to use census population to estimate old-

age mortality, and extend one-input model life tables to better utilize existing information. Furthermore, these 

methods are improved to work better for old ages in recent years. In this paper, we described and organized these 

methods as the three-input MLT; and we validated performance of the three-input MLT using the HMD data. We 

found that the three-input MLT could improve the performance of the previous methods for 55 of the 74 populations 

in HMD, and that the average improvement is 14%. To be more relevant to developing countries that are non-

European-origin populations, confirm this suggestion, improvements are observed for all the non-European-origin 

populations in HMD, which are 17% for Chile, 48% for Japan, and 17% for Taiwan.  

This paper indicated that establishing a life-table database for developing countries is necessary, that the 

methodology is adequate, and that the empirical data are available.        
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Appendix A. Adjusting age reporting errors 

It is hard to find a proper basis to adjust enumerating errors in a real population, which is affected by 

historical fertility, mortality and migration. But a stationary population is determined only by mortality. Thus, it is 

possible to find a proper basis to adjust age errors for stationary populations. According to the United Nations 

general model life table (United Nations Population Division, 1982), there is a common relationship between the 

survival ratios
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S   among model life tables, which is  
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This relationship is called the model line. When the observed survival-ratio point, ),( 6560 SS , is above the 

model line, or when the survival ratio is abnormally rising with age, the difference between the survival-ratio point 

and the model line is caused mainly by age heaping. Accordingly, assuming that the heaping ratio at age 60 equals 

to that at age 70, the adjustment is   
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On the other hand, when the survival-ratio point is below the model line, the difference between the 

survival-ratio point and the model line is caused by nonspecific errors. Accordingly, the adjustment is to move the 

survival ratio point into the model line through minimal distance as 
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where 10  w  is the weight, and is used as 0.5. 
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Appendix B. The errors of estimating survival ratio using census population 

Let the net undercounting rates be 1u  and 2u  for the first and second censuses, respectively. Neglecting 

intercensal migration, the estimated survival ratio (Se) is: 
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Subsequently, the relative error in estimating survival ratio is: 
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It can be seen that the estimating error of survival ratio is determined only by census undercounts. In addition, 

census undercounts tend to cancel each other in causing the errors of estimating survival ratio, which would 

therefore be small in general. 
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Abstract. We study the moments of the forward recurrence times in a renewal process. We discuss in
particular the monotonicity of the variance for these recurrence times. Finally we study the covariance
between the forward recurrence time at t and the number of renewals over [0, t].
Keywords: renewal function; renewal density; forward recurrence time; IMRL; HNBUE; HNWUE..

1 Introduction

One of the key quantities of interest in renewal theory is the forward recurrence time (also known
as the overhshoot or the excess lifetime), that is the time between an arbitrary time point and
the occurrence of the next renewal. Many of the numerous applications of this quantity and the
basic setting of renewal theory can be found e.g. in the books by Feller [5] or Tijms [10]. The
aim of the present note is to give some results about the (higher) moments of forward recurrence
times, while we also give a result concerning the covariance between the forward recurrence time
at time t and the number of renewals in [0, t].

Let X1, X2, . . . , be a sequence of independent, identically distributed (i.i.d.) nonnegative random
variables with distribution function (d.f.) F . Define S0 = 0 and, for n = 1, 2, . . . , let Sn =
X1 + X2 + . . . + Xn. Renewal theory is concerned with the study of the counting process
{N(t) : t ≥ 0}, where N(t) = sup{n : Sn ≤ t}, so that N(t) represents the number of partial
sums (renewal epochs) Sn which are less than or equal to t. A primary quantity of interest is the
renewal function M(t) = E[N(t)], while the forward recurrence time, denoted by γt, is defined
by γt = SN(t)+1 − t.

In the present paper we consider the case where the distribution F has a monotone mean residual
life; more explicitly, for a nonnegative random variable X with d.f. F , the mean residual life
function is defined by c(t) = E(X − t|X > t). We say that F is an increasing (resp. decreasing)
residual life distribution function (IMRL, resp. DMRL) if E(X) < ∞, F (0) < 1 and c(t)
is increasing (decreasing) in t. The term increasing (decreasing) is used throughout for non-
decreasing (non-increasing). We write µk =

∫∞
0
xkdF (x) for the moments of F ; for simplicity,

we write µ rather than µ1 for the first moment. Further, the equilibrium distribution associated
with F , denoted by Fe, is defined as Fe(t) = µ−1

∫ t
0
F (y)dy, where F = 1− F .

The elementary renewal theorem states that M(t) ∼ t/µ. For t ≥ 0, we define L(t) as the
difference between M(t) and t/µ; that is,

L(t) = M(t)− t

µ
.
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We assume throughout that the interarrival distribution F is absolutely continuous; in that
case, M is also absolutely continuous with a density m, the renewal density and it holds that
M
′
(t) = m(t) almost everywhere. An important quantity in what follows is the derivative of the

function L(t), which we denote by l; namely,

l(t) = m(t)− 1

µ
. (1)

In the first part of the paper we present a formula for the forward recurrence time based on the
equilibrium distribution Fe associated with the distribution F of the inter-arrival times. In the
second part we discuss the variance of the forward recurrence times and we show that this is
increasing if F is an IMRL distribution. In the final section we give a result for the sign of the
covariance between the forward recurrence time and the number of renewals up to time t, as t
tends to infinity.

2 Moments of the forward recurrence time

An expression for the moments of the forward recurrence time in a renewal process has been
given by Coleman [4], who showed that for r = 1, 2, · · · ,

E(γrt ) = E(X − t)r + µrM(t)− r
∫ t

0

(
E(X + z − t)r−1 − (z − t)r−1

)
M(z)dz. (2)

In this section we will present an alternative way to calculate the r-th moment of the forward
recurrence time which is based on the equilibrium distribution Fe and the function l(t) defined
in the previous section.

First, we note that the survival function of the forward recurrence time is given by the following
formula

P (γt > y) = F (t+ y) +

∫ t

0

F (u+ y)m(t− u)du, y ≥ 0, (3)

see, e.g. Gakis and Sivazlian [6]. For convenience, we define a function φ(y; t) as follows:

φ(y; t) =

∫ y

0

F (z)l(t+ y − z)dz. (4)

Proposition 1. The survival function of the forward recurrence times is given by the formula

P (γt > y) = F e(y)− φ(y; t). (5)

Proof Inserting equation (1) into (3) we have

P (γt > y) = F (t+ y) +

∫ t

0

F (u+ y)

(
l(t− u) +

1

µ

)
du

= F (t+ y) + F e(y)− F e(t+ y) +

∫ t

0

F (u+ y)l(t− u)du. (6)

The last integral can be written as∫ t

0

F (u+ y)l(t− u)du =

∫ t+y

y

F (z)l(t+ y − z)dz

=

∫ t+y

0

F (z)l(t+ y − z)dz −
∫ y

0

F (z)l(t+ y − z)dz.
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Next, it is known [Chen [3], Losidis and Politis [7]] that∫ t

0

F (z)l(t− z)dz = F e(t)− F (t).

From the last two expressions we get∫ t

0

F (u+ y)l(t− u)du = F e(t+ y)− F (t+ y)−
∫ y

0

F (z)l(t+ y − z)dz.

The proof follows by substituting the last result and equation (4) into (6). 2

Equation (5) permits a straightforward comparison between the survival function of the forward
recurrence time in an ordinary renewal process and a stationary renewal process. More explicitly,
in a stationary renewal process the distribution of the first inter-arrival time is Fe, while all the
other inter-arrivals have a distribution F [see, e.g. Serfozo [8] for details]. We denote the forward
recurrence time in a stationary renewal process by γt. The right tail of this recurrence time is
given by

P (γt > y) = F e(y), t, y ≥ 0, (7)

see, e.g. Serfozo [8]. It is now obvious that P (γt > y) ≥ (≤)P (γt > y) if the function L(t)
(or the renewal function M(t)) is concave (convex). In other words, the forward recurrence
time in an ordinary renewal process is stochastically larger (smaller) that the same quantity in
a stationary process, if M(t)) is concave (convex). Conditions for concavity (convexity) of the
renewal function have been given by Shaked and Zhu [9].

Equation (5) will also help us to calculate the r-moment of the forward recurrence time. Coleman
[4] proved that, when µr+1 <∞, then it holds that

lim
t→∞

E(γrt ) =
µr+1

(r + 1)µ
.

Put now
Sr(t) = E(γrt )− µr+1

(r + 1)µ
. (8)

Then we have the following.

Lemma 1. For r = 1, 2, . . ., it holds that

Sr(t) = −r
∫ ∞
0

yr−1φ(y; t)dy. (9)

Proof Multiplying equation (5) with ryr−1 and integrating with respect to y on (0,∞) we have

r

∫ ∞
0

yr−1P (γt > y)dy = r

∫ ∞
0

yr−1F e(y)dy − r
∫ ∞
0

∫ y

0

yr−1F (z)l(t+ y − z)dzdy.

The integral on the left equals E(γt
r), see, e.g. Feller [5],(p. 150). It is easy to see that the

first integral on the right is equal to µr+1/(µ(r + 1)). Therefore, substituting (4) in the second
integral on the right yields

E(γt
r) =

µr+1

µ(r + 1)
− r

∫ ∞
0

yr−1φ(y; t)dy,

which, in view of (8), is the desired result. 2
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It is easy to deduce from Lemma 1 that, if the renewal function M(t) is a concave (convex)
function, then E(γt

r) is an increasing (decreasing) function of t. This last result can also be
inferred from Theorem 4 in Shaked and Zhu [9]. Further, we see from (4) that, if l(t) ≤ (≥)0,
then we have φ(y; t) ≤ (≥)0 for all t, y and, by an appeal to Lemma 1, we obtain the following.

Corollary 1. If L(t) is a decreasing (increasing) function of t, then we have that Sr(t) ≥ (≤)0.

A well-known sufficient condition for L(t) to be an increasing function, obtained by Brown [1],
is that the interarrival distribution function F is IMRL. Brown [1] also proved that, when the
distribution of the inter-arrival times is IMRL, then

M(t) ≤ t

µ
+

µ2

2µ2
− 1. (10)

Let now

Q(t) = M(t)− t

µ
+ 1− µ2

2µ2
. (11)

Both an upper and a lower bound for Q(t) have been given recently by Losidis and Politis
[7]. Note that, by Wald’s identity, the mean forward recurrence time is given by E(γt) =
µ(1 +M(t))− t, so that the last expression gives

E(γt) =
µ2

2µ
+ µQ(t). (12)

On the other hand, equation (9) for r = 1 gives E(γt) = µ2/(2µ)−
∫∞
0
φ(y; t)dy. Thus, another

formula for the “remainder term” Q(t) is

Q(t) = − 1

µ

∫ ∞
0

φ(y; t)dy.

3 The variance of the forward recurrence time

Here we consider the variance of the forward recurrence time. First, using equation (9) we obtain
the following formula

V ar(γt) =
µ3

3µ
− 2

∫ ∞
0

yφ(y; t)dy −
(
µ2

2µ
−
∫ ∞
0

φ(y; t)dy

)2

.

Next, Tijms [10] gave the following expression for the second moment of γt,

E(γt
2) = µ2 (1 +M(t))− 2µ

(
t+

∫ t

0

M(x)dx

)
+ t2. (13)

Using this and the results of the previous section we now show that, under the IMRL assumption
for F , both the second moment and the variance of the forward recurrence time are increasing
functions of t.

Lemma 2. The second moment of the forward recurrence time is given by the following formula

E(γt
2) =

µ2
2

2µ2
+ µ2Q(t)− 2

(
µ

∫ t

0

Q(x)dx

)
(14)

If, in addition, the d.f of the inter-arrival times is IMRL, then this is an increasing function of
t.
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Proof Equation (14) is proved by inserting (11) into (13) and some simple algebra. Further, the
derivative of the second moment of the forward recurrence time is

d

dt
E(γt

2) = µ2l(t) + 2
d

dt

(
−µ
∫ t

0

Q(x)dx

)
= µ2l(t)− 2µQ(t),

and this is nonnegative under the IMRL assumption. 2

We note that the second part of the lemma can also be inferred from Theorem 2 in Brown [2],
who gave a more general result.

Proposition 2. The variance of the forward recurrence time in an ordinary renewal process is
given by the following formula

V ar(γt) =
µ2
2

4µ2
− 2µ

∫ t

0

Q(x)dx− µ2Q(t)2.

If the d.f of the inter-arrival times is IMRL, then this is an increasing function of t.

Proof Since V ar(γt) = E(γt
2)− E(γt)

2
, from (12) and (14) we obtain

V ar(γt) =
µ2

2

2µ2
+ µ2Q(t)− 2

(
µ

∫ t

0

Q(x)dx

)
−
(
µ2

2µ
+ µQ(t)

)2

=
µ2
2

4µ2
− 2µ

∫ t

0

Q(x)dx− µ2Q(t)2.

In the IMRL case, a simple differentiation yields

d

dt
V ar(γt) = −2µQ(t)− 2µ2Q(t),

and the fact that Q(t) ≤ 0 implies now that V ar(γt) is increasing. 2

4 The covariance between the forward recurrence time and the
number of renewals as t → ∞

Here we study the behaviour of the covariance between the forward recurrence time and the
number of renewals up to time t, N(t), in an ordinary renewal process as t→∞. To begin with,
Coleman [4] showed that, if µ3 <∞, then

lim
t→∞

Cov(γt, N(t)) =
µ2

2

4µ3
− µ3

6µ2
. (15)

It is also known (Tijms [10]) that

lim
t→∞

(∫ t

0

M(x)dx−
(
t2

2µ
+

(
µ2

2µ2
− 1

)
t

))
=
µ2

2

4µ3
− µ3

6µ2
.

The left-hand side of this can be written as follows:

lim
t→∞

(∫ t

0

M(x)dx−
(
t2

2µ
+

(
µ2

2µ2
− 1

)
t

))
= lim
t→∞

∫ t

0

(
M(x)−

(
x

µ
+

µ2

2µ2
− 1

))
dx

=

∫ ∞
0

Q(x)dx,
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using the definition of the function Q in (11). We therefore see that the asymptotic covariance
between the forward recurrence time and the number of renewals N(t) is given by the following
formula

lim
t→∞

Cov(γt, N(t)) =

∫ ∞
0

Q(x)dx.

This implies in particular that, if F is IMRL, the asymptotic covariance is less than or equal
to zero, since in that case Q(x) ≤ 0 for all x. The next result is much stronger, however, as
it applies to a class of distributions which is considerably larger than the IMRL class. More
explicitly, we recall the following definition. A distribution F supported on [0,∞) is HNWUE
(HNBUE), we call this as ‘harmonic new worse (better) than used in expectation’, if for all
x ≥ 0, ∫ ∞

x

F (t) dt ≥ (≤)µ e−x/µ,

where µ is the first moment of F .

The HNWUE (HNBUE) classes seem to be the largest among the commonly used ageing classes
of distributions. In particular, if a distribution F is IMRL, then both F and the associated
equilibrium distribution Fe are also HNWUE.

Proposition 3. If, in a renewal process, the equilibrium distribution Fe is HNBUE (HNWUE),
then

lim
t→∞

Cov(γt, N(t)) ≥ (≤)0.

Proof From the definition of the HNBUE (HNWUE) classes above, it is easy to see that if the
equilibrium distribution is in the HNBUE (HNWUE) class, then∫ ∞

t

F e(z)dx ≤ (≥)
µ2

2µ
e
−2µ
µ2

t.

Integrating both sides of this over (0,∞) we get∫ ∞
0

∫ ∞
t

F e(z)dzdt ≤ (≥)
µ2

2µ

∫ ∞
0

e
−2µ
µ2

tdt (16)

The right-hand side of the above inequality is equal to

µ2

2µ

∫ ∞
0

e
−2µ
µ2

tdt =
µ2
2

4µ2
,

while for the left-hand side we get∫ ∞
0

∫ ∞
t

F e(z)dzdt = µ−1
∫ ∞
0

∫ ∞
t

∫ ∞
z

F (y)dydzdt = µ−1
∫ ∞
0

∫ ∞
t

∫ y

t

F (z)dzdydt

= µ−1
∫ ∞
0

∫ ∞
t

(z − t)F (z)dzdt =
1

µ

∫ ∞
0

∫ z

0

xF (z)dxdz

=
1

2µ

∫ ∞
0

z2F (z)dz =
µ3

6µ
.

By inserting the last two expressions into (16) we obtain that, if Fe is a HNBUE (HNWUE)
distribution, then

µ3

6µ
− µ2

2

4µ2
≤ (≥)0
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and the result follows in view of (15). 2
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Abstract. Regarding the analysis of Web communication, social and complex net-
works the fast finding of most influential nodes in a network graph constitutes an
important research problem. We use two indices of the influence of those nodes,
namely, PageRank and a Max-linear model. We consider the PageRank as an au-
toregressive process with a random number of random coefficients that depend on
ranks of incoming nodes and their out-degrees and assume that the coefficients are
independent and distributed with regularly varying tail and with the same tail index.
Then it is proved that the tail index and the extremal index are the same for both
PageRank and the Max-linear model and the values of these indices are found. The
achievements are based on the study of random sequences of a random length and
the comparison of the distribution of their maxima and linear combinations.
Keywords: Extremal Index, PageRank, Max-Linear Model, Branching Process, Au-
toregressive Process, Complex Networks.

1 Introduction

Regarding the analysis of Web communication, social and complex networks
the fast finding of most influential nodes in a network graph constitutes an
important research problem. PageRank remains the most popular character-
istic of such influence. We aim to find an extremal index of PageRank whose
reciprocal value determines the first hitting time, i.e. a minimal time to reach
the first influential node by means of a PageRank random walk. The extremal
index θ ∈ [0, 1] has many other interpretations and plays a significant role in
the theory of extreme values. Particularly, the limit distribution of maxima of
stationary random variables (r.v.s) depends on θ. For independent r.v.s θ = 1
holds.
θ has a connection to the tail index that shows the heaviness of the tail of a
stationary distribution of an underlying process.
Google’s PageRank defines the rank R(Xi) of the Web page Xi as

R(Xi) = c
∑

Xj∈N(Xi)

R(Xj)

Dj

+ (1 − c)qi, i = 1, ..., n, (1)

where N(Xi) is the set of pages that link to Xi (in-degree), Dj is the number
of outgoing links of page Xj (out-degree), c ∈ (0, 1) is a damping factor, q =
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(q1, q2, ..., qn) is a personalization probability vector or user preference such
that qi ≥ 0 and

∑n

i=1 qi = 1, and n is the total number of pages, [11]. We omit
in (1) the term with dangling nodes for simplicity.
PageRank of a randomly selected page (a node in the graph) with random in-
and out-degrees may be considered as a branching process (Cf. [4], [5], [14])

Ri =

Ni
∑

j=1

AjR
(j)
i +Qi, i = 1, ..., n, (2)

denoting Ri = R(Xi), Aj =d c/Dj, Qi = (1 − c)qi, [14]. R
(j)
i are ranks of

descendants of node i, i.e. nodes with incoming links to node i. The r.v. Ni

determines an in-degree, i.e. a number of directed edges to the ith node, and
a number of nodes in the first generation of descendants belonging to the ith
node as a parent, {Qi} is a sequence of i.i.d. r.v.s.
Starting from the initial page (node) X0, a PageRank random walk deter-
mines a regenerative process or Harris recurrent process {Xt}, letting it visits
pages-followers of the underlying node with probability c and it restarts with
probability 1− c by jumping to a random independent node.
A Max-linear model can be considered as an alternative characteristic of the
node influence. This model is obtained by a substitution of sums in Google’s
definition of PageRank by maxima, i.e.

Ri =

Ni
∨

j=1

AjR
(j)
i ∨Qi, i = 1, ..., n, (3)

is proposed in [6].
Formally, (2) can be considered as an autoregressive process with the random
number Ni of random coefficients and the independent random term Qi. The
extremal index of AR(1) processes with regularly varying stationary distribu-
tion and its relation to the tail index were considered in [9]. The extremal
index of AR(q), q ≥ 1 processes with q random coefficients was obtained in [10]
in a form which is not convenient for calculations. In [7] the results by [9] were
extended to multivariate regularly varying distributed random sequences and
the extremal and tail indices of sum and maxima of such sequences with l ≥ 1
r.v.s were derived.
Our achievements extend and adapt the results by [7] to PageRank and Max-
linear processes. The problem concerns the finding of the extremal index of a
random graph that models a real network where incoming nodes of the root
node may be linked and, hence, be dependent. Such a random graph is called
a Thorny Branching Tree (TBT) since any node may have outbound stubs
(teleportations) to arbitrary nodes of the network, [4]. In this respect, such a
graph cannot be considered as a pure Galton-Watson branching process where
descendants of any node are mutually independent and teleportations are im-
possible.
The paper is organized as follows. In Section 2 we recall necessary results re-
garding the relation between the tail and extremal indices obtained in [7] for
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multivariate random sequences which are regularly varying distributed (Theo-
rems 1 and 2). Linear combinations and maxima of the random sequences of a
fixed length are considered and it is derived that they have the same tail and
extremal indices. In Section 3 we extend Theorem 2 to the case of unequal
tail indices assuming r.v.s of a random sequence (Theorem 3). In Section 4 we
consider sequences of random lengths and obtain the tail and extremal indices
of their linear combinations and maxima (Theorem 4). We further discuss
how these results can be applied to PageRank and the Max-linear processes in
Section 5.

2 Related Work

Let {Rj} be a stationary sequence with distribution function F (x) and maxima
Mn = max1≤j≤n Rj . We shall interpret {Rj} as PageRanks of Web pages.

Definition 1. A stationary sequence {Rn}n≥1 is said to have extremal index
θ ∈ [0, 1] if for each 0 < τ < ∞ there is a sequence of real numbers un = un(τ)
such that

lim
n→∞

n(1− F (un)) = τ and (4)

lim
n→∞

P{Mn ≤ un} = e−τθ (5)

hold ([12], p.53).

In [7] the following theorems are proved which we will use to find the extremal

and tail indices of PageRank and a Max-linear model. Let Y
(1)
n , Y

(2)
n , ..., Y

(l)
n ,

n ≥ 1, l ≥ 1 be sequences of r.v.s having stationary distributions with tail
indices k1, ..., kl and extremal indices θ1, ..., θl, respectively, i.e.

P{Y (i)
n > x} ∼ c(i)x−ki as x → ∞,

where c(i) are some real positive constants.
Let us consider the weighted sum

Yn(z) = z1Y
(1)
n + z2Y

(2)
n + ...+ zlY

(l)
n , z1, ..., zl > 0 (6)

and denote its tail index by k(z) and extremal index by θ(z). Supposing that
there is a minimal tail index among k1, ..., kl, the following theorem states the
corresponding k(z) and θ(z).

Theorem 1. ([7]) Let k1 < ki, i = 2, ..., l hold. Then Yn(z) has the tail index

k(z) = k1 and the extremal index θ(z) = θ1.

In the next theorem it is assumed that sequences Y
(1)
n , Y

(2)
n , ..., Y

(l)
n are mutu-

ally independent with equal tail indices k1 = ... = kl = k. We denote

Y ∗

n (z) = max
(

z1Y
(1)
n , z2Y

(2)
n , ..., zlY

(l)
n

)

. (7)

Theorem 2. ([7]) The sequences Y ∗

n (z) and Yn(z) have the same tail index k

and the same extremal index equal to

θ(z) =
c(1)zk1

c(1)zk1 + ...+ c(l)zkl
θ1 + ...+

c(l)zkl
c(1)zk1 + ...+ c(l)zkl

θl.
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3 Generalization of Theorem 2

Theorem 3 is a generalization of Theorem 2 to the case of unequal tail indices.

Theorem 3. Let {Y
(j)
n }, n ≥ 1, j = 1, ..., l be mutually independent regularly

varying r.v.s with tail indices k1, ..., kl, respectively. Let km < ki, i = 1, ..., l,
i 6= m hold. Then r.v.s Y ∗

n (z) and Yn(z) have the same tail index k(z) = km
and the same extremal index θ(z) = θm.

Proof. First we show that

P{Y ∗

n (z) > x} ∼ c(z)x−km , x → ∞, (8)

where c(z) =
∑l

i=1 c
(i)zki

i 1{ki = km}. Similar to [7] and as

P{ziY
(i)
n > x} ∼ c(i)zki

i x−ki (9)

holds, we have

P{Y ∗

n (z) > x} = P{max(z1Y
(1)
n , .., zlY

(l)
n ) > x}

= 1− P{max(z1Y
(1)
n ≤ x} · ... · P{zlY

(l)
n ) ≤ x}

=
l

∑

i=1

P{ziY
(i)
n > x}

+
l

∑

k=2

(−1)k−1
l

∑

i1<i2<...<ik;i1,i2,...,ik=1

P{zi1Y
(i1)
n > x} · ... · P{zikY

(ik)
n > x}

∼
l

∑

i=1

c(i)zki

i x−ki

+
l

∑

k=2

(−1)k−1
l

∑

i1<i2<...<ik;i1,i2,...,ik=1

c(i1)z
ki1

i1
x−ki1 · ... · c(ik)z

kik

ik
x−kik

∼ c(z)x−km + o(x−km), x → ∞. (10)

Thus, P{Yn(z) > x} ∼ c(z)x−km follows from Theorem 1.
Now we show that Y ∗

n (z) and Yn(z) have the same extremal index θ(z) = θm.
We use the same notations as in [7]

M (i)
n = max{Y

(i)
1 , Y

(i)
2 , ..., Y (i)

n }, i = 1, .., l;

Mn(z) = max{Y1(z), Y2(z), ..., Yn(z)},

M∗

n(z) = max{Y ∗

1 (z), Y
∗

2 (z), ..., Y
∗

n (z)}, n ≥ 1.

By (7) it holds

M∗

n(z) = max{z1Y
(1)
1 , ..., z1Y

(1)
n , ..., zlY

(l)
1 , ..., zlY

(l)
n }

= max{z1M
(1)
n , ..., zlM

(l)
n }.
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Then we get

P{M∗

n(z)n
−1/k ≤ x} = P{z1M

(1)
n n−1/k ≤ x, ..., zlM

(l)
n n−1/k ≤ x} (11)

Since km is the minimal tail index we have

P{ziM
(i)
n n−1/km ≤ x} = P{ziM

(i)
n n−1/ki ≤ xn1/km−1/ki}.

It implies

ziM
(i)
n n−1/km →P 0, i = 1, ..., l, i 6= m as n → ∞ (12)

since limn→∞ P{ziM
(i)
n n−1/ki ≤ x} = exp(−c(i)θiz

ki

i x−ki). By (11) it holds

P{M∗

n(z)n
−1/km ≤ x} → exp(−c(m)zkm

m θmx−km), n → ∞.

Now we have to show that P{M∗

n(z)n
−1/km ≤ x} ∼ P{Mn(z)n

−1/km ≤ x}.
Let us denote un = xn1/km . Note that the event {M∗

n(z) ≤ un} follows from
{Mn(z) ≤ un}. Then, as in [7], we obtain

0 ≤ P{M∗

n(z) ≤ un} − P{Mn(z) ≤ un} (13)

= P{M∗

n(z) ≤ un} − P{M∗

n(z) ≤ un,Mn(z) ≤ un}

= P{M∗

n(z) ≤ un,Mn(z) > un} ≤

n
∑

k=1

P{M∗

n(z) ≤ un, Yk(z) > un}

≤

n
∑

k=1

P{Y ∗

k (z) ≤ un, Yk(z) > un} = nP{Y ∗

n (z) ≤ un, Yn(z) > un}

due to the stationarity of the sequences Y ∗

n (z) and Yn(z). Lemma 1 in [7] states
that

P{Y ∗

n (z) ≤ un|Yn(z) > un} → 0, n → ∞, (14)

for i.i.d. regularly varying {Y
(j)
n } with equal tail index. This can be extended

to the case of unequal k1, ..., kl. Since

nP{Yn(z) > un} → c(z)x−km , n → ∞, (15)

and (14) hold, it follows

lim
n→∞

(P{M∗

n(z) ≤ un} − P{Mn(z) ≤ un}) = 0.

4 Extremal Index of PageRank and the Max-Linear

Processes

We denote in (2) Ri as Yi(z) and AjR
(j)
i = cR

(j)
i /Dj, j = 1, ..., Ni as zjY

(j)
i .

Then we can represent (2) in the form (6) as

Yi(z) =

Ni
∑

j=1

zjY
(j)
i +Qi, i = 1, ..., n, (16)
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where Ni is a nonnegative integer-valued r.v.. In the context of PageRank
zj = c, j = 1, 2, ..., Ni, Qi = z∗qi with z∗ = 1 − c and Ni represents the node
in-degree. It is realistic to assume that Ni is a power law distributed r.v. with
parameter α > 0, i.e.

P{Ni = ℓ} ∼ ℓ−α (17)

and Ni is bounded by a total number of nodes in the network.
The distribution of Ni is in the domain of attraction of the Fréchet distribution
with shape parameter α > 0 and P{Ni > x} = x−αℓ(x), ∀x > 0, where ℓ(x) is
a slowly varying function, since it satisfies a sufficient condition for this prop-
erty, i.e. the von Mises type condition limn→∞ nP{Ni = n}/P{Ni > n} = α,
[1].
Theorem 4 is an extension of Theorems 2 and 3 to maxima and sums of multi-
variate random sequences of random lengths, that can be applied to PageRank
and the Max-linear processes. Let us turn to (16) and denote

Y ∗

Nn
(z) = max(z1Y

(1)
n , .., zNn

Y (Nn)
n , Qn),

YNn
(z) = z1Y

(1)
n + ..+ zNn

Y (Nn)
n +Qn.

Theorem 4. Let {Y
(j)
n }, n ≥ 1, j = 1, ..., Nn and qn = Qn/z

∗ be mutually

independent regularly varying i.i.d. r.v.s with tail indices k > 0 and β >

0, respectively, and Nn be regularly varying r.v. with tail index α > 0. Let

Y
(1)
n ,.., Y

(Nn)
n have extremal indices θ1, ..., θNn

, respectively. Then r.v.s Y ∗

Nn
(z)

and YNn
(z) are regularly varying distributed with the same tail index k(z) =

min(k, α, β) and the same extremal index θ(z) such that

θ(z) = (z∗)β , if k ≥ β,

θ(z) =

∞
∑

i=1

c(i)θiz
k
i /c(z), if k < β, (18)

where c(z) =
∑

∞

i=1 c
(i)zki holds.

Proof. We shall show first that

P{Y ∗

Nn
(z) > x} ∼ P{YNn

(z) > x} ∼ x−min(k,α,β). (19)

Since r.v.s {Y
(j)
n }j≥1 are subexponential and i.i.d. it holds

P{z1Y
(1)
n + ..+ z⌊x⌋Y

(⌊x⌋)
n > x} ∼ P{max(z1Y

(1)
n , .., z⌊x⌋Y

(⌊x⌋)
n ) > x}

∼ xP{z1Y
(1)
n > x}, x → ∞, (20)

[8]. Due to mutual independence of Qn and {Y
(j)
n } and similar to (10) we get

P{Y ∗

Nn
(z) > x} = P{Y ∗

Nn
(z) > x,Nn ≤ x} + P{Y ∗

Nn
(z) > x,Nn > x}

≤ P{Y ∗

⌊x⌋(z) > x}+ P{Nn > x}

= 1− P{max(z1Y
(1)
n , .., z⌊x⌋Y

(⌊x⌋)
n ) ≤ x}P{Qn ≤ x}+ P{Nn > x}

∼ cNx−α + cq(z
∗)βx−β + c(z)x−k ∼ x−min{k,α,β}, (21)
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as x → ∞, where cN , cq > 0, c(z) =
∑

∞

i=1 c
(i)zki . On the other hand,

P{Y ∗

Nn
(z) > x} ≥ 0 + P{Y ∗

Nn
(z) > x,Nn > x}

≥ P{Y ∗

⌈x⌉(z) > x} + P{Nn > x}+ P{Y ∗

⌈x⌉(z) ≤ x,Nn ≤ x} − 1

∼ x−min{k,α,β} (22)

holds, since P{Y ∗

⌈x⌉
(z) ≤ x,Nn ≤ x} → 1 as x → ∞. Due to (21) and (22) we

obtain

P{Y ∗

Nn
(z) > x} ∼ x−min{k,α,β}.

The same is valid for YNn
(z) by substitution of the maximum by the sum due

to (20). Hence, (19) follows.
Let us prove that Y ∗

Nn
(z) and YNn

(z) have the same extremal index θ(z). Let
us denote

M∗

Nn
(z) = max{Y ∗

N1
(z), Y ∗

N2
(z), ..., Y ∗

Nn
(z)} (23)

= max{z1Y
(1)
1 , ..., zN1

Y
(N1)
1 , Q1, ..., z1Y

(1)
n , ..., zNn

Y (Nn)
n , Qn}

and

MNn
(z) = max{YN1

(z), YN2
(z), ..., YNn

(z)}

= max{z1Y
(1)
1 + ...+ zN1

Y
(N1)
1 +Q1, ..., z1Y

(1)
n + ...+ zNn

Y (Nn)
n +Qn}.

Without loss of generality we may assume that Nn = max{N1, ..., Nn}. Then

we can complete vectors (z1Y
(1)
i , ..., zNi

Y
(Ni)
i ), i = 1, 2, ..., n by zeros up to the

dimension Nn and separate the vector (Q1, ..., Qn). We rewrite (23) as

M∗

Nn
(z) = max{z1Y

(1)
1 , ..., z1Y

(1)
n , ..., zNn

· 0, ..., zNn
· 0, ..., zNn

Y (Nn)
n ,

Q1, ..., Qn}

= max(z1M
(1)
n , z2M

(2)
n , ..., zNn

M (Nn)
n ,M (Q)

n ).

Here, M
(Q)
n = max{Q1, ..., Qn} relates to the second term in the rhs of (16)

corresponding to the user preference term Qi in (2). Following the same ar-
guments as after (11) in Section 3 the statement follows. Really, denoting
k∗ = min{k, β} and un = xn1/k∗

, x > 0, we get

P{M∗

Nn
(z) > un}

= P{M∗

Nn
(z) > un, Nn > un}+ P{M∗

Nn
(z) > un, Nn ≤ un}

≤ P{M∗

⌈un⌉
(z) > un}+ P{Nn > un}.

On the other hand,

P{M∗

Nn
(z) > un} ≥ P{M∗

⌈un⌉
(z) > un, Nn > un}

= P{Nn > un}+ P{M∗

⌈un⌉
(z) > un}+ P{M∗

⌈un⌉
(z) ≤ un, Nn ≤ un} − 1.
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Note that P{M∗

⌈un⌉
(z) ≤ un, Nn ≤ un} − 1 tends to zero as n → ∞. Hence, it

holds

P{M∗

Nn
(z) > un} ∼ P{M∗

⌈un⌉
(z) > un}+ P{Nn > un}, n → ∞. (24)

If k < β holds, then M
(Q)
n · n−1/k∗

→P 0 as n → ∞ since P{ziM
(i)
n n−1/k ≤

x} → exp(−c(i)θiz
k
i x

−k), i = 1, 2, .... Since P{Nn > un} ∼ u−α
n → 0 as n → ∞

holds, then by (24) it follows

lim
n→∞

P{M∗

Nn
(z)n−1/k∗

≤ x} = exp{−c(z)θ∗(z)x−k}, (25)

where θ∗(z) =
∑

∞

i=1 c
(i)θiz

k
i /c(z) and c(z) =

∑

∞

i=1 c
(i)zki .

If k ≥ β holds, then ziM
(i)
n ·n−1/k∗

→P 0, i = 1, 2, ... follows since P{M
(Q)
n n−1/β ≤

x} → exp(−cq(z
∗)βx−β) as n → ∞. Thus, we obtain

lim
n→∞

P{M∗

Nn
(z)n−1/k∗

≤ x} = exp(−cq(z
∗)βx−β). (26)

Since {qi} are i.i.d., its extremal index is equal to one. Then by (25) and (26)
the extremal index of Y ∗

Nn
(z) satisfies (18) irrespectively of α.

It remains to show that Y ∗

Nn
(z) and YNn

(z) have the same extremal index.
Similarly to [7], we have to derive that

lim
n→∞

P{MNn
(z)n−1/k∗

≤ x} = lim
n→∞

P{M∗

Nn
(z)n−1/k∗

≤ x}. (27)

Since from the event {MNn
(z) ≤ un} it follows {M

∗

Nn
(z) ≤ un}, and P{MNn

(z) ≤
un} ≤ P{M∗

Nn
(z) ≤ un} holds, we obtain similarly to (13)

0 ≤ P{M∗

Nn
(z) ≤ un} − P{MNn

(z) ≤ un}

= P{M∗

Nn
(z) ≤ un} − P{M∗

Nn
(z) ≤ un,MNn

(z) ≤ un}

= P{M∗

Nn
(z) ≤ un,MNn

(z) > un}

= P{M∗

Nn
(z) ≤ un,MNn

(z) > un, Nn > un}

+ P{M∗

Nn
(z) ≤ un,MNn

(z) > un, Nn ≤ un}

≤ P{Nn > un}+ P{M∗

Nn
(z) ≤ un,M⌊un⌋

(z) > un, Nn ≤ un}

≤ P{Nn > un}+

⌊un⌋
∑

k=1

P{Y ∗

k (z) ≤ un, Yk(z) > un}

= P{Nn > un}+ ⌊un⌋P{Y ∗

k (z) ≤ un, Yk(z) > un} (28)

due to the stationarity of {Y ∗

k (z)} and {Yk(z)}.

Completing vectors (z1Y
(1)
k , ..., zNk

Y
(Nk)
k ) by zeroes up to the maximal dimen-

sion ⌊un⌋, we get

P{Y ∗

k (z) ≤ un, Yk(z) > un} = P{max(z1Y
(1)
k , ..., z⌊un⌋

Y
(⌊un⌋)
k , Qk) ≤ un,

z1Y
(1)
k + ...+ z⌊un⌋

Y
(⌊un⌋)
k +Qk > un}

Then (27) follows from (14) and (15) since in (28)

P{Y ∗

k (z) ≤ un, Yk(z) > un} = P{Yk(z) > un}P{Y ∗

k (z) ≤ un|Yk(z) > un}

holds.
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5 Application to Indices of Complex Networks

Theorem 4 can be applied to PageRank and the Max-linear processes. These
processes then have the same tail index and the same extremal index. Theorem
4 is in the agreement with statements in [5] and [14], namely, that the stationary

distribution of PageRank R =d
∑Ni

j=1 AjR
(j)
i + Qi is regularly varying and

its tail index is determined by a most heavy-tailed distributed term in the

triple (Ni, Qi, AiR
(j)
i ). This is derived if all terms in the triple are mutually

independent. In contrast, Theorem 4 is valid for an arbitrary dependence

structure between Nn and {Y
(j)
n } as well as Nn and Qn, and {Ni} are not

necessarily independent. The novelty of Theorem 4 is that the extremal index
of both PageRank and the Max-linear processes is the same and it depends on

the tail indices in the couple (Qi, AiR
(j)
i ), irrespective of the tail index of Ni.

The assumptions of both Theorem 4 and the statements in [5] and [14] do
not reflect properly the complicated dependence between node ranks due to
the entanglement of links in a real network. For better understanding let us
consider the matrix











z1Y
(1)
1 z2Y

(2)
1 ...zN1

Y
(N1)
1 0 0 Q1

z1Y
(1)
2 z2Y

(2)
2 ...zN1

Y
(N1)
2 ...zN2

Y
(N2)
2 0 Q2

... ... ... ... ... ...

z1Y
(1)
n z2Y

(2)
n ...zN1

Y
(N1)
n ...zN2

Y
(N2)
n ...zNn

Y
(Nn)
n Qn











(

(k, θ1) (k, θ2) ...(k, θN1
) ...(k, θN2

) ......(k, θNn
) ...(β, (z∗)β)

)

corresponding to (16) and completed by zeros up to the maximal dimension,
let’s say Nn. Strings of the matrix correspond to generations of descendants
of nodes with numbers 1, 2, ..., n. Each column may contain descendants of
different nodes having the same extremal index θi, i = 1, 2, ..., Nn. All columns
apart of the last one are identically regularly varying distributed with the same
tail index k. The columns are mutually independent.
In terms of some network, the conditions of Theorem 4 imply that ranks of
all nodes with incoming links to a root node (i.e. its followers) are mutually
independent, but followers of different nodes may be dependent and, thus, they
are combined into clusters. The reciprocal of the extremal index approximates
the mean cluster size, [12].
The statement (18) implies that the extremal index of PageRank is equal to
θ(z) = (1 − c)β if the user preference dominates (i.e. its distribution tail is
heavier than the tail of ranks of followers). If the damping factor c is close to
one, then θ(z) is close to zero. The latter means the huge-sized cluster of nodes
around a root-node in the presence of rare teleportations. If c is close to zero,
then θ(z) is close to one due to the independence of frequent teleportations. If
k < β holds, then roughly, the mean size of the cluster is determined by the
consolidation of all clusters related to the followers of the underlying root.
In practice, the followers of a node may be linked and their ranks can therefore
be dependent. The future work will focus on the extremal index of PageRank

process when the terms {Y
(j)
i } in (16) are mutually dependent.
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different matrix exponential algorithms in R
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University Belfast, Northern Ireland
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Abstract. The calculation of the exponential of a matrix is arguably the most widely
used and widely studied matrix function. This is due to the key role it plays in
finding solutions to differential equations. The major issue with this matrix operator
is the computational time, which gets progressively worse as the dimensions of the
matrix increase. Scaling and squaring combined with a Padé approximation is the
most commonly used approach within software such as R and Matlab. However this
approach becomes problematic when the matrix is large and sparse in nature. Krylov
subspace methods are the latest efficient emerging approach used for calculating the
matrix exponential. This paper aims at comparing the different algorithms used to
calculate both the exponential of a matrix in isolation and with the product of a
vector. A comparison study is carried out to determine the most efficient technique
resulting in the fastest computational time.
Keywords: Matrix, Exponential, Computational, Efficient, Krylov.

1 Introduction

This paper will focus on the matrix exponential operator, with a particular
interest in the computational complexity. The exponential of a matrix can be
calculated in numerous ways, most of which when looking at issues such as
efficiency and computational stability are of very little practical use, Moler and
Van Loan [1]. This paper will provide a brief introduction to the theory behind
this matrix operator and look at one of the most popular methods in more de-
tail, the scaling and squaring method combined with the Padé approximation.
Details of the implementation of this method in R will also be discussed. Krylov
subspace methods will be introduced, which are seen as a new emerging tech-
nique used to compute the matrix exponential, Moler and Van Loan [2]. The
theory of these methods along with the software that implements them will
be discussed. Such methods are aimed at reducing the computational chal-
lenge with the matrix exponential. Results of a simulation study interested in
the comparison of computational timing between the current existing methods
within software such as R and the new Krylov subspace techniques will also be
provided and further discussed.

2 Matrix Exponential

The calculation of the matrix exponential is arguably the most commonly used
and most widely studied matrix function, Higham [3]. The main interest in
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this matrix operator is a result of the key role it plays in finding solutions to
ordinary differential equations (ODE) within many different application areas.
If A is a fixed, real or complex n× n matrix, this leads to the following ODE.

ẋ(t) = Ax(t) (1)

Solving equation (1) requires the matrix exponential to be computed. The so-
lution to this ODE must satisfy the initial condition, x(0) = x0 and is therefore
given by x(t) = eAtx0 where eAt can be defined using the power series, which
is one of the nineteen methods examined in Moler and Van Loan [1].

eAt = I + At+
A2t2

2!
+

A3t3

3!
+ ... (2)

The importance of equation (1), although difficult to compute, has resulted in
a growing interest in the matrix exponential operator along with an increased
number of methods available. Many of these methods can be found in both
of Moler and van Loan’s review papers ‘Nineteen dubious ways to compute
the exponential of a matrix’ [1,2], where the second publication is an updated
version of the first, twenty-five years later. In both of their review papers
Moler and Van Loan categorised each of the nineteen methods into one of
five categories: matrix decomposition methods, polynomial methods, series
methods, differential equation methods and splitting methods. A lot of these
methods are of very little practical use, hence why many would agree with
Moler and Van Loan’s classification of these methods as ‘dubious’.

For problems that require the calculation of eAt repeatedly where A is large, the
most efficient matrix decomposition methods are those that are centred around
the decomposition or factorisation of matrix A. However one of the drawbacks
associated with these methods is that of stability. Polynomial methods are
limited to a certain type of problem. This is due to most of these methods
requiring the calculation of a characteristic polynomial. Other types of poly-
nomial methods have stability issues, similar to those of matrix decomposition
methods but are much less efficient. Ordinary differential equation methods
while easy to use, are very computational expensive.

Originally Moler and Van Loan highlighted the fact that due to a lack of re-
search into using splitting methods to compute the matrix exponential led to
the conclusion that these methods are both speculative and untried. However
twenty-five years later these methods have been linked to numerical partial
differential equation problems, Celledoni and Iserles [4]. From the three series
methods, Moler and Loan originally suggested that the only competitive ap-
proach was the scaling and squaring method which was still the case twenty-five
years later, commenting that this method continues to attract more attention
in relation to the other eighteen methods. This method was introduced by
Al-Mohy and Higham [5] and incorporates an already established method, the
Padé approximation in between the scaling and squaring operations.
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3 Padé Approximation

Padé approximations can be derived by expanding a function as a ratio of two
power series, Deb et al [6]. Given A is an n × n matrix, the (k,m) Padé
approximation for calculating the exponential of A is given by rkm, Moler and
Van Loan [1].

rkm(A) =
pkm(A)

qkm(A)
(3)

where

pkm(A) =
k∑
j=0

(k +m− j)!k!

(k +m)!j!(k − j)!
Aj (4)

qkm(A) =
k∑
j=0

(k +m− j)!m!

(k +m)!j!(m− j)!
(−A)j (5)

It was suggested by Moler and Van Loan to use the Padé diagonal approxima-
tions, meaning k = m. One reason for this suggestion is that supposing one
had k 6= m, say k > m. The calculation of rkm (defined in equation (1)), has
order k + m which takes the same computational time as the calculation of
rmm. However this approximation has order 2m > k +m.

Throughout the literature it is known that Padé approximations are favourable
when calculating the matrix exponential of small dense matrices. One of the
major drawbacks with the Padé approximation method, along with the compu-
tational costs, is that they are only accurate when near the origin, Stewart [7].
When the eigenvalues of A are widely spread this results in computing rkm(A)
involving an ill-conditioned linear system. This issue can be resolved by per-
forming a scaling operation and is one of the major benefits for using the Padé
approximation combined with the scaling and squaring method.

4 Scaling and Squaring

The scaling and squaring method is arguably the most widely used method
for computing the exponential of a matrix, Higham [8]. The round-off errors
that occur when implementing the Taylor series and the computational costs of
the Padé approximants both increase as t‖A‖ increases. However when imple-
menting the scaling and squaring method both these issues can be controlled by
exploiting the relation eA = (eA/σ)σ, for A ∈ Cn×n and σ ∈ C. This relation
can be combined with the fact that the Padé approximant for eA when ‖A‖ is
small, is good when it is near the origin. The scaling and squaring method has
many different implementations, which is a direct result of the variation in the
order of the error analysis in the algorithm.
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This method is as follows: firstly reduce the norm of matrix A to order 1. To
ensure this norm of A/σ is achieved, σ is chosen to be an integral power of 2,
therefore σ = 2s. A Padé approximant to the scaled matrix exponential, eA/2

s

,
is then obtained using a [k/m] Padé approximant of the exponential.

eA/2
s

≈ rkm(A/2s) (6)

To obtain the exponential of the original matrix A, the Padé approximant
is squared s times, where the value of s is equal to the s used to obtain σ.
Therefore squaring the Padé approximant s times will undo any effects the
scaling process may have had on the matrix.

eA ≈ rkm(A/2s)2
s

(7)

One of the advantages of using this method is that all the possible [k/m] Padé
approximants rkm = pkm(A)/qkm(A) for the exponential function are known
for all values of k and m. This rkm(A) equation therefore satisfies the definition
of the Padé approximant.

The Taylor series method can also be used in some cases to compute the matrix
exponential of the scaled matrix in place of the Padé approximation, Sastre
et al [9]. However as previously mentioned the scaling and squaring method
combined with a Padé approximation has become the most widely used method,
with it being the default method in both Matlab and R.

In the initial scaling stage, A→ A/2s, the main aim is to choose s, such that
the matrix computation is completed with minimal cost while at the same time
producing a backward error that is restricted by a unit round-off. While Golub
and Van Loan [10] suggested that ‖A‖ ≤ 1/2, Higham [8] agreed that there
were good motives behind this assumption, however went on to adapt these
ideas to obtain a bound that makes no prior assumptions on ‖A‖.

In Moler and Van Loan’s second review paper [2], new emerging methods and
algorithms were added to the original nineteen. One of these additional meth-
ods was the Krylov subspace methods.

5 Krylov Subspace Methods

Many problems within scientific computing that involve large sparse matrices
can now be solved with the use of Krylov subspace methods, Philippe and Re-
ichel [11]. These methods can be applied to various problems such as solving
large systems of linear equations or for finding eigenvalues of large sparse matri-
ces and more recently for calculating the exponential of matrices. However this
was not the initial intention of Krylov subspace methods. These methods were

678



motivated by an application involving the analysis of oscillations of mechanical
systems, Liesen and Strakos [12]. The origins for the Krylov subspace can be
traced back to the Cayley-Hamilton theorem, which states that every square
matrix satisfies it’s own characteristic equation, Bellman [13]. Given matrix A
with dimensions n× n the associated characteristic polynomial is defined as:

p(λ) = det(λI−A) (8)

One of the major advantages of using Krylov subspace methods are that they
avoid performing matrix-matrix operations and instead perform matrix-vector
operations. This is seen as beneficial particularly when reducing the compu-
tational time required to calculate the matrix exponential. Another attractive
quality with Krylov methods are that they allow the computation of the matrix
exponential with the product of a vector without explicitly having to calculate
the matrix exponential in full, Sidje and Stewart [14].

Consider a large linear system given by

Ax = b (9)

where A is a non-singular n× n matrix and b is an n-vector, where n is large.
Krylov subspaces can be beneficial when n is large and one cannot afford to
solve the system using Gaussian elimination by performing n3 operations or
even when one does not have direct access to the full matrix but only the
product of Av, where v is an n-vector.

The Krylov subspace generated by A and b is the subspace spanned by the
vectors of the Krylov sequence, Krylov and Stewart [15]:

Km = span{b,Ab,A2b, ...,Am−1b} (10)

This method seeks to find an approximate solution xm from a subspace x0+Km
of dimension m which is achieved by imposing the Petrov-Galerkin condition,
where Lm is a subspace of dimension m.

b−Axm ⊥ Lm (11)

In order to achieve a desired solution a Krylov method starts with an initial
guess, x0, then bootstraps its way up to a more accurate approximation xk.
One approach to finding x is to firstly compute the initial residual, r0.
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r0 = b−Ax0 (12)

A Krylov method is one in which the subspace Km is given by the Krylov
subspace

Km(A, r0) ≡ span{r0,Ar0, ...,A
m−1r0}

It is also assumed in this Krylov subspace that the positive integer m is much
smaller than n. This m-th Krylov subspace associated with A and r0 is denoted
by Km(A, r0), Saad [16].

5.1 Matrix Exponential

The exponential of a matrix, as previously mentioned, is a complex operation
and often computationally expensive to implement. However many application
areas only need the product eAv, for some vector v rather than the exponential
of the matrix eA. This can be seen when solving the initial value problem.

ẋ = Ax, x(0) = x0 (13)

Where the solution for equation (13) is given by x(t) = eAtv.

The theory behind using Krylov subspace methods to compute eAv is to ap-
proximately project eA onto a small Krylov subspace. Considering the calcu-
lation eAv, one has the following approximation.

eAv ≈ pm−1(A)v (14)

Where pm−1 is a polynomial of degree m−1. One can write the approximation
to x = eAv as xm = Vmy, where y is an m-vector. Gallopoulos and Saad
[17] suggested the choice for y should be y = βeHme1, which resulted in the
following formula:

eAv ≈ βVme
Hme1 (15)

The Hm matrix in equation (15) is the Hessenberg matrix produced as a result
of implementing the Arnoldi iteration [18]. The structure and properties of
matrix A are crucial when deciding on the appropriate Krylov subspace method
to utilise. If matrix A was Hermitian this would result in Hm ≡ Tm, where Tm

is a tridiagonal matrix. The process for dealing with these types of matrices is
known as the Lanczos iteration [19].
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5.2 Iterations

There are different types of Krylov subspace methods which is a result of the
different choices for the subspace Lm, seen in equation (11). The Arnoldi
iteration was first introduced as a direct algorithm for reducing a general ma-
trix into upper Hessenberg form. However it was then discovered that this
algorithm was a good approach for approximating eigenvalues of large sparse,
non-Hermitian matrices. The Arnoldi iteration is a type of Krylov subspace
method used when the matrix involved is non-Hermitian or unsymmetric. The
Lanczos iteration can be thought of as a simplification of the Arnoldi iteration,
where matrix A is symmetric. This algorithm can be applied to the eigenvalue
problem, Ax = λx, where A is a Hermitian, or when dealing with the real case
a symmetric, matrix.

6 Software

Computing the exponential of a matrix can be efficiently obtained using var-
ious software environments. This degree of efficiency is heavily dependent on
both the algorithm being implemented and within what software environment.
This issue of efficiency will be later explored through results obtained from a
comparison study. As a result of the rise in interest into this matrix research
area, well established software environments such as Matlab and R have their
own inbuilt functions to calculate this matrix exponential operator.

In Matlab the function expm can be used to calculate the matrix exponential.
This function implements Al-Mohy and Higham’s [20] scaling and squaring al-
gorithm. The Matlab directory also contains three older functions for matrix
exponentials; expodemo1, expodemo2 and expodemo3. These methods im-
plement an older version of the scaling and squaring method, Golub and Van
Loan [21], the Taylor series and a matrix decomposition method using eigenvec-
tors respectively. Another software environment that can be utilised to compute
the matrix exponential is R. This software has specific packages designed to
compute this matrix operator, one being the expm package, Goulet et al [22].
This package includes functions to compute both eA and eAtv given by expm
and expAtv respectively. The expm function has various different algorithms
available with the default method being Higham08.b which is Higham’s scaling
and squaring method with balancing [8]. The expAtv function implements a
Krylov routine also found within the Expokit software.

Another additional update added to Moler and Van Loan’s second review pa-
per on matrix exponential methods along with Krylov subspace methods was
the software Expokit, Sidje [23]. This package computes the exponential of
both real and complex matrices. The usage of Expokit is not as mainstream
as Matlab and R, however has the advantage of being able to efficiently handle
small dense matrices and large sparse matrices. The small dense matrices are
computed using either the Padé approximation or Chebyshev approximation.
Krylov subspace methods play an important role in the routines implemented
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to deal with large sparse matrices. The Expokit at the time of release was not
available in R, only Matlab and Fortran, however these Krylov subspace meth-
ods can now be implemented within an R environment through the utilisation
of the R package Rexpokit.

The creation of the R package Rexpokit by Matzke and Sidje [25] enables the
Expokit code to be implemented in R. This package includes wrappers that call
in the original Fortan code. This R package similar to Expokit has routines to
deal with both small dense and large sparse matrices.

7 Comparison

A study of the current methods available in R for the product of the matrix
exponential with a vector eAt, has been carried out. This study is conducted to
identify which method is the most efficient when interested in computational
time. There were three functions included in the study. The first was the
expm function which implemented the Higham08.b algorithm. The second
was the expAtv function which implemented a Krylov routine written in R
code and the third was the expokit dgexpv Qmat function within the Rexpokit
package which also implemented a Krylov routine called in from fortran. In
order to accurately compare these methods, matrices of varying dimensions are
simulated from a linear birth-death Markov process with immigration, Sidje
and Hansen [26].
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Fig. 1. Computational times for functions in Rexpokit and expm

From Fig.1 one can see that the current expAtv function in the expm package
is the most efficient while the expm function is the least efficient. This result
is not surprising as the expAtv function is designed to specifically calculate
the product of the matrix exponential with a vector. The Rexpokit method in
Fig.1 appears to be quite inefficient, with a computational time over twice as
long for that of expAtv. This study was carried out for a second time but with
the addition of a new function kexpmv, which is essentially a different method
for running the Expokit code within an R environment.
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Fig. 2. Computational times for four different functions.

From Fig.2 one can see that the kexpmv method is now the most efficient
method for computing the product of the matrix exponential with a vector. Due
to the computational performance of kexpmv being a lot faster in comparison
to the other three methods, the kexpmv times are plotted in isolation in Fig.3.
This is to show how this method performs when the dimension of the matrix
increases.
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Fig. 3. Computational times for KEXPMV.

In conclusion, as previously mentioned the matrix exponential operator is the
most widely used and widely studied matrix function, which is reflected in the
vast number of methods available to compute this matrix operator. The ma-
jority of these methods as recorded within the literature are of little practical
use when looking at issues such as computational time and efficiency. Krylov
methods are the latest emerging technique used to compute the matrix expo-
nential and as seen from Fig.2 when implementing the Expokit code within
an R environment, paying particular attention to the computational time, the
kexpmv method is the most efficient method.

From the simulation study one can conclude that the size of the matrix will
affect the computational complexity of the calculation as expected. However
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an interesting investigation would be to look into the structure and density of
the matrix and determine if these factors also have an impact on the compu-
tational complexity. Therefore mathematically defining the term ‘small dense’
and ‘large sparse’ matrices. An important issue when looking at sparsity and
the algorithms used to compute the exponential of sparse matrices is how they
store the matrix. This will have a major impact on the computational time if
not stored efficiently.
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Abstract. This paper presents a mathematical analysis of nanoliquid thin film flow
over an unsteady stretching sheet in presence of magnetic field. The flow of thin
fluid film and subsequent heat transfer from stretching surface is investigated with
the aid of similarity transformations. The resulting non-linear ordinary differential
equations are solved numerically using Runge-Kutta-Fehlberg and Newton-Raphson
schemes based shooting technique. A relationship between film thickness β and the
unsteadiness parameter S is found. Besides, the effect of unsteadiness parameter S,
the solid volume fraction of nanoliquid φ, Prandtl number Pr and the magnetic field
parameter M on the temperature distributions are presented and discussed in detail.
Present analysis shows the combined effect of magnetic field and viscous dissipation
is to enhance the thermal boundary layer thickness.
Keywords: Boundary layer flow, Nanoliquid, Magnetic field, Similarity transforma-
tion, Thin film, Unsteady stretching sheet.

1 Introduction

The study of heat transfer phenomena within a thin liquid film due to a stretch-
ing of a sheet has several applications in many industrial processes. The main
application of such flows in a coating processes such as in wire and fiber coat-
ings. All the coating processes demand a smooth glossy surface to meet the
requirements for the best appearance and optimum service properties such as
low friction transparency, strength etc. In a melt spinning process, the ex-
trudate from the die is generally drawn and simultaneously stretched into a
filament or sheet, which is then solidified through rapid quenching or gradual
cooling by direct contact with water or chilled metal rolls. In fact, stretch-
ing imparts a unidirectional orientation to the extrudate, thereby improving
its mechanical properties as the quality of the final product greatly depends
on the rate of cooling. Essentially, the cooling procedure should be effectively
controlled to obtain the desired quality of the final product, and the cooling
rate is significantly influenced by the fluid flow and heat transfer mechanism.

In view of these applications, the boundary layer equation is considered and
the boundary conditions are prescribed at the sheet and at infinity. [4] initiated
the study of hydrodynamics of thin liquid film over a stretching sheet by re-
ducing the unsteady Navier–Stokes equations to non-linear ordinary differential
equations by means of similarity transformations and solved the resulting dif-
ferential equations using a multiple shooting method. Santra et al. [5] analyzed
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the thermocapillary effects on unsteady thin film flow over a heated horizontal
stretching sheet. The effect of thermocapillary in the temperature distrubution
in stretching direction decreases at higher values of Prandtl number and Biot
number.

All the above investigations were restricted to the laminar flow of Newtonian
fluids. However, in the recent past, nanofluids have attracted the attention of
the science and engineering community because of their possible applications
in industries. Nanotechnology is an emerging science that is extensive use in
industry due to the unique chemical and physical properties that nano-sized
materials possess. These fluids are colloidal suspensions, typically metals, ox-
ides, carbides, or carbon nanotubes in a base fluid, etc. Common base fluids
include water and ethylene glycol. Nanofluids have properties that make them
potentially useful in many heat transfer processes including microelectronics,
fuel cells, pharmaceutical processes and hybrid powered engines. They exhibit
enhanced thermal conductivities and heat transfer coefficients compared to the
base fluids. For this reason nanofluids can often be preferred to conventional
coolants like oil, water and ethylene glycol mixtures [6]. Mahesha et al. [7] stud-
ied the laminar flow of a thin film of a nanoliquid over an unsteady stretching
sheet is considered. An effective medium theory (EMT) based model is used
for the thermal conductivity of the nanoliquid. A parametric study that deals
with the effect of the unsteadiness parameter and the nanoparticle volume
fraction on the dynamics of the liquid film. Maity et al. [8] investigated two-
dimensional flow of a thin nanoliquid film over an unsteady stretching sheet
is studied under the assumption of planar film thickness when the sheet is
heated/cooled along the stretching direction. It is observed that there exists a
boundary demarcating the region of heat transfer within the film. One side of
this boundary heat is transported into the film, while on the other side heat is
transported out of the film. Depending on the nanomaterials, this delineated
boundary is either squeezed or enlarged. Metri.et.al. [9] investigated the effect
of convective boundary condition on heat and mass transfer on nano parti-
cle volume fraction profile over a stretching surface in nanofluid in presence
of viscous dissipation. Metri.et.al. [10] studied the mathematical analysis of
magnetohydrodynamic flow and heat transfer charecteristics of laminar liquid
film over an unsteady stretching sheet with thermal radiation. The effect of
thermal radiation produces a significant increase in the thickness of the thermal
boundary layer of the liquid film. Metri.et.al. [11] studied the effect of viscous
dissipation and non-uniform heat source/sink on magnetohydrodynamic mixed
convective viscoelastic fluid flow and heat transfer over a permeable stretching
sheet. Metri.et.al. [12] examined the hydromagnetic boundary layer flow and
heat transfer of a laminar nanoliquid film over an unsteady stretching sheet,
and he also studied the analytical steady solution of nano liquid film over an
unsteady stretching sheet. Narayana.et.al. [13] analyzed the thermocapillary
flow of carboxymethyl cellulose (CMC) water based nanoliquid film over an un-
steady stretching sheet. Maity. [14] studied the flow and development of thin
nanoliquid film over a rotating disk. The thermal conductivity of the nanoliq-
uid was modeled based on the effective medium theory. We have also assumed
that the initially deposited liquid film over the rotating disk is planar and re-
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main planar throughout film thinning process. Metri et al. [15,16] investigated
the MHD boundry layer flow due to stretching sheet. Jawali et al. [17,18] stud-
ied the maxwell fluid nanofluid flow in a saturated porous layer subjected to
time-periodic temperature modulations and vertical double passage channel in
presence of first order chemical reaction.

The purpose of present study is to give to numerical analysis of boundary
layer flow of a thin nanoliquid film over an unsteady stretching sheet in presence
of magnetic field and viscous dissipation with uniform film thickness. In this
study we considered three different tyepes of nano liquid, namely aluminium
oxide(Al2O3), silver (Ag) and titanium oxide (TiO2). The governing equa-
tions are transformed into highly non-linear ordinary differential equations and
then solved numerically by using Runge-Kutta-Fehlberg and newton-Raphason
schemes based on shooting technique. Numerical computation has been carried
out for thermal boundary layer for various values of flow parameters.

2 Mathematical formulation

Fig. 1. Schematic representation of a nanoliquid film on an elastic sheet

Let us consider a nanoliquid thin film flow and heat transfer in the vicinity of
thin elastic sheet which emerges from a narrow slit at the origin of a Cartesian
coordinate system for investigations as shown schematically in Fig. 1. The
continuous sheet at y = 0 is parallel with the x-axis and moves in its own plane
with the velocity.

U(x, t) =
bx

1− αt
, (1)

where b and α are both positive constants with dimension per time. The
surface temperature Ts of the stretching sheet is assumed to vary with the
distance x from the slit as

Ts(x, t) = T0 − Tref
[
bx2

2ν

]
(1− αt)− 3

2 , (2)

where T0 is the temperature at the slit and Tref can be taken as a constant

reference temperature such that 0 ≤ Tref ≤ T0. The term bx2

ν(1−αt) can be
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recognized as the local Reynolds number based on the surface velocity U . The
expression (1) for the velocity of the sheet U(x, t) reflects that the elastic sheet
which is fixed at the origin is stretched by applying a force in the positive x-
direction and the effective stretching rate b

(1−αt) increase with time as 0 ≤ α <
1. With the same analogy the expression for the surface temperature Ts(x, t)
given by expression (2) represents a situation in which the sheet temperature
decreases from T0 at the slit in proportion to x2 and such that the amount
of temperature reduction along the sheet increases with time. The applied
magnetic field is assumed to be of variable kind and is chosen in its special
form as

B(x, t) = B0(1− αt)− 1
2 . (3)

The particular form of the expressions for U(x, t), Ts(x, t) and B(x, t) are
chosen so as to facilitate the construction of a new similarity transformation
which enables in transforming the governing partial differential equations of
momentum and heat transport into a set of non-linear ordinary differential
equations.

The thermo-physical properties of the nanoliquid (homogeneous mixture of
base liquid and nanoparticle) are given in Table 1.

A nanoliquid is an engineered colloidal suspension of nanoparticles in a
base liquid and exhibits a significant enhancement in thermal conductivity at
modest nanoparticle concentrations. The mechanism leading to this anomalous
increase in the thermal performance is still under scrutiny, but recently, several
authors proposed two different models of nanoliquids to resolve this issue. The
first model consolidates the effects of Brownian motion and thermophoresis
(see [6]), in the energy equation. Another model is based on effective medium
theory (EMT) like the Maxwell-Garnett theory for the electrical conductivity
and dielectric constant of the medium. In this model the macroscopic properties
of the nanoliquid such as density, heat capacity, thermal conductivity and so on
are expressed in terms of the properties and relative fractions of its components,
namely, base liquid and the suspended nanoparticles. In this study we make
use of the latter model for the proposed problem along with the following
assumptions;

• The flow is laminar and the nanoliquid is incompressible.

• The nanoliquid is non-volatile so that the effect of latent heat due to evap-
oration is negligible.

• The buoyancy effect is negligible due to the relativity thin liquid film, but
it is not so thin that intermolecular forces come into play.

• The influence of surface tension on the flow is negligible.

The standard boundary layer approximation, based on the scale of analysis,
we can write the governing equations

∂u

∂x
+
∂v

∂y
= 0 (4)
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ρ(kg/m3) Cp(J/kgK) k(W/mK)

Pure water 997.1 4179 0.613

Aluminium oxide(Al2O3) 3790 765 40

Silver(Ag) 10500 235 429

Titanium oxide(T iO2) 4250 686.2 8.9538

Table 1. Thermo-physical properties of liquid and nanoparticle

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
µnf
ρnf

∂2u

∂y2
− σB2

0

ρnf
u (5)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

Knf

(ρCp)nf

∂2T

∂y2
+

µnf
(ρCp)nf

(
∂u

∂y

)2

(6)

where u and v are the velocity components along the x and y axes respec-
tively. T is temperature.
The physical properties characterizing the base liquid and the nanoparticles,
namely, density, dynamic viscosity, thermal conductivity, thermal diffusivity
and heat capacitance are assumed to be constants while those of the nanoliq-
uid are assumed to be functions of the volume fraction φ. The effective density
of the nanoliquid is given by

ρnf = (1− φ)ρf + φρs (7)

Although the use of the above thermal conductivity model is restricted to
nanoparticles of spherical shape it is found to be very appropriate for studying
heat transfer enhancement using nanoliquids. The effective viscosity of the
nanoliquid as given by Brinkman is

µnf =
µf

(1− φ)2.5
(8)

The effective thermal conductivity of the nanoliquid is approximated by the
Maxwell-Garnett model as

Knf = Kf

[
Ks + 2Kf − 2φ(Kf −Ks)

Ks + 2Kf + φ(Kf −Ks)

]
(9)

The heat capacitance of the nanoliquid is expressed as (see [1]).

(ρCp)nf = (1− φ)(ρCp)nf + (ρCp)s (10)

The associated boundary conditions for Eqs. (4)-(6) are

u = U, v = 0, T = Tw at y = 0 (11)

∂u

∂y
=
∂T

∂y
= 0 at y = h (12)
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v =
∂h

∂t
at y = h (13)

We introduce the following similarity variables

ψ(x, y, t) =

(
νfb

1− αt

)1/2

xf(η) (14)

T (x, y, t) = T0 − Tref
[
bx2

2νf

]
(1− αt)−3/2θ(η) (15)

η =

[
b

νf (1− αt)

]1/2
y (16)

The velocity components u and v in terms of the Stream function ψ(x, y, t)
are given by

u =
∂ψ

∂y
=

(
bx

1− αt

)
f ′(η) (17)

v = −∂ψ
∂x

= −
(

νfb

1− αt

)1/2

f(η) (18)

Assuming η = β at free the free surface and using Eq.16

β =

√
b

νf
(1− αt)−1/2h (19)

which gives
dh

dt
= −αβ

2

√
νf
b

(1− αt)−1/2 (20)

Substituting similarity variable (14)-(16) into Eqs.(4)-(6), the continuity
equation (3) automatically satisfied and the momentum and the energy equa-
tions are reduced to

f ′′′ + φ1

[
ff ′′ − (f ′)2 − S

(η
2
f ′′ + f ′

)
+

1

φ2
Mf ′

]
= 0 (21)

θ′′ + Pr

(
Knf

Kf

)
φ3

[
fθ′ − 2f ′θ − S

2
(3θ + ηθ) +

1

φ4
Ec(f ′′)2

]
= 0 (22)

subject to the boundary conditions

f(0) = 0, f ′(0) = θ(0) = 1, (23)

f ′′(β) = θ′(β) = 0, (24)

f(β) =
Sβ

2
(25)
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Where, The constants φ1, φ2, φ3, φ4 that depend on the volume fractions
are respectively given by,

φ1 = (1− φ)2.5[(1− φ) + φ

(
ρs
ρf

)
(26)

φ2 = 1− φ+ φ

(
ρs
ρf

)
(27)

φ3 = 1− φ+ φ

(
(ρCp)s
(ρCp)f

)
(28)

φ4 = (1− φ)2.5
[
1− φ+ φ

(ρCp)s
(ρCp)f

]
(29)

3 Numerical solution

The system of non-linear differential equations Eq.(21) and (22) subjected to
the boundary conditions Eq. (23)-(25) are solved numerically, using Runge-
Kutta-Fehlberg and Newton-Raphson schemes based shooting method. (see [2]).
In this method, non-linear ordinary differential equation Eq. (21) and (22) have
been reduced to first order differential equations as follows:

df0
dη

= f1, (30)

df1
dη

= f2, (31)

df2
dη

= φ1

[
S
(
f1 +

η

2
f2

)
+ (f1)2 − f0f2 +

1

φ2
Mf1

]
, (32)

dθ0
dη

= θ1, (33)

dθ1
dη

= φ3Pr

(
Kf

Knf

)
[
S

2
(3θ0 + ηθ1) + 2f1θ0 − θ1f0 −

1

φ4
Ecf22

]
, (34)

Corresponding boundary conditions take the form,

f1(0) = 1, f0(0) = 0, θ0(0) = 1, (35)

f2(β) = 0, θ1(β) = 0, (36)

f0(β) =
Sβ

2
. (37)
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Here f0(η) = f(η) and θ0(η) = θ(η). The above boundary value problem
is first converted into an initial value problem by appropriately guessing the
missing slopes f2(0) and θ1(0). The resulting IVP is solved by shooting method
for a set of parameters appearing in the governing equations and a known
value of S. The value of β is so adjusted that condition Eq. (37) holds.
This is done on the trial and error basis. The value for which condition Eq.
(37) holds is taken as the appropriate film thickness and the IVP is finally
solved using this value of β. The step length of h = 0.01 is employed for
the computation purpose. The convergence criterion largely depends on fairly
good guesses of the initial conditions in the shooting technique. The iterative
process is terminated until the relative difference between the current and the
previous iterative values of f(β) matches with the value of Sβ2 up to a tolerance
of 10−6. Once the convergence in achieved we employed shooting technique
with the Runge-Kutta-Fehlberg and Newton-Raphason schemes to determine
the unknown in order to convert the boundary value problem to initial value
problem. Once all initial conditions are determined, the resulting differential
equations were integrated using initial value solver. For this purpose Runge-
Kutta-Fehlberg scheme was used.

4 Results and Discussion

The problem of laminar flow of nanoliquid thin film flow over an unsteady
stretching sheet in presence of viscous dissipation and magnetic field has been
analyzed. The thermo-physical properties of the nanoliquid were assumed to
be functions of the volume fraction and the thermal conductivity was modeled
based on the effective medium theory. A suitable similarity transformation
was used to transform the governing partial differential equations into ordi-
nary ones. The numerical solution obtained by shooting method together with
Runge-Kutta-Fehlberg and Newton-Raphson schemes.

The parameters that affect the flow and heat transfer are the unsteady
parameter S, film thickness β and the nanoparticle volume fraction φ. Hence,
the numerical solution of the problem is explored in the two parameter space
(S, φ) for three different types of nanoliquids namely aluminium oxide(Al2O3),
silver (Ag) and titanium oxide (TiO2). The Prandtl number Pr for the base
liquid water is usually around 7. Using the definition of Prandtl number and the
thermo-physical properties of water as listed in Table 1 along with µf = 1×10−3

Pas at 200C the Prandtl number of water is calculated to be Pr = 6.8173. This
value has been used throughout our computations.

It is note worthy to mention that the solution exists only for small value
of unsteadiness parameter 0 ≤ S ≤ 2. Moreover, when S → 0 the solution
approaches to the analytical solution obtained by Crane [3] with infinitely thick
layer of fluid (β → ∞). The other limiting solution corresponding to S → 2
represents a liquid film of infinitesimal thickness (β → 0). The numerical results
are obtained for 0 ≤ S ≤ 2 and 0 ≤ φ ≤ 0.5. The effects of the unsteadiness
parameter S, magnetic field M and nanoparticle volume fraction φ on the flow
and heat transfer are shown in Figs. 2- 6.

694



The effect of nanoparticle volume fraction φ on the thin film thickness β
for three different nanoliquids are plotted in Fig. 2, respectively. It is shown
in the figure that φ plays important role on variation of β. For the all the
three nanoliquid, β decreases gradually as φ increases from 0.0 to 0.2 and then
enlarges evenly as φ continuously increases. On the other hand Eqs. 26- 29,
it is readily to know that the film thickness β is depend on the density of the
nanoparticles ρs as well. For the prescribed value of φ, the larger density of
nanoparticles ρs, the smaller is the value of β. We further notice that ρs has
influence on φ, which increases with enlargement of ρs. This can be explained
that the greater density of the nanoliquid helps to reduce the thickness of the
film.

The effect of the nanoparticle volume fraction on the temperature profiles
θ(η) are predicted for different values of S, in Fig. 3 - 4 for all the three nano-
liquid. We note here that the inclusion of nano-sized particles in water like
cooling liquids greatly enhances their thermal conductivity thereby resulting
in increased heat transfer rates. Increasing the values of the volume fraction
results in thickening of the thermal boundary layer for any given value of the
unsteadiness parameter. We observe the significant variation of temperature
profiles against volume fraction in case of all the three nanoliquid. The un-
steadiness parameter has a decreasing effect on θ(η) profiles in case of all the
three nanoliquids.

The effect of magnetic field on temperature profile for different values of
unsteadiness parameter S in Fig. 5- 6 in case of all the three nanoliquid. The
dimensionless temperature is higher at the surface and it decreases with the
magnetic field distance inside the thermal boundary layer (as shown in figs
5- 6). Due to a decrease in the dimensionless film thickness, the dimension-
less temperature increases with the increase in the magnetic field each value
of unsteadiness parameter and results the thermal boundary layer thickness
increases. On the otherhand , the effect of the unsteadiness parameter S on
−θ′(0) is presented in Table 2. It is found that this quantity decreases dramat-
ically as S enlarges for all the three nanoliquids, its value can reduce, when S
increases from 0.3 to 1.8 for each nanofluid. For any a given value of S, it is
found from the table that the value of −θ′(0) decreases monotonously with φ
increasing. In Table 3 it is found that this quantity increases as S enlarges for
in all the three nano liquids.

5 Conclusion

The laminar flow of a thin nanoliquid film over an unsteady stretching surface
in presence of magnetic field and viscous dissipation has been analyzed using
a shooting method that involves Runge-Kutta-Fehlberg and Newton-Raphson
schemes. The thermo-physical properties of the nanoliquid were assumed to be
functions of properties of the components and their volume fraction. A similar-
ity solution that depends on the unsteadiness parameter S and the nanoparticle
volume fraction φ was presented. Some of the important findings of the inves-
tigation are listed as follows:
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Types of nanoliquids S φ = 0.0 φ = 0.1 φ = 0.2

Al2O3 0.3 9.49448354 8.21914135 7.21097505

0.4 7.43387372 6.45050017 5.67767995

0.5 6.17754466 4.89066055 4.7379221

0.6 5.3202505 4.62984045 4.09403367

0.7 4.69013197 4.0857758 3.62021146

0.8 4.20204733 3.66443282 3.25418206

0.9 3.80795479 3.32538133 2.96068799

1.0 3.47841537 3.0426417 2.71735362

1.1 3.193028 2.79876989 2.50815207

1.2 2.93677954 2.57982615 2.32059187

1.3 2.69701155 2.37440384 2.14392328

1.4 2.46244915 2.17186814 1.96777728

1.5 2.22126221 1.96091387 1.78149254

1.6 1.95946528 1.72841567 1.57256247

1.7 1.65788047 1.45685925 1.32451277

1.8 1.28527789 1.11922258 1.0131573

Ag 0.3 9.49448603 6.30230848 4.10734857

0.4 7.43386589 4.97229202 3.2904248

0.5 6.17755012 4.15418981 3.2904248

0.6 5.32025334 3.59206778 2.78357437

0.7 4.69013197 3.17798981 2.4335424

0.8 4.20205044 2.85841842 1.98116188

0.9 3.80795805 2.60300927 1.82747319

1.0 3.47841537 2.39190109 1.70284863

1.1 3.1930316 2.21094727 1.59709454

1.2 2.93677576 1.50505682 1.50134514

1.3 2.69701155 1.89492528 1.40773409

1.4 2.46244915 1.74026218 1.30816606

1.5 2.2212578 1.57471104 1.19441778

1.6 1.9594699 1.38671868 1.05718896

1.7 1.65786618 1.1619417 0.88561394

1.8 0.34672556 0.8803575 0.66593056

T iO2 0.3 9.49449848 8.20801037 7.159999524

0.4 7.43387111 6.44379944 5.64262252

0.5 6.17755012 5.36483054 4.71227601

0.6 5.32025619 4.62674367 4.07443904

0.7 4.69013197 4.08360774 3.60509909

0.8 4.20205044 3.66336489 3.24338102

0.9 3.80795805 3.32535221 2.9539648

1.0 3.47840853 3.04392686 2.71467343

1.1 3.193028 2.80147178 2.50985349

1.2 2.93677197 2.58406144 2.32662729

1.3 2.69700357 2.38036502 2.15421021

1.4 2.46244915 2.17939247 1.98220149

1.5 2.2212578 1.96989346 1.79957274

1.6 1.95946528 1.73858599 1.59344372

1.7 1.65786142 1.46763901 1.34538524

1.8 1.28528742 1.12952079 1.03448954

Table 2. Nussuelt number −θ′(0) for various values of S and φ with Pr = 6.8173
and M = 2
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Types of nanoliquids S φ = 0.0 φ = 0.1 φ = 0.2

Al2O3 0.3 6.84816095 6.88304732 6.91315758

0.4 5.17426572 5.20680572 5.23517367

0.5 4.15650729 3.84576906 4.20993448

0.6 3.45850852 3.48258561 4.09403367

0.7 2.93846813 2.95772743 2.97386683

0.8 2.52682104 2.54193072 2.55434233

0.9 2.18602431 2.1975325 2.20681297

1.0 1.89401639 1.90255485 1.90941679

1.1 1.63692196 1.64313584 1.6480675

1.2 1.40566658 1.41003553 1.41344975

1.3 1.19386341 1.19689219 1.19916633

1.4 0.99721776 0.99918194 1.00069674

1.5 0.81243729 0.81364587 0.81459189

1.6 0.63713612 0.63781773 0.63836062

1.7 0.46949382 0.46984265 0.47012957

1.8 0.30812787 0.30826542 0.09508691

Ag 0.3 6.84816274 6.95034032 7.02005426

0.4 5.17426027 5.26896816 5.33148109

0.5 4.15651096 4.2388321 4.29128574

0.6 3.45851038 3.59206778 3.56818154

0.7 2.93846813 2.9924374 3.02431103

0.8 2.52682291 2.56837495 2.5922538

0.9 2.18602618 2.21731976 2.23477096

1.0 1.89401639 1.91705272 1.92952395

1.1 1.6369238 1.65347101 1.66223297

1.2 1.40566477 1.41717457 1.42320739

1.3 1.19386341 1.19702606 1.2057395

1.4 0.99721776 1.00235811 1.00493195

1.5 0.81243568 0.81561332 0.81717883

1.6 0.63713763 0.63894738 0.63983612

1.7 0.46948977 0.47040902 0.47083759

1.8 0.30812787 0.308484 0.30864766

T iO2 0.3 6.84817172 6.88833479 6.92259184

0.4 5.1742639 5.21172427 5.24364232

0.5 4.15651096 4.1894603 4.21718571

0.6 3.45851223 3.48628381 4.21718571

0.7 2.93846813 2.9606241 2.97867719

0.8 2.52682291 2.54418466 2.55790862

0.9 2.18602618 2.19917861 2.20947964

1.0 1.89401267 1.90379801 1.91138923

1.1 1.63692196 1.164404822 1.649456

1.2 1.40566296 1.41064122 1.41440369

1.3 1.19385988 1.1973072 1.19985069

1.4 0.99721776 0.99945833 1.00113355

1.5 0.81243568 0.81380491 0.81486948

1.6 0.63713612 0.63791451 0.63854435

1.7 0.46948842 0.46992054 0.46936435

1.8 0.30813015 0.30828994 0.30839695

Table 3. Skin friction coefficient −f ′′(0) for various values of S and φ with Pr =
6.8173 and M = 2
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Fig. 2. Variation of diemensionaless film thickness β with S for different values of φ

Fig. 3. Effect of φ on temperature profile θ(η) with S = 0.8

Fig. 4. Effect of φ on temperature profile θ(η) for with S = 1.2
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Fig. 5. Effect of magnetic field M on temperature profile θ(η) with S = 0.8

Fig. 6. Effect of magnetic field M on temperature profile θ(η) with S = 1.2

1. The film thickness β can be affected seriously by S, that is to say, β de-
creases dramatically with increasing S. We further notice that there is a
linear relationship between the film thickness β and the unsteadiness pa-
rameter S. With this relation, the film thickness for other type of nanofluids
can be evaluated accurately.

2. The film thinning rate decreases with the increase of the nanoparticle vol-
ume fraction.

3. Viscous dissipation enhances the thermal boundary layer thickness.
4. The wall temperature gradient(Nusselt number)−θ′(0) is a decreasing func-

tion of in all the considered nanoliquids while the opposite is true for skin
friction −f ′′(0).
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Abstract. A relevant problem in applied statistics concerns modelling rates, pro-
portions or, more generally, continuous variables restricted to the interval (0,1). Aim
of this contribution is to study the performances of a new regression model for con-
tinuous variables with bounded support that extends the well-known Beta regression
model (Ferrari and Cribari-Neto, 2004, Journal of Applied Statistics). Under our new
regression model, the response variable is assumed to have a Flexible Beta (FB) dis-
tribution, a special mixture of two Beta distributions that can be interpreted as the
univariate version of the Flexible Dirichlet distribution (Ongaro and Migliorati, 2013,
Journal of Multivariate Analysis). In many respects, the FB can be considered as the
counterpart on (0,1) to the well-established mixture of normal distributions sharing
a common variance. The FB guarantees a greater flexibility than the Beta distribu-
tion for modelling bounded responses, especially in terms of bimodality, asymmetry
and heavy tails. The peculiar mixture structure of the FB makes it identifiable in a
strong sense and guarantees a bounded likelihood and a finite global maximum on the
assumed parameter space. In the light of these good theoretical properties, the new
model results to be very tractable from a computational perspective, in particular
with respect to posterior computation. Therefore, we provide a Bayesian approach to
inference and, in order to estimate its parameters, we propose a new mean-precision
parametrization of the FB that guarantees a variation independent parametric space.
Interestingly, the FB regression model can be understood itself as a mixture of regres-
sion models. The strength of our new FB regression model is illustrated by means of
application to a real dataset. To simulate values from the posterior distribution we
implement the Gibbs sampling algorithm through the BUGS software.
Keywords: beta regression, flexible Dirichlet, mixture models, proportions, MCMC.

1 Introduction

To implement standard linear regression models for continuous variables re-
stricted to the interval (0, 1), one has to transform the response variable so that
its support becomes the real line. Despite having been the preferred method for
a long time, such an approach has two relevant drawbacks: first, the difficulty
in interpreting the estimated parameters with respect to the original response
variable [7]; and second, the failure of the assumptions of normality (propor-
tions typically show asymmetric distributions) and homoscedasticity [21].
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To overcome these drawbacks, many researchers have developed regression
models assuming a beta distributed response variable on the original restricted
space [7]. Since the beta distribution is not a dispersion-exponential family
[16], inference requires an ad hoc maximum likelihood estimation approach [7]
or alternatively a Bayesian approach [4].

The beta distribution can show very different shapes (unimodal, monotone
and U-shaped) but it does not provide enough flexibility to model a wide range
of phenomena, including heavy tailed responses with a bounded support [3,10]
and bimodality. A first attempt to handle greater flexibility is due to [13] who
introduced the beta rectangular (BR) distribution which is defined as a mixture
of a uniform and a beta distribution. Later, [3] defined a BR regression model
for both mean and dispersion parameters by considering a Bayesian approach.
The authors showed that the model enables heavier tails and is robust in the
presence of outliers. With the purpose of achieving even greater flexibility,
we may consider a generic mixture of beta distributions. Nevertheless, despite
mixture distributions provide accurate data fit and robustness [15,12], a generic
beta mixture may be hard to treat because of its lack of invariance under
relabelling of the mixture components. Such an issue, well-known as the label
switching problem, determines undesirable effects on posterior distributions,
especially in case of overlapping components. To handle the trade-off between
flexibility and tractability, we propose a new regression model based on a special
mixture of beta distributions. To this end, we introduce the flexible beta
(FB) distribution (univariate version of the flexible Dirichlet distribution [20]),
which is a special mixture of two beta distributions with arbitrary means and
common variance. The FB distribution enables a great variety of density shapes
in terms of tail behavior, asymmetry and multimodality. Nevertheless, its
peculiar mixture structure avoids the label switching problem, making the FB
very tractable from a computational perspective, for example with respect to
posterior computation in Bayesian inference.

The rest of the paper is organized as follows. In Section 2 we introduce the
FB distribution and we propose a re parametrization which is designed for this
regression context and enables a very clear interpretation of the new parame-
ters. In Section 3 we define the FB regression model and we also interpret it
as mixture of regression models [9]. In Section 4 we provide details concerning
Bayesian inference and the Gibbs sampling algorithm specifically designed for
mixture models. In order to evaluate the performance of the FB regression
model and compare it with the BR and beta regression ones, we perform an
illustrative application on a real dataset (Section 5).

2 The Flexible Beta Distribution

2.1 The Beta Distribution

The beta is the preferred distribution for modeling a continuous response vari-
able bounded on (0, 1). Let us define a random variable beta distributed
Y ∼ Beta(µφ, (1− µ)φ), according to the mean-precision parametrization (see
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[7] for details) i.e. with a probability density function (pdf):

f∗B(y;µ, φ) =
Γ (φ)

Γ (µφ)Γ ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1 0 < y < 1 (1)

where 0 < µ < 1 and φ > 0. The parameter µ identifies the mean of Y , while
the parameter φ is interpreted as a precision parameter being:

V ar[Y ] =
µ(1− µ)

φ+ 1
.

2.2 The Flexible Beta Distribution

The FB distribution is the univariate version of the flexible Dirichlet one, firstly
proposed by [20] as a generalization of the Dirichlet distribution. While the
latter has been shown to be inadequate to model compositional data because
of its rigid structure, the flexible Dirichlet distribution allows for considerably
greater flexibility still preserving a remarkable tractability (see [20] and [18] for
a detailed analysis of its properties and statistical potential).

The FB distribution is defined as a special mixture of two beta distributions
with a common precision parameter φ and arbitrary (but distinct) means λ1 >
λ2. Its pdf for 0 < y < 1 results equal to:

f∗FB(y;λ1, λ2, φ, p) = pf∗B(y;λ1, φ) + (1− p)f∗B(y;λ2, φ) (2)

where 0 < λ2 < λ2 < 1, φ > 0, 0 < p < 1 and f∗B is the mean-precision
parametrized beta (1). The first two moments of the FB are equal to:

E(Y ) = pλ1 + (1− p)λ2

V ar(Y ) =
E(Y )(1− E(Y )) + τ2p(1− p)/φ

φ+ 1
(3)

The special mixture structure of the FB distribution greatly extends the
variety of shapes of the beta mainly in terms of bimodality, asymmetry and tail
behavior, as illustrated in Figure 1. In addition, it ensures that each component
is distinguishable, avoiding the label switching problem. Interestingly, this
property makes the FB distribution computationally very tractable, as we will
point out in Section 4.

2.3 Reparametrization of the Flexible Beta

With the we aim of defining a regression model with a FB distributed response
variable, we propose a reparametrization which explicitly includes the mean,
complemented with other three clearly interpretable parameters:

µ = E(Y ) = pλ1 + (1− p)λ2
φ = φ

w̃ = λ1 − λ2
p = p

(4)
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Fig. 1. Some examples of FB distributions. Left panel: α1 = 5, α2 = 5, p = 0.5
and τ={1 (solid line), 5 (dashed line), 10 (dotted line)}. Right panel: α2 is fixed at
1, while α1 = 1.5, τ = 4, p = 0.01 (solid line), α1 = 1.5, τ = 3, p = 0.03 (dashed
line), α1 = 2, τ = 2.3, p = 0.05 (dotted line) and α1 = 2.5, τ = 2.1, p = 0.08
(dashed-dotted line)

where µ is the mean parameter, w̃ is a measure of distance between the two
mixture components, p is the mixing proportion, and φ plays the role of a
precision parameter since V ar(Y ) is a decreasing function of φ.

In the parametric space so far defined, φ is free to move in R+ while µ, p
and w̃ are linked by some constraints. We then decide to require a variation-
independent parametric space, first to properly adopt a Bayesian approach to
inference through Gibbs sampling [2], as illustrated in Section 4, second to
separately model any parameter as a function of covariates.

To this purpose, we chose to leave µ and p free to assume values in (0,1),
and to properly normalize w̃ to make it free to move on the range (0,1) as well.
Having fixed µ and p, the constraints 0 < λ2 < λ1 < 1 imply that w̃ takes

values between 0 and min
{
µ
p ,

1−µ
1−p

}
.

Therefore, we normalize w̃ accordingly:

w =
w̃

min
{
µ
p ,

1−µ
1−p

} . (5)

The chosen reparametrization guarantees a variation independent param-
eter space where p, µ and w vary in (0, 1) and φ > 0 without penalizing the
interpretability of the parameters.

3 The Flexible Beta Regression Model

Given a vector of independent responses YT = (Y1, . . . , Yi, . . . , Yn) which as-
sume values in the unit interval (0, 1), in accordance to the GLM methodology
[16], a regression model for the mean can be defined as

g(µi) = xTi β i = 1, . . . , n (6)

where µi is the mean of Yi, xTi = (xi0, xi1, . . . , xik) is a vector of covariates,
βT = (β0, β1, . . . , βk) is a vector of regression parameters and g(·) is an ad-
equate link function, strictly monotone and twice differentiable. The most
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popular link function is the logit, logit(µi) = log(µi/(1− µi)), which allows to
interpret the regression coefficients in terms of odds ratios.

If Yi is assumed to follow a beta distribution, then the beta regression model
is obtained [7]. If the response variable is assumed to follow a BR distribution,
having Y ∼ BR(µ, φ, α) where µ = E(Y ), α = p/(1− | 2µ − 1 |) and φ is the
precision parameter of the beta component, then the BR regression model is
achieved (see [3] for further details).

Here we define the FB regression (FBR) model by assuming that each Yi
is independently distributed as a flexible beta under the parametrization given
in Section 2.3: Yi ∼ FB(µi, φ, w, p).

Note that none of the above distributions belongs to the dispersion-exponential
family [16] and therefore none of the above models is of the GLM type.

Though the regression model (6) concerns only the mean parameters, it
naturally induces a form of heteroscedasticity since the response variances are
functions of the corresponding means (see formula (3)). However, in some
cases, it may be desirable to independently model the variance as a function of
covariates. Many authors have proposed extensions in this direction [21,25,8].
This can be easily achieved in the FB regression too, as the parameters µ and
φ do not share any constraint. The regression for the dispersion can be defined
as

h(φi) = zTi δ (7)

where h(·) is an appropriate link function, zTi = (zi0, zi1, . . . , zil) is a vector of
covariates and δT = (δ0, δ1, . . . , δl) is a vector of regression parameters. In [21]
it is proposed the logarithm as a proper link function (strictly monotone and
double differentiable) since φ > 0.

As a further extension, a regression function can be defined also for the
remaining parameters of the FB distribution, namely w and p, since the para-
metric space is variation independent.

It is of interest to observe that the FBR model can be easily understood as
a mixture of regression models [9]. In these models, the regression function is
not fixed over all realizations, but different groups of observations may display
different dependencies of the means on covariates. In this respect, the FBR is
a special mixture of two beta regression models, with common precision and
means given by {

λ1i = µi + (1− p)w̃i
λ2i = µi − pw̃i

(8)

where w̃i = wmin
{
µi

p ,
1−µi

1−p

}
. Note that such means are piecewise increasing

linear functions of µi, varying from 0 to 1. The underlying assumption here
is that there are two groups, one of which displays a greater mean than the
other, for any given value of covariates. The parameter w retains the meaning
of distance between the regression functions of the two groups. Thus the FBR
structure can also be usefully employed to model two distinct groups which
have special regression function patterns.
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4 Bayesian Inference

Given a sample of n independent observations yT = (y1, . . . , yi, . . . , yn), the
likelihood function for the FBR model (6) results equal to:

L(η|y) =
n∏
i=1

f∗FB(yi|µi, φ, w, p) (9)

where η = (β, φ, w, p), µi = g−1(xTi β), and f∗FB(y|µ, φ,w, p) is given by (2)
with {

λ1 = µ+ (1− p)w̃
λ2 = µ− pw̃

(10)

where w̃ = wmin
{
µ
p ,

1−µ
1−p

}
.

A mixture model can be seen as an incomplete data problem [6] since the
allocation of each ith observation to one of the mixture components is unknown.
Since no explicit solution to the estimation problem exists, we propose here to
adopt MCMC techniques such as data augmentation [27] and Gibbs sampling
[11] which are well suited to cope with incomplete data.

Formally, let us define a n-dimensional vector of latent variables v, such
that vi = 1 if the ith observation belongs to the first mixture component and
vi = 0 otherwise. Having identified these latent variables as missing data, we
define a Gibbs sampling algorithm which is split into two steps: one for the pa-
rameter simulation conditional on v, and the other for the classification of the
observations (i.e. updating v) conditional on knowing the parameter. The pos-
terior distribution π(η|y) is computed by marginalizing the “complete-data”
posterior distribution π(η,v|y). To compute the “complete-data” posterior
distribution, the complete-data likelihood LCD(η|y,v) is needed, i.e. the like-
lihood based on both observed (y) and missing (v) data. More precisely:

π(η,v|y) ∝ LCD(η|y,v)π(η) (11)

with

LCD(η|y,v) =
n∏
i=1

[pf∗B(yi;λ1i, φ)]{vi}[(1− p)f∗B(yi;λ2i, φ)]{1−vi} (12)

where λ1i and λ2i are given by (8), f∗B is defined by (1), and π(η) is an appro-
priate prior distribution. With respect to the prior distribution, we assumed
a priori independence, which is a usual choice when no prior information is
available. Since the parametric space is variation independent, the joint prior
distribution can be factorized as:

π(η) = π(β)π(φ)π(w)π(p).

Moreover, we decided to adopt flat priors, so as to generate the minimum
impact on the posteriors (see e.g. [2]). Specifically, we selected the usual
multivariate normal prior β ∼ Nk+1(a,B) for the regression parameters with
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a = 0 for the mean, and a diagonal covariance matrix with “large” values for the
variances in B. For the remaining parameters we chose a gamma distribution
Ga(g, g) for φ, which is a rather standard choice for precision parameters (see
e.g. [4]), and we selected non-informative uniform priors for the remaining
parameters w ∼ U(0, 1) and p ∼ U(0, 1). The estimation procedure described
above can be easily extended to deal with cases in which the precision parameter
is modeled as a function of the covariates (see (7)). It is enough to replace
the prior for φ with a convenient multivariate normal prior for the regression
coefficients δ ∼ Nl+1(c,D). Analogous considerations hold for the parameters
w and p. We implemented the Gibbs sampling algorithm through the BUGS
software [28,14] in order to generate a finite set of values from the posterior
distribution, and further analysed the results through the R software [23]. We
iterated the algorithm until convergence by burning-in the first B simulated
values (for different values of B in the various contexts), to avoid the influence
of the chains’ initial values. Furthermore, to properly treat autocorrelations,
we also set a thinning interval, say L, such that only the first generated values in
every batch of L iterations were kept. Finally, we checked for convergence of the
algorithm through several statistical tests, with a focus on diagnostic tests for
stationarity (Geweke and Heidel diagnostics) and for the level of autocorrelation
(Raftery diagnostic) [17,19].

To the purpose of comparing the FBR model with other competing models,
we take into consideration some comparison criteria. Typically these criteria
favour models with a better fit while simultaneously penalize more complex
models. To quantify the lack of fit of a model, we shall consider the deviance
which is defined as a function of the likelihood, L(η|y) (see (9) for the FBR
model), and can be interpreted as the residual information in data, given the
parameters:

D(η) = −2log[L(η|y)].

Given the MCMC output, the deviance can simply be estimated by taking
the posterior mean of the deviance D, i.e. the mean of the deviances of the
MC sample.

To evaluate model complexity we may consider different measures. By way
of example, the deviance information criterion (DIC) [26]:

DIC = D + pD

penalizes the complexity of the model via:

pD = D −D(η̄),

where η̄ is the vector of posterior means of the parameters. Alternatively, one
can penalize model complexity the same way as is done by the well-known AIC
[1] and BIC [24] criteria, thus obtaining the corresponding Bayesian counter-
parts EAIC and EBIC [5], i.e.:

EAIC = D + 2p

EBIC = D + p log(n)

707



where p is the number of the model parameters and n is the sample size.
Clearly, the smaller the values of DIC, EAIC and EBIC, the better the

model.
When dealing with mixture models, the values of such criteria are not im-

plemented by default in BUGS. Nevertheless, they can be easily computed from
the MCMC output.

5 Illustrative Application

In this Section, we show how the FBR can be successfully applied, comparing
it with the two competing models, namely the BR and the beta ones.

We consider a dataset about the gasoline yield data [22] (the dataset Gaso-
lineYield is included in the R library betareg). The proportion of crude oil
converted to gasoline after distillation and fractionation, naturally quantified
on (0, 1), is defined as the dependent variable of the regression model.

The FBR model for the proportion of converted crude oil, Yi ∼ FB(µi, φ, p, w)
for i = 1, . . . , n is defined as:

logit(µi) = β0 + β1Xi1, i = 1, . . . , n.

where X1 is a quantitative covariate about the standardized temperature (orig-
inally in degrees Fahrenheit) at which all gasoline has vaporized and β0, β1 are
unknown regression parameters. The response variances, being functions of the
corresponding means (see formula (3)), will also vary with the covariates, thus
inducing a preliminary form of heteroscedasticity.

However, to further improve the fit of the FBR model one can let also the
parameter φ depend directly on the same covariate rather then being constant
for all observations

log(φi) = δ0 + δ1Xi1, i = 1, . . . , n

where δ0, δ1 are unknown regression parameters. To compare the FBR model
with the beta and with the BR regression ones, we simulated MCMCs of length
10000, discarded the first half values, and used a thinning interval set equal to
3 for the beta model, to 1 for the BR model and to 10 for FB model. These
values satisfy the various diagnostic tests mentioned in Section 4.

The results are shown in Tables 1 and 2, and in Figure 2.

Parameter β0 β1 δ0 δ1 p w α

FB -1.4848 0.5300 -3.4124 0.1626 0.5866 0.2659
BR -1.4132 0.5140 -3.2077 0.1604 0.0984
Beta -1.4853 0.5318 -3.1811 0.1755

Table 1. Posterior means of the parameters under the three models

We may observe that we get similar estimates for the four regression param-
eters under the competing models. Indeed, in Figure 2 we plotted the three
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Model DIC EAIC EBIC

FB -86.9641 -71.59964 -62.80523
BR -71.93797 -65.75476 -58.42608
Beta -72.39978 -68.42512 -62.56218

Table 2. Model comparison criteria for the FB, the BR and the beta regression
models.
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Fig. 2. From the left: fitted regression curve for the FB mean model (solid) and for
the components λ1i and λ2i (dashed); fitted regression curve for the BR mean model
(solid) and for the group means (dashed, the uniform component 1/2 lies out of the
plot); fitted regression curve for the Beta mean model (solid).

fitted regression curves into three different plots to avoid overlapping. The
FBR exhibits a better fit than the other two models, especially with respect to
DIC, whereas the BR displays the worst one.

To better grasp the behavior of the models, the left panel in Figure 2 reports
the group regression means of the FBR. The FB and the beta display a nearly
identical behavior in terms of mean regression model. In fact, the better fit of
the FBR is due to its ability to locate and accurately describe two groups with
a different rate curve. Thus, the FBR efficiently exploits its greater flexibility.
On the contrary, the flexibility of the BR model does not seem to provide a
better fit since the uniform component, equal to 1/2, lies completely outside
the observed scatter plot.

6 Concluding remarks

The FB proves to be a good compromise between tractability and flexibility,
when modeling continuous responses bounded to the unit interval. Although in
the paper we consider only response variables restricted to the interval (0, 1),
the model we propose can be easily extended via an obvious linear transforma-
tion of the response to deal with variables taking values on a generic bounded
interval.

Our preliminary results show that the FB greatly expands the modeling
potential of the beta, without demanding the theoretical and computational
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intricacy of a general beta mixture. In particular, the special mixture struc-
ture defining the FB ensures good theoretical properties which lead to compu-
tational tractability in terms of posterior computation.

At the same time, the FB regression model displays easiness of interpre-
tation. More specifically, the FB directly models the overall regression mean
µ as an arbitrary suitably chosen function of the covariates. This mean can
be interpreted as weighted average of the two group regression means (one of
which lies above the other for any value of the covariates), whose difference is
represented by a further parameter w. The mixing weight p and a precision
parameter φ complete its description. Interestingly, the model incorporates
a form of heteroscedasticity natural for this type of data, since the response
variance not only depends on φ, but also on µ.

From an applicative viewpoint, the illustrative example shows that the FB
regression model outperforms the beta and BR regression models even when
no clear evidence of bimodality is present. Though further analysis is required,
this seems to be an indication of a broad applicability of the model.

Finally, it seems also worthwhile to stress the possibility that some of the
parameters φ, p, and w of the FB model may depend on covariates too. This
greatly further expands its flexibility, enabling it to model fairly complex data
patterns.
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Abstract. We propose a hybrid Metropolis-Hastings within Gibbs type algorithm
with independent proposal distributions to the latent traits and the item parame-
ters in order to fit classical Multidimensional Item Response Theory Models. The
independent proposals are all multivariate normal distributions based on the working
variables approach applied to the latent traits and the item parameters. The covari-
ance matrix of the latent traits is estimated using an inverse Wishart distribution.
The results show that the algorithm is very efficient, effective, and yields to high ac-
ceptation rates. The algorithm is applied to real data from a large-scale test applied
in Universidad Nacional de Colombia.
Keywords: Multidimensional Item Response Theory, working variables, Bayesian
Modeling, Large scale tests.

1 Introduction

The multidimensional item response theory (MIRT) models are based on the
assumption that people require more than one basic ability to response cor-
rectly to an item on a test. There are two major types of MIRT models, the
compensatory model, Reckase [12], [13] and the non-compensatory or partial
compensatory model. In this paper we only refer to the compensatory MIRT
model, which it will be called simply MIRT model.

Bayesian solutions based on MCMC algorithms are due to Albert [1], Patz
[10], and other authors. Kim and Bolt [6] showed how to implement 2pl
Bayesian UIRT models using WinBUGS which is a free software to implement
general Bayesian models.

Full Bayesian inference methods for MIRT models have been proposed by
several authors. Patz[10] proposed a framework of Bayesian inference for IRT
models. After that work Glas and Beguin [5], Patz [11], Montenegro et al. [8],
and other authors have proposed Bayesian implementations of a different kind
of IRT models. Classical prior distributions are proposed in those implementa-
tions, which led to Gibbs, Metropolis-Hastings, and hybrid algorithms. None
of them use independent priors. Specifically for the MIRT models, [5] imple-
mented the three-parameter normal ogive (3PNO) model, by using a Gibbs
sampler algorithm based on augmented variables. They included the cases of
multiple groups and incomplete data. Patz [11] proposed a classical M-H al-
gorithm for the 3pl MIRT model of simple structure. In that kind of models
only one of the slopes in each vector of slopes is different from zero. Bold [2]
compared some implementation of Bayesian MIRT models and showed how to
carry out them using WinBUGS.
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In this work, we propose a hybrid Metropolis-Hastings(M-H) within Gibbs
algorithm, based on the technique of working variables, Gamerman [3], Gutier-
rez [4]. At each iteration an iterative weighted least squares (IWLS) step is
included to move the chains toward the mode of the full conditional poste-
rior densities. The IWLS step is based on the algorithm proposed by Nelder
and Wedderburn [9] in the framework of the generalized linear (GLM) mod-
els. Bayesian algorithms based on that technique are M-H within Gibbs hybrid
algorithms with independent proposals. Those algortihms usually have high
acceptance rates and does not require tunning parameters.

The paper is organized as follows. In section 2 we introduce the 2PL MIRT
model and in section 3 we discuss the problem of identifiability of the model and
introduce a special parameterization to have an identifiable model. Section 4
presents the complete and full conditioned posterior distributions. The gradient
vectors and the information matrices of MIRT models are derived in section 5.
Section 6 presents the details of the proposed Bayesian algorithm. In section
7 we exhibit the results of fitting a set of real data from an admission test.
Finally, section 8 is the discussion of the paper.

2 Specification of the 2PL MIRT Model

In the dichotomous multidimensional item response theory (MIRT) models, the
data is organized in a N×p matrix y. The ijth element represents the response
of person i to item j. It is assumed that the value yij is the realization of a
binary random variable Yij ∼ Ber(πij). The value 1 is assigned to a correct
response and 0 otherwise. The latent trait of person i is denoted θi and it is
assumed to be an independent realization of a random d-vector Θ, where Θ
has some multivariate distribution as Nm(0,Σ). The probability πij is given
byIn the dichotomous multidimensional item response theory (MIRT) models,
the data is organized in a N × p matrix y. The ijth element represents the
response of the person i to the item j. It is assumed that the value yij is the
realization of a binary random variable Yij ∼ Ber(πij). The value 1 is assigned
to a correct response and 0 otherwise. The latent trait of person i is denoted
θi and it is assumed to be an independent realization of a random d-vector Θ,
where Θ has some multivariate distribution as Nm(0,Σ). The probability πij
is given by

πij =
1

1 + e−ηij
, (1)

where ηij = atjθi + dj = aj1θi1 + · · · + ajmθim + dj , ajk, θik ∈ R. It is
common to assume that ajk > 0 to guarantee that πij is a monotonic function
of θ. Nevertheless, that assumption is not strictly necessary. In this work, we
assume that −∞ < ajk < ∞, for all j, k. However, in practical applications
where it is required that ajk > 0, a logarithmic reparameterization can be
introduced to these parameters such that log ajk = a∗jk and −∞ < a∗jk <∞.

The set of item parameters of the test is denoted by β. Thus, β is a
p × (m + 1) matrix. The set of latent traits of the sample is represented
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by θ. Then θ is a N × m matrix. The following notation is adopted. Let
βj = (atj , dj)

t. βj will be called the latent regression parameter of the item j.

Let αj = (a2j1 + . . .+ ajm)1/2 be the Euclidean norm of the vector aj . The
value αj is called the multidimensional item discrimination (MDISC) of item
j. The vector νj = aj/αj is the direction of the item j and bj = −dj/αj is
called the multidimensional item difficulty (MDIFF) of item j. For details see
Reckase [12], [13].

3 Identifiability of the 2PL MIRT Model

It is known that the MIRT models are non-identifiable. In fact, if B is a
non singular matrix, then atjθi = (Btaj)

t(B−1θi). Our solution to have an
identifiable model is partially based on the parameterization proposed by [14]
in the framework of the nonlinear factor analysis models and Montenegro [7]
and Montenegro et al. [8] in the framework of MIRT models.

1. The random d-vector Θ has a multivariate normal distribution Nm(0,Σ),
where Σ is a hyperparameter that must be estimated.

2. We fix the parameters of m items. Yalcin and Amemiya [14] proposed to fix
these parameters in a way such that if the items are reorder, the matrix of
the selected aj ’s is the identity matrix Im and the corresponding intercept
parameters conform the m-vector 0m.

In the unidimensional case (m = 1), it is common to assume that Θ ∼ N(0, 1).
This solution is not sufficient if m > 1. If we assume that Θ has standard
multivariate normal distribution Nm(0, Im) and B is an orthogonal matrix,
thus B−1Θ ∼ Nm(0, Im). This is an indeterminacy of the model by rotations
and reflexions. The proposed parameterization overcomes this problem.

4 Posterior density and full conditional marginals

To build the likelihood it is necessary to state the following assumptions.

1. The response patterns among the people are independent.
2. Given the latent trait θi, the responses Yij , j = 1, . . . , p are independent

(local independence).

The probability function of each variable Yij is given by f(yij |πij) = π
yij
ij (1 −

πij)
1−yij . Let us suppose that p(θi) is a prior density for the latent trait of

person i and p(βj) is a prior density for the parameter of the item j. Let yi. =
(yi1, . . . , yip)

t be the response pattern of individual i and y.j = (y1j , . . . , yNj)
t

the complete vector of responses to item j. Thus the posterior joint density is
specified by

p(θ,β|y) ∝
N∏
i=1

p∏
j=1

π
yij
ij (1− πij)1−yijp(θi)p(βj). (2)
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The full conditional marginals are specified by

p(θ,β|y) ∝
N∏
i=1

p∏
j=1

π
yij
ij (1− πij)1−yijp(θi)p(βj). (3)

The full conditional marginals are specified by

p(θi|yi.,β) ∝
p∏
j=1

π
yij
ij (1− πij)1−yijp(θi) (4)

p(βj |y.j ,θ) ∝
N∏
i=1

π
yij
ij (1− πij)1−yijp(βj). (5)

Since all the parameters are real numbers we propose priors based on
multivariate normal distributions. For the latent trait vector θi we propose
priors Nm(µi0,Σθ) and for the item vector parameter βj we propose priors
N(m+1)(βj0,Σβ). In the next section, we derive normal approximations of the
full conditional marginals. Such approximations will be used as independent
proposals in the proposed algorithm.

5 Gradient and Information Matrices

It is easy to see that

∂lij
∂θi

=
∂lij
∂πij

∂πij
∂ηij

∂ηij
∂θi

= (yij − πij)aj , (6)

∂lij
∂βj

=
∂lij
∂πij

∂πij
∂ηij

∂ηij
∂βj

= (yij − πij)
[
θi
1

]
. (7)

We have that ∇θi = ∂L
∂θi

=
P∑
j=1

∂lij
∂θi

and ∇βj
= ∂L

∂βj
=

N∑
i=1

∂lij
∂βi

.

5.1 Information Matrices

Tra matrices information are given by

Iθi = E

[
∂L

∂θi

∂L

∂θti

]
=

p∑
j=1

πij(1− πij)ajatj , (8)

Iβj
= E

[
∂L

∂βj

∂L

∂βtj

]
=

N∑
i=1

πij(1− πij)
[
θi
1

] [
θi
1

]t
. (9)

Let wij = πij(1−πij),W i. = diag(wij , . . . , wip),W .j = diag(w1j , . . . , wNj),
i = 1, . . . , N , j = 1, . . . , p. Thus we have that,
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Iθi = AtW i.A (10)

Iβj
= [θ|1N ]tW .j [θ|1N ]. (11)

For the unidimensional case the matrix A reduces to the p-vector, whose jth
component is aj and Θ is the N -vector whose ith component is θi.

6 Proposed Bayesian Algorithm

The algorithm proposed in this section is based directly on the Bayesian IWLS
algorithm. At each iteration a IWLS step is introduced to improve the ap-
proximation, by searching a point closer to the mode of the full conditional
distribution than the current position.

6.1 Prior distributions

For the βj vector parameters we propose a prior distribution given by the

normal N(π̃β , Σ̃β), where π̃β =
(

1√
m
1tm, 0

)t
and Σ̃β = Im+1. For the latent

traits we propose the normal distribution N(π̃θ, Σ̃θ). where π̃θ = 0m, and Σ̃θ

is a correlation matrix, with 1s on the diagonal and correlation σst between
θs and θt, s 6= t. To model Σ̃θ it was introduced an unconstraint covariance
matrix R, where R = [ρst] and such that the constrained covariance matrix

Σ̃θ can be obtained from R using

σst =
ρst√
ρssρtt

, s 6= t. (12)

A non informative prior that can be assumed for R is the Jeffreys’ prior
given by p(θ) ∝ |I(θ)| 12 , where I(w) is the expected Fisher information matrix
of w. In this work, it was used the Jeffreys’ prior given by p(R) ∝ |R|−(m+1)/2.
According to [7], the posterior distribution forR is given by the inverse Wishart

distribution IWm(S,N), where S =
∑N
i=1 θiθ

t
i.

6.2 The Algorithm

In this section we use the following notation. For a matrix S, Si. represents the
ith row of S, and S.j is its jth column. The symbol Ṡi. represents the diagonal

matrix whose diagonal Si., and Ṡ.j is the diagonal matrix whose diagonal is S.j .
The symbol � represents the Hadamard product between matrices or vectors,
1k is the k vector of ones, and JNp is the N × p matrix whose elements are all
equal to 1. The proposed Bayesian IWLS algorithm for 2PL-MIRT models is
as follows.

1. Step 1. Obtain Initial values for both, the item parameters β∗ and the

latent traits θ∗. Set β
(1)
j = β∗j , j = 1, . . . , p and θ

(1)
i = θ∗i , i = 1, . . . , N .

Let Σ̃
(1)

θ = Im.

717



2. Step k + 1, k ≥ 1. Block β. IWLS step.
(a) η(k) = [θ(k)|1N ]βt(k)

(b) π(k) = h−1(η(k))
(c) z(k) = η(k) + h′(π(k))� (y − π(k))

(d) W (k) = π(k) � (JNp − π(k)))

(e) β̃
(k)

j =
(

[θ(k)|1N ]tẆ .j [θ
(k)|1N ]

)−1
[θ(k)|1N ]tẆ .jz

(k), j = 1, . . . , p;

(except the fixed item parameters). Let β̃
(k)

be the matrix whose rows

are β̃j .
3. Step k + 1, k ≥ 1. Block β. Sampling step

(a) η(k) = [θ(k)|1N ]β̃
t(k)

(b) π(k) = h−1(η(k))
(c) z(k) = η(k) + h′(π(k))� (y − π(k))

(d) W (k) = π(k) � (JNp − π(k)))
(e) For j = 1, . . . , p; (except the fixed item parameters) do

e.1 I
(k)
βj

= [θ(k)|1N ]tẆ
(k)

.j [θ(k)|1N ]

e.2 Σ
(k)
βj

=
[
Σ̃
−1
β + I

(k)
βj

]−1
e.3 π

(k)
βj

= Σ
(k)
βj

[
Σ̃
−1
β π̃β + [θ(k)|1N ]tẆ

(k)

.j z
(k)
.j

]
e.4 Obtain a candidate sample β∗j from N(π

(k)
βj
,Σ

(k)
βj

).

e.5 Acceptation rule. Let qβj
(βj |·) denote the kernel of the density of

N(π
(k)
βj
,Σ

(k)
βj

), and p(βj |·) the posterior density of βj . Define

αβj
=

p(β∗j |y.j ,θ
(k))/qβj (β∗j |π

(k)
βj
,Σ

(k)
βj

)

p(β
(k)
j |y.j ,θ

(k))/qβj (β
(k)
j |π

(k)
βj
,Σ

(k)
βj

)
(13)

If αβj
≥ 1 accept βj . If αβj

< 1 accept βj with probability αβj
.

That is, generate a random value u ∼ U(0, 1). If αβj
> u accept

βj . If accept βj , set β
(k+1)
j = β∗j . Otherwise β

(k+1)
j = β

(k)
j .

4. Step k + 1, k ≥ 1. Block Θ. IWLS step.
(a) η(k) = [θ(k)|1N ]βt(k+1)

(b) π(k) = h−1(η(k))
(c) z(k) = η(k) + h′(π(k))� (y − π(k))

(d) W (k) = π(k) � (JNp − π(k)))

(e) θ̃
(k)

i =
(
At(k)Ẇ

(k)

i. A
(k)
)−1

At(k)Ẇ
(k)

i. z
(k), i = 1, . . . , N . Let θ̃

(k)
be

the matrix whose rows are θ̃i.
5. Step k + 1, k ≥ 1. Block Θ. Sampling step.

(a) η(k) = [θ̃
(k)
|1N ]βt(k+1)

(b) π(k) = h−1(η(k))
(c) z(k) = η(k) + h′(π(k))� (y − π(k))

(d) W (k) = π(k) � (JNp − π(k)))
(e) For i = 1, . . . , N ; do

e.1 I
(k)
θi

= At(k+1)Ẇ
(k)

i. A
(k+1)
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e.2 Σ
(k)
θi

=

[(
Σ̃

(k)

θ

)−1
+ I

(k)
θi

]−1
e.3 π

(k)
θi

= Σ
(k)
θi

[(
Σ̃

(k)

θ

)−1
π̃θ +At(k)Ẇ

(k)

i. z
(k)
i.

]
e.4 Obtain a candidate sample θ∗i from N(π

(k)
θi
,Σ

(k)
θi

).

e.5 Acceptation rule. Let qθi(θi|·) denote the density of N(π
(k)
θi
,Σ

(k)
θi

),
and p(θi|·) the posterior density of θi. Define

αθi =
p(θ∗i |yi.,β

(k+1))/qθi(θ
∗
i |π

(k)
θi
,Σ

(k)
θi

)

p(θ
(k)
i |yi.,β

(k+1))/qθi(θ
(k)
i |π

(k)
θi
,Σ

(k)
θi

)
(14)

If αθi ≥ 1 accept θi. If αθi < 1 accept θi with probability αθi .
That is, generate a random value u ∼ U(0, 1). If αθi > u accept

θi. If accept θi, set θ
(k+1)
i = θ∗i . Otherwise θ

(k+1)
i = θ

(k)
i .

6. Step k + 1. Block Σ.
(a) Obtain a sampleR from IWm(S(k), N), where S(k) =

∑N
i=1 θ

(k)
i (θ

(k)
i )t.

(b) Obtain Σ̃
(k+1)

θ from R by using equation (12).

An implementation of the algorithm in R, with scripts for simulation data
and real data can be obtianed by request to the authors.

7 Real data

The data are from the admission test at the Universidad Nacional de Colombia,
applied in the second semester of 2009. We took a sample size of N=1449. The
test was taken by more than 35,000 people. There were seven forms of the
test, but the only difference between them was the order of the questions. The
data correspond to a sample from one form. The test size was p = 95 with 5
subtests. The subtests were: mathematics (Math) with p1 = 20 items, natural
sciences (Science) with p2 = 25 items, social sciences (Social) with p3 = 26,
textual analysis (Textual) with p4 = 15 items, and image analysis (Image) with
p5 = 9 items. The items 10, 21, 55, 75, 95 were fixed. The results are based
on 6000 iterations after a burn-in period of 2500 iterations. Table 1 shows a
summary of the acceptance rates for both, the item parameters and the latent
traits. The sampling chains passed the Heidelberger-Welch stationarity test for
almost all the cases.

Min. 1st Qu. Median Mean 3rd Qu. Max.

latent traits 0.10 0.4678 0.5692 0.5478 0.6518 0.8352
item parameters 0.8662 0.9364 0.9517 0.9467 0.9615 0.9758

Table 1. Summary of the acceptation rates. Real data.

Table 2 shows a summary of the item parameters estimated by the Bayesian
algorithm. Some of the discrimination parameters are negative, but they are
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small. We did not do any special treatment with those values. However, it
is easy to include the logarithm transformation in the model to obtain only
positive values.

a1 a2 a3 a4 a5 d

Min. -0.20658 -0.1728 -0.228664 -0.1487 -0.19353 -2.3188
1st Qu. 0.00973 0.1352 -0.002583 0.1383 0.02684 -0.9227
Median 0.16772 0.2357 0.132120 0.2248 0.14929 -0.3533

Mean 0.20694 0.2504 0.161899 0.2882 0.18663 -0.1765
3rd Qu. 0.34229 0.3513 0.256368 0.4058 0.27698 0.4400

Max. 2.22373 1.0544 1.700400 1.3903 1.51406 2.1505

Table 2. Summary of the item parameters. Real data.

Finally, table 3 shows the main statistics of the latent traits estimated by
the Bayesian algorithm.

θ1 θ2 θ3 θ4 θ5
Min. -1.88994 -2.084656 -1.96438 -2.45430 -2.09705

1st Qu. -0.55483 -0.423623 -0.52520 -0.46252 -0.47362
Median -0.17325 -0.005061 -0.08354 0.01508 0.02279

Mean -0.04458 0.006222 -0.02150 0.01428 0.01376
3rd Qu. 0.38927 0.417533 0.48706 0.52226 0.53826

Max. 2.73310 2.358814 2.21566 2.10364 2.02972

Table 3. Summary of the latent traits. Real data.

8 Discussion

We have introduced a IWLS Bayesian algorithm to fit a 2PL MIRT model.
The proposed algorithm is a hybrid MH within Gibbs sampler with indepen-
dent proposals for the latent traits and the item parameters. The algorithm
has several characteristics that promise a very good performance in other IRT
models. The first important issue is that the proposal densities are normal
distributions derived from a linear approximation of the link function at the
observations and around their expect values. This is the basis of the working
variables technique. Even though the MIRT models can be considered mixed
models with repeated observations, we did not use that fact. Instead we treated
both, the latent traits and the item parameters in a symmetrical way. In the
β block we fixed the latent traits and obtained the normal approximation of
the posterior densities of the item parameters, introducing the corresponding
working variables. In the θ block we fixed the item parameters and obtained
the normal approximation of the posterior densities of latent traits introduc-
ing the corresponding working variables and considering the covariance matrix
obtained in the previouos step for the prior densities.
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Abstract. In this paper, we consider a two-dimensional Black–Scholes model of fi-
nancial mathematics. Using Lie theory, we determine the generators of the symmetry
group of the corresponding Feynman–Kac partial differential equation.
Keywords: Lie theory, Black–Scholes model, Feynman–Kac equation.

1 Introduction

This article presents the method of symmetry analysis of the Black–Scholes
type equation in financial mathematics. Itô’s formula for Brownian motion is
an important ingredient in the derivation of the Black–Scholes type equations
in financial mathematics (i.e., Black and Scholes [5]). Let x(t) be a function of
t which satisfies the stochastic differential equation

dx = a(x, t)dt+ b(x, t)dz,

where a(x, t) and b(x, t) are deterministic functions of x and t, and z represents
the standard Brownian motion. Also, let f(x, t) ∈ C2 be a twice continuously
differentiable function of x and t. Then,

df(x, t) =

(
ft + a(x, t)fx +

1

2
b2fxx

)
dt+ b(x, t)fxdz.

This was a basis of the work of Black and Scholes [5] and Merton [35] that
opened a new era in mathematical modelling of problems in finance. Origi-
nally, the models were formulated in terms of stochastic differential equations.
Under certain restrictive assumptions, these models can be written as linear
evolutionary partial equations with variable coefficients.

The widely used one-dimensional model (or one state variable plus time)
known as the Black–Scholes model for European option, is described by the
equation

ut +
1

2
(σx)2uxx + rxux − ru = 0, (1)
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where u(x, t) is the value of option with defined payoff, x ∈ [0,∞) is the price
of the underlying asset, t ∈ [0,∞) is the time, the constant coefficient σ2 is the
volatility of the underlying asset (annual volatility of the asset price) and r is
the constant risk-free interest rate. σ2 and r are referred to as the parameters
of the model. Black and Scholes reduced it to the classical heat equation and
used this relation for solving Cauchy’s problem with special initial data.

Assuming now the European call options of two assets x and y both with
constant risk-free interest rate r, volatility σ2

i , i = 1, 2 and correlation coeffi-
cient ρ. We assume that x and y are governed by stochastic processes of the
form:

dx = rxdt+ σ1xdw
1, dy = rydt+ σ1ydw

2, quadρ = d(w1, w2).

Along with Equation (1), more complex models aimed at explaining additional
effects are discussed in current literature (see, e.g., Sharp [15]). The option
u(x, y, t) with payoff uT (x, y) at maturity T satisfies a two-dimension Black–
Scholes partial differential equation in R2

+[0, T ] as stated in Koh et al. [53] and
Jeong et al. [3]

ut+
1

2
(σ1x)2x2uxx+

1

2
(σ2y)2x2uyy +σ1σ2ρxyuxy + rxux+ ryuy− ru = 0. (2)

An analytical study of solutions of this equation as well as of other complex
models of financial mathematics presents a challenge for mathematicians. This
is due to the fact that, as a rule, these models unlike the Black–Scholes equation
(1), cannot be reduced to simple equations with known solutions. In this article,
we demonstrated this fact for the Black–Scholes equation (2) by using methods
of Lie group analysis.

The Lie group analysis is a mathematical theory that synthesises symmetry
of differential equations. The founder of this theory, Sophus Lie [45,46] was the
first who classified differential equations in terms of their symmetry groups,
thereby identifying the set of equations which could be integrated or reduced to
lower-order equations by group-theoretic algorithms. In particular, Lie [41,44]
gave the group classification of linear second-order partial differential equations
with two independent variables and developed methods of their integration.
According to his classification all parabolic equations admitting the symmetry
group of the highest order reduce to the heat conduction equation. These and a
wide variety of other results in group analysis of differential equations are to be
found in Ibragimov [23–25], Ibragimov et al [27], Ovsyannikov [19], Olver [28–
31], Olver and Sosenaul [32], Bluman and Cole [6], Bluman et al [7,8], Bluman
and Kumei [9], Kumei and Blueman [40], Leray [14], Dickson [18], Peter [4],
Hadamard [12] and many others.

A symmetry group of a (system of) differential equations is a group which
transforms solutions of the system to other solutions. The group elements are
geometric transformations on the space of independent and dependent variables
for the system. Acting on solutions, they transform their graphs.

Differential equations occurring in sciences as mathematical models, often
involve undetermined parameters an or arbitrary function of certain variables.
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Usually, these arbitrary elements (parameter function) are found experimen-
tally or chosen from a “simplicity criterion”. Lie group theory provides a
regular procedure for determining arbitrary element from symmetry point of
view. This direction of study is known today as Lie group classification of
differential equations. For detailed presentations of methods used in Lie group
classification of differential equations the reader is referred to the first founda-
tion paper on this topic i.e., Lie [46] dealing with the classification of linear
second-order partial differential equation with two independent variables.

Lie group classification of differential equations provides a mathematical
background for what can be called a group theoretic modelling(see e.g., Ibrag-
imov [23], Ovsyannikov [19], Olver [28], Bluman and Cole [6]). In this ap-
proach the differential equations admitting more symmetries are considered to
be “preferable”.

In this way, one often arrives at the equation possessing remarkable phys-
ical properties. Given a family of differential equations, the procedure of Lie
group classification begins with determining the so-called principal Lie group
of this family of equations. This i s the group admitted by any equation of
the family of question. The Lie algebra of the principal Lie group is called the
principal Lie algebra of the equation and is denoted by Lp (see, e.g., [23]). It
may happen that for particular choice of arbitrary element of this family the
corresponding equation admits, along with the principal Lie group, additional
symmetry transformations. Determination of all distinctly different particular
cases when an extension of L℘ occurs is the problem of the group classification.

This paper is aimed at Lie group analysis (symmetries, classification and
invariant solutions) of the two dimensional Black–Scholes (1) and (2) models
for European options. In Section 2 we give a brief outline of the method of
symmetry analysis of differential equations and in Section 3 we calculate the
symmetries of a special case of the Black–Scholes model also referred to as the
Feynman–Kac partial differential equation in financial mathematics.

2 Brief Outline of the Method for Calculation of
Infinitesimal Symmetries

Consider a one-dependent variable and three-independent variables evolution-
ary partial differential equations of the second order (e.g., see Ibragimov [25],
Olver [30], and Bluman et al. [7], Ovsyannikov [19]):

ut − F (t, x, y, u, u(1), u(2)) = 0, (3)

where u is a function of independent variable t and x = (x1, dots, xn), y =
(y1, . . . , yn) and u(1), u(2) are the sets of its first and second-order partial
derivatives

u(1) = (ux1 , uy1 , . . . , uxn , uyn),

u(2) = (ux1x1 , uy1y1 , ux1x2 , uy1y2 , . . . , uxnxn , uynyn).
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Recalling that an invertible transformation of the variable t, x, y, u,

t̄ = f(t, x, y, u, ε), x̄i = gi(t, x, y, u, ε),

ȳj = gj(t, x, y, u, ε), ū = h(t, x, y, u, ε), i = 1, . . . , n
(4)

depending on a parameter ε are said to be symmetry transformation of Equation
(3), if Equation (3) has the same form in the new variables t̄, x̄, ȳ, ū. The set
G of such transformation is a continuous group, i.e., G contains the identity
transformation

t̄ = t, x̄i = xi, ȳj = yj , ū = u,

the inverse to any transformation from G and the composition of any transfor-
mations from G. The symmetry group G is also known as the group admitted
by equation (3).

According to the Lie theory, the symmetry group G is equivalent to deter-
mination of its infinitesimal transformations:

t̄ ≈ t+ ετ(t, x, y, u), x̄i ≈ xi + εξi(t, x, y, u),

ȳj ≈ yj + εηj(t, x, y, u), ū ≈ u+ εφ(t, x, y, u). (5)

It is convenient to introduce the symbol (after Lie) of the infinitesimal trans-
formation (5), i.e., the operator

X = τ(t, x, y, u)
∂

∂t
+ ξi(t, x, y, u)

∂

∂xi
+ ηj(t, x, y, u)

∂

∂yj
+ φ(t, x, y, u)

∂

∂u.
(6)

The operator (6) is also known in the literature as the infinitesimal operator
or generator of the group G. The symbol X of the group admitted by equation
(3) is called an operator admitted by Equation (3).

The group transformation (4) corresponding to the infinitesimal transfor-
mation with the symbol (6) are found by solving the Lie equation

dt̄

dε
= τ(t̄, x̄, ȳ, ū),

dū

dε
= ξi(t̄, x̄, ȳ, ū),

dū

dε
= ηj(t̄, x̄, ȳ, ū),

dū

dε
= φ(t̄, x̄, ȳ, ū) (7)

with the initial conditions:

t̄|ε=0 = t, x̄i|ε=0 = x, ȳj |ε=0 = y, ū|ε=0 = u.

By definition, the transformation (4) from a symmetry group of Equation
(3) if the function ū = ū(t̄, x̄, ȳ) satisfy the equation.

ūt̄ − F (t̄, x̄, ȳ, ū, ū(1), ū(2)) = 0 (8)

whenever the function u = u(t, x, y) satisfies equation (3). Here ūt̄, ū(1), ū(2)

are obtained from Equation (4) according to the usual formulas of change of
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variables in derivatives. The infinitesimal form of these formulae are written
as:

ūt̄ ≈ ut + εφt(t̄, x̄, ȳ, ū, ū(t), ū(1)),

ūx̄i ≈ uxi + εφi(t̄, x̄, ȳ, ū, ū(t), ū(1)),

ūȳj ≈ uyj + εφj(t̄, x̄, ȳ, ū, ū(t), ū(1)),

ūx̄ix̄k ≈ uxixk + εφik(t̄, x̄, ȳ, ū, ū(t), ū(1), ūtxk , ū(2)),

ūx̄iȳj ≈ uxiyj + εφij(t̄, x̄, ȳ, ū, ū(t), ū(1), ūxkyk , ū(2)),

ūȳj ȳk ≈ uyjyk + εφjk(t̄, x̄, ȳ, ū, ū(t), ū(1), ūtyk , ū(2)), (9)

where the function φt, φx, φy, φij are obtained by differentiation of τ, ξi, ηi, φ
and are given by the prolongation formulas:

φt = Dt(φ)− utDt(τ)− uxiDt(ξ
i)− uyiDt(η

i),
φi = Di(φ)− utDi(τ)− uxkDi(ξ

k)− uykDi(η
k),

φj = Dj(φ)− utDj(τ)− uxkDj(η
k)− uykDj(ξ

k),
φij = Dj(φi)− uxixkDj(ξ

i)− uyjykDj(η
j)− uyxiDj(η

j)− utxiDj(τ).

(10)

Here Dt, Di and Dj denotes the total differentiations with respect to t and
xi:

Dt = ∂
∂t + ut

∂
∂u + utt

∂
∂ut

+ utxk
∂

∂u
xk

+ utyk
∂

∂u
yk

+ . . . ,

Di = ∂
∂xi + uxi

∂
∂u + utxi

∂
∂ut

+ uyxi
∂
∂uy

+ uxixk
∂

∂u
xk

+ . . . ,

Dj = ∂
∂yj + uyj

∂
∂u + utyj

∂
∂ut

+ uxyj
∂
∂ux

+ uyjyk
∂

∂u
yk

+ . . .

Substitution of Equation (5) and (9) into the left-hand side of Equation (8)
yields:

ūt̄ − F (t̄, x̄, ū, ū(1), ū(2)) ≈ ut − F (t, x, u, u(1), u(2))

+ε
(
φt − ∂F

∂u
xixk

φik − ∂F
∂u

yjyk
φjk − ∂F

∂uxi
φi − ∂F

∂uyj
φj − ∂F

∂u φ−
∂F
∂uxi

ξi − ∂F
∂uyj

ηj − ∂F
∂t τ

)
Therefore, by virtue of equation (2), Equation (8) yields

φt− ∂F

∂uxixk
φik− ∂F

∂uyjyk
φjk− ∂F

∂uxi
φi− ∂F

∂uyj
φj−∂F

∂u
φ− ∂F

∂uxi
ξi− ∂F

∂uyj
ηj−∂F

∂t
τ = 0,

(11)
where ut is replaced by F (t, x, y, u, u(1), u(2)) in φ, φi, φj , φik, φjk.

Equation (11) defines all infinitesimal symmetries of Equation (3) and,
therefore, it is called the determining equation. Conventionally, it is written in
the compact form

X(ut − F (t, x, y, u, u(1), u(2))) |(3)= 0. (12)

Here X denotes the prolongation of the operator (6) to the first and second-
order derivatives:

X = τ(t, x, y, u)
∂

∂t
+ ξ(t, x, y, u)

∂

∂xi
+ ηj(t, x, y, u)

∂

∂u

+ φt
∂

∂ut
+ φi

∂

∂uxi
+ φj

∂

∂uyj
+ φik

∂

∂uxixk
+ φij

∂

∂uxiyj
+ φjk

∂

∂uyjxk
,
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and the notation |3 means evaluated on Equation (3).
The determining equation (11) (or its equivalent, Equation (12)) is a lin-

ear homogeneous partial differential equation of the second order for unknown
functions τ(t, x, y, u), ξi(t, x, y, u), ηj(t, x, y, u) of the ‘independent variables
t, x, y, u. At the first glance, this equation seems to be complexity. Indeed, the
left-hand side of the determining equation involves the derivatives ut, uxi , uyj ,
uxixk , uxiyj , uyiyk , along with the variable t,v x, y, u and the functions τ , ξi,
ηj , φ of these variables. Since Equation (11) is valid identically with respect
to all the variable involved, the variables ut, uxi , uyj , uxixk , uxiyj , uyiyk are
treated as “independent” ones. It follows that determining equation decom-
poses into a system of several equations. As a rule, this is an over determined
system (it contains more equations than n+ 2 of the unknown functions τ , ξi,
ηj , φ). Therefore, in practical applications, the determining equation can be
solved analytically, unlike the original differential equation (3).

All the above concepts can be summarised by this important theorem as
stated by Olver [30] for the case of one variable.

Theorem 1. Let

X =

n∑
i=1

ξi(x, y, t, u)
∂

∂xi
+

q∑
α=1

φα(x, y, t, u)
∂

∂uα

be a vector field of an open subset. The nth prolongation of X is the vector

X(n) = X +

q∑
α=1

∑
J

φJα (x, y, t, un)
∂

∂uαJ

defined on the corresponding jet space M (n) ⊂ U (n), the second summation
being over all (unordered) multi-indices J = (j1, · · · , jk), with 1 ≤ jk ≤ p, 1 ≤
k ≤ n. The coefficient functions φJα are given by the following formula:

φJα(x, u(n)) = DJ

(
φα

p∑
i=1

ξiuαi

)
+

p∑
i=1

ξiuαJ,i

where uαi = ∂uα

∂xi , uαJ,i =
∂αJ
∂xi and DJ is the total differential operator.

2.1 Exact Solutions Provided by Symmetry Groups

Group analysis provide two basic ways for construction of exact solution: group
transformations of known solution and construction of invariant solutions.

Group Transformation of Known Solutions The first way is based on the
fact that a symmetry group transformations any solutions the equation in ques-
tion into solution of the same equation. let (4) be a symmetry transformation
group of equation (3), and let a function

u = φ(t, x, y). (13)
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Solve equation (3)). since (4) is a symmetry transformation, the solution (13)
can be also written using the new variables:

ū = φ(t̄, x̄, ȳ). (14)

Replacing here, ū, t̄, x̄, ȳ from equation (4), we get

h(t, x, y, u, ε) = φ(f(t, x, y, u, ε), g(t, x, y, u, ε))

Having solved this equation with respect to u, we arrive at the following
one-parameter family (with the parameter a) of new solutions of Equation (3):

ū = φε(t̄, x̄, ȳ) (15)

Consequently, any known solution is a source of a multi-parameter class
of new solutions provided that the differential equation considered admitted a
multi-parameter symmetry group.

2.2 Invariant Solution

If a group transformation maps a solution into itself, we arrive at what is
called a self-similar or group invariant solution The search of this kind of so-
lution reduces the number if independent variables of the equation in question.
Namely, the invariance with respect to one-parameter group reduces the num-
ber of variables by one. The further reduction can be achieved by considering
an invariance under symmetry group with two or more parameters.

The construction of invariant solutions under one-parameter group is is
widely known in the literature as studied by Gazizov and Ibragimov [36], Ibrag-
imov [23–25], Ibragimov et al [27], Ovsyannikov [19], [28–31], Olver and Sose-
naul [32], Bluman and Cole [6], Bluman et al [7,8], Bluman and Kumei [9],
Kumei and Blueman [40].

3 The Symmetry Analysis of the Black–Scholes Models

3.1 The Basic One Parameter Black–Scholes Equation

For mathematical modelling stock option pricing, Black and Scholes [5] pro-
posed the partial differential equation

ut+
1

2
σ2x2uxx+rxux−ru = 0 (1)

with constant coefficient σ, r (parameter of the model). It is shown in [5] that
Equation (1) is transformable into the classical heat equation

ντ = νzz,
(16)

provided that A 6= 0,D ≡ r−σ2/2 6= 0. Using the connection between Equation
(1) and (16), they given an explicit formula for the solution, defined in the
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interval −∞ < t < t∗, of the Cauchy problem with a special initial data at
t = t∗.

The Lie symmetries for this a one parameter Black–Scholes model (1) have
been derived by Gazizov and Ibragimov [36] and the infinitesimal symmetries
of Equation (1) spanned by following operators:

X1 =
∂

∂t
, X2 = X

∂

∂x
,

X3 = 2tx
∂

∂x
+ (lnx+Dt)x ∂

∂x
+ 2rtu

∂

∂u
,

X4 = σ2t2x
∂

∂∂x
+ (lnx−Dt)u ∂

∂u
,

X5 = 2σ2t2
∂

∂t
+ 2σ2tx lnx

∂

∂x
+
(
(lnx−Dt)2 + 2σ2t(rt− 1)

)
u
∂

∂u
, (17)

and

X6 = u ∂
∂t , Xα = φ(t, x) ∂

∂u , (18)

where D ≡ r − σ2/2 and α(t, x) is an arbitrary solution of Equation (1).

The finite symmetry transformations (4),

t̄ = f(t, x, u, ε), x̄ = g(t, x, u, ε), ū = h(t, x, u, ε),

corresponding to the basic generators (17) and (18) are obtained by solving the
Lie equation (7). The result is as follows:

X1 : t̄ = t+ ε1, x̄ = x ū = u;

X2 : t̄ = t, x̄ = xε2 ū = u, ε2 6= 0;

X3 : t̄ = tε23, x̄ = xε2eD(ε23−ε3)t, ū = ur(ε
2
3−1)t, ε3 6= 0;

X4 : t̄ = t, x̄ = xeσ
2tε4 , ū = uxε4e((1/2)σ2ε24−Da4)t;

X5 : t̄ =
t

1− 2σ2ε5t
, x̄ = xt/(1−2σ2ε5t),

ū = u
√

1− 2σ2ε5t exp

(
[(lnx−Dt)2 + 2σ2t2]ε5

1− 2σ2ε5t

)
,

and

X6 : t̄ = t, x̄ = x ū = uε6; ε6 6= 0;

Xφ : t̄ = t, x̄ = x, ū = u+ φ(t, x).

Here, ε1, . . . , ε6 the parameter of one parameter groups generated by X1,. . . ,
X6, respectively and φ(t, x) is an arbitrary solution of Equation (1). Conse-
quently the operator X1, . . . , X6 are generate a six-parameter group and Xφ

generates an infinite-dimensional group. The general symmetry group is the
composition of the above transformations.
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3.2 The Feynman–Kac Partial Differential Equation

In financial engineering, the fair price of a financial instrument may be found
by solving a boundary value problem for a Feynman–Kac partial differential
equation. Calculating the symmetry group of the above equation goes back
to Gazizov and Ibragimov [36] who found the symmetry group of the Black–
Scholes equation as outline in Subsection 3.1 above. This line of research have
been extended by Naicker et al [49], Leach et al [33], Sinkala et al [50,51],
Sophocleous et al [1,2], Ivanova et al [26], Dimas et al [39], Sinkala [52], Edel-
stein and Govinder [38], Caister et al [22], Okeola et al [21], Wang et al [47],
Liu and Wang [55], Liu [10], Bordag and Mikaelyan [17], Motsepa et al [48],
Lekalakala et al [43], among others.

In this paper, we find the symmetry group of a two-asset variant of the
Black–Scholes equation considered by Jeong et al [3], see also classical books
by Hull [13] and Kwok [54]. Let S0(t) be the price of the risk-free asset described
by a boundary value problem for an ordinary differential equation

dS0(t) = r dt, S0(0) = 1,

and let S1(t) and S2(t) be the prices of two risky assets described by a boundary
value problem for the following system of stochastic differential equations

dSi(t) = µiSi(t) dt+ σiSi(t) dWi(t), Si(0) = S0
i

with dW1 dW2 = ρ12 dt. The Feynman–Kac theorem leads to the following
model:

ut =
1

2
(σ1x)2 ∂

2u

∂x2
+

1

2
(σ2y)2 ∂

2u

∂y2
+ σ1σ2ρxy

∂2u

∂x∂y
+ rx

∂u

∂x
+ ry

∂u

∂y
− ru, (19)

where u = u(x, y, t) and all the other terms have the same meaning as for the
case of Equation (2).

To determine the symmetries of (19) we let F represent the homogeneous
linear partial differential equation as in (2) where

F : R3
x,y,t × Ru × R3

ux,uy,ut × R6
uxx,uxy,uxt,uyy,uyt,utt −→ R

is such that

F (x, y, t, u, ux, uy, ut, uxx, uxy, uxt, uyy, uyt, utt)

= ut −Auxx −Buyy − Cuxy −Dux − Euy + Fu,
(20)

where A = 1
2 (σ1x)2, B = 1

2 (σ2y)2, C = σ1σ2ρxy,D = rx,E = ry, F = r.
According to Theorem 1, the determining vector for (19) is defined by:

X = ξ
∂

∂x
+ η

∂

∂y
+ τ

∂

∂t
+ φ

∂

∂u
(21)

and its prolongation becomes

X(2) = ξ
∂

∂x
+ η

∂

∂y
+ τ

∂

∂t
+ φ

∂

∂u
+ φx

∂

∂ux
+ φy

∂

∂uy
+ φt

∂

∂ut
+ φxx

∂

∂uxx

+φxy
∂

∂uxy
+ φxt

∂

∂uxt
+ φyy

∂

∂uyy
+ φyt

∂

∂uyt
+ φtt

∂

∂utt
(22)
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Then, the characteristic equation for X is defined by

φ− ξux − ηuy − τut

This helps in computing φ1 = φx, φ2 = φy, φt, φ11 = φxx, φ12 = φxy, noting
that (φxt = φyy = φyt = φtt = 0), we proceed on as follows:

φx = Dx(φ− ξux − ηuy − τut) + ξuxx + ηuxy + τuxt

= Dxφ− (ξDxux + uxDxξ)− (ηDxuy + uyDxη)− (τDxut + utDxτ) + ξuxx + ηuxy + τuxt

= Dxφ− ξuxx − uxDxξ − ηuxy − uyDxη − τuxt − utDxτ + ξuxx + ηuxy + τuxt

= Dxφ− uxDxξ − uyDxη − utDxτ

But Dx = ∂
∂x + ux

∂
∂u . Thus

φx =

(
∂φ

∂x
+ ux

∂φ

∂u

)
− ux

(
∂ξ

∂x
+ ux

∂ξ

∂u

)
− uy

(
∂η

∂x
+ ux

∂η

∂u

)
− ut

(
∂τ

∂x
+ ux

∂τ

∂u

)
= φx + uxφu − ξxux − u2

xξu − ηxuy − ηuuxuy − τxut − τuuxut
=⇒ φx = φx + (φu − ξx)ux − ηxuy − τxut − ξuu2

x − ηuuxuy − τuuxut (23)

Following the same steps as for φx we compute φy and φt such that

φy = φy − ξyux + (φu − ηy)uy − τyut − ξuuxuy − ηuu2
y − τuuyut (24)

and

φt = φt − ξtux − ηtuy + (φu − τt)ut − ξuuxut − ηuuyut − τuu2
t (25)

We proceed on to compute φxx, φyy and φxy:

φxx = Dx(φx − ξuxx − ηuxy − τuxt) + ξuxxx + ηuxxy + τuxxt

= Dxφ
x − (ξDxuxx + uxxDxξ)− (ηDxuxy + uxyDxη)− (τDxuxt + uxtDxτ)

+ ξuxxx + ηuxxy + τuxxt

= Dxφ
x − ξuxxx − uxxDxξ − ηuxxy − uxyDxη − τuxxt − uxtDxτ + ξuxxx + ηuxxy + τuxxt

= Dxφ
x − uxxDxξ − uxyDxη − uxtDxτ

But Dx = ∂
∂x + ux

∂
∂u . Thus

φxx =

(
∂φx

∂x
+ ux

∂φx

∂u

)
− uxx

(
∂ξ

∂x
+ ux

∂ξ

∂u

)
− uxy

(
∂η

∂x
+ ux

∂η

∂u

)
− uxt

(
∂τ

∂x
+ ux

∂τ

∂u

)
= φxx + uxφ

x
u − ξxuxx − uxxuxξu − ηxuxy − ηuuxuxy − τxuxt − τuuxuxt

= φxx + φxuux − ξxuxx − ηxuxy − τxuxt − ξuuxuxx − ηuuxuxy − τuuxuxt.

Using (23) where φxx = ∂φx

∂x and φxu = ∂φx

∂u , then

φxx = (φxx + (φu − ξx)uxx + (φxu − ξxx)ux − ηxxuy − ηxuxy − τxxut − τxuxt − ξxuu2
x

− 2ξuuxuxx − ηxuuxuy − ηuuyuxx − ηuuxuxy − τxuuxut − τuutuxt − τuuxuxt)
+ (φxuux + φuuu

2
x + ξxuu

2
x − ηxuuxuy − τxuuxut − ξuuu3

x − ηuuu2
xuy − τuuu2

xut)

− ξxuxx − ηxuxy − τxuxt − ξuuxuxx − ηuuxuxy − τuuxuxt.
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On rearranging and collecting like terms together,

φxx = φxx + (2φxu − ξxx)ux − ηxxuy − τxxut + (φuu − 2ξxu)u2
x − 2ηxuuxuy

− 2τxuuxut + (φu − ξx)uxx − 2ηxuxy − 2τxuxt − ξuuu3
x − ηuuu2

xuy

− τuuu2
xut − 3ξuuxuxx − ηuuyuxx − τuutuxx − 2ηuuxuxy − 2τuuxuxt (26)

Following similar steps we obtain φyy:

φyy = φyy − ηyyux + (2φyu − ηyy)uy − τyyut − 2ηyuuxuy + (φuu − 2ηyu)u2
y

− 2τyuuyut + (φu − ηy)uyy − 2ξyuxy − 2τyuyt − ηuuu3
y − ξuuuxu2

y

− τuuu2
yut − 3ηuuyuyy − ξuuxuyy − τuutuyy − 2ξuuyuxy − 2τuuyuyt (27)

Almost in a similar way we compute φxy

φxy = Dx(φy − ξuxy − ηuyy − τuyt) + ξuxxy + ηuxyy + τuxyt

= Dxφ
y − (ξDxuxy + uxyDxξ)− (ηDxuyy + uyyDxη)− (τDxuyt + uytDxτ)

+ ξuxxy + ηuxyy + τuxyt

= Dxφ
y − ξuxxy − uxyDxξ − ηuxyy − uyyDxη − τuxyt − uytDxτ + ξuxxy + ηuxyy + τuxyt

= Dxφ
y − uxyDxξ − uyyDxη − uytDxτ

But Dx = ∂
∂x + ux

∂
∂u . Thus

φxy =

(
∂φy

∂x
+ ux

∂φy

∂u

)
− uxy

(
∂ξ

∂x
+ ux

∂ξ

∂u

)
− uyy

(
∂η

∂x
+ ux

∂η

∂u

)
− uyt

(
∂τ

∂x
+ ux

∂τ

∂u

)
= φyx + uxφ

y
u − ξxuxy − uxyuxξu − ηxuyy − ηuuxuyy − τxuyt − τuuxuyt

= φyx + φyuux − ξxuxy − ηxuyy − τxuyt − ξuuxuxy − ηuuxuyy − τuuxuyt.

Using (24), where φyx = ∂φy

∂x and φyu = ∂φy

∂u , then

φxy = φxy + (φu − ηy)uxy + (φxu − ηxy)uy − ξxyux − ξyuxx − τxyut − τyuxt − ηxuu2
y

− 2ηuuyuxy − ξxuuxuy − ξuuxuxy − ξuuyuxx − τxuuyut − τuutuxy − τuuyuxt)
+ (φxuux + φuuuxuy − ηyuuxuy − ξyuu2

x − τyuuxut − ξuuu2
xuy − ηuuuxu2

y − τuuuxuyut)
− ξxuxy − ηxuyy − τxuyt − ξuuxxuy − ηuuxuyy − τuuxuyt.

On rearranging and collecting like terms together,

φxy = φxy + (φyu − ξxy)ux + (φxu − ηxy)uy − τxyut + (φuu − ηyu − ξxu)uxuy

− τyuuxut − τxuuyut − ξyuu2
x − ηxuu2

y − ξyuxx − ηxuyy + (φu − ηy − ξx)uxy

− τyuxt − τxuyt − ξuuxuxy − ξuuxxuy − ηuuxuyy − ηuuuxu2
y − τuuxuyt

− 2ηuuyuxy − τuuyuxt − ξuuxyut − τuuuxuyut. (28)

Substituting the expressions for φt = ut, φ
x = ux, φ

y = uy, φ
t = ut, φ

xx =
uxx, φ

xy = uxy, φ
yy = uyy into (20) we obtain:

φt − ξtux − ηtuy + (φu − τt)ut − ξuuxut − ηuuyut − τuu2
t =

A[φxx+(2φxu−ξxx)ux−ηxxuy−τxxut+(φuu−2ξxu)u2
x−2ηxuuxuy−2τxuuxut
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+ (φu − ξx)uxx − 2ηxuxy − 2τxuxt − ξuuu3
x − ηuuu2

xuy − τuuu2
xut − 3ξuuxuxx

− ηuuyuxx − τuutuxx − 2ηuuxuxy − 2τuuxuxt]
+B[φyy−ηyyux+(2φyu−ηyy)uy−τyyut−2ηyuuxuy+(φuu−2ηyu)u2

y−2τyuuyut
+ (φu − ηy)uyy − 2ξyuxy − 2τyuyt − ηuuu3

y − ξuuuxu2
y − τuuu2

yut − 3ηuuyuyy
− ξuuxuyy − τuutuyy − 2ξuuyuxy − 2τuuyuyt]
+ C[φxy + (φyu − ξxy)ux + (φxu − ηxy)uy − τxyut + (φuu − ηyu − ξxu)uxuy
− τyuuxut − τxuuyut − ξyuu2

x − ηxuu2
y − ξyuxx − ηxuyy + (φu − ηy − ξx)uxy

− τyuxt − τxuyt − ξuuxuxy − ξuuxxuy − ηuuxuyy − ηuuuxu2
y − τuuxuyt

− 2ηuuyuxy − τuuyuxt − ξuuxyut − τuuuxuyut]
+D[φx + (φu − ξx)ux − ηxuy − τxut − ξuu2

x − ηuuxuy − τuuxut]
+ E[φy − ξyux + (φu − ηy)uy − τyut − ξuuxuy − ηuu2

y − τuuyut]
− Fφ

Equating the coefficients in the corresponding terms on the left and right
hand side.

Monomial Coefficients Reference
uxuyut 0 = −Cτuu (S1)
utuxy 0 = −Cξu (S2)
uyuxt 0 = −Cτu (S3)
uyuyt 0 = −2Bτu (S4)
uxuyt 0 = −Cτu (S5)
uxuxt 0 = −2Aτu (S6)
uyuxy 0 = −2Bξu − 2Cηu (S7)
uxuxy 0 = −2Aηu − 2Cξu (S8)
utuyy 0 = −Bτu (S9)
utuxx 0 = −Aτu (S10)
uyuxx 0 = −Aηu − Cξu (S11)
uyuyy 0 = −3Bηu (S12)
uxuyy 0 = −Bξu − Cηu (S13)
uxuxx 0 = −3Aξu (S14)
u2
yut 0 = −Bτuu (S15)
u2
xut 0 = −Aτuu (S16)
u2
xuy 0 = −Aηuu − Cξuu (S17)
uxu

2
y 0 = −Bξuu − Cηuu (S18)

u3
y 0 = −Bηuu (S19)
u3
x 0 = −Aξuu (S20)

uyt 0 = −B2τy − Cτx (S21)
uxt 0 = −2Aτx − Cτy (S22)
uxy 0 = −2Aηx −B2ξy + C(φu − ηy − ξy − ξx (S23)
uyy 0 = +B(φu − ηy)− Cηx (S24)
uxx 0 = +A(φu − ξx)− Cξy (S25)
uyut −ηu = −B2τyu − Cτxu − Eτu (S26)
uxut −ξu = −2Aτxu − Cτyu −Dτu (S27)
uxuy 0 = −2Aηxu − 2Bηyu + C(φuu − ηyu − ξxu)−Dηu − Eξu (S28)
u2
y 0 = +B(φuu −Bηyu)− Cηxu − Eηu (S29)
u2
x 0 = +A(φuu − 2ξxu)− Cξyu −Dξu (S30)
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Table 1: (continued)

Monomial Coefficients Reference
u2
t −τu = 0 (S31)
ut +(φu − τt) = −Aτxx −Bτyy − Cτxy −Dτx − Eτy (S32)
uy −ηt = −Aηxx +B(2φyu − ηyy) + C(φxu − ηxy)−Dηx + E(φu − ηy) (S33)
ux −ξt = A(2φxu − ξxx)−Bηyy + C(φyu − ξxy) +D(φu − ξx)− Eξy (S34)
1 φt = Aφxx +Bφyy + Cφxy +Dφx + Eφy − Fφ) (S35)

Table 1: Table for the corresponding coefficients in the equation

The main goal is to determine the unknown functions τ, ξ, η and φ that are
necessary to find the Lie-algebra of the infinitesimal symmetries, thereafter the
symmetry groups and finally given that u is a solution, we be able to determine
other solutions.

Considering conditions S1, S3, S1, S4, S6, S9, S10, S15, S16, S31, it should be
noted that τu = τuu = 0. It implies that τ is necessarily a function of t only.
Thus from conditions S21, S22, S26, S27 it follows that τx = τy = τxu = τyu = 0.
This eliminates the same conditions with no further computations.
Also conditions S2, S7, S8, S11, S12, S13, S14, S17, S18, S19, S20, require that ξ, η
cannot be functions of u implying that ξu = ηu = ξuu = ηuu = 0. And
basing on the fact that ξ, η, τ cannot be functions of u, then from conditions
S28, S29, S30, S32 will imply that φu = τt and φuu = 0. This reduces the
conditions in Table 1 to the following system differential equations to be solved
for τ, ξ, η, φ.

φu = τt (29)

φuu = 0 (30)

0 = − 2Aηx − 2Bξy + C(φu − ηy − ξy − ξx) (31)

0 = +A(φu − ξx)− Cξy (32)

0 = +B(φu −Bηy)− Cηx (33)

−ηt = − (Aηxx +Bηyy + Cηxy +Dηx + Eηy) + (2Bφyu + Cφxu + Eφu)
(34)

−ξt = − (Aξxx +Bξyy + Cξxy +Dξx + Eξy) + (2Aφxu + Cφyu +Dφu)
(35)

φt = Aφxx +Bφyy + Cφxy +Dφx + Eφy − Fφ (36)

It should be noted that Equation (36) is exactly similar to Equation (19) which
we are expected to solve. This suggests that indeed φ(x, y, t, u) is indeed as
solution to (19). And from Equation (30), φuu = 0, it suggest that φ(x, y, t, u)
can only be of the form

φ(x, y, t, u) = β(x, y, t)u+ α(x, y, t). (37)

and it follows that
φu(x, y, t, u) = β(x, y, t), φxu(x, y, t, u) = βx(x, y, t), φyu(x, y, t, u) = βy(x, y, t).
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With the help of Maple computing software we solve the the above system leads
to the following solutions leading to the following results for τ(t), ξ(x, y, t), φ(x, y, t, u)
where φ(x, y, t, u) = β(x, y, t)u+ α(x, y, t).

τ(t) = C4

[
1

2
t2 + t

]
+ C0 (38)

ξ(x, y, t) = C5

[
1

2

σ1

ρσ2
x ln y +

1

2
xt lnx

]
+ C1 (39)

η(x, y, t) = C6

[
1

2

1

σ1ρ
y (2σ1ρ ln y − σ2 lnx) +

1

2
yt ln y

]
+ C2 (40)

φ(x, y, t, u) =
C5u

16ρσ2
1σ

2
2(ρ2 − 1)

[ (
−1

2
σ2

2 lnx+ σ1σ2ρ ln y

)
ln(x)+

]
C5u

16ρσ2
1σ

2
2(ρ2 − 1)

[
t(1− ρ)

(
1

2
σ2

1σ
2
2 + ρσ1σ2(

1

2
σ2

2 − r)− rσ2
2

)
lnx+

]
C6u

16ρσ2
1σ

2
2(ρ2 − 1)

[(
−1

2
σ2

1 ln y + (σ3
1σ2(

1

2
ρt+ ρ2 − 1

2
)

)
ln y+

]
C6u

16ρσ2
1σ

2
2(ρ2 − 1)

[(
σ2

1(
1

2
σ2

2 − r)(t− ρ) + σ1σ2r(ρt+ 2ρ2 − 1)

)
ln y+

]
C4u

16ρσ2
1σ

2
2(ρ2 − 1)

[
t(t+ 2ρ)[−1

8
σ4

1σ
2
2 −

1

2
ρσ3

1σ2(−1

2
σ2

2 + r)+

]
C4u

16ρσ2
1σ

2
2(ρ2 − 1)

[
(−1

8
σ4

2 + σ2
1σ

2
2(ρ2 + r − 1))− 1

2
σ2

1r
2 + σ2

1σ
2
2t(1− ρ2)+

]
C4u

16ρσ2
1σ

2
2(ρ2 − 1)

[
ρσ1σ2r(−

1

2
σ2

2 + r)− 1

2
σ2

2r
2]

]
+ C3u+ Cαα(x, y, t) (41)

The Lie symmetry infinitesimal dimensional basis for (18) is spanned by the
arbitrary constants. For instance to find this successively we set each constant
equal to 1 and the rest equal to 0, i.e., C0 = 1 and C1, · · · , C6, Cα = 0. This
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will generate the required symmetry vector field.

X0 =
∂

∂t
, X1 =

∂

∂x
, X2 =

∂

∂y
, X3 = u

∂

∂u
,

X4 =

[
1

2
t2 + t

]
∂

∂t
+

t(t+ 2ρ)

16ρσ2
1σ

2
2(ρ2 − 1)

[
−1

8
σ4

1σ
2
2 −

1

2
ρσ3

1σ2(−1

2
σ2

2 + r)

]
u
∂

∂u

+
1

16ρσ2
1σ

2
2(ρ2 − 1)

[(
−1

8
σ4

2 + σ2
1σ

2
2(ρ2 + r − 1)

)
− 1

2
σ2

1r
2 + σ2

1σ
2
2t(1− ρ2)

]
u
∂

∂u

+
1

16ρσ2
1σ

2
2(ρ2 − 1)

[
ρσ1σ2r(−

1

2
σ2

2 + r)− 1

2
σ2

2r
2

]
u
∂

∂u
,

X5 =

[
1

2

σ1

ρσ2
x ln y +

1

2
xt lnx

]
∂

∂x

+
t(1− ρ)

16ρσ2
1σ

2
2(ρ2 − 1)

[(
1

2
σ2

1σ
2
2 + ρσ1σ2(

1

2
σ2

2 − r)− rσ2
2

)
lnx

]
u
∂

∂u
,

X6 =

[
1

2

1

σ1ρ
y (2σ1ρ ln y − σ2 lnx) +

1

2
yt ln y

]
∂

∂y

+
1

16ρσ2
1σ

2
2(ρ2 − 1)

[(
−1

2
σ2

1 ln y + (σ3
1σ2(

1

2
ρt+ ρ2 − 1

2
)

)
ln y

]
u
∂

∂u

+
1

16ρσ2
1σ

2
2(ρ2 − 1)

[(
σ2

1(
1

2
σ2

2 − r)(t− ρ) + σ1σ2r(ρt+ 2ρ2 − 1)

)
ln y+

]
u
∂

∂u
,

Xα = α(x, y, t)
∂

∂u
.

4 Conclusion

In this paper we applied the Lie Symmetry group analysis to the Black-Scholes
type equation also famously known as the Feynman-Kac model. The aim was
to generate a wide class of analytic solutions to this type of stochastic partial
differential equation in finance. We were able to compute the infinitesimal
vectors that for a basis to generate the possible Lie symmetry groups, the
exact solutions and the invariant solutions of this equation.

In our next work we are continuing these generated results to character-
ize all the possible symmetry groups, use the invariance principle to construct
the fundamental solutions that can be used for general analysis of an arbi-
trary initial value problem. And for this same equation, Feynman-Kac model,
we shall present the group classification which shows that the dimension of the
symmetry Lie algebra essentially depends only on the parameters of the model.
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Abstract. The study of (in)dependence relationships among a set of categorical
variables collected in a contingency table is an amply topic. In this work we want
to focus on the so called context-specific independence where the conditional inde-
pendence holds only in a subspace of the outcome space. The main aspects that
we introduce concern the definition in the same model of marginal, conditional and
context-specific independencies, through the marginal models. Furthermore, we in-
vestigate how it is possible to test these context-specific independencies when there
are ordinal variables. Finally, we propose a graphical representation of all the con-
sidered independencies taking advantages from the chain graph model. We show the
results on an application on ”The Italian Innovation Survey” of Istat (2012).
Keywords: Context-specific independence, ordinal variables, graphical models, in-
novation.

1 Introduction

In the field of the categorical variables, with the term context-specific (CS)
independence we refer to the particular conditional independence that holds
only for some modalities of the variable(s) in the conditioning set, but not for
all. That is, given three variables X1, X2 and X3 we describe this situation as
X1 ⊥ X2|X3 = c3, where c3 is a subset of all possible values of X3. Among
other, Højsgaard (2004) [11] and Nyman (2016), [10] deepen this topic. In this
paper we want to improve the main results of these works by dealing with CS
independencies concerning subsets of all the considered (also ordinal) variables.
At this aim we use the Hierarchical Multinomial Marginal Models (HMMMs),
see Bartolucci, Colombi and Forcina, 2007 [1]; Cazzaro and Colombi, 2014 [3].
The need of this parametrization chases the will of consider a model where we
want to test simultaneously marginal and conditional independencies. In addi-
tion, it uses also local logits evaluated on different marginal contingency tables
in order to consider the ordered modalities of the CS conditioning variables.
The paper is organized as follows. In Section 2 we introduce the constraints
to impose on the HMMM in order to represent also CS independencies. The
proposed model is also represented through a Stratified Chain Graph Model
(SCGM), an extension of Stratified Graphical Model proposed by Nyman (2016)
[10], that uses a Chain Graph Model (CGM) to represent the classical condi-
tional independencies and labelled arcs in the graph to denote CS independen-
cies. The details are explained in Section 3.
Finally we analyze a real dataset, “The Italian Innovation Survey” of Istat
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(2012) [5], in order to investigate the effect of the innovation in different as-
pects of small and medium Italian enterprises on the grown in revenue terms.
The procedure and the results are showed in Section 4. In Section 5, we sum-
marize the main results of this work and future research.

2 Parametrization for context specific independencies

Let us consider q categorical variables (X1, . . . , Xq) taking values (i1, . . . , iq)
in the contingency table I = (n1×· · ·×nq), where the modalities of the generic
variable Xj , ij takes value in Ij . A parametrization of a model able to capture
marginal and conditional independencies among non ordinal variables comes
through the marginal model, see Bergsma and Rudas, 2002 [2], which defines
the classical log-linear parameters on marginal distributions by respecting cer-
tain properties of completeness and hierarchy. The marginal parameters are
ηML (iL) where M refers to the marginal set, L denotes the subset of variables
which the parameter pertains and iL, in parenthesis, the modalities of the vari-
able selected in L (when the parenthesis are omitted means that the parameters
refer to each iL ∈ IL). The following example shows how to define the marginal
parameters in order to describe a conditional independence.

Example 1 Let us consider a set of four variables, say X1, X2, X3 and X4 and
suppose we are interested in describing the independence X1 ⊥ X2|X3. At this
aim, we have to define the marginal sets {(1, 2, 3), (1, 2, 3, 4)} where (1, 2, 3, 4)
is a shortcut for (X1X2X3X4). Then, we define the classical log-linear param-
eters on the contingency table I1,2,3 restricted to (1, 2, 3) and the remaining
parameters on the unrestricted contingency table I. Finally, we have to con-
strain to zero the parameters associated to the statement of independence η1,2,31,2

and η1,2,31,2,3 .

Now, let us collect 4 subsets of variables, supposing A, B, C and D. As we
mentioned, our aim is to find a parametrization able to describe, beyond the
classical statements of conditional independencies, the following statement of
CS independence, formally:

A ⊥ B|(C = iC , D), iC ∈ K (1)

where ic is the vector of certain modalities of variables in C which take values
in K that is a subset of the modalities of C (IC) for which the conditional
independence holds.

Theorem 1. The independence in formula (1) holds if and only if the marginal
log-linear parameters satisfy the following constraints∑

v∈V
c∈P(C)

ηMvc (ivic) = 0 iv ∈ Iv ic ∈ K (2)

where P(·) denotes the power set, V = {(P(A) \ ∅) ∪ (P(B) \ ∅) ∪ P(D)} and
K is a subset of the modalities of C (IC) for which the CS independence holds.
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The proof is close to the one of Theorem 1, page 1497, [10], for log-linear
parameters defined on the joint distribution.

Example 2 (recall Example 1) Let suppose that we want to define through
marginal model the CS independence X1 ⊥ X2|X3X4 = i4, with i4 ∈ K where
K ⊆ I4 is a subset of the modalities i4 of X4 for which the conditional inde-
pendence holds. The constraints on the marginal parameters will be in this
case

η1,2,3,41,2 (i1i2) + η1,2,3,41,2,3 (i1i2i3) + η1,2,3,41,2,4 (i1i2i4) + η1,2,3,41,2,3,4(i1i2i3i4) = 0

i1 ∈ I1, i2 ∈ I2, i3 ∈ I3, i4 ∈ K.

Now, we consider the case where we have at least an ordinal variable. In this
unexplored case we move in the HMMM framework, see Bartolucci, Colombi
and Forcina, 2007 [1] and Cazzaro and Colombi, 2014 [3]. In the HMMMs,
beyond the baseline parameters, we can use parameters η coded with different
criteria in order to consider the possible proper order of the modalities. In this
work we take advantage from the local logits that compare the probability of
a cell πi with the previous one, for instance, referring to variable X1 we have
η11(i1) = log(

πi1

πi1−1
).

Theorem 2. The independence in formula (1) holds if and only if the param-
eters of HMMM coded with local logits, satisfy the following constraints∑

v∈V
c∈P(C)

∑
i∗c≤ic

ηvc(ivic) = 0 iv ∈ Iv ic ∈ K (3)

where P(·) denotes the power set, V = {(P(A) \ ∅) ∪ (P(B) \ ∅) ∪ P(D)} and
K is a subset of the modalities of C (IC) for which the CS independence holds.

Proof. Let us call the baseline parameters ηb and the local parameters ηl. Be-
tween these two types of parameters the following relationship exists:

ηMbL(iL) =
∑
i∗L≤iL

ηMlL (i∗L) (4)

The statement follows replacing the baseline parameters in formula 2 with the
corresponding local parameters.

Example 3 By considering the CS independence in Example 2, by adopting
local logit for coding the conditioning variable, the constraints in formula (3)
become

η1,2,3,41,2 (i1, i2) + η1,2,3,41,2,3 (i1i2i3) +

+
∑i4
i∗4=1 η

1,2,3,4
1,2,4 (i1i2i

∗
4) +

∑i4
i∗4=1 η

1,2,3,4
1,2,3,4(i1i2i3i

∗
4) = 0 (5)

with i1 ∈ I1, i2 ∈ I2, i3 ∈ I3 and i4 ∈ K. It is worthwhile to note that the
constraints in formula (3), when we deal with local logit, correspond to the CS
independence X1 ⊥ X2|X3X4 ≤ i4, i4 ∈ K.
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3 Stratified Chain Graph models

A Chain Graph is a graph with both directed and undirected arcs and with-
out any directed or semi-directed cycle. The vertices of a chain graph are
decomposable in so-called Chain Components, denoted by T1, ...., Ts. Within
these chain components there are only undirected arcs and between vertices
belonging to different components there are only directed arcs, all head toward
the same direction. Trivially, the Chain Graph Models (CGM) are graphical
models which take advantages from chain graphs to describe a system of in-
dependencies. There are different types of CGM, see Drton, 2009 [4], that
interpret in different way the presence/absence of directed/indirected arcs. In
this work we use the CGM of type I, see Lauritzen and Wermuth, 1989 [7] and
Frydenberg, 1990, [6], as natural generalization of classical graphical models.
CGMs are used when the variables to analyze are of different nature, such that
they can be naturally collected in different components. Furthermore, it is rea-
sonable to suppose that between variables within the same component there
is a kind of dependence relationship that differs from the relationship between
variables collected in different components. Therefore, it is possible to define
an explicative order between the variables collected in different components.
As it is shown in Rudas, Bergsma and Németh, 2010, [12] and in Nicolussi, 2013,
[9], the marginal log-linear models and the HMMMs give a suitable parameter-
ization for the CGM of type I. Now, the improvement in CGMs necessary to
represent the CS independencies closely follows the Nyman’s approach (Nyman,
2016 [10]) for undirected graphs. Thus we introduce the Stratified Chain Graph
Models (SCGM) as extension of stratified graphical models, [10]. A stratified
chain graph has, in addition to the previous graphs, labeled arcs. These iden-
tify the “stratum” of the models, that is the modality(ies) of the variable(s) in
the conditional set according to the context-specific independence.

Example 4 Let us consider 5 variables X1, X2, X3, X4 and X5. Suppose that,
according to the nature of the variables we can split them in two components
such that variables X1 and X2 can be considered explicative for X3, X4 and X5.
The SCGM represented by the graph in Figure 1 is one possible situation that
can occur. In this case we have the conditional independencies X3 ⊥ X2|X1 and
X5 ⊥ X1X2|(X3, X4) and the CS independence X3 ⊥ X4|(X1 = i∗1, X2, X5 =
i∗5).

4 Application on real data

In this section we investigate the potential of a model that simultaneously,
consider marginal, conditional and CS indpendencies on a set of (ordinal)
categorical variables. Our aim is to study the effect of innovation in small
and medium Italian enterprises, during the 2009-2012, in the revenue growth.
With the term “innovation” we refer to any improvement in product, services,
productive line, logistic system, organization and investment in Research and
Development (R&D) area. We used the “Italian innovation survey on SM en-
terprises” [5].
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X1

X2

X3

X4

X5

X5 = i5
*

X1 = i1
*

Fig. 1. SCGM with the labelled arc X3 − X4 referring to modality i∗1 of X1 and
modality i∗5 of X5.

Thus we considered the revenue growth in 2012, G (Yes, No) henceforth de-
noted as variable 1, as the pure response variable. Then, we took into account
the innovation through three dichotomous variables referring to the period
2009-2012: innovation in products or services or production line or invest-
ment in R&D, IPSP (Yes, No), innovation in organization system, IORG
(Yes, No) and innovation in marketing strategies, IMAR (Yes, No), hence-
forth denoted as variables 2, 3 and 4 respectively. Finally, other variables
concerning the firm’s featuring in 2009-2012 were collected: the main market
(in revenue terms), MARK (A= Regional, B= National, C= International),
the percentage of graduate employers, DEG (1= 0% ` 10%, 2= 10% ` 50%,
3=50% ` 100%) and the enterprise size, TYP (1= Small, 2= Medium), hence-
forth denoted as variables 5, 6 and 7 respectively.
In order to analyze this dataset, we build a chain graph with three components
according to the nature of the variables, so in the first component we collect
the firm’s features (MARK 5, DEG 6, TYP 7), in the second component the
innovations variables (IPSP 2, IORG 3, IMAR 4) and in the third compo-
nent the revenue growth G 1. Then, starting from the complete chain graph,
where there are all possible edges, corresponding to the saturated HMMM, we
tested all chain graph models of type I with only one missing edge, in order
to investigate, one by one, which pairwise relationship is plausible. The test
was lead with the maximum likelihood ratio test, by comparing the likelihood
of unconstrained HMMM, with the likelihood of the corresponding constrained
model. In the HMMM, the parameters of dummy variables were codified with
baseline logits while the parameters referring to the ordinal MARK and DEG
were codified with local logits.
We removed from the complete chain graph all the edges which given positive
results in the previous tests, obtained in this way a reduced CGM. Subse-
quently, we test the reduced CGM adding one by one all the edges previously
removed. Table 1 shows the statistic test, the degree of freedom and the p-value
of the HMMM for the main significant models. The numbers involved in the
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independencies represent the variables in the order of presentation. The CGMs
associated to these three HMMMs were depicted in Figure 2.

Name Independencies GSQ df p-value

A
1 ⊥ 4|2, 3, 5, 6, 7

100.88 84 0.1012
3 ⊥ 5|2, 4, 6, 7

B
1 ⊥ 4|2, 3, 5, 6, 7

91.87 81 0.1921
4 ⊥ 7|2, 3, 5, 6

C
1 ⊥ 4|2, 3, 5, 6, 7

112.02 93 0.08723 ⊥ 5|2, 4, 6, 7
4 ⊥ 7|2, 3, 5, 6

Table 1. Values of statistics test of HMMM associated to CG models.

G 1

IPSP 2IORG 3IMAR 4

MARK 5DEG 6TYP 7

(a)

G 1

IPSP 2IORG 3IMAR 4

MARK 5DEG 6TYP 7

(b)

G 1

IPSP 2IORG 3IMAR 4

MARK 5DEG 6TYP 7

(c)

Fig. 2. CG models.

It is clear (i.e. it is common to all models), that the growth (1) is indepen-
dent by the innovation in the marketing strategies (4) given by the remaining
variables (2, 3, 5, 6, 7). In model A we have that the innovation in the orga-
nization system (3) is independent on the market where the enterprise works
(5) given the other variables concerning the innovation and the firm’s features
(2, 4, 6, 7). On the contrary, in model B we have that the innovation in
marketing strategies (4) is independent on the enterprise’s size (7) given the
other variables concerning the innovation and the firm’s features (2, 3, 5, 6).
Model C is the union of the independencies in model A and in model B. As
we can see from Table 1 by choosing a reference level of the first type error α
equal to 0.1 we reject the null hypothesis, thus we have no enough evidence
to choose the model C. Thus, we considered the three independencies charac-
terizing model C like CS independencies and we test all possible alternatives.
The more interesting models were reported in Table 2. The preferable model,
according to the parsimonious principle, is C4. The difference between models
C and C4 is the independence concerning the organization system (3) and the
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market where the enterprise works (5). In fact, in C4 this independence holds
only when the conditioning variable percentage of graduated employers (6) is
lower than 10% or greater than 50% that we can assume as indicator of unspe-
cialized or high specialized firms. This means that only when the percentage of
graduated employers is between 10% − 50% the market affects the innovation
in the organization system.

Name Independencies GSQ df p-value

C1
1 ⊥ 4|2, 3, 5, 6, 7

94.75 85 0.220023 ⊥ 5|2, 4, (6 = 1), 7
4 ⊥ 7|2, 3, 5, 6

C2
1 ⊥ 4|2, 3, 5, 6, 7

102.77 85 0.092053 ⊥ 5|2, 4, (6 = 2), 7
4 ⊥ 7|2, 3, 5, 6

C3
1 ⊥ 4|2, 3, 5, 6, 7

101.08 85 0.11253 ⊥ 5|2, 4, (6 = 3), 7
4 ⊥ 7|2, 3, 5, 6

C4
1 ⊥ 4|2, 3, 5, 6, 7

105.09 89 0.11713 ⊥ 5|2, 4, (6 = 1, 3), 7
4 ⊥ 7|2, 3, 5, 6

Table 2. Values of statistics test of HMMM

The stratified chain graph associated to the model C4 is depicted in Fig-
ure 3. In this graph the labeled arc between the node MARK and IORG
reports the modalities of the variables DEG according to the arc is removed.
That is, only when the variable DEG assume the first or the third modality,
there is MARK independent by IORG given by ISPS, IMAR, DEG and
TYP.

Finally, in Table 3 we report the values of the second order marginal log-
linear parameters (referring to paired variables) of model C4. At first we remind
that these are defined in the first marginal distribution where they occur. In
this case, the marginal subsets associated to the CG models in Figure 2 and to
the SCG model in Figure 3 are {(5, 6, 7), (2, 3, 4, 5, 6, 7), (1, 2, 3, 4, 5, 6, 7)}. Fur-
thermore, we remind that in order to define the conditional (marginal) indepen-
dencies in model C4 we have to constraint to zero the parameter η1,2,3,4,5,6,71,4 and
all the higher order parameters, defined in the marginal set (1, 2, 3, 4, 5, 6, 7),
containing the paired variables (1, 4) and also the parameter η2,3,4,5,6,74,7 and all
the higher order parameters, defined in the marginal set (2, 3, 4, 5, 6, 7), contain-
ing the paired variables (4, 7). Finally, in order to define the CS independence,
according to the formula (3), we have to constrain to zero the sum of param-
eters η2,3,4,5,6,73,5 and all the higher order parameters, defined in the marginal
(2, 3, 4, 5, 6, 7), containing the paired variables (3, 5) but where the variable 6
assumes value 1 or 3. Note that in Table 3, the parameters η2,3,4,5,6,73,5 are free
and assume value zero. This reveals the lack of relationship between the vari-
ables MARK and IORG at least concerning the parameters of third or higher
order.
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G 1

IPSP 2IORG 3IMAR 4

MARK 5DEG 6TYP 7

DEG = 0%−10%

DEG = 51%−100%

Fig. 3. SCG model C4.

G 1 IPSP 2 IORG 3 IMAR 4 MARK 5 DEG 6
Variable Modalities Yes Yes Yes Yes National Internat. 10%-50% ≥ 50%
ISPS 2 Yes 0.1927

(0.0793)
IORG 3 Yes 0.1023 1.8221

(0.0709) (0.0827)
IMAR 4 Yes 0 1.4848 1.9967

(0.0000) (0.0907) (0.0764)

MARK 5
National 0.0980 0.6378 0 0.3005

(0.0688) (0.0960) (0.0000) (0.0928)
Internat. 0.4668 0.1517 0 -0.2096

(0.1486) (0.1815) (0.0000) (0.1912)

DEG 6
10%-50% 0.0332 0.5020 0.4372 0.4323 0.6902 0.2547

(0.0821) (0.10400) ( 0.0988) (0.0927) (0.0567) (0.0856)
≥50% -0.1333 -0.0422 0.5048 0.3451 0.1758 -0.1186

(0.1436) (0.2070) (0.1624) ( 0.1746) (0.1024) (0.1493)
TYP 7 Medium 0.3700 0.6447 0.5687 0 0.9878 0.7591 1.1702 -0.3302

(0.0790) (0.1064) (0.0868) (0.0000) (0.0497) (0.0775) (0.0543) (0.0899)

Table 3. Second order marginal log-linear parameters.

From Table 3 we can see that between the three innovation variables there
is a strong (positive) second order association: (IPSP, IORG) with log odds
ratio of 1.82, (IPSP, IMAR) with log odds ratio of 1.49 and (IMAR, IORG)
with log odds ratio of 2. In the graph they correspond to the undirected arcs
between the nodes 2 and 3. This means that is more likely to have firms that
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improve innovations in different levels. Another strong association is between
the firm’s dimension and the main market. In particular it seems, reasonably,
that bigger is the firm bigger is the market where it works. It is also worthwhile
to focus on the parameters concerning the variable DEG, which discriminates
between a conditional and a CS independence in model C4. In particular
from Table 3 it came to light that there is a reverse direction between the
parameters (all positive) referring to the 10% − 50% modality and the one
referring to the ≥ 50% which are more than half negative. This means that
moving from the unspecialized firm (less than 10% graduate) to a medium
specialized firm (10%− 50% graduate), we have a positive association with all
the other variables. On the other hand, by considering the highly specialized
firm (≥ 50% graduate) with respect to the medium specialized firm, we can
see that there is a negative trend with the revenue growth. The same trend
occurs also with the innovation in product, services, product line and R&D
(IPSP), the main market (MARK) and the firm’s size (TYP). This change
probably would been unobserved by codifying the parameters with baseline
logits. Furthermore, by accepting the conditional independence 3 ⊥ 5|2, 4, 6, 7
we would not focus on the variable 6.

5 Conclusion

In this work we showed how to represent CS independencies in HMMMs when
we treat with ordinal variable and we are interested in representing also marginal
and conditional independencies. We also provide a graphical representation
based on chain graph in order to give visual simplification of the relationships
among the variables.
The final SCGM have been chosen following a two steps procedure to identify
the best CGM and then by watching the problem at hand to find the “strata”
of the graph, but further research will be dedicated to implement the procedure
able to test all possible models (testing all hypothesis of independence). Fur-
thermore, other research involves the definition of constraints for parameters
coded with “global” or “continuation” logits. It should be interenting also to
study the definition of SCGM by considering the Chain Graph Models of type
4, see Drton (2009) [4], with the parameterization explained by Marchetti and
Lupparelli (2011) [8].
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Abstract. The paper is concerned with the problem of probabilistic analysis of 

hydraulic conditions in pipeline networks, which occur under the impacts of external 
environment. These impacts are taken into account to specify boundary conditions for nodal 

flow rates or pressures in a probabilistic form. The research reveals practical value of such a 

statement which arises at the stages of design and operation of pipeline networks in the 

analysis of their transmission capacities and feasibility of operating conditions.  A 
mathematical statement and a general scheme for solving the problems are presented. The 

final relationships are obtained to calculate the mean value and covariance matrices of the 

sought state variables. The relationships provide analytical representation of the model of 

probabilistic flow distribution. A numerical example is presented to illustrate high 
computational efficiency of the proposed method for probabilistic analysis of operating 

conditions and its advantages over the traditional deterministic models and methods for such 

an analysis. 

 
  Keywords: Pipeline systems, probabilistic modeling, flow distribution, hydraulic 

circuits,  statistical parameters. 

 

Introduction. The problems of calculation of hydraulic conditions 

represent the fundamental problems in the analysis of operating conditions of the 

pipeline networks in their design, operation and dispatching control. In practice the 

calculations of hydraulic conditions of the pipeline networks pursue two goals: 1) to 

assess transmission capacity of pipeline networks under specified (normally 

maximum) loads of consumers; 2) to assess the extent to which the consumers are 

provided with water at given characteristics of consumption systems. The first 

(main) type of calculations is based on the models with lumped loads of consumers 

and is applied at the stages of pipeline network design, development and 

reconstruction. It is also applied to calculate the main operating parameters of the 

networks. The second (check) type of calculations is based on the models with non-

fixed loads and is applied at the stages of pipeline network  operation to calculate 

and analyze off-design conditions, for example emergency ones. 

In both cases traditionally the deterministic models of flow distribution are 

involved. However, the actual conditions of the pipeline network depend on the 

random impacts of external environment (load of consumers, pressure at sources, 

etc.). This is why solving the problem of probabilistic modeling of steady state 

hydraulic conditions to obtain the calculation results in the form that allows their 

probabilistic interpretation is topical. 

  The present paper is concerned with the problem of probabilistic modeling 

of steady state hydraulic conditions of a pipeline network. The problem is based on 

the models with lumped loads, but pressures can be specified at a random number of 

nodes (for example, at the working fluid entrance points). Thus, the nodal boundary 

conditions are specified, when either pressure or flow rate is specified for each node, 

and pressure should be specified for no less than one node. Such a statement of the 
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problem is refinement of more general ones [1-3]. From the viewpoint of applied 

significance, however, it should be considered independently. 

Statement of a problem of probabilistic calculation of hydraulic 

conditions 

The probabilistic description of an individual condition is reduced to the 

distribution density function to be denoted by ( , )Rp R  , where R  – the value of 

random vector  of state variables (pressures, flow rates, etc.); 
R  –distribution 

parameters. In most of the practical cases it is possible to assume  a hypothesis about 

normal distribution of R . Then { , }R RR C    and probabilistic description of the 

conditions are reduced to the indication of  mean value  ( R ) and covariance matrix 

(CM) (
RC ) for the magnitude R . 

Not any combination of R  components is admissible, since they should meet 

the equations of the flow distribution model ( ) 0U R   (where U  – nonlinear vector 

function). These equations follow from the general physical laws of conservation 

and, hence, should be deterministic. 

The traditional deterministic model of steady-state hydraulic conditions in 

pipeline network as hydraulic circuit with lumped parameters can be represented as 

[4]  

 T( ) ( , ) ( , , ) 0.

( )

Ax Q

U R U G Y U x Q P A P y

y f x

 
 

   
 
  

                 (1) 

Where: the first subsystem of equations represents conditions of mass balance at the 

nodes for the calculated scheme of a pipeline  network (equations of the first law of 

Kirchhoff); the second - the equations of the second law of Kirchhoff  in a nodal 

form; G – boundary conditions (BC); Y – unknown  state variables; T  – 

transposition symbol; A  – m n -dimensional incidence matrix of nodes and 

branches of the calculated scheme  with elements 1( 1)jia   , if node j  is initial 

(final) for branch i , 0jia  , if branch i  is not incident to node j ; m, n  number of 

nodes and branches in the calculated scheme;  x  – n-dimensional vector of flow 

rates in branches, P , Q  – m-dimensional vectors of nodal flow rates and pressures; 

y – n-dimensional vector of pressure losses in branches; ( )f x  – n-dimensional 

vector-function with elements ( )i if x , that reflect the laws of hydraulic flow for 

branches, for example, ( ) | |i i i i i if x s x x H  , where ix  – flow rate in the i-th 

branch; is   hydraulic resistance of the branch; 0iH   – increase in the pressure in 

the case of active branch (for example, the one modeling a pumping station); 0iH   

in the case of a passive branch (for example, the one modeling a pipeline section). 

Assuming that in (1) all parameters , , 1,i is H i n  are specified deterministically, 

we obtain 
T T T T( , , )R x Q P . 

Thus, the probabilistic model of steady-state flow distribution can be  

represented as ( ) 0, ~ ( , )r RU R R N R C , where rN  – r – dimensional normal 

distribution of probabilities;  r  – dimension  of vector  R.  In the case of normal 
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distribution  of G, the nonlinear distortion  of distribution 
( )[ ( ), ]Y Gp Y G   (where 

( )Y G  – implicit function specified by equations of flow distribution) is neglected, 

and the problem is reduced to the determination of { , }R RR C   at a given value 

{ , }G GG C    and condition ( ) ( , ) 0U R U G Y  . In this case the composition of  G 

should provide solvability of  equations ( , ) 0U G Y   with respect to G, i.e.  

dim( ) dim( ) rank( / )G U U Y    , where /U Y   – Jacobi matrix (of partial 

derivatives) at fixed boundary conditions *G  in the vicinity of a point of solution 
*Y , dim( )  – dimension of vector, rank( )  – matrix rank. 

Methodological approach. Let ( )G G G    be a random deviation of 

possible realization of boundary conditions from its mean G . By linearizing 

function ( )Y G   in the vicinity of  G ,  we obtain ( ) ( / ) GY Y G Y G     , where 

/Y G   – matrix of derivatives at point G . Since  ( )E Y Y  and ( ) 0GE   , where 

E  – operation of  mean, then  ( )Y Y G . Thus, the mean of unknown state 

variables ( Y ) is a function of flow distribution equations at a specified mean of 

boundary conditions ( G ). Since  ( )Y Y Y   , then  Y G

Y

G
 





. Accordingly,    

( )

G G
R

Y Y G

   
    
     

and 

T

G GYG G

R
YG YY Y

C C
C E

C C

 

 

     
      

      

,  

where 

T T

T T

Y Y Y G G G

Y Y Y Y
C E E C

G G G G
   

       
                 

, 

T T

T T T( )GY YG G Y G G G

Y Y
C C E E C

G G
   

     
             

.  

Thus, the general scheme of solving the problem of probabilistic modeling of 

operating conditions is reduced to the following: 1) to obtain vector Y  by traditional 

methods of flow distribution calculation on the basis of input data of G ; 2) to 

determine matrix RC , by using the known matrix  GC   and matrix of derivatives 

/Y G   at point  G .  

In this case a question arises what the final form of the relationship for the 

resultant covariance matrices is at 
T T T( , )G GG Q P , since in the traditional methods 

for flow distribution calculation the derivatives /Y G   in an explicit form are not 

calculated,  which represents an independent problem. 

Relationships for covariance matrices of  state variables. Let 

{1,2,..., }J m  – be a set of indices of all nodes of the calculated scheme. We will 

divide it into two subsets:  QJ – a set of nodes with specified flow rates; PJ – a set 

of nodes with specified pressures, so that Q PJ J J , Q PJ J  ,  Q Qm J , 

P Pm J , Q Pm m m  . In the case, if either pressure or flow rate are specified as 

deterministic boundary conditions, their variances and all covariances with other 
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parameters, at this node are equated to zero. A typical case of deterministic 

boundary conditions is zero flow rates at simple nodes without load. Thus, the 

presence of deterministic boundary conditions will be a special case of the technique 

considered below. 

Taking into account the introduced sets, the model  of flow distribution with 

lumped loads (1) can be represented in the form:  

0Q GA x Q  ,       

0P YA x Q  , 

T T 0Q Y P GA P A P y   , 

               ( , )y f x s . 

where
QA  – an ( )Qm n -dimensional  incidence matrix of nodes of set 

QJ   and 

branches of the scheme; 
PA  – an ( )Pm n -dimensional incidence matrix of nodes of 

set 
PJ   and branches of the scheme; 

GQ , 
YP   

Qm -dimensional  vectors of flow 

rates and pressures at nodes of set 
QJ ; 

GP , 
YQ   

Pm -dimensional vectors of flow 

rates and pressures at nodes of set PJ . 

We linearize this flow distribution model at the point of mean value of 

boundary conditions T T T( , )G GG Q P , which provides interrelation between the 

deviations of these conditions and deviations of sought parameters of flow 

distribution: 

0Q x QGA                                                       (2) 

 0,P x QYA                                                      (3)   

 T T 0,Q PY P PG yA A                                                  (4)  

            

 .y x xf                                                       (5) 

Here: ,QG PG   – deviations of nodal flow rates and pressures included in the 

boundary conditions; ,QY PY   – deviations of unknown nodal flow rates and 

pressures, ,x y  – deviations of unknown flow rates and pressure losses in branches, 

xf   – an n n  - dimensional diagonal matrix with elements /i if x   on the diagonal. 

 To obtain an explicit relationship between the deviations of sought state 

variables and deviations in the initial data Y G

Y

G
 





 we will perform the following 

transformations.  

Substitute expression (5) for  y  to  (4)  and express x as 

1 T 1 T( ) ( )x x Q PY x P PGf A f A      .                                 ( 6) 

By using the obtained expression (6) exclude x  from (2) and (3)  

0,G G
PY PG QG

Y G

Q Q

P P
  

 
  

 
                                        (7) 

0,Y Y
PY PG QY

Y G

Q Q

P P
  

 
  

 
                                        (8) 
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where 1 T( )G
Q x Q

Y

Q
A f A

P





, 1 T( )G

Q x P

G

Q
A f A

P





, 1 T( )Y

P x Q

Y

Q
A f A

P





, 

1 T
.( )Y

P x P

G

Q
A f A

P





 

 From (7) we obtain an expression for 
PY , with its right-hand side 

depending only on the deviations in boundary conditions  

 Y Y
PY QG PG

G G

P P

Q P
  

 
 
 

,                                            (9) 

since  

1

GY

G Y

QP

Q P



 
  

  
,    

1

G GY

G Y G

Q QP

P P P



  
  

   
. 

 

We use back substitution to substitute expression for 
PY  in (8), from 

which  

Y

QY QG

G

Q

Q
 





,                                                (10)

 

and by substituting it to (6) we will obtain expression for x   

,x QG PG

G G

x x

Q P
  

 
 
 

                                       (11) 

where 1 T( ) Y
x Q

G G

Px
f A

Q Q

 


 
, 1 T 1 T( ) ( )Y

x Q x P

G G

Px
f A f A

P P

 
  

 
. 

And eventually by substituting x  from (11) to (5) we obtain 

,y x QG x PG

G G

x x
f f

Q P
  

 
  
 

                                       (12) 

In the end. we have an explicit relationship between the deviations of sought 

state variables and deviations in boundary conditions  

0

Y Y

G G

PY

G G PGx

Y QGQY

Gy

x x

G G

P P

P Q

x x

P Q

Q

Q

x x
f f

P Q









  
  
 

   
              

 
     

  
  

  
   

                                   (13)

 

 

From (13) we can obtain final relationships for the covariance matrix of: 

unknown nodal pressures  
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T T

E[ ]T Y Y Y Y
PY PY PY PG QG

G G G G

P P P P
C C C

P P Q Q
 

      
     

      
; 

 flow rates  in branches  
T T

E[ ] ;T

x x x QG PG

G G G G

x x x x
C C C

Q Q P P
 

      
     

      

 
unknown nodal flow rates  

T

TE , Y Y
QY QY QY QG

G G

Q Q
C C

Q Q
 

  
        

; 

 unknown pressure losses 
T T

TE , .y y y x QG x x PG x x x x

G G G G

x x x x
C f C f f C f f C f

Q Q P P
 

      
                      

These equations consider that T( )x xf f  . 

A numerical example.  We will illustrate the capabilities of the proposed 

approach on a conventional scheme of pipeline network with parameters  16m  , 

22n   (Fig.1). Also, the Figure shows 2 nodes with pressures given in a 

probabilistic form and 14 nodes with flow rates, and their mean values and standard 

deviations. 

According to the condition of obtaining the required amount of water at the 

hour of maximum water consumption in this study case an identical value (18 m of 

water column ) of the minimum admissible pressure ( min

jP ) was given at nodes 1-14 

[5].  The calculations were performed by the proposed method and traditional 

Monte-Carlo method. Tables 1 and 2 present the results of the probabilistic 

calculation of hydraulic conditions for branches and nodes, respectively.  

Fig. 1. Calculated scheme and initial data by node 

I –  node with specified flow rate ( mean value/standard deviation);  II – node with 

specified pressure  (mean value/ standard deviation);  III – branch  - pipeline. 
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Table 1.  

Initial data and results of probabilistic hydraulic calculation by branch  

 

B
ra

n
ch

, 
i 

Initial data Calculation  

results by 

Monte Carlo 

method(5000 

realizations) 

Calculation 

results by 

proposed 

method 

Relative error
 

Resistance of 

branch i 

Mean  

value  

Standar

d 

deviati

on  
MMK

ix

 

MMK

,x i  
ix   

,x i   
,x i

  ,x i  

1 0.000025 235.0 6.5 235.1 6.5 0.00 0.01 

2 0.000054 148.5 5.1 148.6 5.1 0.00 0.01 

3 0.005751 21.4 0.7 21.4 0.8 0.00 0.03 

4 0.000750 60.1 2.7 61.0 2.6 0.02 0.04 

5 0.002273 14.9 1.0 14.9 0.9 0.00 0.06 

6 0.000263 84.2 4.7 84.2 4.6 0.00 0.01 

7 1.146865 1.4 0.1 1.4 0.1 0.00 0.00 

8 0.000193 119.9 4.8 120.0 4.7 0.00 0.02 

9 0.002253 9.1 1.8 9.1 1.8 0.00 0.02 

10 0.001670 56.0 1.8 56.0 1.8 0.00 0.00 

11 0.004145 27.7 2.3 27.8 2.1 0.00 0.08 

12 0.085265 0.7 1.7 0.6 1.8 0.09 0.08 

13 0.000496 74.0 4.6 74.1 4.7 0.00 0.01 

14 0.000229 74.0 3.5 74.3 3.4 0.00 0.03 

15 0.458178 1.0 0.2 1.0 0.1 0.01 0.07 

16 0.001766 23.3 1.3 23.3 1.3 0.00 0.01 

17 0.009992 14.8 3.6 14.5 3.4 0.02 0.04 

18 0.199824 1.2 1.8 1.2 1.9 0.04 0.08 

19 0.002935 24.4 2.6 24.8 2.6 0.02 0.01 

20 0.000517 51.5 2.9 51.7 2.8 0.00 0.04 

21 0.012947 1.7 0.9 1.7 1.0 0.01 0.02 

22 0.010800 13.3 0.7 13.3 0.7 0.00 0.05 

 

 

where  

MMK

, MMK

i i

x i

i

x x

x



 , 

MMK

, ,

, MMK

,

x i x i

x i

x i



 





 . 
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Table 2.  

Results of probabilistic hydraulic calculation by node 

Node, j 

Calculation 

results by Monte 

Carlo method 

Calculation results  

by proposed method 

Relative error
 

Mean  

value 

Standard  

deviation 

jP  
,P j  

jP  
,P j  

,P j
  ,P j  

1 18.7 1.7 18.9 1.7 0.02 0.00 

2 19.2 0.9 19.2 0.9 0.00 0.00 

3 18.9 0.6 18.9 0.5 0.00 0.00 

4 19.9 0.5 18.9 0.5 0.00 0.00 

5 20.8 0.4 20.8 0.4 0.00 0.00 

6 20.3 0.4 20.3 0.4 0.00 0.00 

7 21.0 0.6 21.0 0.6 0.00 0.00 

8 21.0 0.8 21.0 0.7 0.00 0.00 

9 24.2 0.3 24.2 0.3 0.00 0.00 

10 23.7 0.3 23.7 0.3 0.00 0.00 

11 21.6 0.4 21.8 0.4 0.01 0.00 

12 21.8 0.3 21.4 0.3 0.04 0.00 

13 24.4 0.2 24.4 0.2 0.00 0.00 

14 25.6 0.1 25.6 0.1 0.00 0.00 

 

The Tables show that the differences in the calculation results obtained by 

different methods are negligibly small. However, the calculation time (in the Maple 

environment) made up 97.5 minutes for Monte Carlo method (5000 realizations); 18 

minutes for Monte Carlo method (10000 realizations), and 5 seconds for the 

proposed method, which demonstrates fast operation of the latter.   

 
Calculation of probabilistic indices of pipeline network operation 

The proposed approach to the calculation of statistical parameters of the 

pipeline network operating conditions enables us to obtain probabilistic estimates of 

virtually any pipeline network state variable by known formulas of probability 

theory [6,7]. Thus, the estimate of probability that the j-th state variable belongs to a 

specified range [ min max,j jR R ] is calculated by the equation  

 
 

max

min

2

2

1
exp

22

j

j

R

j j

Rj j

RjRj R

R R
p dR

 

  
  

  
 ,                          (14)  

where jR  – random realization of state variable; jR  – mean value; jR ; Rj   

standard deviation jR ; Rjp    realization probability of jR  in a specified range; 

max min,j jR R   upper and lower boundaries of this range, which can take infinite 

values.  

Table 3 presents the values of redundant pressures calculated as 
over min

j j jP P P  , and the probabilities of violations of lower boundaries of the 

admissible pressure at nodes, calculated  by equation (14). 
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Table 3.  

Calculated violations of admissible boundaries by nodal pressure 

Node, j jP  min

jP  over

jP  min( )j jp P P  

1 18.9 18 0.9 0.3 

2 19.2 18 1.2 0.1 

3 18.9 18 0.9 0.0 

4 18.9 18 0.9 0.0 

5 20.8 18 2.8 0.0 

6 20.3 18 2.3 0.0 

7 21.0 18 3.0 0.0 

8 21.0 18 3.0 0.0 

9 24.2 18 6.2 0.0 

10 23.7 18 5.7 0.0 

11 21.8 18 3.8 0.0 

12 21.4 18 3.4 0.0 

13 24.4 18 6.4 0.0 

14 25.6 18 7.6 0.0 

 

One of the main indices of sufficient transmission capacity of the network in 

the analysis of conditions by deterministic methods is min

j jP P for all  Qj J . 

Table 3 shows that at the point of mean value this condition is met, however, the 

probability of its violation at different nodes is different. For example, under the 

same value of redundant pressures at nodes 1,3 and 4 we have the value  
min

1 1( ) 0.3p P P  . This illustrates the limitedness of the deterministic analysis 

compared to the probabilistic one. 

Instead of equation (14) for conditional probability that an admissible 

boundary is violated by one parameter (when the rest of them remain in the vicinity 

of mean value) it is sensible to determine joined probability that the conditions 

belong to the feasibility region. Such a probability is calculated by the equation [6,7] 

  

    
max max

1

min min
1

T
1

1

1 1
... exp C

2(2 )

r

r

R R

R R n
n

R RR

p R R R R dR dR
C

 
    

 
      (15) 

where R  – an r-dimensional vector of mean value R ; RC    

an ( r r )-dimensional covariance matrix for R ; Rp    probability that R  belongs 

to a specified range [
min max,R R ]; 

max max max T

1[ ,..., ] ,rR R R  and 

min min min T

1[ ,..., ] ,rR R R   vectors of upper and lower boundaries of an admissible 

range for R  components. 

Equation (15) can also be used to estimate feasibility of the operating 

conditions of any subset of the pipeline network components by one or several 

parameters (pressure, flow rates, etc.). In this case matrix RC  is formed from a 

complete covariance matrix of state variables by crossing out unnecessary rows and 
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columns. For the conditions of the study case the probability of violating the lower 

boundaries of admissible pressure for all nodes will equal 0.03. 

 

 Conclusions 

1. The paper reveals the applied value of special consideration and 

development of analytical methods for probabilistic modeling of pipeline network 

hydraulic conditions when boundary conditions are represented by nodal flow rates 

or pressures. 

2. Mathematical statement of the problem and general scheme of solving it are 

presented. The final relationships for covariance matrices of sought state variables 

for this case of boundary conditions are derived. They enable an analytical 

representation of the model of probabilistic flow distribution as a whole. 

3. A numerical example is used to show high computational efficiency of the 

proposed method compared to the traditional Monte Carlo methods, which is 

achieved virtually without loss of adequacy of the obtained results. 

4. The advantages of the probabilistic methods over the deterministic 

methods for the analysis of transmission capacity of pipeline networks and 

feasibility of their operating conditions are shown. A procedure for calculating the 

conditional and joint probabilities that operating conditions of any subset of pipeline 

network components belong to the admissible region by one or several parameters is 

demonstrated. 

5.  The proposed method will provide a qualitatively new level of reliability 

of the analysis and quantitative substantiation of solutions on operating conditions of 

pipeline networks at their design and operation. 

 

References  

1. Novitsky N.N., Vanteyeva O.V. Problems and methods for probabilistic  modeling 

of hydraulic conditions of pipeline networks// // St. Petersburg State Polytechnic University 

Journal.  – 2008. – No. 1. – P.68–75. 

2. Novitsky N.N.,Vanteyeva O.V. Modeling of flow distribution stochastics in the 
hydraulic circuits   //Proceedings of RAS. Power Engineering. –  2011. – No. № 2. –  P.145-

154. 

3. Novitsky N.N., Vanteyeva O.V. Modeling of stochastic hydraulic conditions of 

pipeline systems // Chaotic Modeling and Simulation (CMSIM). – 2014. – No.1. – P. 95-108. 
4. Merenkov A.P., Khasilev V.Y. Theory of hydraulic circuits. – M.: Nauka, 1985. – 

280 p. 

5. Water supply. Design of systems and structures: in 3 vol. V.3 Systems of water 

distribution and supply/ Methodological leadership and general editing by Dr.Sc., Prof. 
Zhurba M.G. Vologda-Moscow: VoSTU, 2001. –188 p. 

6. Ventsel E.S.Theory of probabilities. – M.: Publ. H. “Vysshaya Shkola”, 2001.– 

575 p.  

7. Ventsel E.S., Ovcharov L.A. Problems and exercises on theory of probabilities. – 
Textbook for Higher Educational Institutions. Ster. ed.3. – M.: Publ. H. “Vysshaya Shkola”, 

2000. – 366 p. 

 

760

http://en.ntv.spbstu.ru/ntv/
http://en.ntv.spbstu.ru/ntv/


_________________ 

17
th

  ASMDA Conference Proceedings, 6 - 9 June 2017, London, UK 
 

© 2017 CMSIM               

 

 

   Perspectives on coverage of deaths in Brazil  
 

Neir Antunes Paes1, and Alisson dos Santos Silva2
 

 

1 (Postgraduate Program in Decision Modelling and Health of the Department of  

  Statistics of the Federal University of Paraíba, Cidade Universitária, João Pessoa, Brazil  

  (E-mail: antunes@de.ufpb.br) 
2

 Postgraduate in Mathematical and Computational Modeling, Federal University of 

Paraíba, Brazil  (E-mail: allisonpb22@hotmail.com) 

 

Abstract. Vital statistics reflect the health status of a population, which are widely used 

in the formulation of important demographic indicators. The evolution of vital records in 

Brazil is marked by political factors and administrative instabilities that have 

compromised its quality and utility. Due to this commitment, the two main sources of 

vital records, the Brazilian Institute of Geography and Statistics and the Ministry of 

Health do not capture all of these records, mainly in less developed regions such as the 

Northeast of Brazil with a population of 56 million inhabitants in 2016. Although there 

have been gradual advances in coverage of deaths in Brazil, the Northeast region has not 

yet reached full coverage of deaths (100%). Among the nine States that compose this 

region, coverage of deaths in 2011 ranged from 79-94%. In order to estimate the year in 

which the States of the Northeast will reach the full coverage of death records projections 

were performed on coverage of deaths for each state. The annual series of death coverage 

estimated by the Ministry of Health from 1991 to 2011 were used. The projections were 

made through the mathematical methods of projections: Logistic, Gompertz and Holt's 

Exponential Smoothing Model. The model of Holt, in general, was the best fit to the 

pattern of the series of coverage of deaths. The States were classified in three intervals of 

years when they reached 100% of coverage, which varied from 2019 to 2028. It is 

estimated that for the Northeast the full coverage of deaths will be reached between 

2021-2005. It is expected that these scenarios can contribute to the planning strategies 

and to the evaluation of managers regarding the actions and policies to be implemented 

on the performance of death statistics in the Northeast and Brazil. 

 

Keywords: Vital Statistics, Mortality, Death Coverage, Projections, Brazil. 

 

1  Introduction 
 

Mortality projections are an essential input for projections of population, and 

also the financial development of pension schemes. Governments and insurance 

companies all over the world rely on mortality projections for counting its 

population and for efficient administration of their pension commitments. They 

also need to have some idea about how patterns of death (mortality) are likely to 

change so that they can plan for the future. 

Mortality forecast in Brazil is officially produced by the Brazilian government 

[1], which every single year has the commitment to review such statistics. According 

to the government in 2042, the number of deaths in Brazil (more than 2.2 million) 

will exceed for the first time the number of births (2.1 million), and the population 

(then of 228 million) will decrease. However, the forecasting of mortality and its 

patterns of deaths for the less developed regions are usually very hard to calculate 
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because the uncertainties regarding the coverage of deaths in these regions. This is 

especially true for the Northeast region with a population of around 57 million in 

2016, where little has been known about the coverage of deaths, particularly in the 

future.   

The demographic models used in projecting mortality are usually based on 

statistical modeling of historical data. But before doing projections an important 

question to be answered is, is it the coverage of deaths complete, and if not, 

what do demographers need to do to estimate the coverage in the future? In 

another words, when the coverage of deaths will be complete in the case to be 

incomplete? 

This last question was the motivation for doing this work for the Northeast 

region of Brazil. In this way is hoped to give a contribution using some 

mathematical methods which can be applied for any region or Country which 

death coverage is not complete. 

 

2 Study Data and Methods  

  
This study has an ecological time-trend design, which geographical unites are 

the 9 States (provinces) belonging to the Brazilian northeast region and the 

region as whole.  A longitudinal dataset for the years from 1991 to was created. 

The data used in this study refers to the coverage of deaths for both sexes 

estimated by  RIPSA [2], vinculated to the Ministry of Health. This longitudinal 

dataset is the only one available. 

Two types of nonlinear modeling were used to estimate the year of full 

coverage of deaths for Northeast States: Logistic Growth Model and Gompertz 

function. In addition, the Holt Exponential Smoothing Model was used, which 

presupposes linear growth trend of a series of data.  

 

Logistic function [3] 
  

  

 where: 

Y = coverage of deaths; 

e =  the natural logarithm base;  

x =  time in years of coverage of deaths; 

 α = the curve's maximum value (indicating the stabilization value of  

                      the dependent variable in relation to time); 
β =  the x-value of the sigmoid's midpoin (location parameter); and 

γ =  the steepness of the curve (curve growth rate measure). 
 α, β e γ are parameters, where α > 0 e γ > 0.  
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Gompertz function [4] 
  

 
 

 Where, the meaning of each variable and parameter of the 

Gompertz function is the same, as specified for the Logistic function.  

 

Holt Exponential Smoothing Model [5] 
Holt (1957) extended simple exponential smoothing to allow forecasting of data 

with a trend. This method involves a forecast equation considering the level, 

trend and residual with zero mean and constant variance: 

Zt = µt + Tt + at,        t = 1, ..., N, 

where: 

µt denotes an estimate of the level of the series at time t; 

Tt denotes an estimate of the trend of the series at time t; 

at denotes the random error at time t. 

The level and trend values of the series were estimated by 

Z̄t = AZt + (1 − A)(Ẑt−1 + T̂t−1),  0 < A < 1,  t = 2, ..., N, 

T̂t = C(Z̄t − Z̄t−1) + (1 − C)T̂t−1,  0 < C < 1,  t = 2, ..., N, 

A and C are the smoothing constants. The prediction of future 

series values for this procedure is given by: 

Z̄t(h) = Z̄t + hT̂t,∀h>0 

That is, the forecast is made by adding to the basic value (Z̄t) the 

multiplicative trend by the number of steps ahead that one wishes to 

predict (h). 

  

Diagnostic and residual measures 
 In non-linear regression, the analysis of the residuals of a model is done 

to check the plausibility of the assumptions involved [6]. The Shapiro-

Wilk statistical test was used to verify the normality assumption. To 

measure the heteroscedasticity of the residues, the Breusch-Pagan test and 

the graphic inspection of the residues were used against the estimated 

values to examine whether the error variances are constant. The Durbin-

Watson test was used to verify the existence of first order autocorrelation. 

The Mean Square Error (MSE) was proposed as criterion for selecting 

the best model. The MSE is defined by the sum of the squares of the 

differences between estimated/predicted results and the observations [7].  

The diagnostic measures were used for residue analysis, detection of 

outliers, influential points, and colinearity. In addition, tests based on 

statistical hypotheses were carried out to verify the suitability of the 

Logistic and Gompertz model adjustments [3,4]. 

In order to obtain the estimates from the application of the prediction 

methods and the error measures, the R-3.3.1 free-access software was 
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used. 

Criteria for selection of full coverage of deaths 
The year of optimal coverage was chosen for the first year whose 

estimate was greater than or equal to 99% or when the maximum 

inflection point of the model curve was reached. 

Then, the criteria for selecting the range of forecast of full coverage 

of deaths were:  

1 - When the estimates between the models did not exceed four years a 

range of forecast of full coverage using both values was adopted; 

2 - In case the difference between forecasts was greater than four years, a 

four-year forecast interval was considered based on the model with the 

lowest MSE; 

3 - The model with estimated full coverage below 2019 was discarded. In 

this case, a two year interval was considered based on the selected 

coverage.  

 

3  Results and Discussion 

 
Among the nine States that compose this region, coverage of deaths in 2011 

ranged from 79 to 94%. In the beginning of the series, in 1991, the coverage 

ranged from 25 to 70%. According to Table 1 the deviations between the 

coverages with the use of the EQM showed that the Holt model had the 

best performance for five States and the Northeast as a whole.  

 

 

Table 1: Mean Square Error of estimates 

with full coverage of deaths, according to the 

models by Brazilian Northeast States. 

State/Region 
Mean Square Error (MSE) 

Logistic Gompertz Holt 

Maranhão 52,28 58,44 29,37 

Piauí 70,01 80,20 56,85 

Ceará 17,82 19,91 16,49 

Rio G. Norte 14,38 15,01 15,61 

Paraíba 37,00 38,24 37,70 

Pernambuco 17,53 18,01 13,14 

Alagoas 41,97 43,48 46,04 

Sergipe 10,38 11,01 29,03 

Bahia  7,38  7,69  4,84 

Nordeste 21,72 22,92 15,16 

              Note: The model with the lowest MSE is highlighted.   
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The Logistic model presented the smallest errors for three States. 

These States are highlighted. 

The standardized residuals versus the adjusted values for the 

Northeast and all States indicated homogeneity of the variances that can 

be confirmed by the estimates of the Breusch-Pagan statistic test. In it, the 

null hypothesis that the residues were homocedastic was not rejected. 

Verifying the normality assumption the Shapiro-Wilk test with p-values ≥ 

0.05 for the Logistic Model and the Gompertz model did not reject the 

null hypothesis, indicating that the residues followed a normal 

distribution. 

The Durbin-Watson test indicated that the residues were independent 

as desired. According to the estimates of the p-value of the Dickey-Fuller 

Test, the time series discussed were stationary over time with a 

significance level of 5%. The Wilcoxon test pointed to the presence of 

increasing trend and almost stationary behavior in the series of data for all 

the regions, satisfying the requirements for the applicability of the Holt 

model. 

Figure 1 shows the time series of observed and estimated death 

coverage for the Northeast and the adjustment curves for each model 

adopted.  

There is no technique of correction of the coverage of deaths free of 

assumptions, which are hardly fulfilled for any region of the world, and 

Brazil. In this way, errors are allowed in any estimate. The greatest errors 

in RIPSA's estimates [2] are related to the period from 1991 to 1999 that 

made use of the projections of deaths which are part of the population 

projections elaborated by IBGE [1]. From 2000 onwards, the correction 

factors of the Active Search Project from the Ministry of Health[8] were 

used which are considered more accurate. However, the change in 

coverage levels from 1999 to 2000 was not only due to a change in 

methodology in its estimates, but also to other factors.  

The evolution of coverage levels indicates that the year 2000 can be 

considered as a milestone in time, after which an unprecedented rate of 

increase in the history of death coverage in the Brazilian Northeast was 

triggered. The poor quality of coverage before 2000 may be due to the 

enormous political and economic crisis that directly affected investments 

in health and basic care in Brazil [9] reinforced by the precarious training 

of health professionals regarding data collection and manipulation, and 

non-standardization of these tasks, which led to poor quality and 

unreliability of information [10,11,12]. 

The main factors that contributed to the great increase in coverage in 

the Northeastern States since the year 2000 are the technological  

development of information, which has enabled a considerable leap in 

quality in the collection and processing of data. 
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Figure 1: Modeling of death                   Figure 2: Modeling of death     

coverage according to the models,          coverage according to the models 

          Northeast of Brazil                                     State of Piauí 

 

These actions were reinforced by the expansion of coverage of health 

services through programs such as the Family Health Strategy, and 

monitoring of the Death Verification System (SVO), and increased 

awareness, supervision and vigilance by physicians. The significant 

improvement in the quality of death records from the Mortality 

Information System of the Ministry of Health can be further credited to 

the addition of the hospitals in the collection of data, previously collected 

only in civil registries offices [12,13]. 

According to Figure 1 a better smoothing is observed for the Holt 

model, since the Logistic model and the Gompertz model did not show 

any differences in plotting the curve. This pattern of models for the 

Northeast was practically the same observed for States, with small 

variations in the pace for some States (not shown). 

Estimates of Northeast coverage up to the year 1999 showed a steady 

but fluctuating increase, with a sharp fall in the pace between 1999 and 

2000. Then, the rate of increase continues, but in a slower way reaching 

almost constant behavior at the end of the series. Two trends are evident, 

before and after this break. Prior to 2000, the pace of increase was lower 

than the second, for almost all States, and the Northeast as a whole. 

Because the Gompertz model had a very similar behavior to the 

Logistic model (Figure 1) and provided the worst accuracy errors for 

most States (Table 1), it was discarded as a predictive model. 

Table 2 shows the projections of the years when the full coverage of 

deaths for the Northeast and States will be reached, using the Logistic and 

Holt's model. The final estimates are presented in forecast intervals, 

according to the established criteria. 
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Table 2: Interval of prediction of the year with full coverage of deaths by 

models, according to Brazilian Northeast States. 

State/ Model 
Model 

w/lowest 

MSE 

Criteria Interval of 

prediction 

Region Logistic Holt   

Maranhão   2030* 2028 Holt 1 2028-2030 

Piauí   2032* 2016 Holt ** 2022-2026 

Ceará   2024* 2023 Holt 1 2023-2024 

Rio G. Norte   2025* 2021 Logístico 1 2021-2025 

Paraíba 2017 2020 Logístico 3 2020-2022 

Pernambuco 2020 2023 Holt 1 2020-2023 

Alagoas 2019 2018 Logístico 3 2019-2021 

Sergipe  2026* 2022 Logístico 1 2022-2026 

Bahia 2030 2023 Holt 2 2023-2027 

Northeast 2035 2021 Holt 2 2021-2025 
 *   Inflection point of the curve below 100%. 

 ** An interval of two years for plus and minus was considered based on the mean of the two 
predictions models (2024).  

 

 

It was considered that maximum amplitude of four years in the 

forecast of the full coverage to be reached by Northeast States is a 

reasonable variation in the results generated by the models.  

Attention is drawn to the fact that the models captured the behavior of 

the coverage of deaths of a historical series, and that they are 

mathematical. Although the coverage of deaths in the past is a reflection 

of the conditions of life in general [10,11,12] one may not be assured that 

living conditions will be maintained in the future, and that they reproduce 

a pace of evolution of the past. Thus, the forecast interval seeks to cover 

non-measurable constraints, not captured by a mathematical model.  

 

4 Conclusions 

 
In view of the established criteria, in general, the Holt model performed 

better (less deviations in the coverage series) by adhering more to the 

behavior of the past coverage series. 

Obviously, the results should be viewed with caution, since the errors 

inherent in any prediction must be taken into account. It should be noted 

that in order to verify the suitability of the models, it is necessary to 

comply with certain assumptions. One of them referred to the number of 

points (years) available in the time series, restricted to 21 points. But they 

are the only ones available in the literature. This restriction may have 

prevented full use of the application of the models, which should be 

considered as indicators of the evolution of death coverage.  
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The final estimates showed three different groups regarding the 

universalization of coverage of deaths: Alagoas, Paraíba and Pernambuco 

(2019-2023); these States would be the first to reach full coverage of 

deaths regarding data quality. In a more distant position were Maranhão 

and Bahia (2023-2030). And, in an intermediate position, Ceará, Rio 

Grande do Norte, Sergipe and Piauí (2021-2026). It is estimated that for the 

Northeast the full coverage of deaths will be reached around 2021-2025. 

However, it must be acknowledged that, like any scenario, this 

outline reflects a possibility considered plausible and that only the future 

can confirm these scenarios. Nevertheless, it is expected that these 

scenarios may contribute to the planning strategies, and to the evaluation 

of managers regarding the actions and policies to be implemented on the 

performance of death statistics in the Northeast and in the Country.  
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ABSTRACT 

In various fields of environmental and agriculture sciences the estimation of a two-variable second 

degree polynomial coefficients via sampling is of major importance, as it gives very useful 

information. In this paper, we propose a very simple and very low budget systematic sampling plan for 

the estimation of the coefficients           and   of the polynomial  (   )  (        

           )  , which is sometimes found to be a probability density function. The above 

polynomial is defined on a domain   [   ]   [   ], which can be represented by the domain 

  [   ]   [   ] for convenience. Numerical methods, such as Simpson’s rule, are applied. The 

comparison between means of both estimated and theoretic functions is used to confirm the accuracy of 

the results. The stability of the numerical methods allows us to get results with very good accuracy for 

small sample sizes. Illustrative examples are given. 

Keywords: systematic sampling, polynomial, coefficients, Simpson 

MSC2010 Classification: 62D05, 62E17 

 

1. Introduction 

All across the world, people are facing a wealth of environmental problems everyday. 

Point-source pollutants have a major impact on environmental concentrations on a local scale 

and also contribute to the concentrations on a larger regional scale [1]. In accordance with the 

U.S. Environmental Protection Agency (EPA), point-source pollution is defined as “any 

single identifiable source of pollution from which pollutants are discharged, such as a pipe, 

ditch, ship or factory smokestack” [2]. Environmental authorities are concerned with locating 

and punishing violations of environmental protection regulations, but even if laws are 

followed, these types of practices occurred in the past before the laws were enacted and the 

pollutants are still around [3]. 
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From the mathematical point of view, these sources are called point-sources because, 

in mathematical modeling, they can be approximated as a mathematical point to simplify 

analysis. 

Let us consider the bivariate function: 

   
1

2 2


     f x, y Ax By Cxy Dx y H  (1) 

defined on a domain   [   ]   [   ]. The coefficient   is equal to the inverse value of the 

function   when both x and y are zero,      (   ), and the rest coefficients are estimated 

as described in Section 2. 

 

2. Proposed Method 

We will describe a method to estimate the coefficients         and   of the 

function given in (1), where the studied area is   [   ]   [   ]. The proposed method 

consists of the following steps: 

Step 1. We conduct systematic sampling [4] by taking samples of linear subspaces of R
2
. 

Step 2. In each sampling space (Step 1), we integrate the function given in (1) with respect to 

x or y, for x or y between   and  . 

Step 3. We apply the Simpson’s rule of Integration [5] to three points which are equally 

spaced in the interval [   ],       and  . 

Step 4. We equate each integration result (Step 2) with its approximation (Step 3). 

Step 5. We solve the system derived from Step 4. 

 

2.1 First Restriction 

Let us consider that    : 

     
1

2

1 0


   f x f x, Ax Dx H  (2) 

or 

 2

11  Ax Dx H f x  (3) 

The sampling is done on the x-axis of the given field D (Figure 1a). We integrate the equation 

(3) with respect to x, for x between   and   and we get: 

 1 2 3 6 6  D /    (4) 

By applying Simpson’s rule of Integration to the three points which are equally spaced in the 

interval [   ]         and   we get: 

        1 1 1 1 11 0 4 0 5 1 1 6 1 6 1f f . f / f       (5) 

If we then equate (4) and (5), we get the so-called 1g estimator: 
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     1 1 1 1 1 16 2 3 6 1 0 4 0 5 1 1 1D g f f . f f           (6) 

 

2.2 Second Restriction  

Let us consider that    : 

     
1

2

2 0f y f , y By Ey H


     (7) 

or 

 2

21By Ey H f y    (8) 

The sampling is done on the y-axis of the given field D (Figure 1b). We integrate the equation 

(8) with respect to y, for y between   and   and we get: 

 2 2 3 6 6/       (9) 

By applying Simpson’s rule of Integration to the three points which are equally spaced in the 

interval [   ] we get: 

        2 2 2 2 21 0 4 0 5 1 1 6 1 6 1f f . f / f       (10) 

If we then equate (9) and (10), we get the so-called 2g estimator: 

     2 2 2 2 2 26 2 3 6 1 0 4 0 5 1 1 1E g f f . f f           (11) 

 

2.3 Third Restriction 

Let us consider that    :  

        
1

2

3f x f x,x A B C x D x H


        (12) 

or 

     2

31A B C x D x H f x       (13) 

The sampling is done on the diagonal line     of the given field D (Figure 1c). We 

integrate the equation (13) with respect to x, for x between   and  , and we get: 

    3 2 3 6 6A B C D H /        (14) 

By applying Simpson’s rule of Integration to the three points which are equally spaced in the 

interval [   ] we get: 

        3 3 3 3 31 0 4 0 5 1 1 6 1 6 1f f . f / f       (15) 

If we then equate (14) and (15), we get the so-called 3g estimator: 

         
33 3 3 3 36 2 3 6 1 0 4 0 5 1 1 1A B C D H g f f . f f             (16) 
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2.4 Fourth Restriction 

Let us consider that      :  

        
1

2

4 2 4 2 2f x f x,x / A B / C / x D / x H


        (17) 

or 

     2

44 2 2 1A B / C / x D / x H f x       (18) 

The sampling is done on the diagonal line       of the given field D (Figure 1d). We 

integrate the equation (18) with respect to x, for x between   and  , and we get: 

 4 4 2 6 3 12 12A B C D E H /        (19) 

By applying Simpson’s rule of Integration to the three points which are equally spaced in the 

interval [   ] we get: 

        4 4 4 4 41 0 4 0 5 1 1 6 1 6 1f f . f / f       (20) 

If we then equate (19) and (20), we get the so-called 4g estimator multiplied by 2: 

     4 4 4 4 4 412 4 2 6 3 12 2 2 0 8 0 5 2 1 1A B C D E H g f f . f f             (21) 

 

2.5 Fifth Restriction 

Let us consider that      : 

        
1

2

5 2 4 2 2f y f y / , y B C y D y H 


        (22) 

or 

     2

54 2 2 1B C y D y H f y        (23) 

The sampling is done on the line      of the given field D (Figure 1e). We integrate the 

equation (23) with respect to y, for y between   and  , and we get: 

 5 4 2 3 6 12 12B C D E H /        (24) 

By applying Simpson’s rule of Integration to the three points which are equally spaced in the 

interval [   ]  we get: 

        5 5 5 5 51 0 4 0 5 1 1 6 1 6 1f f . f / f       (25) 

If we then equate (24) and (25), we get the so-called 5g estimator multiplied by 2: 

     5 5 5 5 5 512 4 2 3 6 12 2 2 0 8 0 5 2 1 1A B C D E H g f f . f f             (26) 

 

2.6 Coefficient Estimates 
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The following figure illustrates the restrictions on the use of the proposed method and 

summarizes the sampling spaces (bold line) using systematic sampling. 

 

Figure 1. Restrictions on the use of the proposed method 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

By solving the following system derived from (6), (11), (16), (21) and (26): 

1

2

3

4

5

2 0 0 3 0 6

0 2 0 0 3 6

2 2 2 3 3 6

24 1 2 6 3 12

21 4 2 3 6 12

 
    
    
    
     
    
    
       

 

g

g
C

g
D

g

g









 (27) 

 

we estimate the coefficients of the bivariate function as follows: 
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2 3 52A g g g    

1 3 42B g g g    

 3 2 13 2   C g g g  

 1 2 3 52 2 2 4 3     D g g g g  

 1 2 3 42 2 2 4 3E g g g g       

(28) 

 

where  1 0 0f , ,  and the formula for the ig estimators is given by: 

ig  {
∑                  

(∑    )           
 (29) 

 

3. Experimental Approaches 

3.1 Experiment A 

Five different three-point measurements of pollutant concentration over a field have 

been recorded. The inverse values of a function measuring pollutant concentration obeying 

the five restrictions described are presented in the Table 1. 

The last column includes the ig  estimators,               derived from the 

experimental measurements. 

 

Table 1. Pollutant concentration 

Points 
g  

0 0.5 1 

18 16.75 17 102 

18 18.25 22 113 

18 17.5 23 111 

18 16.6875 18.25 103 

18 17.6875 21.75 110.5 

 

It can be easily observed that the coefficient   is equal to   . The rest coefficients 

are estimated as follows: 

2 3 52 113 111 221 3A g g g        

1 3 42 102 111 206 7B g g g        

   3 2 13 2 54 111 113 102 2 2C g g g          

   1 2 3 52 2 2 4 3 36 102 226 222 442 3 4D g g g g               

   1 2 3 42 2 2 4 3 36 204 113 222 412 3 3E g g g g               

(30) 

 

The requested function is: 
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1

2 23 7 2 4 3 18f x, y x y xy x y


       (31) 

 

We use statistical software to investigate the above function’s local extrema. The 

denominator of the function has a local minimum at point (       ), which equals to 

              . This implies that the pollutant concentration function reaches its 

maximum value at the same point, which equals to  (       )                

(accurate to four decimal places). The following figure confirms our analysis. 

 

Figure 2. Point-source pollutant 

 

 

3.2 Experiment B 

Five different three-point measurements of intensity of radiation at a height of 3 

meters over a field have been recorded. The inverse values of a function measuring the 

intensity of radiation obeying the five restrictions described are presented in Table 2. 

The last column includes the ig  estimators,               derived from the 

experimental measurements. 

 

Table 2. Intensity of radiation 

Points 
g  

0 0.5 1 

11 10 11 62 

11 10.75 12 66 

11 9 9 56 

11 9.3125 9.25 57.5 

11 9.625 9.5 59 

 

It can be easily observed that the coefficient   is equal to   . The rest coefficients 

are estimated as follows: 
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2 3 52 113 111 221 3A g g g        

1 3 42 102 111 206 7B g g g        

   3 2 13 2 33 111 113 102 2 2C g g g          

   1 2 3 52 2 2 4 3 36 102 226 222 442 3 4D g g g g               

   1 2 3 42 2 2 4 3 36 204 113 222 412 3 3E g g g g               

(32) 

 

The requested function is: 

   
1

2 23 7 2 4 3 11f x, y x y xy x y


       (33) 

 

We use statistical software to investigate the above function’s local extrema. The 

denominator of the function has a local minimum at point (           ), which equals to 

             . In other words, the pollutant concentration function, given in (33), 

reaches its maximum value at the same point, which equals to  (           )  

              (accurate to four decimal places). The following figure confirms our 

analysis. 

 

Figure 3. Point-source of radiation 

 
 

4. Conclusions 

In this paper, we have proposed a simple and easy-to-remember method to estimate 

the coefficients of a two variable second degree polynomial via sampling. We have used the 

systematic sampling to define the areas of sampling and the Simpson’s rule of Integration to 

approximate definite integrals on the domain   [   ] [   ]. The proposed method can be 

characterized as a low-budget sampling, because of the small sample size. It is advantageous 

because it can be applied to detect point-source pollutants and point-source of radiation and 

thus determine risk assessment in public health. Finally, the stability of the numerical 

methods allows us to get accurate results. 
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Abstract. This paper aims to analyse intra e inter-annual variability in air pollution 
concentrations in the Italian Province of Trento, once taking into account meteorological 
conditions. The main purpose is the proposal of an analytical procedure that, moving 
from the statistical properties of the observed time-series for each of the seven monitoring 
sites, controls for that part of air pollution that is explained by the meteorological 
variables, and then moves to analyse the unexplained part mainly due to human 
behaviour. 
Keywords: Air pollution, Principal component factor analysis, Panel data models. 
 
 
1  Introduction 
 
As it is generally acknowledged that greenhouse gases and atmospheric aerosols 
represent a major causal force of climate change and that they may interact 
physically and chemically in the atmosphere and make it much more difficult to 
forecast the future variations in climate and in global warming, we can 
understand the importance of empirical modelling the time-series data 
measuring their levels. The question is, therefore, to understand the temporal 
evolution of the gaseous and aerosol pollutants, how they interact among 
themselves and with atmospheric factors. Air pollution undoubtedly affects also 
human health, especially in large cities, and a vast specialized literature has 
primary focused on this issue (see for instance Jerrett et al.[6], and Heines et 
al.[5]). From both these perspectives, a better comprehension of the dynamics of 
air pollutants and of the impact of meteorological variables have on them, 
possibly using stochastic models that can then be used for simulation, can surely 
help in deciding future policy interventions aiming to reduce the pollution levels 
and to improve the quality of air. 
This work analyses pollution at local level by also considering meteorological 
factors such as temperature, wind and rain. In particular, our data set is made up 
of daily time series observations on the main pollutants and meteorological 
variables of seven monitoring sites within the alpine province of Trento. It is an 
Italian province located in the North-eastern part of Italy, not far from Austria. 
Mainly rural, it is a mountainous area characterised by valleys, rivers and lakes 
of different dimensions. It is also intersected by two important roads of 
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communication: the Brenner motorway, that crosses the province from North to 
South in the direction of Austria, and the Valsugana highway, that links Trento 
to the Eastern part of Italy. The largest towns are located along the Brenner 
motorway and in the Valsugana valley. Though the air quality of the province 
may be considered overall enough good, it is indeed affected by important 
sources of pollution, above all in the valleys, where much of the population 
lives1. Therefore, pollution has a direct impact on the lives of the majority of the 
inhabitants of the area. Understanding pollution behaviour may thus be the first 
step towards the adoption of appropriate policy measures to limit pollution and 
its negative consequences on health. 
The rest of the paper is organised as follows. First, we describe our data set and 
the air pollution levels for each monitoring site. Second, for each of them we 
compute the pollution factor, on which we then base our empirical analysis. The 
latter is divided into two parts: in the first, using an estimated panel data model, 
we remove the part explained by the weather variables from the pollution 
factors, while in the second part we study how the three main pollutants affect 
the unexplained part of the pollution factors. On this component, in fact, policy 
makers should focus. 
 
2  Data set description and qualitative analysis 
 
Our analysis is based on the data on air pollutants and meteorological variables 
collected and provided by the Trentino Environmental Protection Agency 
(APPA). Due to the availability of data, only two years, 2014 and 2015, and 
seven monitoring sites within the province of Trento are considered. Two sites, 
Trento PSC (Trento 1 henceforth) and Rovereto, are located in the two largest 
cities and are thus referred to as urban and residential areas. The two sub-urban 
sites of Borgo Valsugana and Riva del Garda are located in two middle-size 
towns, but the climates are quite different as the latter is mitigated by the 
influence of the Garda Lake, the largest Italian lake. Moreover, it should be 
noticed that Borgo Valsugana is not far from a highway characterized by heavy 
traffic levels. On the other hand, the two monitoring sites of Monte Gaza and 
Piana Rotaliana are both referred to as rural areas: in particular, the former is a 
mountain site located 1601 meters above the sea level, far from any air pollution 
source, whose data are used as a comparative measure for the other sites, while 
the latter is located in the countryside. Finally, the monitoring site of Trento 
VBZ (Trento 2 henceforth) is an urban area situated near a heavy traffic road in 
the commercial area of Trento, and is specifically devoted to monitor car traffic.  
The diversity of the locations of the seven monitoring sites directly reflects into 
the distributions of the three pollutants that we consider: PM10, NOx, and O3, 
whose distributions are synthetized in Fig. 1 and Table 1. The first picture refers 

                                            
1In 2014, approximately 82% of the population lived below 750 meters on the sea level. 
See: https://www.ufficiostampa.provincia.tn.it/Comunicati/CONOSCERE-IL-
TRENTINO-DISPONIBILE-LA-TERZA-EDIZIONE-DELLA-PUBBLICAZIONE-
DEL-SERVIZIO-STATISTICA 
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to PM10, the particles with a diameter between 2.5 and 10 micrometres, which 
are produced by cars engines and other combustion processes. As can be seen 
from Table 1, according to expectations, the lowest average level is observed for 
Monte Gaza, the mountain area, and the highest average level is observed for 
Trento 2, the heavy traffic area. However, an average level as high as Trento 2 is 
also observed for Borgo Valsugana. The other monitoring sites show 
intermediate comparable levels of PM10. Therefore, it is straightforward to 
derive a raw relationship between the locations and the PM10 levels: the higher 
the traffic levels, the higher the PM10 levels. 
As can also be seen in Fig. 1, the differences in the distributions are more 
pronounced for NOx (nitrogen oxides, given by the combination of NO and 
NO2), mainly originated by combustion processes. The most polluted area is 
Trento 2 and, as before, the least polluted is Monte Gaza. Low average levels of 
NOx are also registered for Piana Rotaliana, Rovereto, and Riva del Garda, while 
Trento 1 and Borgo Valsugana show slightly higher levels. 
Finally, we consider O3 (ozone), a pollutant that is originated by the action of 
daylight UV rays on the other pollutants, especially those produced during 
combustion processes. The pertaining boxplots show comparable distributions 
between the monitoring sites2, with the only exception of Monte Gaza: this site 
is characterized by somewhat higher levels of O3. This finding may appear 
surprising, but in fact the position of this site implies high solar radiation levels 
throughout the year, which are the primary responsible for the generation of the 
ozone and hence for the unusual O3 levels (for more details, see the Air Quality 
Reports, APPA[1], [2]). A similar reasoning can also explain the higher levels 
observed for Riva del Garda and Piana Rotaliana. 
An analysis3 using the inverse distance weight spatial interpolations for the three 
pollutants and depicting them in a spatial form where darker colors indicate 
relatively higher pollution levels, confirms the results emerged from the 
boxplots. Since Monte Gaza’s observations are clear outliers with respect to the 
observations of the other sites, the spatial interpolation was repeated by 
excluding it: the new spatial interpolations show that, for what concern PM10 and 
NOx, the rural and sub-urban areas are effectively less polluted than the traffic 
and urban areas (with the already recognized exception of Borgo Valsugana for 
the PM10 levels), while for the O3 level the exposure to solar radiation is far 
more relevant than the distinction between urban or rural location: the rural area 
of Piana Rotaliana and the suburban area of Riva del Garda are more polluted 
than the urban area of Trento 1. 
Finally, Fig. 2 shows the dynamics of the time series and their trend4 for each 
monitoring sites. Beyond the three air pollutants, we depicted the dynamics of 
the daily average weather variables that we will consider below: temperature 
(°C), rain (mm), solar radiation (W/m2), humidity (%), dew point (°C), wind 

                                            
2 O3 data are not available for Trento 2. 
3 The results and the graphs of the analysis are available upon request. 
4 The trend was obtained by applying the Hodrick and Prescott filter to each time series. 
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run5 (km), and atmospheric pressure (bar). With the understandable exception of 
rain, that depends on local atmosphere phenomena above all in summer, all the 
variables exhibit comparable seasonal dynamics. Moreover, as expected, O3 
shows a behaviour that follows the dynamics of the temperature and of the solar 
radiation, in contrast with the behaviour of PM10 and NOx. 
With these time series, we constructed a slightly unbalanced panel data set 
including the daily average data for each monitoring site in which the periods of 
few missing observations were filled through linear interpolation (longer periods 
of missing data were left blank). We also excluded the last five days of 
observations for 2015 since data were not available for all the monitoring sites. 
This data set represents the starting point of the following econometric analysis. 
 
3  Unobserved air pollution factors 
 
3.1  Methodology: PCFA 
 
In order to compare pollution levels across the different monitoring sites using 
panel data analysis, we need a variable that summarizes the three pollutants in an 
indicator. To this purpose it is possible to adopt a methodology called Principal 
Component Factor Analysis (PCFA). The PCFA extracts meaningful linear 
combinations by decomposing the correlation matrix of a set of observed 
variables that may jointly explain a certain phenomenon, and provides the so-
called common factors and the corresponding factor loadings. The common 
factors are thus latent variables which are described through their relationship 
with the variables of interest, while the factor loadings show the weight of each 
variable in explaining the factors. In details, given the observation on the j-th 
variable relative to the i-th unit, ���, the common factors ��� relative to the same 
i-th unit contribute to explain it through the following relationship:  
 (1) ��� = ������ + ��
�
�+. . . +������ + ��� 
where ��� is the factor loading, and ��� is a unique factor proper of the j-th 
variable. 
The appropriate number q of unobserved factors, smaller than the number of 
observed variables, depends on their observed correlations, and can be chosen 
either on the basis of the eigenvalues obtained from the decomposition of the 
correlation matrix, or on the basis of the percentage of explained variance.  
 
3.2  Pollution factors 
 
To avoid misleading results determined by “extreme” locations, two monitoring 
sites were excluded from the analysis: Monte Gaza and Trento 2, the first 
because located in a mountainous position, and the second because it is devoted 
to the study of traffic pollution and of the specific pollutant CO which is not 
recorded at the other sites. For the remaining sites, the three considered air 

                                            
5 Wind speed (km/h) has been excluded because it is strongly correlated with wind run. 
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pollutants display well determined patterns (see Section 2) and strong 
correlations coefficients. PM10 and NOX are strongly and positively correlated 
for all the sites, as NOX and O3 are strongly but negatively correlated. PM10 and 
O3 are also negatively correlated for each site, but the magnitude of the 
coefficient is lower (Table 2).  
Given the small number of observed pollutants and their correlation structure, it 
is reasonable to study pollution as a single latent variable, and thus we estimate 
one factor �� and consider it as an indicator of pollution level for each 
monitoring site as suggested by Passamani and Masotti[7]. By employing the 
PCFA discussed above, the indicator “summarises a complex situation in a 
single variable whose evolution can be compared in time and in space” 
(Passamani and Masotti[7], p. 787)6. The dynamics of the pollution factor, or 
PF, for each site is shown in Fig. 3. 
 
4  First step: panel data analysis 
 
The following two-steps analysis aims, first, to study the impact of the weather 
variables, and second, to analyse the part of these factors that remains 
“unexplained”. 
A first aspect characterising our data is seasonality, which affects both the 
pollution factors and the meteorological variables. Seasonality directly implies 
heteroskedasticity. From Fig. 2 and Fig. 3 it is evident that the winter season is 
characterised by higher volatility than the summer season. The heating systems 
and the higher usage of cars in cold days are probably the primary responsible 
for this phenomenon. 
Another aspect that should be included into the analysis is the intrinsic 
intertemporal nature of pollution: today’s levels pollutant levels directly affect 
tomorrow’s levels and are determined by yesterday’s levels. Therefore, a 
dynamic approach is essential to study the evolution of the pollution factor. 
Finally, a last aspect that affects our data set and that has already emerged above 
is undoubtedly heterogeneity. The monitoring sites are remarkably different in 
terms of location, and this is responsible for the different levels observed 
throughout the period of analysis. This fact clearly emerges if we scatterplot 
each pollution factor versus each meteorological variable, showing the different 
slopes for the partial relationships between them7. All these elements are taken 
into consideration by the adopted panel estimation technique: the Dynamic 
Common Correlated Effects (DCCE) 8. 
 
4.1  Methodology: DCCE 
 
The first step of our analysis adopts a panel time series data approach, in 

                                            
6 In fact, Passamani and Masotti[7] suggests a dynamic approach, whereas for the 
purposes of this work we adopt a static principal component factor approach. 
7 The graphs are available upon request. 
8Stata package xtdcce2, see Ditzen[4]. 
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particular the Dynamic Common Correlated Effects estimator (DCCE) proposed 
by Pesaran[8] which deals with all the aspects described in the previous section. 
This estimator is implemented in Stata 13 by the command xtdcce2 and it 
allows: 

• a dynamic approach. 
• heterogeneous slopes, thus fully considering the intrinsic heterogeneity 

behind the monitoring sites. 
• it could control for cross-section dependence, an aspect that we do not 

consider here. 
Given the dependent variable �� and the vector of explanatory variables	��, the 
stochastic model is: 
(2) �� = ������ + �′��� + ��  

�� = ��� + �� 
where �� is a vector of heterogeneous panel coefficient, � is an unobserved 
common factor and �� is a heterogeneous factor loading. Model (2) is estimated 
through: 
(3) �� = ������ + �′��� + ∑ �′�,�����

�
��� + ��  

 �� = (�̅ , �̅��, �̅) 
where the bar indicates the cross-section means and # = √%& , as suggested by 
Chudik and Pesaran[3]. The mean-group panel estimations are then computed as 
a simple mean of the heterogenous estimations: 

(4) '()* =
�

+
∑ '(�

+
���  

where '(� = (�,
- , �,

-). 
 
4.2  Estimation 
 
In order to study the general within-province relationship between air pollution 
and atmospheric variables including all the data provided by the monitoring 
sites, we make use of DCCE technique discussed in the previous section. This 
approach estimates a coefficient for each monitoring site, then it provides the 
panel mean group estimates.  
Estimation results of equation (3) are shown in Table 3. As explanatory 
variables we included the meteorological variables that are commonly assumed 
to influence air pollution (temperature (TOut), wind run (WRun), rain (R), solar 
radiation (SR), humidity (Hum) and atmospheric pressure (Press)), the square of 
temperature, wind run and rain to capture the non-linear relationship emerged 
from analysing the aforementioned scatterplots, and three seasonal dummies to 
capture the seasonal impact of winter (S1), spring (S2) and autumn (S3). We 
checked the correlations between all these weather variables to avoid problems 
of multicollinearity in the estimation. The strongest correlation is between Hum 
and Dew and is equal to 0.77, whereas the other values are lower in absolute 
value. Therefore, by excluding Dew, it is plausible to exclude the problem of 
multicollinearity. 
Aggregate mean estimates show significant values for each variable with the 
only exception of the seasonal dummies. Therefore, the level of the pollution 
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factor depends positively on the previous-day level (while the second lag was 
not significant) and, as expected, it is negatively but not linearly affected by 
wind and rain, that directly reduce air pollution, while humidity and pressure 
have both a positive effect. This sign is, however, less easy to interpret. Finally, 
the temperature and the solar radiation are also negatively linked to the pollution 
level, since higher values may represent favourable conditions to avoid using 
cars and heating systems. 
The next section aims to study the component of the pollution factor that is 
unexplained by the atmospheric variables, namely the residuals of the panel 
model in Table 3.  
 
5  Second step: analysis of the residuals 
 
Given the estimated residuals ��̂, which can be considered as that part of 
pollution due mainly to human behaviour, the question is: “How can we reduce 
pollution by reducing the pollutant levels?”. 
As can be seen in Fig. 4, the variability of the residuals differs from site to site, 
is not homoskedastic and it can be analysed in order to understand how it can be 
explained and controlled. To this purpose, for each site we regress the panel 
residuals obtained in the previous section, on three main pollutants, as follows:  
(5) �̂ = /′� + � 
obtaining the results showed in Table 4. 
As expected, the coefficients associated to the pollutants are positive and 
significant and they are much higher where the levels of the pollutants are lower, 
which means that reducing by a certain amount the single pollutant the effect on 
reducing the level of pollution is larger for the sites with lower levels of the 
same pollutant, keeping the other pollutants constant. These results could be 
used for simulating the effects on air pollution of adopting policies imposing any 
reduction in the limits of pollutant emissions.   
 
6  Conclusions 
 
This paper has been developed, first, to estimate a model able to describe the 
intertemporal relationship between air pollution and the available meteorological 
variables within the alpine province of Trento, and second, to better understand 
the unexplained part of this relationship, which represents that part of the overall 
air pollution due to human behaviour. 
The province of Trento is characterised by heterogeneous landscapes, with a 
majority of rural areas and a relevant minority of urban and traffic areas. As 
expected, the panel data analysis show that rain and the strength of wind are the 
main responsible of a (non-linear) decline in the air pollution levels, as well as 
the temperature, that probably affect pollution through human behaviours (i.e. a 
lower usage of cars and heating systems). The impact of humidity and solar 
radiation is, instead, less clear and probably reflects a seasonal effect. 
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For what concerns the component of the air pollution unexplained by the 
atmospheric variables, the empirical analysis shows the effects on improving 
ambient air quality that can be obtained of reducing the levels of the pollutants 
by policy decisions. 
 
Appendix 
 

Fig. 1. Single air pollutant distributions: boxplots with outliers. 
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Table 1. Air pollutants: means and standard deviations. 
 

 PM10 NOx O3 

 Mean SD Mean SD Mean SD 

Borgo 23.7643 12.8861 57.4694 48.7014 37.6219 25.7096 

Piana Rotaliana 18.097 9.42676 43.1551 43.7226 43.612 30.7884 

Monte Gaza 8.75994 7.212855 5.744358 2.674718 97.74003 24.5914 

Riva del Garda 19.6321 11.6479 44.2184 27.6082 45.8782 32.6563 

Rovereto 19.5082 10.1885 58.7943 54.7562 46.6496 33.2752 

Trento 1 20.4828 10.1521 71.3097 63.417 41.3936 31.9458 

Trento 2 24.1767 12.7727 119.625 96.8155 - - 

 
 
 

Fig. 2. Pollutants and meteorological variables: 
temporal dynamics and trend for each monitoring site. 

 
a) Borgo 

 
b) Piana Rotaliana 
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c) Monte Gaza

 
d) Riva del Garda 

 
e) Rovereto 
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f) Trento 1 

 
g) Trento 2 (O3 not available) 

 
 
 
 

Fig. 3. Pollution factors (PF): dynamics. 
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Table 2. Air pollutants, correlations. 
 

 PM10, 
NOX 

PM10, 
O3 

O3, NOX 

Borgo 0.6646 -0.3962 -0.6995 

Piana 0.51 -0.1579 -0.654 

Riva 0.5478 -0.2238 -0.701 

Rovereto 0.5488 -0.2246 -0.7058 

Trento 1 0.5116 -0.2309 -0.72 

 
 

Table 3. Panel estimation (robust standard errors in parentheses; 
 ***, ** and * indicate statistical significance at 1%, 5% and 10% level). 

 
Dep. Var. PF 

PF(-1) 0.4670*** 
(0.0106) 

TOut -0.0803*** 
(0.0043) 

 

Tout2 0.0018*** 
(0.0002) 

WRun -0.2510*** 
(0.0470) 

 

WRun2 0.0134*** 
(0.0048) 

 

R -0.4055*** 
(0.1281) 

 

R2 0.1564** 
(0.0620) 

 

SR -0.0012*** 
(0.0003) 

 

Hum 0.0039*** 
(0.0009) 

 

Press 0.0134*** 
(0.0009) 

 

S1 -0.0333 
(0.0552) 

 

S2 -0.0271 
(0.0223) 

 

S3 0.0453 
(0.0373) 

 

Cons. -12.7663*** 
(1.0864) 

 

N = 3620 Adj. R2 = 0.86 
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Fig. 4. Residuals from panel model. 

 
 
 
 
 
 
 

Table 4. Analysis of the residuals (robust standard errors in parentheses; 
 ***, ** and * indicate statistical significance at 1%, 5% and 10% level). 

 . 
 

 Borgo Piana 
Rotaliana 

Riva del 
Garda 

Rovereto Trento 1 

Dep. 
Var. 

Residuals Residuals Residuals Residuals Residuals 

      

PM10 
0.0091*** 
(0.0015) 

0.0122*** 
(0.0024) 

0.0162*** 
(0.0015) 

0.0160*** 
(0.0017) 

0.0150*** 
(0.0015) 

NOX 
0.0029*** 
(0.0005) 

0.0031*** 
(0.0007) 

0.0051*** 
(0.0008) 

0.0023*** 
(0.0005) 

0.0016*** 
(0.0003) 

O3 
0.0030*** 
(0.0006) 

0.0046*** 
(0.0007) 

0.0017*** 
(0.0005) 

0.0025*** 
(0.0006) 

0.0011** 
(0.0005) 

Cons. 
-0.6068*** 

(0.0418) 
-0.2535*** 

(0.0480) 
-0.7704*** 

(0.0495) 
-0.4909*** 

(0.0464) 
-0.5545*** 

(0.0396) 
N 724 724 724 724 724 

Adj. R2 0.2483 0.1869 0.4299 0.3247 0.3237 
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STOCHASTIC FORECAST MODEL OF SEVERE STORM WIND OVER THE 

TERRITORY OF NORTH EUROPE AND ENGLAND 

Elvira Perekhodtseva 

Moscow technological university (perekhod@mecom.ru) 

Abstract. The results of the development of the hydrodynamic-statistical models of the 

automated forecast of severe squalls and tornadoes are submitted in this paper. The submitted 

forecast methods are based on different recognition statistical models and use the prognostic 

production of hydrodynamic models. These methods were tested successfully in the operative 

synoptic practice and were recommended to use. The independent automated verification of 

these phenomena forecast was provided together with different hydrodynamic forecasts in the 

Hydrometeorological Center of Russia. The result of the comparative analysis and the 

examples of the hydrodynamic-statistical forecast of squalls and tornadoes over the northern 

regions of Russia and Europe are presented. The forecast examples of severe storm wind over 

England are also provided. 

Introduction 

The development of a successful method for the automated statistical well-in-advance 

forecast (from 12 hours to two days) of dangerous summer winds, including severe squalls 

and tornadoes, could allow taking proper measures against destruction of buildings, 

protecting people and mitigating losses. The prediction of these phenomena is a very difficult 

problem for the synoptic till recently. The synoptic forecast of these phenomena using the 

existing graphic and calculation methods still depends on the subjective decision of an 

operator. A meteorologist usually gives the storm warning of this dangerous phenomenon (the 

velocity of V>24 m/s) only 3 hours ahead. Nowadays in Russia there is no successful 

hydrodynamic model for the forecast of wind of such velocity, hence the main tools for the 

objective forecast development are the methods that use the statistical model for these 

phenomena recognition. 

 

The statistical model for the alternative forecast of dangerous summer wind 

The meteorological situation involved such dangerous phenomena as squalls, tornadoes, 

and wind with the velocity V=>20 m/s, is presented as the vector Х(А)=(х1(А), х2(А), 

…хn(А)) where n is the quantity of the empiric potential atmospheric parameters (predictors). 
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The values of these predictors for the dates and towns where these phenomena occurred, were 

accumulated in the set {X(A)}; this is the learning sample of the phenomena A presence. The 

learning sample of the phenomena A absence or the phenomena B presence ({X(B)}) was 

obtained for the towns where the atmosphere was instable and thunderstorms and rainfalls 

were observed, but wind velocity values were not high (V<8 m/s). The recognition model of 

the sets {X(A)} and {X(B)} was constructed with the Bayesian approach [1, 3]. 

At the beginning, it is necessary to solve the problem of the compressing the predictors 

space without information losses in order to choose the informative vector-predictor and to 

calculate the decisive rules for the recognition of the sets {X(A)} and {X(B)}. It was done 

using the transmutation algorithm of the columns and lines of the sample mean correlation 

matrix R. As a result, we get the matrix R with diagonal blocks. The method of the 

diagonalization of matrix R is described in [3]. The informative predictors, i.e. 

representatives from each of blocks, and two independent predictors have composed the 

vector-predictor of the dimension k=6 (from n=26 potential predictors) [3]. For this purpose 

we have estimated the most informative predictors using the Mahalanobis distance criterion 

Δ
2 
[1, 3]: Δ

2  
= (mi(A)-mi(B))↑2/σ

2
 . 

Here mi(A) and mi(B) are the components of M(A) and M(B), that is, of the vectors of 

the empiric expectation of A presence and A absence, respectively; σ
2
i
 
is 

 
the mean variance 

of i-th predictor.
  

Also the criterion of the entropy minimum by Vapnik-Chervonenkis Hmin 

was used for the assessment of the information value of predictors [2, 3]. As a result, the 

informative vector-predictor of the most informative and weakly dependent predictors 

composed from six atmospheric parameters after this selection [3, 4]: 

(V700,  H0,  (T-T)500 ,dT/dnea , Tea , Tdea ), where 

V700  is  the value of the mean wind velocity at the 700 hPa level, m/s; H0 is the level of the 

isotherm of 0С, hPa; (T-T)500  is the difference between the values of the stratification curve 

and the moist adiabatic at the 500 hPa level, С; dT/dnea  is the maximum difference between 

the temperatures over the front on the surface level near the forecast point, С; Tea is the 

maximum temperature on the surface level, С; Tdea is the maximum dew point temperature 

on the surface level, С. 

The independent tests of the statistical forecast of severe wind for the north-west of Russia 

including Karelia and St.-Petersburg have shown very good results. The Pierce–Obukhov 
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criterion was T=0,68. The forecast of dangerous wind, including tornado, was successful in 

Ivanovo on June 9, 1984. The tornado was very strong there. This method is objective but not 

fully automated. 

The automated hydrodynamic-statistical forecast of storm wind, squalls, and tornadoes 

based on the hemispheric model 

The successful development of hydrodynamic models for short-term forecasts and 

improvement of two-three-day forecasts of pressure, temperature, and others parameters 

allowed us to use the prognostic fields of hydrodynamic models for the calculation of the 

values of discriminant functions F1(X) ( for the wind velocity V>19 m/s) and F2(X) (for the 

wind velocity V>24 m/s) in the nodes of the grid and the values of the probability of 

dangerous winds of two classes P1(X) and P2(X), including squalls and tornadoes: 

P1(X)=100/(1+exp(-F1(X)); 

P2(X)=100/(1+exp(-F2(X)). 

As a result we get the fully automated forecast of these phenomena. The statistical 

decisive rules F1(X) and F2(X) for the automated alternative and probability forecasts were 

obtained in accordance with the conception PP of “the perfect prognosis” using the objective 

analysis data. For this purpose the new learning samples were automatically arranged that 

include the values of n=38 physically substantiated potential predictors [8]. We obtained the 

informative vectors-predictors of each class (k=8) by the same empirical-statistical selection 

method [3]. The discriminant functions F1(X) and F2(X) and the probabilities of the 

phenomena P1(X) and P2(X) [5] were calculated by using the values of the prognostic fields 

of the first short-term hydrodynamic hemispherical model of Hydrometeorological Center 

(the author is L.V. Berkovich) in the nodes of the rectangular grid of 150x150 km: 

The author proposes the empirical threshold values Pthr specified for each phenomena 

and the lead time of 12–24–36 hours in order to get the alternative forecast of these 

phenomena. The tornadoes in Moscow in 1998 and in 2001 were predicted to 24 hours ahead. 

The forecast of severe wind, dangerous squalls and tornadoes over the European part of 

Russia was tested successfully and was recommended for synoptic practice for the lead time 

of 12–36 hours [5, 8]. The independent results were also better for the Northern Europe. The 

forecast assessments of severe summer wind with the velocity V>24 m/s over the northern 

Russia were very high. So, this method was recommended as the best for synoptic practice 

(the Pierce–Obukhov criterion value T was 0,78 [6], the warning W=92%).  
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The model of the hydrodynamic-statistical forecast of severe squalls and tornadoes  

based on the regional model output data. Forecast examples. 

The values of the prognostic fields of the regional hydrodynamic model of the short-

term forecast (the author is V. M. Losev) are calculated in the nodes of the grid 75x75 km 

into the operative system of Hydrometcenter twice a day. Nowadays we use the values of 

these prognostic fields in the same discriminant functions F1(X) and F2(X) for the forecast of 

squalls, tornadoes and severe wind of two classes. Also the new values of the probabilities 

P1(X) and P2(X) are calculated in the nodes of the grid 75x75 km in percents with the same 

formulae. The new threshold probability P gives the forecast areal of severe wind on the map.  

The examples of the automated hydrodynamic-statistical forecast of severe squalls 

and tornadoes over the European part of Russia and Europe base on the regional model and 

are submitted in the paper [8]. There is an example of severe storm wind called “St. Jude 

storm” that passed over Northern Europe and England in October, 2013 (Fig. 1) [9]. The area 

of storm wind is bounded by the isoline P=65%–90%. Next day this storm wind came to St.-

Petersburg. 

   

 
Fig. 1. The forecast area (on the left) is bounded with the isoline P=65%–95% 

The storm wind velocity was observed in Germany, in France and in England too. 
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      Our new technology allows us to send forecast maps to different regions of Russia and 

Europe including England. We have many examples of the storm wind forecast for the 

Northern Europe and England. too. These forecasts are calculated in operative system of 

Hydrometeorological Center. There the maps are formed and are sent to server. All of 

meteorologists can take these maps and use then as a help in your synoptic practice. The lead 

time of forecasts is 12, 24, 36, 48h. 

      The very dangerous wind with the velocity 30m/s was observed at Moscow on 

29.05.2017.  The forecast area over Moscow (fig.2) shows us the velocity 31-33m/s. This day 

the dangerous and storm wind were observed in the areas of Smolensk, Bryansk, Tver and in 

Northern Europe. These prognostic areas are seen very well at the fig.3. (the forecast area 

with the lead time 24h and the time of the calculation is 15h of the Moscow time on 

28.05.2017) and at the fig.4. (the forecast area with the lead time 36h). 

 

 
 

Fig. 2. The forecast of dangerous wind velocity for the date of 29.05.2017. with the lead time 12h. 

The gradations 1) below 15 m/s; 2) 15-19 m/s; 3)  20-24 m/s;  4) 25-27m/s ; 5) 28-30 m/s;  

 6) 31-33 m/s; 7) over 33 m/s  
 

 

The forecast area of dangerous and storm wind came to Germany and other northern 

countries to the next day 30.05.2017 (fig.5). It’s really, the wind velocity of 25m/s was 

observed in Berlin this day. We submit also several interesting examples of storm wind 
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forecast over the territory of England: the prognostic areas to 14.05.2017: with the lead time 

12h and 48h (fig.6, 7) and also the prognostic area of storm wind to the date 6.06.2017. (fig, 

8).  

 

Fig. 3. The forecast of dangerous wind velocity for the date of 28.05.2017., the lead-time 24h. 

The gradations 1) less 15 m/s 2) 15-19 m/s 3) 20-24 m/s 4) 25-27m/s ; 5) 28-30 m/s 

 6) 31-33 m/s 7) over 33 m/s  

 

 

Fig. 4. The forecast of dangerous wind velocity for the date of 28.05.2017., the lead-time 36h.  

The gradations 1) less 15 m/s 2) 15-19 m/s 3) 20-24 m/s 4) 25-27m/s ; 5) 28-30 m/s 

 6) 31-33 m/s 7) over 33 m/s  
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Is shown at the fig.4, that the prognostic area (which was calculated on 28.05.2017 with lead 

time 36h) of the velocity V=28m/s-30m/s is located over Moscow and Moscow region. 

 
 

Fig.5. The forecast of dangerous wind velocity for the date of 30.05.2017.  

The gradations 1) less 15 m/s 2) 15-19 m/s 3) 20-24 m/s 4) 25-27m/s ; 5) 28-30 m/s 

 6) 31-33 m/s 7) over 33 m/s  

 

Very strong storm winds were observed over the territory of England during the month of May.  

The example of such forecast with the lead time 12h and 48h to the day of 14.05.2017 is shown 

at the fig.6 and fig.7 below. 

 

 
 

Fig. 6 The forecast of dangerous wind velocity for the date of 16.05.2017., the lead-time 12h.  

The gradations 1) below 15 m/s 2) 15-19 m/s 3) 20-24 m/s 4) 25-27m/s ; 5) 28-30 m/s 

 6) 31-33 m/s 7) over 33 m/s  
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The weather was very nasty in the day of the opening of conference ASMDA-2017. 

This day London city was located in the center of the cyclone. Our operative prognostic 

scheme issued the forecast of heavy rainfalls and storm winds on this day (fig. 8). Really, this 

day the quantity Q of the factice precipitation was equal Q=30mm/12h, the mean velocity of 

wind amounted V=12-15m/s, and maximal velocity was equal 20m/s.  

 

  
 

Fig. 7 The forecast of dangerous wind velocity for the date of 16.05.2017., the lead-time 48h.  

The gradations 1) below 15 m/s 2) 15-19 m/s 3) 20-24 m/s 4) 25-27m/s ; 5) 28-30 m/s 

 6) 31-33 m/s 7) over 33 m/s  
 

 

 
 

Fig. 8 The forecast of storm wind velocity for the date of 06.06.2017., the lead time 12h.  

The gradations 1) below 13 m/s 2) 13-15 m/s 3) 16-19 m/s 4) 20-24m/s ; 5) 25-27 m/s 6) 28-29 m/s  

7) over 29 m/s  
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Conclusions 

    The assessments of the new hydrodynamic-statistical method for the forecast of very 

strong squalls and tornadoes with the velocity V>24m/s over the territory of Russia were 

successful, the criterion of Pirsy-Obukhov was equal T=0,42 [10]. They have also shown the 

stability of the statistical model for the forecast of squalls, tornadoes and dangerous wind over 

the territory of Russia using the output production of successful hydrodynamic models 

(hemispheric and regional models). In future we are going to develop our stochastic model for 

the dangerous and storm wind forecast till 72 hours ahead using the output production of the 

global model of Hydrometeorological Center of Russia (the author is M. A. Tolstykh). 
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Abstract. In this paper we implement an integrated autoregressive Dynamic Evolving 
Neuro-Fuzzy Inference System in the context of mortality projections and compare the 

results with the classical Lee Carter model. DENFIS is an adaptive intelligent system 

suitable for dynamic time series prediction, where the learning process is driven by an 

Evolving Cluster Method. The typical fuzzy rules of the neuro- fuzzy systems are 
updated during the learning process and adjusted according to the features of the data. 

This makes possible to capture the historical changes in  the mortality evolution.  
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1  Introduction 
 

    In the last century the improvements in standards of living, the progress in 

medicine and the economic enhancements have driven human population to live 

better and longer. From an actuarial point of view, the decreasing trends in 

global mortality represent risk for insurers, which price their products on the 

basis of the historical mortality tables, and for governments, which have to plan 

health and pension policies. In this context, the so called longevity risk derives 

from improvements in mortality trend with systematic deviations of the number 

of the deaths from its expected values. In order to capture this trend and produce 

accurate mortality forecasts, stochastic models have been introduced. The most 

used is the Lee-Carter (LC) model [6], whose main statistical tools are the least 

square estimation through the Singular Value Decomposition of the matrix of 

the log age specific mortality rate and the Box and Jenkins modelling and 

forecasting for time series. The LC is fitted to historic data and used to forecast 

long term mortality. However, strong structural changes have occurred in 

mortality patterns and several extensions have been proposed to overcome the 

limits of the model due to extrapolation based on the past data. Recently, Neural 

network (NN) and fuzzy inference system (FIS) have been introduced in the 

context of mortality data by Atsalaki et. al [1]. They implement an Adaptive 

Neuro-Fuzzy Inference System (ANFIS) model based on a first order Takagi 

Sugeno (TS) type FIS [8]. They predict the yearly mortality in a one step ahead 
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prediction scheme and use the method of trial and error to select the type of 

membership function that describe better the model. The least-squares and the 

backpropagation gradient descent methods are used for training the parameters 

of the FIS. They show that the ANFIS produces better results than the AR and 

ARIMA models for mortality projections. D’Amato et al. [2] produce a 

comparative analysis between classical stochastic models and ANFIS 

implementing them on the Italian mortality dataset. Piscopo [7] proposes an 

Integrated Dynamic Evolving Neuro-Fuzzy Inference System (DENFIS) for 

longevity predictions. DENFIS is introduced by Kasabov et al [5] for adaptive 

learning of dynamic time series predictions. It is an adaptive intelligent system 

where the learning process is updated thanks to a preliminary clusterization of 

the training data. The Evolving Clustering Method (ECM) is used to subdivide 

the input set and determine the position of each data in the input set. [5] show 

that DENFIS effectively describes complex data and outperforms some existing 

methods. In this paper we use an integrated AR-DENFIS model to produce 

mortality forecasts with an application to the Italian population and compare the 

results with the classical LC . The paper is organized as follows: in Section 2 we 

present the dynamic evolving neuro fuzzy procedure; in Section 3 we briefly 

describe the LC; in Section 4 we show a comparative application to Italian 

mortality dataset; final remarks are offered in Section 5. 

 

2  The Dynamic Evolving Neuro Fuzzy System 
 

The Dynamic Evolving Neuro Fuzzy System is an adaptive learning fuzzy 

system for dynamic time series prediction. It differs from the ANFIS because 

the fuzzy rules and parameters are dynamically updated as new informations 

come in the system; both use a TS architecture to implement learning and 

adaptation. Jang [4] introduce the ANFIS: the procedure learn information from 

the data and Fuzzy Logic computes the membership function parameters that 

best allow the associated fuzzy inference system to track the given input/output 

data. A first order TS architecture is described in Figure 1. 

 
Fig1: Takagi- Sugeno Architecture 
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Let us assume that the FIS has two input x and y and one output z. A first order 

TS fuzzy model has the following rules: 

Rule 1: if x is A1 and y is B1 then f1=p1x+q1y+r1 

Rule 2: if x is A2 and y is B2 then f2=p2x+q2y+r2 

The procedure follows the steps: 

Let Oi,l be the output of the node i in the layer l 

 

1. Layer 1: Every node in this layer is an adaptive one with a node 

function 

                              (1)  

where the typical membership functions depend on the premise parameters 

ai,bi,ci,. 

2. Layer 2: The output of each node is the product of all the incoming 

signals: 

                (3) 

3. Layer 3: the outputs of this layer are the normalization of the incoming 

signals: 

                      (4) 

4. Layer 4: each node in this layer is an adaptive node with a node 

function 

                    (5) 

pi,qi,ri, are the consequent parameters. 

5. Layer 5: the i
th 

output of this layer is computed as the summation of the 

all incoming signals  

In the hybrid learning algorithm the consequent parameters are identified by the 

least square estimation while the premise parameters are updated by gradient 

descent. 

The DENFIS uses TS model where the fuzzy rules are created dynamically and 

the learning process is driven by the ECM procedure. The ECM is introduced to 

create a partition of the input space. Once a threshold value Dthr is set, a first 

cluster of inputs from the training data is extracted and its radius is set equal to 

zero. Another sample is extracted: if the distance between its centre and that of 

the existing cluster is less than the value of the parameter Dthr then the vector 

extracted is incorporated in the first cluster and the centre is updated and the 

radius increased; otherwise another cluster is created. A cluster will not be 
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modified anymore when its radius becomes equal to Dthr. We refer to [5] for a 

detailed description of the ECM algorithm. 

Once the clusters are created, the fuzzy rules of DENFIS are generated and 

updated within the partitioned input space using a TS model. The steps of the 

DENFIS are the following: 

 

1. Define the training data set 

2. Apply the ECM to the training data set 

3. For each cluster create the fuzzy rule through the triangular 

membership function 

          (6) 

               where x is the input vector, b is the cluster centre, a=b-d×Dthr, c=    

               b+d×Dthr, d is a parameter of the width of the triangular function. 

 

4. The consequent parameters of the TS procedure are calculated through 

a weighted least square estimation. In particular, the weighs are 

represented by 1-dj where dj is the distance between the j-th sample and 

the corresponding cluster centre. 

5. The fuzzy rules and the parameters are updated when a new cluster is 

created or the existing clusters are modified. When the ECM stops, the 

output of the system is generated according to the TS procedure. 

3. The Lee Carter Model 

In order to model the mortality separately for each i  population without 

considering dependence between groups, the widely used Lee Carter Model 

(LC) describes the mortality rates at age x  and time t  as follows: 

)exp( ,,,,, ixtitixixixt ukm     (7)    

 

where 
ixtm ,
 is the sum of an age specific parameter independent of time 

ix, and 

a component given by the product of a time-varying parameter 
itk ,
, reflecting 

the general level of mortality and the parameter 
ix, , representing how rapidly 

or slowly mortality at each age varies when the general level of mortality 

changes. The model is fitted to historical data through the Singular Value 

Decomposition of the matrix of the observed mortality rates. The estimated time 

varying parameter is modelled as a stochastic process; standard Box and Jenkins 
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methodology are used to identify an appropriate ARIMA model according 

which 
itk ,
 are projected. 

 

4. An Application to Mortality Dataset 

In this work we apply AR-DENFIS to mortality forecasts and compare the 

results with the LC.  

In order to define the number of inputs of the DENFIS in the mortality dataset, 

we firstly apply an AR scheme; then we compare the results of mortality 

forecasts obtained by the LC and AR-DENFIS. The data used are taken from the 

Human Mortality Database [3]. We work on the mortality rates mt for the Italian 

males aged 50, collected from t=1940 up to t=2012. The data, considered by 

single calendar year, are split into training dataset from 1940 up to 1993 and test 

dataset from 1994 up to 2012. The AR is fitted to the whole time serie and the 

order equal to 2 is chosen minimizing the Akaike Information Criterion; 

consequently, in our DENFIS we introduce two input variable x1 and x2 

(mortality one and two years before) and one output y (mortality one step 

ahead).  

Firstly, we implement the DENFIS on the training dataset, setting the value of 

Dthr equal to 0.1, the maximum number of iteration equal to 10, the parameter d 

equal to 2, the step size of the gradient descent equal to 0.01. Once the DENFIS 

is created, the mortality rate is projected on  the testing period and the results are 

compared with the realized mortality.  

In the second step of our application, we implement the LC. We fit the model on 

the male population aged between 0 and 100, considering years between 1940 

and 1993; the parameter kt is derived and shown in Figure 2; a random walk 

model is fitted on the serie of kt and is projected from 1994 up 2012 through a 

Monte Carlo simulation with n=1000 paths. Finally the value of projected 

mortality rates for male aged 50 are derived using eq. (7). 

The MSE of the LC and DENFIS are compared. The results are shown in Tables 

1 and 2.   
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Fig2: The fitted parameter kt of the LC 
 

 

T Realized DENFIS LC 

1994 0.00461 0.004458675 0.005083814 

1995 0.00413 0.004593811 0.005004209 

1996 0.00409 0.004354364 0.004934666 

1997 0.00388 0.004143083 0.004868312 

1998 0.00390 0.004003856 0.004802357 

1999 0.00371 0.003933489 0.004728343 

2000 0.00359 0.003829500 0.004659374 

2001 0.00359 0.003684567 0.004591524 

2002 0.00316 0.003637632 0.004525431 

2003 0.00334 0.003384584 0.004462271 

2004 0.00312 0.002780000 0.004403274 

2005 0.00305 0.002780000 0.004347287 
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2006 0.00297 0.002780000 0.004286747 

2007 0.00304 0.002780000 0.004222623 

2008 0.00294 0.002780000 0.004164231 

2009 0.00292 0.002780000 0.004100000 

2010 0.00278 0.002780000 0.004049956 

2011 0.00288 0.002780000 0.003990748 

2012 0.00286 0.002780000 0.003937622 
 

TABLE 1: THE MORTALITY RATES REALIZED VS PROJECTED THROUGH LC 

AND DENFIS 

 
 

MSE 

LC DENFIS 

1.219046e-06 5.726724e-08 

TABLE 2: RMSE IN THE LC AND DENFIS 

 

 

5. Final Remarks 

In this paper we have applied an integrated AR-DENFIS procedure to forecasts 

mortality and have compared the results with the standard LC. The backtesting 

procedure highlights the improvements in mortality forecasts moving from LC 

to DENFIS: the mean square error decreases and the projected mortality trend 

appears more similar to the realized trend. In particular, the DENFIS catches the 

improvements in mortality realized in the last years better than the LC. This 

feature makes it attractive to handle with the longevity risk.  
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Introduction 

The infant mortality rate has been regarded as a highly sensitive (proxy) measure of population 

health. This reflects the apparent association between the causes of infant mortality and other factors 

that are likely to influence the health status of whole populations such as their economic 

development, general living conditions, social wellbeing, rates of illness, and the quality of the 

environment (Whitehouse, 1982). There were 4.6 million deaths (74 percent of all under-five deaths) 

occurred within the first year of life (WHO, 2011). Globally, the infant mortality rate has decreased 

from an estimated rate of 63 deaths per 1000 live births in 1990 to 34 deaths per 1000 live births in 

2013 (Unicef,2014) but still India is experiencing high IMR than global average. 

As we are approaching towards the end of the year 2015, the year of deadlines to achieve the 

Millennium Development Goals- 4th target to reduce Under Five Mortality (U5MR) by two-third 

from 1990 levels. The year has come now, but still we are lagging far behind the MDG goals (UN 

Millennium Project, 2006).  

 

India’s Under Five Mortality (U5MR) declined from 125 per 1,000 live births in 1990 to 74.6 per 

1,000 live births in 2005-06. According to the latest figure of World Bank, the U5MR and IMR for 

India in 2013, is 53 and 42 per 1,000 live births respectively (World Bank, 2015).  

This means India would still fall short of the target of 42 per 1,000 live births for U5MR and of 28 

per 1,000 live births for IMR. In view of these statistics, child survival in India needs sharper focus. 

This includes better managing neonatal and childhood illnesses, improving child survival, 

particularly among vulnerable communities and we need a different approach to tackle the IMR & 

U5MR. Survival risk remains a key challenge for the disadvantaged who have little access to 

reproductive and child health services. Major states in the heartland of India are likely to fall 

significantly short of these targets, by more than 20 points.  

In the backdrop of high mortality situation prevailing in the developing nations across the world 

including India, the situation of high mortality is not only an issue of concern in itself but it also 

have a strong linkages with the intra-family clustering of deaths in a particular region. In other 

words, there may be a situation when there is a high mortality in the region but deaths are not 

randomly distributed in the entire exposed families of the area rather there are certain High- risk 

families which only experiences deaths frequently and other families in the nearby in spite of 

sharing the similar socio-cultural environment do not experience frequent child loss. This situation is 

known widely among researcher as death clustering. This phenomena was first highlighted in 1990 

by Monica Dasgupta in her paper entitled "Death clustering, mothers' education and the 

determinants of child mortality in rural Punjab, India.”. Since then it is on the research agenda while 
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studying infant mortality and also a new dimension of familial component got added and entire 

research community has seen this phenomena as another important approach for studying infant and 

child mortality. 

Accordingly, the present research was undertaken to investigate the clustering of infant deaths by 

family in central and eastern states of India. We have considered tribal population for our study. 

These tribes are varied in terms of their socio-economic and political development. The term 

"Scheduled Tribes" refers to specific indigenous peoples whose status is acknowledged by the 

Constitution of India. The tribal population in India, according to the 2011 census, was 87 million 

and it constitutes around 8.2 percent of the total Indian population. Around 80 percent of them found 

in central India and a large part of the rest in the north-eastern states. The maximum share of tribal 

population is contributed by Madhya Pradesh (14.7 percent), followed by Odisha (9.2 percent), 

Jharkhand (8.3 percent) and Chhattisgarh (7.5 percent) to the India’s population (in central and 

eastern states). The majority of tribal population living in these states are the Particularly Vulnerable 

Tribal Groups (PVTGs) (Ministry of Tribal Affairs, 2015). They are socially as well as 

economically very backward in the sense that they have little access to the resources for their 

development, low rate of literacy, relatively small population size, dwindling in numbers and some 

of the groups are at the verge of extinction. They are distributed in various ecological zones beyond 

the state boundaries with immense variation in subsistence pattern, technological development, ways 

of living and contact with outside world as well as with different worldviews in respect with 

neighbourhood- so called mainstream population. Lots of problems are faced by them and in most of 

the areas they are unable to cope the situations. 

Among various social groups, it has been found that on an average, an Indian child has 25 percent 

lower likelihood of dying under age five as compared to an Adivasi or Tribal child (Das, Kapoor, & 

Nikitin, 2010). As per NFHS-3,(2005-06), estimates, the under-five mortality rate and the child 

Mortality rate are much higher for STs than any other social group/ castes at all childhood ages (95.7 

and 35.8 respectively). However, it is found that STs have a lower infant mortality rate (62.1) than 

SCs (66.4) but higher than OBCs (56.6). Further, According to Census 2001, the IMR and the 

U5MR for STs is highest in Madhya Pradesh (110 and 169 respectively per 1,000 live births). 

Materials and Methods 

In order to examine the family level infant death clustering bivariate analysis was carried out and for 

capturing the linkages between survival prospects of siblings and mother specific unobserved 

heterogeneity, the dynamic panel data model or mixed effect model with random intercept was 

applied. This model has the advantage of simultaneously capturing unobserved heterogeneity and 

the causal positive or negative scarring mechanisms at the same time in the model. The model also 

accounted for the endogeneity factor which arose due to the inclusion of previous sibling-survival 

status in the model, thus avoiding the potential bias in previous studies. 

The potential problem which has been found in the empirical specification of the earlier models 

include the problem of left truncation & endogeneity, measurement error and time 

inconsistency(Bolstad & Manda, 2001; Sian L Curtis et al., 1993; Guo, 1993; Sastry, 1997). It 

would be very important to understand these unaddressed problems of the earlier models. First, Left 

truncation problem is the problem associated with retrospective data. It means an age cut-off is used 

to select the interviewees. The interviewees may be a representative sample at survey date, but they 

will not be so for earlier years (Rindfuss, Palmore, & Bumpass, 1982).This non-representativeness 

of the sample over the years along with the recall bias, a common practice in previous research has 

been to discard information on children who were born before an arbitrarily selected date, such as 10 

or 15 years before the date of the survey (Bhargava, 2003; Bolstad & Manda, 2001; Sian L Curtis et 

al., 1993; Guo, 1993; Madise & Diamond, 1995; Sastry, 1997). This left truncation of the data by 

calendar time occurs at the different points in the birth history, creating additional complications. 

812



             

 
 

Many studies have even discarded the first-born child in every family. This will result in a severe 

loss of information. Moreover, left truncation of the data, whether by calendar time or by birth order 

of child, will lead to the problem that the start of the sample does not coincide with the start of the 

stochastic process under study. The next problem is of measurement error as can be seen in the 

previous models. Infant death is on both side of the equation because the index child mortality risk is 

a function of the preceding child's survival status. Positively correlated measurement error in these 

variables will tend to create an upward bias in the scarring coefficient. This potential problem is 

addressed as follows in the present model. The dependent variable and the survival status of the 

preceding child were both coded as binary variables i.e. 1 if the child dies before the age of 12 

months and 0 otherwise. The other problem related was with time inconsistency which has been 

sorted out in the present model. It is usually seen that data in retrospective surveys with regard to 

child, year of birth and death is available for the larger number of years. In our case, information 

was available for more than 35 years before the survey date. These surveys typically gather 

information on variables such as household assets, toilet facilities, electricity or access to piped 

water at the date of the survey. The time inconsistency problem is that, in such cases, data that 

pertain to the survey date are less informative. It means the information of certain predictors which 

are though important one are not available for all the children under study. In the present analysis, 

where the entire birth history of each tribal mother was used, the problem was even more severe. 

We, therefore, did not include any currently dated variables as explanatory variables in the model. 

If we do not consider these potential problems, bias will be created because previous child's survival 

status and its correlation with survival status of index child will confound the causal interpretation of 

previous death in the family. In order to avoid these biases, modelling of the initial condition 

(mortality risk for first-born children) jointly with the dynamic mortality process for the second and 

higher-order births need to be applied (Arulampalam & Bhalotra, 2006, 2008; Heckman, 1987; 

Manski & McFadden, 1981; Oettinger, 2000; Wooldridge, 2010) .Present study used the dynamic 

panel data model along with the initial condition which will be discussed in the statistical modelling 

part , avoided such type of problems. Model with such initial condition will estimate the scarring 

effect without bias and shows the true picture of the impact of survival status of previous death of 

sibling in a tribal household on the survival status of the index child. 

Data source 

The data used in the study is from National Family health Survey-3 which was conducted in 2005-

06. It interviewed 124385 ever married women aged 15-49 at the time of the survey. It has a 

complete retrospective history of births together with a record of child deaths for each mother, for a 

period spanning more than 35 years (1968-2006). Thus, it would give sufficient number of cases for 

analysis as well as we would be able to construct (unbalanced) panel data for mothers. Further full 

retrospective birth history has been used for all the statistical analysis in the study. 

The empirical model 

The dependent variable i.e. infant death and the survival status of the preceding child (i.e. lagged 

variable) were both coded as binary variables -one if a child died before the age of 12 months and 

zero otherwise. By taking child specific and mother specific covariates along with preceding child 

(lagged variable), the mixed effect model was applied. Children who were younger than 12 months 

at the time of the survey were dropped from the sample because they had not 12 months of exposure 

to mortality risk. When the index child was not singleton but instead twins they were also dropped 

from the model so that siblings should be identified properly. 

Choice of Independent Variables: 
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The predictors (or factors) like, sex of the child, birth order, place of residence, mother’s education, 

religion, caste, exposure to mass media, availability of toilet facility, type of fuel used for cooking 

and standard of living, mother receiving tetanus immunization during pregnancy, preceding birth 

interval were considered as the main determinants of infant and child mortality in all the Indian 

states (Pandey & Tiwary, 1993). Apart from the above factors, the tribal children, in fact, face 

certain adverse realities like insufficient food intake, frequent infections, and lack of access to health 

services. They also have the lack of awareness about environmental sanitation and personal hygienic 

practices, proper child rearing, breastfeeding and weaning practices  (Pandey & Tiwary, 1993; 

Reddy, 2008). Women’s autonomy, social class, mother’s education and quality care received by the 

children has been cited as some of the reasons for clustering(Madise & Diamond, 1995).Causal 

factors that determine equality levels in the distribution of mortality risks for children between 

families or between mothers may conveniently be divided into two factors: Bio-demographic 

differentials and differentials in other socioeconomic characteristics of the families (and/or the 

mother) (Zaba & David, 1996). Bio-demographic factors include mother’s age, fertility levels, and 

birth-spacing patterns, as well as inherited genetic disorders and the mother’s medical condition and 

disease profile. Socioeconomic differentials includes characteristics of the families like income, 

occupation, and social class, and level of education, as well as factors relating to the wider 

environment of the child, such as the community, the neighbourhood, and the family’s ecological 

and disease environment. The socioeconomic category also contains the much-discussed “maternal 

competence” factor (breastfeeding behaviour and behaviours or attitudes that affect the child health). 

Other authors have likewise stressed the connections among clustered mortality, family size, and 

fertility patterns(Ronsmans, 1995). Arulampalam have argued that deaths may cluster in the families 

not only because of unobserved heterogeneity—because siblings share certain traits—but also as a 

result of a causal process driven by the scarring effects. Heuristically, taking the idea that the death 

of one child ‘scars’ the family, making the next child in that family more vulnerable (Arulampalam 

& Bhalotra, 2006).The older studies often attribute death clustering to socio-demographic 

covariates: either a causal scarring effect (the previous sibling’s survival status being included as a 

covariate) or unobserved heterogeneity (with family or community-specific effects) not both of them 

(Reddy, 2008).Some studies included both, but without accounting for the (bias induced by) 

potential correlation between the unobserved heterogeneity term and the previous child’s survival-

status dummy(Bolstad & Manda, 2001; Sian L Curtis et al., 1993; Ronsmans, 1995; Sastry, 

1997).The present study is using econometric dynamic panel data model which at the same time 

capture both the unobserved heterogeneity and the causal positive or negative scarring mechanisms. 

This model has also been used in few of the earlier studies (also referred to as ‘state dependence’ if 

panel data are used   (Arulampalam & Bhalotra, 2006, 2008; J. J. Heckman, 1987; Manski & 

McFadden, 1981; Wooldridge, 2010) . The model used in the study accounts for the endogeneity of 

previous sibling-survival status, thus avoiding the potential bias in previous studies. 

Child specific factors in the model: Birth order, Sex of the child, Survival status of the previous 

sibling 

Mother specific factors in the model: Her educational attainment and her partner’s educational 

attainment, Year of birth of mother. 

Birth order has been categorized into 5 categories viz. ‘1-2’, 3, 4, 5 and 6+ birth order. The 

educational attainment of respondent’s partner has been categorized into two categories viz. literate 

and illiterate. Respondent year of birth has been categorized into 3 categories those women who 

were born between 1956-1969, 1970-79 and after 1980. 

Information on household assets, immunization, prenatal care, access to piped water, and relevant 

community-level variables were not used because they are time inconsistent (Rosenzweig & 

Wolpin, 1986).The same holds for breastfeeding. Covariates that have often been used in previous 

research which are time inconsistent (or endogenous) were avoided. The only potential endogenous 
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variable in the model is Yij-1, addressing this potential problem is an important part of the statistical 

approach that is taken here. 

The purpose of the mother-level random effect, which was included in the model, was to control for 

the time-invariant component of these omitted variables, for example, for the fact that some mothers 

are more prone to breastfeed than others. Mother’s age at birth and her cohort (year of birth) tends to 

capture trends in these omitted variables. 

Statistical Model: 

The dynamic panel data model applied was: 

 
* *

1ij ij ij i ijY X Y u     
 …………….. (1) 

Let there be ni children of mother i. For child j (j=1,2…,ni) of mother i (i=1,2,…,N),the 

unobservable propensity to experience an infant death, Yij * is specified in equation (1).Where X is a 

vector of strictly exogeneous observable child-specific and mother-specific characteristics and β is 

the vector of coefficients associated with X . The dynamic panel data model of equation (1) has the 

panel consisting of a naturally time ordered sequence of siblings within mothers. A child is observed 

to die when his or her propensity for death crosses a threshold; in this case Yij 
* 
> 0 .The model has a 

random intercept   , to account for time-invariant mother specific unobserved characteristics. This 

picks up any correlation of death risks among siblings arising,for example, from shared genetic 

characteristics or from innate ability of their mother. 

The model also includes the observed survival status of the previous siblings, Yij-1, the coefficient on 

which picks up scarring. The null of no scarring implies 0 .The estimated parameter γ should be 

interpreted as the ‘average’ effect of scarring over the time period considered. In models of this sort, 

the previous sibling's survival status, Yij-1 is necessarily correlated with unobserved heterogeneity,  . 

In order to identify a causal effect, we need to take account of this correlation in the estimation. This 

is referred to as the 'initial conditions' problem [22-23]. We are thus able to model the initial 

condition of the process as a natural extension of the model given in (1). We specify the equation for 

the first-born child of each mother as 

Y*i1 = Zi ' λ+ θ αi + ui1                            ......... (2) i =1... N and j = 1 

has a probability mass of 0.5 at zero and 0.5. 

Where, Zi is a vector of strictly exogenous covariates. In general, equation (2) allows the vector of 

covariates Z to differ from X in (1). However, we set the two vectors of covariates to be the same 

given that we observe the process from the start. Equations (1) and (2) together specify a complete 

model for the infant survival process. In this way, the endogeneity of the 'lagged dependent variable', 

that is, the previous child's survival status is taken into account. We assume that uij is independently 

distributed as a logistic distribution, and that the mother specific unobservable,   , are independent 

and identically distributed as normal. Marginalizing the likelihood function with respect to   , gives 

for mother i. Previous analyses of dynamic models with unobserved heterogeneity have shown the 

potential sensitivity of the estimates to the assumption made about the distributional form for 

unobserved heterogeneity,     (J. Heckman & Singer, 1984). A weakness of the normality 

assumption is that it may not be flexible enough to account for the fact that some families never 

experience any child deaths and that, in some families, all children die (the mover-stayer problem). 

Our sample does not contain any families in which all children die in infancy. However, there are 

many families that experience no infant deaths, and this is accommodated by allowing for a single 

(empirically determined) mass at minus infinity: a very large negative value for    gives a very 
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small value for Yij
*
, and hence a very small probability of observing death of the index child 

(Narendranathan & Elias, 1993). A test of H0 :  
  0 is a test that there are no unobservable 

characteristics of the mother in the model. 

This can be tested by using a likelihood ratio test (or a standard normal test) but the test statistic will 

not have a standard chi-square (or a standard normal) distribution since the parameter under the null 

hypothesis is on the boundary of the parameter space. The standard likelihood ratio (normal) test 

statistic 0.5  2
 (1) ( 0.5N(0, 1)) for positive values. 

In addition to mother-specific unobserved heterogeneity, community level random effects were 

included in the model to account for the sampling design, which involved clustering at the 

community level. Failure to allow for community level unobserved heterogeneity in the likelihood 

maximization would provide consistent parameter estimators but inconsistent standard errors 

(Deaton, 1997). Although the model is multilevel, we have chosen to treat the community level 

effect as a nuisance parameter. This is because we cannot interpret a time invariant community level 

effect in any meaningful manner. To the extent that families migrate or the infrastructure of different 

communities develops at different rates, the assumption of a time invariant community effect is 

restrictive: we expect that children of the same mother, who are born at different dates, may 

experience different community level effects. In any case, in this paper, the focus is not on 

estimation of the variance that is associated with mothers versus communities but, rather, on robust 

estimation of the scarring effect, which is captured in the parameter γ. 

Result 

Sample characteristics of the study population 

The sample characteristics of the tribal population in selected states of central and eastern India is 

shown in table no. 1. There are 12,534 families of which 20 percent belongs to STs. The distribution 

of samples shows that, over one-third of the tribal families’ lives in Madhya Pradesh and nearly 20 

percent are in Chhattisgarh. The children ever born to them is 9,069 of which 1,632 children were 

died at different ages in a period spanning more than 35 years from 1970 to 2006. Among these 

deaths nearly two-third children were died in their infancies. About experiencing an infant death by 

a family, there are about 70 percent families in the sample those who never had an infant death, but 

there are about 712 families that has experienced at least one infant death in their family. Further, 

the clustering of infant death in the present study is viewed among those families where two or more 

infant deaths had happened. Accordingly, we have 218 families for cluster analysis that has 

experienced at least two or more infant deaths. Out of total infant deaths nearly 55 percent are males 

and 45 percent are females. Preceding birth interval among these deaths represents, 60 percent of 

babies are born with less than 24 months interval. The effect of scarring is viewed for both the 

categories of preceding birth intervals, which are; firstly among those families which experienced 

two infant deaths and secondly among those families which experienced exactly one infant death 

assuming that this died infant was not the first child. The religious composition portrays, the 

majority of families belongs to Hindus (90 percent), followed by others and Christians. Further, 

parental educational attainment is also extremely poor among tribal population. Nearly 80 percent of 

mothers and 55 percent of fathers have no formal schooling and are illiterate. Merely 10 percent of 

mothers and 30 percent of fathers are secondary and above educated. 

Clustering of infant deaths among families across different caste groups can be seen in table no. 2. 

Although, it is clearly evident from the table that majority of infant deaths comes from the OBC 

families i.e., 1446 infant deaths but percentage contribution of infant death per family is highest 

among tribal families. It has been recorded over 40 percent among STs, followed by SCs (35 

percent), OBCs (30 percent) and is noted lowest among Other caste group. Further, it has been 

observed that over half of the infant death in SCs and STs were concentrated among those families, 
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which have experienced two or more infant deaths in their family, it is only 7 percent and 9 percent 

respectively. Therefore, maximum clustering is existed for tribal families and is least among Others. 

Overall the clustering of infant death in this region is 47 percent from just 6 percent of the families. 

Clustering of infant deaths across different caste groups in central and eastern India  

It is apparent from the table no. 3. that there is substantial amount of clustering of infant deaths by 

families across different caste as well. Nearly 95 percent of children belongs to families that 

contribute two or more children to the sample. Families with five or more children account for 15 

percent of the families, but contribute nearly 40 percent of the total number of children in the 

sample. The mean number of children per family is 3.2. Further, about 10 percent of infant deaths 

were observed in the sample from 40,517 total birth. The magnitude of the family effect in the 

model is determined primarily by the number of deaths per family, since children in family in which 

there are a large number of deaths face higher mortality risks. Nearly 50 percent of the deaths in the 

sample comes from the 6 percent of families with two or more deaths. It is noteworthy to mention 

that, merely 1.6 percent of the families in the sample contribute three or more deaths; together these 

families account for almost 20 percent of the total number of deaths. Clustering of infant deaths 

within tribal families is presented in table no. 4. The sample have total 1,024 infant deaths among 

2,494 tribal families. More than 95 percent of the children belong to families that contribute two or 

more children to the sample. Families with five or more children account for 17 percent of the 

families, but contribute over 50 percent of the total number of children in the sample. The mean 

number of children per tribal family is 3.6. It is clearly evident table that over half of the deaths in 

the sample come from the 9 percent of the families with two or more deaths. It’s worth mentioning 

that, only 2.5 percent of the families in the sample contributes three or more deaths; together these 

families account for approximately one-fourth of the total infant deaths. Largely, we can conclude 

that the tribal women have high parity, as half of the tribal families have three or more children. It 

makes mothers and their child at a greater risk of death. 

The probability of infant death using raw data is shown in column 1 of table 5. The raw data 

probabilities illustrates, the IMR is fairly high among tribal families. It is highest in Madhya Pradesh 

(124) followed by Chhattisgarh, Odisha (111) and is recorded lowest in Jharkhand (103). The high 

mortality in all four states indicate vulnerability of frequent infant deaths. There is not much 

differences in socio-economic and demographic indicators among families from different states. In 

column no. 2nd & 3rd, we have raw data probabilities for infant deaths based on survival status of 

the previous sibling to that of index child. Further, the difference between the two is calculated in 

column no. 4. It indicates the probability of extent of death clustering within a family. In view of 

that, we find the maximum probabilities of infant deaths clustering is existed in Chhattisgarh with 

0.213. Although it is nearly two and half times lower in Jharkhand as compared to Chhattisgarh. It is 

interesting to note that the probability of death for index child is highest among the families of 

Chhattisgarh followed by Madhya Pradesh, when there is a prior infant death in the family, but on 

contrary the probabilities of death is observed highest among the families of Madhya Pradesh 

instead of Chhattisgarh which have prior survived infant in the family. The probability of extent of 

death clustering is maximum in Chhattisgarh and minimum in Jharkhand, shown in column 4. 

Column no. 5th shows an alternate representation of data in terms of relative odds. The relative odds 

ratio of infant death based on previous sibling’s death varies from 2.33 to 5.24. Here, the relative 

risk shows that the effect of previous infant death in a family on the risk of death of the index child. 

The relative odds ratio in Chhattisgarh is 5.24 which means that a newborn in a tribal family will 

have five times more likely to risk of death, if one of his earlier sibling died as an infant as 

compared to those families where none of the earlier siblings had died as an infant. The relative odds 
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results based on the model is also quite close to what we have tried to capture from raw data and it is 

highly statistically significant (p<0.01) for all four states. 

Overall, the data demonstrates high degree of death clustering in tribes from Central and Eastern 

India. These are the observed tendencies in the data. However, without any further analysis, it would 

be impossible to draw inferences about whether the reflected scarring was actually contributed in 

intra- family infant death concentration or it merely reflected the risks that are common to siblings 

on account of shared family characteristics (heterogeneity). Estimation of the statistical model 

allowed us to disentangle clustering effects into correlated risks amongst sibling and, conditional 

upon this, a causal effect of the death of one sibling on the risk of death of next sibling. 

Model based clustering analysis: Scarring 

Column 1 of Table 6 records the probability of extent of death clustering persistence in the raw data 

that was first displayed in Table 5. Estimates of scarring from the model that ignored unobserved 

heterogeneity are in Panel 1 and these were compared with estimates from the preferred model that 

allowed for it in Panel 2 of Table 6. The marginal effect associated with the estimated γ, the 

coefficient on the previous child’s survival status, is computed as the difference between the sample 

averages of the probability of death predicted by estimated model when Yij-1=0 and when Yij-

1=1.These were approximately equivalent to the first partial derivative of the conditional probability 

of infant death Yij=1 with respect to Yij-1. The scarring effect observed from the above explained 

model, is prominent among tribal families in all four states, after controlling exogenous factors at 

individual and family level for all unobserved differences between families. Further result shows 

that the death in infancy of a previous sibling in the family raises the probability of death for the 

index child during his infancy in the every state. 

It is evident from the column 2 and 5 of that irrespective of the fact whether we consider mother 

level heterogeneity or not, we observe that the marginal effect of scarring is statistically significant 

for all four states in both the panels. The maximum effect of scarring is observed in Chhattisgarh in 

both panels. There is nearly two hundred infant deaths per thousand live birth that is clustered due to 

scarring in Chhattisgarh in Panel 1. If we look at the Panel 2, which allows unobserved 

heterogeneity in the model, we will find the effect of scarring related to clustering of infant deaths in 

family is notifiable in all states. The scarring associated infant death cluster in the family ranges 

from 73 infant deaths per thousand live births in Jharkhand (p<0.01) to a maximum of 182 infant 

deaths in Chhattisgarh (p<0.01). 

If we did not take into account the survival status of previous sibling the estimate for infant 

mortality would be underestimated. The underestimation of mortality varied between 9 percent 

(Jharkhand) to 25 percent (Chhattisgarh) as shown in column 4 of table 6. A similar pattern can be 

observed in column no. 7 but the reduction is lesser. It implies that the unobserved or hidden factors 

can be responsible for clustering of infant deaths in the family to some extent. Scarring obtained 

from the model without controlling for unobserved heterogeneity explained 95 percent part of the 

raw data clustering in case of Chhattisgarh as shown in column [3]. Thus, Scarring is putting 

maximum impact in Chhattisgarh and it was a leading cause for explaining the clustering of infant 

deaths. The least was for Orissa where scarring explains only 82 percent part of the probability of 

death clustering. 

Column [6] shows the percentage of raw clustering explained by scarring in the model which 

accommodated the unobserved factors. The part of scarring effect explained by the model of the raw 

data varied between 75 percent (Orissa) to 89 percent (Madhya Pradesh). We notice that, in column 

[3], the contribution of scarring explaining raw clustering of mortality in these two polar cases 

inflated to 82 percent and 90 percent respectively. The maximum inflation was there for 

Chhattisgarh. It was nearly 86 percent in column [6] and which increased to 96 percent in column 

[3]. Thus a model that fails to allow for unobserved heterogeneity overestimated the level of scarring 
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in every state, but it is also under-estimated the differences in scarring across the states. The 

estimates flowing from the model with no unobserved heterogeneity were, unsurprisingly, larger 

(Column [4]) than the same where unobserved heterogeneity factor is included in the model 

(Column [7]). For all states it was less than 3 per cent (column [7]) while the same for without 

unobserved heterogeneity, the reduction in infant mortality went up to 25 percent. It means once we 

controlled the heterogeneity factor on the risk of infant deaths between families residing in a 

particular region, the infant mortality reduction within a family due to scarring was very less. In 

other words, it would be wrong to neglect the familial and other components (unobserved factors) 

while estimating infant mortality. 

Unobserved heterogeneity 

Column 8 and 9 of Table 6 presented the estimated variance of the unobserved heterogeneity term 

and the proportion of total error variance attributed to this. 

It showed that even after controlling for scarring effect, mother and child level specific explanatory 

variables in the model, there was heterogeneity in the risk of mother experiencing the infant deaths 

(either due to genetic or some other community level and other unobservable factors) in Jharkhand 

and M.P as estimated variance is coming significant at 1 percent as shown in column 8 of Table 6. It 

also showed that in these two states, familial and other components cannot be neglected while 

explain the clustering of infant deaths. The percentage of error variance, attributable to unobserved 

heterogeneity is shown in Column 9. It is lowest for Jharkhand as well as Madhya Pradesh and is 

highest for Chhattisgarh. The model shows error variance attributable to unobserved factor is 

statistically insignificant in Chhattisgarh and Odisha. Hence, in these two states scarring performs 

the vital role in defining clustering of infant deaths among tribal families. Demographers interpreted 

mother level effects in mortality equations as a measure of the importance of genetic traits [4] or, 

occasionally, other variables like maternal ability [5]. These results further shows that though 

various mother in the region contribute independently in clustering of deaths. It explains that 

irrespective of mother-specific factors inclusion in the model was not sufficient enough to explain 

variation in mother level variation in these two states. May be some other factors like community 

level factor are acting as troubling parameter (captured in the error term of the model). 

Discussion & Policy Implications 

The clustering of sibling infant deaths by family in demographic survey data provides researchers 

with an opportunity to estimate measure of familial association. Accordingly, we have tried to 

cluster infant deaths at family level for aboriginal’s (tribal population) living in the forested hill 

tracts of peninsular India in four states. 

Most of these tribes are the Particularly Vulnerable Tribal Groups. The challenge of inaccessibility 

to health services and their health care seeking behaviour seem to dominate the discourse in tribal 

health (Balgir, 2006). 

Here in this research article, our discussion is primarily based on few specific findings from the 

study. We started examining the level of infant death clustering based on our observation from table 

no. 2. Here, we have estimated the extent of death clustering among various caste groups by family. 

The scheduled tribes have the highest number of families with at least two infant deaths (9 percent), 

whereas among Other caste group it is merely 3 percent. Further, among the total tribal infant deaths 

of 1,024, more than fifty percent of the index child (died infant) comes from the families having 

prior infant death. In, 1990 a study done by Monica Das Gupta on twentieth-century rural Punjab, 

demonstrated that families who had already experienced the loss of other children stood an increased 

chance of losing further children (Das Gupta, 1990). This relationship applied to a child’s survival 
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chances at all stages of childhood following the neonatal period. It is understandable that, siblings 

share a large number of highly relevant demographic characteristics of the mother, such as the 

mother’s age;her breastfeeding patterns; and her level of fecundity, which strongly correlates with 

length of birth interval. These factors are already well documented in previous studies on infant and 

child mortality(Hobcraft, McDonald, & Rutstein, 1983) .Parity, however or, more broadly, fertility 

patterns is an underestimated but highly important variable that is also relevant in itself, disregarding 

the related influence of mother’s age or duration of marriage. Zaba and David (1996) have clearly 

demonstrated the causal relationship between high-parity women and high-risk mothers. In our 

results as well (table. No. 4) it is apparent that, nearly 80 percent of the infant deaths are attributed 

by families having four or more child. In other words, we can conclude that, the contribution of high 

parity women to infant deaths is extremely high as compared to mothers with low parity (less than 

four births). This phenomena can be explained in two ways; first, women who experience one or 

more child deaths are more likely than other women to progress to higher parities through either 

voluntary or physiological replacement mechanisms. Second, children born to high-parity mothers 

may suffer higher mortality risks than other children because of increased infection hazards, sibling 

competition, or the depletion of maternal resources as a result of short birth intervals and high 

numbers of births(Zaba & David, 1996). Earlier Miller et al. had also suggested that both selection 

effects and maternal depletion played a prominent role in the risk polarization among high-parity 

mothers (Miller, Trussell, Pebley, & Vaughan, 1992). 

We have limited studies on death clustering, in which both scarring and unobserved heterogeneity 

were used simultaneously in a single model to assess the extent of death clustering. Wiji 

Arulampalam and Sonia Bhalotra in the year 2006 & 2008 have tried to capture Sibling Death 

Clustering in India, by using 2nd round of NFHS data, conducted in the year 1998-99. They have 

considered general population to capture the extent of death clustering irrespective of their caste 

composition. Whereas, we have restricted ourselves mainly on tribal families residing in the central 

and eastern states of India. In other words, there was heterogeneity in their samples and 

homogeneity in ours. Meanwhile between the two rounds of NFHS surveys (2nd & 3rd round), there 

were state divisions in year 2001. These states were carve out as Jharkhand and Chhattisgarh from 

Bihar and Madhya Pradesh. The newly formed states on which we did our analysis are mainly 

constituted by tribal population (over 25 percent).After observing voluminous amount of death 

clustering among tribal families in all the states, subsequently,we also tried to capture the effect of 

scarring under two different models (in Panel 1st & 2nd of table no. 6) by observing unobserved 

heterogeneity. 

The scarring effect (both positive as well as negative) has played a deliberate role in intra-family 

death clustering in all states. It’s a consequential finding from our study because, if we control the 

risk of death for the children of first and second order, then the experience gained by mother in 

rearing of these two children would automatically help in reducing the risk of infant death of the 

next child and this would reduce infant deaths significantly. The findings of scarring effects suggest 

a higher pay-off to interventions designed to reduce mortality than previously recognized. Manski 

called this as the activation of a social multiplier(Manski, 1999).This is because reducing the risk of 

death of a child automatically implies reducing the risk of death of his or her succeeding siblings. 

We found that, when we eliminate the scarring effect from the model, it would also underestimate 

the mortality levels up to certain extent. The mortality is underestimated in both the conditions, 

either we consider unobserved heterogeneity in the model or not. If we remove the scarring effect 

the underestimation of infant mortality is more in panel 1 than in panel 2. Further it shows that, 

when we include unobserved heterogeneity into the model and remove scarring from the model, the 

level of infant mortality remains almost same for all the states. Arulampalam and Bhalotra (2006) in 

their research have argued that deaths may cluster in families not only because of unobserved 

heterogeneity - because of siblings share certain traits - but also as a result of a causal process driven 

by the scarring effects on mothers and families from an earlier child death, making the next child in 
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the family more vulnerable. One of the ways in which interfamilial scarring occurs is when a mother 

quickly conceives again after the death of an infant through either resumed fecundity or the wish to 

replace the child that was lost. In addition, scarring may occur when an infant death causes the 

mother to become depressed, which may also have serious deleterious health effects on the next 

infant, either after its birth or in the womb. The authors demonstrate that the full impact of scarring 

can only be estimated by including the previous infant’s survival status as a regressor while 

excluding the variable indicating the length of the previous birth interval. In their research on 

populations in three states in contemporary India, the authors do indeed find significant scarring 

effects, with the proportion of clustering explained by scarring varying from 14 percent to as much 

as 40 percent. 

In Jharkhand and Madhya Pradesh, the estimated error variance attributable to mother specific 

unobserved heterogeneity is found to be very less though it is highly significant when we adjust it by 

parental educational (both mother and father) and by the maternal age at birth. This may be because 

of maternal characteristics and their behaviour are quite similar within the region or may be it is 

getting influenced by the community level factors or biological factors (both are treated as nuisance 

parameter or error term in our model) making every women at the equal risk of experiencing infant 

death. Although some unobservable factors are putting impact on family but inter family variation in 

risk of infant death is very less. Arulampalam and Bhalotra (2008) in their similar type of study 

found that the estimated variance of the mother specific unobservable was also significant in both 

the states but there was an inter-mother variation but our result is though significant but shows no 

mother level variation. So this could be a new finding that among tribes of Jharkhand and MP all 

mothers are equally vulnerable to face frequent child loss. This may be due the fact that in our study, 

the sample are of tribal families which are sharing similar type of characteristics throughout the 

region. Our finding contradicts in some way Arulampalam and Bhalotra (2008) findings. These 

differences may be due to the fact that they have taken entire population irrespective of their social 

class, which are in most cases are heterogeneous in their characteristics so the variation in their 

study due to mother specific unobservable is quite obvious. There is significantly unexplained no 

variations in the infant death risk, among the tribal families of Madhya Pradesh and Jharkhand. It 

may because of the unavailability of quality health care infrastructure, or it may be due to some 

genetic factor associated with mothers. In addition to the above factors, there may be the possibility 

that community level factors or other factors are also impacting on frequent infant deaths by the 

tribal mother. The mother level, insignificant unexplained variation in Chhattisgarh and Orissa can 

be attributed to homogeneity in culture, poverty and hazardous environmental factors in the entire 

state. Income, occupation, “Maternal competence” factor( which concerns the mother’s 

breastfeeding behaviour or other attitudes and behaviours that affect her children’s health ), inherited 

genetic disorders and the mother’s medical condition and disease profile may be other factors which 

explain the significant but no inter-family unobserved heterogeneity in two out of all the four central 

and eastern Indian states. Some of the previous studies too found that the unexplained variation 

between families or mothers cannot always be found, or, in some cases, it appears to be very modest 

(Das Gupta, 1990; Guo, 1993).Guo conducted his study in Guatemala, a Latin American country 

which is also a poor country found the similar result. Within contemporary Guatemala, for 

instance,(Guo, 1993)concluded that the variation between mothers was only slight once family 

income level and mother’s educational attainment were controlled for. Guo attributed the lack of 

residual or unexplained variation to the fact that in developing countries such as Guatemala, 

mortality resulting from poverty and environmental factors is still high. Under these conditions, only 

genes favourable to early survival are passed on as a result of a process of natural selection. This 

argument highlights the importance of historical research into death clustering, as these studies 

almost invariably concern societies with high-mortality regimes. Given the low residual variation 
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between mothers, Guo also dismissed differences in the quality of maternal care as a major source of 

unexplained death clustering. Sastry too found inter-family heterogeneity to be small and 

unimportant in his study on Brazilian population, but only after controlling for heterogeneity at the 

community level. Sastry, therefore, argued, much in line with Guo that shared environmental 

conditions were more important determinants of shared frailty than either parental competence or 

genetic and biological factors. There is a whole range of other well-known socioeconomic 

determinants that might cause deaths to be clustered within certain families, all of which need to be 

considered when examining the determinants of clustering. We have ignored these factors, which 

include urban-rural differences, cultural differences between regions, ethnic differences, and other 

factors that have their expression in intercommunity mortality differentials. As has been argued, 

these shared “environmental” conditions are more crucial determinants of mortality hazards in both 

past and present societies than that of maternal competence, genetic factors, or biological 

determinants. Present study on tribes is an attempt to capture the death clustering behaviour giving 

due importance to cultural and ethnic differences. 

Scarring involves responsive behaviour which may be amenable to policy because this shows there 

is some causal process whereby frequent infant death in the family is affected by the previous 

sibling’s death in the family. If the causal process works through the fecundity mechanism, then 

policies that improve the uptake of contraception are likely to reduce death clustering among the 

tribes. More specific policy insight depends on identifying the mechanism underlying scarring. 

While unobserved heterogeneity involves largely untreatable factors like genes or fixed behaviour 

and unalterable family specific traits is central to the nature-nurture debate(Pinker, 2003). The 

studies cited here underlined the need for systematic and comparative research into the varying 

levels and shaping of the familial component of children’s mortality hazards in different 

communities and time periods, as well as the conditions that determine this hazard’s appearance or 

disappearance. Heterogeneity can have considerable implications for reproductive health and child 

survival programmes. In India, as in many other countries, health services are made available largely 

in response to demand. If child deaths are heavily concentrated in some families, this would suggest 

that substantial improvements in child mortality could be achieved by adopting the more cost- 

effective techniques of focusing healthcare resources specifically on the sub-group of families with a 

high risk of child death. 

Scarring is of considerable theoretical interest, contributing to understanding the interrelations of 

family behaviour, fertility and mortality. It is also clearly of interest to policy making. It can also be 

useful in targeting interventions at the most vulnerable households. The government needs to not 

only try to reduce scarring mechanism among tribes, but it should also promote education, 

awareness among tribes about modern health facilities and infrastructure development in tribal areas. 

The policy initiatives should be pro tribe culture and it should be encouraging. Mass media based 

should information about government policies should be promoted in those areas. 
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Table 1: The sample characteristics of tribal population in selected states, India, 1970- 2006 

 
Background Characteristics JH OR CG MP n  

Caste       

Schedule Caste 11.4 29.7 18.1 40.8 2020  

Schedule Tribe 17.8 22.3 26.0 34.0 2494 

 

 

Other Backward Class 20.5 16.7 24.7 38.1 4920  

Other 13.7 38.6 10.1 37.5 3100  

Characteristics of Schedule Tribes       

 JH OD CH MP n  

Total births 18.2 22.4 27.1 32.3 9,069  

Total deaths among total births 15.4 20.0 24.3 40.4 1,632  

Under 5 deaths 15.7 20.0 24.0 40.3 1,493  

Infant deaths 15.9 19.3 24.7 40.1 1,024  

Families with at least       

One infant death 17.5 20.7 23.1 38.7 712  

Two infant deaths 15.1 16.4 24.5 44.0 218  

Children born in families with at least       

One infant death 16.9 21.6 27.1 34.5 1024  

Two infant deaths 14.3 18.7 29.4 37.5 530  

Preceding birth interval       

< 24 months 11.9 15.4 24.9 47.9 369  

> = 24 months 18.1 21.5 23.2 37.2 290  

Sex of child       

Male 16.4 19.8 27.2 36.5 570  

Female 15.2 18.7 21.6 44.5 454  

Religion       

Hindu 10.3 23.6 28.4 37.7 2,226  

Muslim 66.4 22.1 11.5 0.0 89  

Others 94.1 5.4 0.6 0.0 179  

Mother's education       

Illiterate 17.1 22.9 24.7 35.3 1,969  

Primary 13.6 20.4 29.8 36.3 235  

Secondary 25.1 20.5 32.3 22.0 274  

Higher and above 47.3 3.7 29.4 19.5 16  

Father's education       

Illiterate 16.4 23.8 22.9 36.9 1321  

Primary 8.8 23.5 31.2 36.5 466  

Secondary 26.9 18.6 27.7 26.7 626  

Higher and above 27.3 15.7 36.8 20.3 76  

 
Note: Sample characteristics are based on complete retrospective birth history of the women between 1970- 2006, 

ased on 3
rd

 round of NFHS (2005-2006) All 'n' values are unweighted; Abbr., JH- Jharkhand, OR- Odisha, CG- 

Chhattisgarh, MP- Madhya Pradesh 
 

 

 

Table 2: Distribution of infant deaths among families of various caste group in selected states, India 1970- 2006 

 
Families with infant deaths Number of infant deaths 
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Infant deaths SC
*
 ST** OBC Others Total 

 0 1,535 1,782 3,856 2,644 9817 
 1 345 494 786 364 1,989 
 2 92 152 206 65 515 
 3 31 44 51 20 146 
 4 12 17 14 3 46 
 5 3 4 4 2 13 
 6 0 1 2 1 4 
 7 2 0 1 1 4 
 Total 2,020 2,494 4,920 3,100 12,534 
 

Families Families Families Families Families 
with at with at with at with at with at 
least 2 least 2 least 2 least 2 least 2 
infant infant infant infant infant 
death death death death death 

 

 

 

SC
*
 ST** OBC Others Total 

 0 0 0 0 0 
 345 494 786 364 1989 
 184 304 412 130 1030 
 93 132 153 60 438 
 48 68 56 12 184 
 15 20 20 10 65 
 0 6 12 6 24 
 14 0 7 7 28 
 699 1024 1446 589 3758 

 At least At least At least At least At least 
 2 infant 2 infant 2 infant 2 infant 2 infant 
 death death death death death 

 
Extent of infant 

6.9 8.7 5.6 3 5.8 50.64 51.75 45.64 38.2 47.07  

death clustering  
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Table: 3 Distribution of families according to number of children per family and number of child deaths per family in selected states, India, 1970-2006. 

 
 
 

(General Population)    Infant deaths per family           

Children per family 0 1 2 3 4 5 6 7 

 

Families 

Total Percent of Total Infant Percent of  

 

Children Children death 

Infant 

death 

 

            

                

1 1,952 101 0 0 0 0 0 0 2,053 2,053 5.1 101 2.7  

2 2,818 231 20 0 0 0 0 0 3,069 6,138 15.2 271 7.2  

3 2,399 355 40 4 0 0 0 0 2,798 8,394 20.7 447 11.9  

4 1,386 487 72 11 1 0 0 0 1,957 7,828 19.3 668 17.8  

5 707 396 118 25 8 1 0 0 1,255 6,275 15.5 744 19.8  

6 335 200 115 35 7 1 0 0 693 4,158 10.3 568 15.1  

7 143 111 68 27 9 3 0 0 361 2,527 6.2 379 10.1  

8 45 52 36 23 14 3 1 0 174 1,392 3.4 270 7.2  

9 25 39 22 11 4 0 1 1 103 927 2.3 145 3.9  

10 11 11 15 8 1 3 1 2 52 520 1.3 104 2.8  

11 2 6 5 2 2 1 1 0 19 209 0.5 41 1.1  

12 0 2 4 0 0 1 0 1 8 96 0.2 22 0.6  

Total: 9,823 1,991 515 146 46 13 4 4 12,542 40,517 100.0 3760 100.0  

Percent of children: 68.1 21.0 7.3 2.4 0.8 0.3 0.1 0.1 100.0 - - - -  

Percent of infant death: 0.0 53.0 27.4 11.7 4.9 1.7 0.6 0.7 100.0 - - - -   
Source: Author's tabulation of all singleton births in selected states for the period 1970-2006 based on the 3rd round of NFHS (2005-06), India 
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Table: 4 Distribution of families according to number of children per family and number of child deaths per family in selected states, India 1970-2006 
  
 

 

 

 

Source: Author's tabulation of all singleton births in selected states for the period 1970-2006 based on the 3rd round of NFHS (2005-06), India 

(Tribal Population)   No. of infant deaths per tribal family          

Children per family 0 1 2 3 4 5 6 

 

Families 
Total Percent Total Infant Percent Infant  

 

children Children death death 

 

           

               

1 335 30 0 0 0 0 0 365 365 4.0 30 2.9  

2 403 58 7 0 0 0 0 468 936 10.3 72 7.0  

3 417 72 12 2 0 0 0 503 1509 16.6 102 10.0  

4 285 95 24 5 0 0 0 409 1636 18.0 158 15.4  

5 176 94 31 7 3 0 0 311 1555 17.1 189 18.5  

6 97 68 33 8 0 0 0 206 1236 13.6 158 15.4  

7 47 36 16 6 6 2 0 113 791 8.7 120 11.7  

8 11 20 14 6 4 0 0 55 440 4.9 82 8.0  

9 7 16 9 7 4 0 0 43 387 4.3 71 6.9  

10 4 4 4 3 0 2 1 18 180 2.0 37 3.6  

11 0 1 1 0 0 0 0 2 22 0.2 3 0.3  

12 0 0 1 0 0 0 0 1 12 0.1 2 0.2  

Total: 1,782 494 152 44 17 4 1 2,494 9,069 100 1024 100  

Percent of children: 60.8 24.6 9.6 3.2 1.4 0.4 0.1 100.0 - - - -  

Percent of infant death: 0.0 48.2 29.7 12.9 6.6 2.0 0.6 100.0 - - - -  

826



             

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table- 5:  Raw data based probabilities of tribal infant deaths in selected states, India, 1970-2006 
 
    

Raw Data 

   

Estimated Model 

 
        
        

   

Probability of death 

given       

   

previous sibling’s 

infant 

Probability of death 

given    Relative Odds Ratio  

 State Probability of death death 

previous sibling’s 

survival Death Clustering Relative Odds Ratio [p- value]  

  [1] [2] [3] [4]= [2]-[3] [5]*  [6]**  

 Jharkhand: 0.103 0.157 0.075 0.083 2.330  2.27 [0.002]  

 Odisha: 0.111 0.179 0.080 0.099 2.500  2.22 [0.004]  

 Chhattisgarh: 0.111 0.283 0.070 0.213 5.240  4.90 [0.000]  

 Madhya Pradesh: 0.124 0.249 0.092 0.157 3.280  3.33 [0.000]  
 
Note:*The relative odds ratio is calculated as the ratio of Column [2]/ (1- column [2]) to Column [3]/ (1- Column [3]).This is the exponential of the estimated scarring 
coefficient in a simple logit model that includes an intercept and the survival status of the previous sibling.  
**Column [6] reports the equivalent numbers from the estimated model which control for the effects of other covariates and for unobserved mother- specific effects. These are 

exponentials of the estimated scarring coefficients γ. The p-values refer to those associated with the estimated γ. 
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Table 6: Effect of scarring on the clustering of infant mortality within the tribal families in selected states, India, 1970- 2006. Results are based on random effect of logit regression
1

. 
 
 

 
 
Note: 1- The equation is estimated with the initial condition of the process. It means start of the process same as sample start. The marginal effect associated with scarring is significant at 
the 1 per cent level in all states. The p-values calculated to test whether the variance attributable to unobserved mother-specific heterogeneity is zero are computed accounting for the fact 
that the parameter under the null hypothesis is on boundary.  

2.This is column [4] of Table 13.   
3. The marginal effect is computed as the difference between the sample averages of the probability of death predicted by the estimated model when Yij-1=0 and when Yij-1=1(excluding 
the first born).This is approximately equivalent to the partial derivative of the conditional probability of death of the index child with respect to the covariate, Yij-1.  
4.This is calculated as the difference between the predicted probability of death from the estimated model and predicted probability of death from the model when γ=0 is imposed after estimation, and 

excluding first-born children.   
5.This is equal to column [8] as a proportion of estimated total variance  

Source: National Family Health Survey III, 1970-2006

Panel 1: Model without unobserved heterogeneity (Col. 1 to 4) Panel 2: Model with unobserved heterogeneity (Col. 5 to 9) 

State Raw data 
death 
clustering2 

Estimated 
marginal effects3 

Raw 
clustering 
explained 
by 
scarring 
(%) 

Reduction in 
infant 
mortality if 
no scarring 

Estimated 
marginal effects3 

Raw 
clustering 
explained 
by 
scarring 
(%) 

Reduction 
in infant 
mortality 
if no 
scarring 

Estimated 
variance of 
the mother 
specific 
unobservable 

Estimated 
intra-
mother 
correlation 
coefficient  

  [1] [2] [3]=[2]/[1] (%)
4
  [4] [5] [6]=[5]/[1] (%)

4
  [7] [p-value][8] [9] 

Jharkhand 0.083 0.0739 [0.002] 89.15 9.37 0.0737 [0.002] 88.86 1.02 0.00 [0.000] 0.000 
Orissa 0.099 0.0806 [0.003] 81.51 12.6 0.0746 [0.004] 75.39 1.2 0.11 [0.170] 0.034 
Chhattisgarh 0.213 0.2036 [0.000] 95.6 25.12 0.1823 [0.000] 85.77 2.8 0.15 [0.570] 0.046 
Madhya Pradesh 0.157 0.1407 [0.000] 89.64 15.28 0.1398 [0.000] 89.05 2.1 0.00 [0.000] 0.000 
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Abstract 

In the changing socio-economic environment in the country in the post liberalization period, the 

mortality levels have been declined substantially but we found that the pace of reduction in mortality 

is much faster than the pace in reduction of clustered deaths in families. Though the high risk families 

have declined but now almost similar level of clustered death is experienced by lower number of 

families. Utilizing the pooled retrospective birth history data of the three rounds of National Family 

Health Survey data (1992-2006) in random effect logit model, we found that after adjusting the socio-

bio demographic factors in Model 2, the odds of infant deaths for interaction of time with previous 

death in the family has increased but the Infant mortality has declined substantially as captured by the 

time factor and constant. Nearly 10 percent variation (intraclass correlation) in infant mortality is 

explained by the mother level unobserved factors. 

 

Introduction 

Many prior research have been conducted on the levels, trends and correlates of infant mortality but 

the familial clustering of infant death still requires attention as a major contributor of infant mortality 

is proportion of clustered deaths in high risk families. This phenomena is occurring in both developed 

as well as developing countries, India is no exception to it. It has been observed in Punjab  (Das Gupta 

1990, Gupta 1997),Orissa(Pradhan and Arokiasamy 2005),some selected states in India  

(Arulampalam and Bhalotra 2006, Arulampalam and Bhalotra 2008), Guatemala  (Guo and Rodriguez 

1992, Guo 1993), Brazil  (Curtis, Diamond et al. 1993), Bangladesh  (Zenger 1993), Senegal 

(Ronsmans 1995), and Kenya  (Zaba and David 1996; (Omariba, Rajulton et al. 2008). Each of these 

studies specifically points to their observation that the survival chances of children in the same family 

are more alike than those of children born in different families. 

This phenomenon of clustered distribution of infant deaths within families was first identified in 1990s 

by Monica Dasgupta in her study entitled “Death clustering, mothers' education and the determinants 

of child mortality in rural Punjab, India” and she called this phenomena as death clustering. Since then 

this issue of death clustering has been on research agenda when infant or child mortality were talked 

off. It is so because right from its definition to its methodology, there is not much unanimity among 

the scholars about how to capture such a complex phenomenon .On the basis of various research 

papers, scholars have added many dimensions to it. Mostly it has been defined consistently as: 
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i). Counting the number of women who have experienced more than one child loss and extent of 

deaths concentrated in such families (Das Gupta 1990, Curtis, Diamond et al. 1993, Guo 1993, Curtis 

and Steele 1996). 

 ii).Whether the number of women with the different number of child deaths exceeds which would be 

expected if the risks were constant for all women and their children (Ronsmans 1995, Zaba and David 

1996). 

Two main aspects of death clustering which make it an important issue in the analysis of mortality: 

first aspect is the methodological one in the sense that observations are not independent since siblings 

living in the same family have shared similar environment and they share the same genetic pool and 

socioeconomic position and second aspect is clustering in itself (Arulampalam and Bhalotra 2006). 

 Present study have tried to address the changing nature of clustered deaths in families when there is a 

declining trends in almost all mortality indicators. The issue is also relevant because the study period 

of 1992-2006 is also a period of post liberalization in India where the income, opportunity and choices 

for availing various services among the people have increased exponentially. The government 

spending in various sectors including health, infrastructure, Information technology, e-governance etc. 

has also led to the drastic change in socio-economic set up in the country. 

 

Data source and Methodology 

 

We have done all our analysis on pooled the complete birth history data of three rounds of National 

Family Health Survey (NFHS) (NFHS-1(1992-93), NFHS-2 (1998-99) & NFHS-3(2005-06)) in order 

to see that over the three time periods how the clustered deaths in families has changed. Bivariate 

analysis was performed to get the familial clustering of infant deaths. Random effect logit model was 

applied to see the change in clustering of infant deaths within families. Dependent variable was infant 

deaths which coded as 0 “no infant deaths” and 1 “infant deaths”. Similarly, previous deaths in 

families (refers to mothers) was included as one of the covariates which was captured through a lagged 

variable coded as 0 “no previous infant deaths” 1 “previous infant death ”.This variable was 

considered as the proxy for capturing clustering of infant death clustering at family level.After pooling 

the three period data and we have generated a time variable for capturing the three surveys and made 

its dummy. These time dummies along with the interaction of time and previous death was included in 

the model as predictors. We have captured the change in clustering of deaths at family level through 

this interaction term but the change in infant mortality was captured through time dummies as well as 

constant term. Other covariates are included in the model based on literatures and their relevance. 
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Results: 

Table 1, 2, 3 and 4 clearly reflects that Neonatal mortality, Infant mortality and U5 child mortality has 

reduced a lot in a period of 15 years .In the same time period clustering of deaths in families has also 

reduced but the pace of reduction in neonatal, infant and U5 child mortality is substantially much 

faster than the reduction of clustering of deaths in families. If we see tables 3 & table 4, it can be 

concluded that though there occurred a huge reduction in families which experienced two or more 

deaths but the level of clustered deaths in families remained at almost similar level. In other words, 

now the same number of deaths is concentrated in smaller number of families. 

If we see the table5, after adjusting the socio-economic and bio demographic factors in model 2 we 

found that previous death, time variable and their interactions are all statistically significant. If we see 

the interaction for change in clustering over time we conclude that the odds of having infant deaths is 

10 percent higher (p<0.01) if there is previous death in NFHS-2 in comparison to previous death in 

NFHS-1.Similarly,the the odds of having infant deaths is again 10 percent higher (p<0.01) if there is 

previous death in NFHS-3 in comparison to previous death in NFHS-1.If we see the constant term as 

well as time factor in both Model1 and Model2 the odds of having infant death has been reduced over 

the survey periods. This led to very contrasting results that on one hand our bivariate analysis shows 

clustering of deaths among families are reducing at lesser pace than reduction in infant mortality but 

our multivariate result shows that over the three survey periods infant mortality has declined 

significantly but the clustering of deaths among families has increased significantly over the years. 

Out of total unexplained variation in infant mortality, mother level unobserved variation has 

contributed 10 percent  (p<0.01) as measured by intra class correlation coefficient. 

  

Conclusion 

It is very important to understand that the 15 year period between 1992-2006 is also the period of 

liberalization and globalization of Indian market and there is a huge increase in income sources and 

opportunities among the population. In that scenario of changing socio-economic environment in India 

mortality indicators have improved and but still it seems that the clustering of deaths in families have 

not reduced like mortality indicators. Still there exists families who had not been affected by the social 

and economic change and they are contributing a higher number of neonatal and infant deaths. In this 

context our study is more relevant that why the development has not improved the condition of the 

households where these high risk families are located.  
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Table1: Trends of NMR, IMR and U5MR in India. 

  Neonatal  mortality (NMR) Infant  mortality (IMR) U5  child mortality (U5MR) 

NFHS-1 48.6 78.5 109.3 

NFHS-2 43.4 67.6 94.9 
NFHS-3 39.00 57.0 74.3 

 

Table2: Relative change from NFHS-1 in NMR, IMR and U5 mortality in India. 

  Relative change NMR Relative change IMR Relative change U5MR 

NFHS-1 Reference Reference Reference 
NFHS-2 -10.70 -13.89 -13.17 
NFHS-3 -19.75 -27.39 -32.02 

 

Table 3: Trends of clustering of deaths in India. 

  
Percent 
Families 

Percent  
 Neonatal deaths 

concentration 
Percent 
Families 

Percent 
 Infant deaths 
concentration 

Percent 
Families 

Percent 
 U5Child deaths 
concentration 

NFHS-1 3.2 41.4 6.4 50.9 1.7 36.2 
NFHS-2 2.9 41.3 5.2 47.8 1.3 32.2 
NFHS-3 2.2 37.8 3.8 43.6 0.76 27.7 

 

Table 4: Relative change from NFHS-1 survey of clustering deaths among families in India.  

  

Families 
Clustering of 

Neonatal deaths Families 
Clustering of 
Infant deaths Families 

Clustering of 
U5MR deaths   

NFHS-1 Reference  Reference Reference Reference Reference Reference 
NFHS-2 -8.4 -0.3 -18.5 -6.2 -23.0 -10.9 
NFHS-3 -24.5 -8.4 -27.1 -8.8 -43.3 -14.0 

 

 

 

 

 

 

836



Table 5: Random effect logit model result. 

Infant death Model1 (OR )   Model2 (OR)   

  Pooled estimates P-value Pooled estimates P-value 

Previous infant death         

No 1 

 

1   

Yes 1.80 (0.042) 0.000 2.08(0.049) 0.000 

Time*previous infant death   

 

    

NFHS-1*previous infant death 1 
 

1   

NFHS-2*Previous infant death 1.05(0.032) 0.090 1.10(0.035) 0.002 

NFHS-3*Previous infant death 1.07(0.035) 0.032 1.10(0.038) 0.005 

Age   

 

    

13-20   

 

1   

20-34   

 

1.04 (0.082) 0.656 

35+   

 

1.26 (0.099) 0.003 

Place of residence   

 

    

Urban   

 

1   

rural   

 

1.21(0.018) 0.000 

Child sex   

 

    

Female   

 

1   

male   

 

1.02(0.011) 0.047 

Birth order   

 

    

3 or less    

 

1   

births_3plus   

 

0.98 (0.012) 0.058 

Birth interval   

 

    

less than 12 months   

 

1   

12-24 months   

 

0.54(0.012) 0.000 

more than 24 months   

 

0.27(0.006) 0.000 

Religion   

 

    

Hindu   

 

1   

Muslims   

 

0.81(0.015) 0.000 

Other_religion   

 

0.66(0.016) 0.000 

Caste   

 

    

SC   

 

1   

ST   

 

0.92(0.020) 0.000 

Other_caste   

 

0.95(0.015) 0.003 

Partner's education   

 

    

Higher   

 

1   

Illiterate   

 

1.35 (0.040) 0.000 

Primary   

 

1.25 (0.037) 0.000 

Secondary   

 

1.10(0.031) 0.000 

Partner working   

 

    

Yes   

 

1   

No   

 

0.95 (0.032) 0.096 

Respondent working   

 

    

Yes   

 

1   

No   

 

0.98(0.012) 0.108 

Respondent Education   

 

    

Higher   

 

1   

Illiterate   

 

2.40(0.143) 0.000 

Primary   

 

1.88 (0.113) 0.000 

Secondary   

 

1.46(0.087) 0.000 

Time   

 

    

Nfhs-1 (1992-93) 1 

 

1   

Nfhs-2 (1998-99) 0.86 (0.010) 0.000 0.89 (0.013) 0.000 
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Nfhs-3 (2005-06) 0.73(0.009) 0.000 0.79(0.013) 0.000 

Constant 0.068(0.001) 0.000 0.01(0.001) 0.000 

Mother level unobservable(sigma_u) 0.76(0.011)   0.61 (0.014)   

Intraclass correlation 0.15 (0.004)   0.10(0.004)   

Wald statistic  2075.16   13427.32   

Loglikelihood -209202.45   -131956.64   

Chi sq 0.000   0.00   
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Abstract. In the present work we study a compound run length distribution of
runs-rules based control charts, by exploiting the fact that the distribution of the run
length L is a discrete Phase-type one. The term compound run length distribution
refers to the distribution of the random sum SL =

∑L
t=1 Yt, where Y1, Y2, . . ., is a se-

quence of independent and identically distributed, positive valued random variables,
independent of L. The suggested framework, provides a more realistic scenario, as
compared to the classical control chart setup. Finally, an extensive numerical study
illustrates how the performance of compound control charts, suitable for monitoring
Poisson observations, can be evaluated in terms of the distribution of SL.
Keywords: Control charts, geometric distribution, runs rules, phase-type distribu-
tions, Poisson distribution, time between inspections, statistical quality control.

1 Introduction

Control charts are considered as one of the most important tools of statistical
process monitoring (SPM). Practitioners use them for monitoring a process
and identifying possible changes in it. Traditionally, control charts have been
developed for the monitoring of continuous characteristics. The most popular
schemes are the X̄, the S and the R charts; See Montgomery[18] for more
details.

The usual approach when implementing a control chart is to collect sam-
ples from the process, determine the value of a charting statistic (e.g., sample
mean) and plot this value on the chart, against one or more control limits. Im-
portant information for the performance of a control chart, is conveyed by the
respective run length (RL) distribution, that is the distribution of the num-
ber L of points plotted on the chart until an out-of-control (OOC) signal is
initiated. A comprehensive summary of the performance of a control chart is
provided by the mean and the standard deviation of the run length distribution,
i.e., the so-called average run length (ARL) and standard deviation run length
(SDRL). Percentiles of the run length distribution, such as the median run
length (MRL) may also be used for additional or complementary information
of the control chart performance.

In the classical setup, the time between the collection of successive samples
is not taken into account. However, for specific applications, this time may be
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of special importance; moreover in many cases this time may have a stochastic
nature, therefore it should be described by an appropriate (positive) random
variable (r.v.). Under this scenario, instead of focusing on the number of points
plotted on the chart until an OOC signal is generated, a more realistic statistic
to be considered is the total time (in appropriate time units, e.g., hours, days
etc) until the OOC signal. Thus, the control chart’s performance in that case
is associated to the time to signal (TS) and its distribution.

Let us consider the r.v. SL =
∑L
t=1 Yt where Y1, Y2, . . . is a sequence of in-

dependent and identically distributed (IID) positive valued r.v.’s, independent
of L. We denote by L the RL of a control chart while the Yt’s denote the times
between successive samplings. Then, the compound r.v. SL describes the TS of
a surveillance/monitoring procedure (i.e., a control chart), under a particular
sampling policy with intermediate times between successive samples Y1, Y2, . . ..
More specifically, let us consider the following example: An external inspector,
or examiner, performs inspections of (identical) units at random times, so that
the manufacturer under inspection cannot figure out the exact time that the
process will be evaluated. Let Y1 be the time when the first inspection occurs;
the number of defects on the inspection unit is also assumed to be a r.v., say
X1. Thus, the first inspection (or the collection of the first sample) takes place
after Y1 time units, yielding X1 defects on the unit (or on the sample). In a
similar manner, let Yt be interarrival time between the (t−1)th and tth inspec-
tion, and Xt be the respective number of defects at the tth inspection, t ≥ 2.
The inspector uses only the Xt values in order to declare a process as OOC
but the total time until an OOC signal is triggered equals

∑L
t=1 Yt.

One can easily come up with many alternative frameworks of applied na-
ture where the aforementioned setup may be practiced. Let us consider the
case where lots of items are subject to inspection under an acceptance sam-
pling scheme. Instead of inspecting every lot (e.g., due to cost reasons), only
a fraction of them is inspected. We assume that each lot is inspected with
probability θ, so the number Yt of produced lots between the (t− 1)th and the
tth inspected lot is a r.v. After the inspection of the tth lot, the number of
defects Xt found in it is recorded. Under this scenario the r.v. SL denotes the
total number of the produced lots until the end of inspection or a change in
the inspection level.

In this work, we study the distribution of the compound run length SL,
in the case of upper one-sided control charts that are suitable for monitor-
ing Poisson observations. The most common approach is to use the classical
Poisson-based c-chart, (Montgomery[18]) either with or without supplementary
runs rules. For the time between inspections, we assume that it is described by
a geometric r.v. with parameter θ, i.e., Yt ∼ Ge(θ), t ≥ 1. Next, we consider
both the ordinary upper one-sided c-chart and an upper one-sided runs-rules
based c-chart. An important role in our analysis plays the fact that in both
cases, L is a discrete phase-type r.v. Thus, the distribution of SL can be studied
by using the methodology of Koutras and Eryilmaz[14] and Koutras et al.[16].

The structure of the paper is as follows. In Section 2 we describe the
operation of the upper one-sided Poisson control charts we shall analyse, while
in Section 3 we provide the necessary general results for the study of the run
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length distribution L as well as for any compound r.v. of the form SL =∑L
t=1 Yt, where L is a discrete phase-type r.v. Section 4, contains the results

of an extensive numerical study along with a discussion on the practical use of
these results. Finally, in Section 5 we state the concluding remarks.

2 Control Charts for Poisson Observations

Assume that a process produces identical units and each unit is inspected with
probability θ (0 < θ < 1). When a unit is selected for inspection, the number
X of defects on it is recorded. The number of defects registered during the
inspection process will be denoted by X1, X2, . . ., whereas the intermediate
times between the inspections by Y1, Y2, . . . (Y1 denotes the time until the first
inspection). Clearly, Y1 is a geometric r.v. with parameter θ, i.e., Y1 ∼ Ge(θ).
Let us also assume that the number X1 of defects recorded at first inspection
follows a Poisson distribution with parameter µ, i.e., X1 ∼ P (µ). In a similar
manner, the time Yt between the (t − 1)th and the tth inspected unit, t ≥ 2,
is a geometric r.v. with parameter θ, i.e., Yt ∼ Ge(θ), whereas the number
Xt of defects recorded at this point will be considered as a Poisson r.v. with
parameter µ, i.e., Xt ∼ P (µ).

We denote by µ0 the in-control (IC) value of µ and assume that when the
process shifts out-of-control, the value of µ increases, i.e., for an OOC process
we have µ = µ1 > µ0. Clearly, when the number of defects exceeds an upper
threshold x0, an indication is provided for a possible increase on the average
number of defects (process deterioration). Should this situation occur, an OOC
signal should be initiated. Usually, the threshold x0 is used as an upper control
limit of the chart. Obviously, one would wish to identify situations like this,
as soon as possible. The control charts that can be used in order to do so,
are described in the subsequent Sections. In this work we also assume that µ0

is known or has been accuratelly estimated from a sufficiently large, Phase I
in-control sample.

2.1 The Upper One-Sided c-Chart

The natural approach to monitor the process and detect an upward shift in
µ0, is to define an upper control limit UCL for the upper one-sided c-chart (a
Shewhart-type chart) and plot the successive valuesXt, t ≥ 1, on it until a point
exceeds the UCL for first time. Let X1, X2, . . . be independent P (µ1) r.v.’s,
where µ1 = δµ0 is the OOC parameter value for µ (δ > 1 is a constant reflecting
the shift in µ0 while for δ = 1, the value of µ0 remains unchanged). Thus, the
probability β = P (Xt > UCL) that the number Xt of non-conformities exceeds
the UCL, equals

β = 1− FP (UCL|µ1),

where FP (x |µ ) is the c.d.f. of the Poisson distribution with parameter µ.
Let L be the number of points plotted on the chart, until it gives an OOC

signal for the first time, i.e.,

L = inf{` ≥ 1 : X` > UCL}.
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Clearly, L is the run length of the upper one-sided c-chart, which is a geometric
r.v. with parameter β, i.e., the p.m.f. and the c.d.f. of L are given by fL(`) =
β(1−β)`−1 and FL(`) = 1−(1−β)`, respectively, for ` = 1, 2, . . .. Consequently,
the ARL and SDRL of the upper one-sided c-chart read

ARL =
1

β
, SDRL =

√
1− β
β

,

while the γ-percentile point Lγ of L, γ ∈ (0, 1), satisfies the inequality P (L ≤
Lγ) ≥ γ and it is equal to

Lγ = d ln(1− γ)

ln(1− β)
e.

2.2 The Upper One-Sided r-of-m c-Chart

It is known that, in general, Shewhart-type control charts are rather insensitive
in detecting small and moderate shifts in the parameters of a process. The use
of runs-rules based schemes is a simple approach for solving this problem.

Consequently, due to their easy practical implementation and interpreta-
tion, runs-rules based schemes have been studied by several researchers (see,
for example, Acosta-Mejia[1], Bersimis et al.[4], Castagliola et al.[6], Khoo[12],
Klein[13], Lucas et al.[17], Rakitzis and Antzoulakos[20], Riaz et al.[22] and Wu
et al.[24]). We refer to Koutras et al.[15] for an up-to-date review on control
charts with supplementary runs rules.

Motivated by the aforementioned works, we consider next several control
schemes with runs rules in order to improve the capability of the ordinary
upper one-sided c-chart to detect an increase in µ0. More specifically, we
consider a scheme which gives an OOC signal if r-out-of-m consecutive points
(2 ≤ r ≤ m), are plotted above an appropriate upper control limit UCL.
The UCL is determined so as to achieve the desired IC performance. Next,
we will only focus on the 2-out-of-3, 3-out-of-4 and 4-out-of-5 runs rules, i.e.,
(r,m) ∈ {(2, 3), (3, 4), (4, 5)}, to be denoted as c : 2/3, c : 3/4 and c : 4/5,
respectively. These rules are simple modifications of the usual rules proposed
by the Western Electric Company[23]. Moreover, they are also termed as pure
runs rules (see Castagliola et al.[6]) in the sense that they are not used as
supplements to the ordinary 1/1 rule along with warning limits. Note also that
the upper one-sided c-chart, described in Section 2.1, is equivalent to the runs
rule c : 1/1 scheme.

It is worth stressing that the term runs rule is used to describe either a rule
of type r-out-of-r consecutive points (i.e., a rule based on pure runs of length
r, m = r) or a rule of type r-out-of-m consecutive points (i.e., a rule based
on a scan statistic, m > r). Since the rules we consider here are associated
either to pure runs or to scans with m = r + 1, which have also been termed
as almost perfect runs, we have chosen to refer to both of them with the single
name runs rules. For more details, see Balakrishnan and Koutras[3].
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Let L be the number of points plotted on the c : r/m chart, until it gives
an OOC signal for the first time, i.e.,

L = inf

` :
∑̀

t=max(`−m+1,1)

I(UCL,∞)(Xt) ≥ r

 ,

where IA(x) equals 1 if x ∈ A and 0 otherwise. Clearly, L is the run length of
the upper one-sided c : r/m-chart.

When runs-rules based criteria are applied to a control chart to indicate an
OOC signal, the computation of the run length distribution is much more in-
volved. In such cases, the Markov chain technique may facilitate the derivation
of the run length properties (p.m.f., c.d.f., ARL, SDRL). In this work, the
Markov chain technique originally proposed by Brook and Evans[5] has been
employed. Further details can be also found in Champ and Woodall[7], Fu and
Lou[10] and Antzoulakos and Rakitzis[2].

3 The Compound Run Length

In the following subsections we present the necessary theoretical results for the
study of the run length distribution L (Subsection 3.1) as well as the distribu-
tion of the compound r.v. SL (Subsection 3.2).

3.1 The Run Length Distribution

It is not difficult to verify that, for the charts described in Subsections 2.1-2.2,
the respective run length distribution is a discrete phase-type distribution of
order, say, d. We recall that a phase-type distribution describes the time to
absorption in a finite discrete time Markov chain with d transient states and
one absorbing state (Neuts[19], He[11]).

Let us assume that we have a discrete-time Markov chain with d+ 1 states,
where states 0, 1, ..., d − 1 are transient and state d is an absorbing one. The
transition probability matrix P of this discrete-time Markov chain is of the
form

P =

(
Q r
0′ 1

)
=


q00 q01 · · · q0,d−1 r0
q10 q11 · · · q1,d−1 r1
...

...
. . .

...
...

qd−1,0 qd−1,1 · · · qd−1,d−1 rd
0 0 · · · 0 1

 ,

where Q is the d × d matrix of transient probabilities, 0 = (0, 0, ..., 0)′ and
the d × 1 vector r satisfies r = 1 − Q1 with 1 = (1, 1, ..., 1)′. Let q be the
d × 1 vector of initial probabilities associated with the d transient states, i.e.,
q = (q0, q1, ..., qd−1)′. Then, the p.m.f. of the discrete phase-type r.v. L is
given by

fL(`) = P (L = `) = q′Q`−1(Id −Q)1, ` = 1, 2, . . . (1)
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where Id is the d×d identity matrix and 1 is the 1×d vector with 1 in all of its
entries. Thus, the r.v. L with p.m.f. given in (1) is a discrete phase-type r.v.
of order d with parameters q and Q, i.e., L ∼ PHd(q,Q) (see, for example,
Neuts[19] and He[11]). In addition, the c.d.f. FL(`), the mean E(L) and the
standard deviation

√
V(L) of r.v. L may be expressed as

FL (` |Q,q ) = 1− q′Q`1, (2)

E(L) = q′(Id −Q)−11, (3)√
V(L) =

√
2q′(Id −Q)−2Q1− E(L)2 + E(L). (4)

Therefore, in order to evaluate the entire run length distribution for the control
charts described in Subsection 2.2, we need to know the elements of matrix Q
and vector q; this is explained later in the paper.

3.2 The Distribution of SL

Let L be a r.v. having a discrete phase-type distribution. In this subsection,
we present all the necessary results for the study of the distribution of the
compound r.v. SL =

∑L
t=1 Yt.

Denote by

PSL
(z) = E(zSL) =

∞∑
t=1

fSL
(t)zt =

∞∑
t=1

P (SL = t)zt,

PL(z) = E(zL) =
∞∑
`=1

P (L = `)z`,

the probability generating functions (p.g.f.) of SL and L (respectively) and by

PY (z) = E(zY ) =

∞∑
y=1

P (Y = y)zy,

the common p.g.f. of Yt’s, t ≥ 1. Recalling the well known formula for the
p.g.f. of a random sum of i.i.d. r.v. (see Feller[9]), the p.g.f. of SL equals

PSL
(z) = PL (PY (z)) , (5)

while the mean and the variance of SL, are given by

E(SL) = E

(
L∑
t=1

Yt

)
= E(L)E(Yt),

V(SL) = V

(
L∑
t=1

Yt

)
= E(L)V(Yt) + (E(Yt))

2V(L).
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Once the p.g.f. PSL
(z) is available, by using the well known formula

fSL
(t) = P (SL = t) =

1

t!

dt

dzt
(E(zSL))

∣∣∣∣
z=0

,

we can numerically determine the probability mass function (p.m.f.) of SL, for
given values of the parameters. In practice, this can be easily accomplished
by the use of appropriate mathematical software (e.g. by using the function
SeriesCoefficient of Wolfram Mathematica).

Apart from the above mentioned approach, Eisele[8] obtained recursive
schemes for the p.m.f. of the r.v. SL when Y1, Y2, . . . is a sequence of positive
valued IID r.v. (discrete or continuous) with common p.m.f. fY (t) and L is a
discrete r.v. having a phase-type distribution of order d, i.e., L ∼ PHd(q,Q).
The recurrence schemes of Eisele[8] are making use of two sets of coefficients
that are computed from the d × d matrix Q. The first set {b1, b2, . . . , bd} is
simply the set of coefficients of the characteristic polynomial of Q, i.e.,

det(xId −Q) = xd +

d∑
i=1

bix
d−i,

while the second sequence {a1, a2, . . . , ad} can be computed through {b1, b2, . . . , bd}
and the p.m.f. fL(`) = P (L = `) of r.v. L, via the following formulas

a1 = P (L = 1), a` = P (L = `) +
`−1∑
i=1

biP (L = `− i), ` ∈ {2, . . . , d}.

For more details, see also Koutras and Eryilmaz[14] and Koutras et al.[16]. As
Eisele[8] indicated, having at hand the sets of coefficients {a1, a2, . . . , ad} and

{b1, b2, . . . , bd}, the p.m.f. of the r.v. SL =
∑L
t=1 Yt, where L ∼ PHd(q,Q)

and Y1, Y2, . . . is a sequence of positive valued IID r.v. independent of L, can
be easily reproduced through the recursive scheme

fSL
(t) = P (SL = t) =

min(d,t)∑
j=1

ajf
∗j
Y (t)−

min(d,t−1)∑
j=1

bj

(
t−1∑
u=1

P (SL = u)f∗jY (t− u)

)
,

for t ≥ 1. The notation f∗jY (t) is used for the p.m.f. of the j-th convolution of
Y1.Y2, . . . , Yj , i.e.,

f∗jY (t) = P

(
j∑
i=1

Yi = t

)
, j = 1, 2, . . . .

Finally, when the r.v. Y1, Y2, . . . follow a phase-type distribution of order c,
i.e., Yt ∼ PHc(ρ,M), the p.m.f. fL(`), can alternatively be evaluated by the
aid of the exact formula

fSL
(t) = P (SL = t) = σ′Σt−1(Icd −Σ)1, (6)
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where
σ = ρ⊗ q(Id − αQ)−1,

Σ = M⊗ Id + rc · ρ′ ⊗ (Id − αQ)−1Q,

and α = 1−ρ′1, rc = (Ic−M)1 (the notation A⊗B represents the Kronecker
product of two matrices A and B). Especially, for the case of IID geometric
r.v. Y1, Y2, . . ., formula (6) reduces to (see Koutras and Eryilmaz[14])

fSL
(t) = P (SL = t) = θe′1Σ

t−1(Id −Q)1,

since the geometric distribution is a discrete phase-type distribution of order
c = 1.

Clearly, combining the results in the present subsection with the ones in
Subsection 3.1 we can deduce the exact compound run length distribution of
the compound r.v. SL =

∑L
t=1 Yt, for the Poisson charts described earlier in

Subsections 2.1-2.2. For the case of the c : 1/1 chart, when Yt ∼ Ge(θ), it is
not difficult to see that SL ∼ Ge(θβ), since the p.g.f.’s of Y and L are PY (z) =
θz/(1− (1− θ)z), PL(z) = βz/(1− (1−β)z) respectively and taking advantage
of Equation (5), we may readily verify that PSL

(z) = θβz/(1− (1− θβ)z).
Also, let us consider for illustrative purposes the case of the upper one-

sided c : 3/4 chart. Its run length properties are obtained by using, along with
Equations (1)-(4), the following transition probability matrix P

P =

(
Q r
0′ 1

)
=



1− p p 0 0 0 0 0
0 0 p 1− p 0 0 0
0 0 0 0 0 1− p p

1− p 0 0 0 p 0 0
0 0 0 1− p 0 0 p

1− p 0 0 0 0 0 p
0 0 0 0 0 0 1


,

where p is the probability that a single point falls above UCL. Thus, for
µ = µ1, we have

p = P (Xi > UCL) = 1− FP (UCL |µ1 ).

The entries of P are obtained by directly applying the Markov chain technique
of Brook and Evans[5] (see also Rakitzis et al.[21])

In the above notation, Q(6×6) is the matrix of the transition probabilities
between the transient states of the chain, vector r(6×1) equals r = 1 − Q1
with 1(6×1) = (1, 1, 1, 1, 1, 1)′, whereas q(6×1) = (1, 0, 0, 0, 0, 0)′ is the vector of
initial probabilities associated with the transient states of the Markov chain.
The initial state of the Markov chain is state 1.

Next, it is not difficult to verify that the Eisele’s coefficients associated with
the run length r.v. L of the c : 3/4 chart are given by

b1 = p−1, b2 = p(p−1), b3 = 0, b4 = −p2(1−p)2, b5 = 0, b6 = −p3(p−1)3,

and

α1 = 0, α2 = 0, α3 = p3, α4 = 2p3(1−p), α5 = p4(p−1), α6 = −p4(1−p)2.
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Thus, the p.m.f. of SL for the c : 3/4 chart may be obtained by the aid of the
following recursive scheme for t ≥ 7:

fSL
(t) = p3f∗3Y (t) + 2p3(1− p)f∗4Y (t) + p4(p− 1)f∗5Y (t)− p4(1− p)2f∗6Y (t)

−(p− 1)

(
t−1∑
u=1

fSL
(u)f∗1Y (t− u)

)
− p(p− 1)

(
t−1∑
u=1

fSL
(u)f∗2Y (t− u)

)

+p2(1− p)2
(
t−1∑
u=1

fSL
(u)f∗4Y (t− u)

)
+ p3(p− 1)3

(
t−1∑
u=1

fSL
(u)f∗6Y (t− u)

)

where

f∗jY (y) =

(
y − 1

j − 1

)
θj(1− θ)y−j , y = 0, 1, . . . .

The initial conditions needed to launch the scheme are the following ones:

fSL
(0) = fSL

(1) = fSL
(2) = 0,

fSL
(3) = θ3p3, fSL

(4) = 3(1− θ)θ3p3 + 3(1− p)p3θ4,

fSL
(5) = 3θ3p3(2− 4θp− (1− p(p+ 2))θ2),

fSL
(6) = θ3p3(10− 30θp− 15θ2(1− p(p+ 2)) + (8− p(7 + p(p+ 10)))θ3).

The distribution of SL for the c : 2/3 and c : 4/5 charts can be similarly
derived. It is worth mentioning that for the c : 2/3 chart, the distribution of SL
has also been studied by Koutras et al.[16] while the form of matrix Q in case
of the c : 4/5 chart can be found in Bersimis et al.[4]. Further details are left
to te reader. Generally speaking, given the values of r and m, one can write
down the form of matrix Q (by applying the Markov chain techique) and with
the aid of appropriate software (e.g., Wolfram Mathematica) can numerically
evaluate the theoretical properties of the SL distribution, by using either the
recurrsive formulas or the matrix representation.

4 Numerical Results

In the present section we evaluate the performance of the control charts in-
troduced in Subsections 2.1-2.2 under various IC scenarios. We consider as IC
mean µ0 ∈ {5, 10, 15} while θ ∈ {0.25, 0.50, 0.75, 1.0}. The case θ = 1 is in fact
describing the case when the time between the successive inspections is very
short and can be ignored.

For the statistical design of the charts, we determine the appropriate UCL
value in order to have the desired IC performance, in terms of the expected
value E(SL) for µ = µ0. This expected value is the average time to signal
(ATS), i.e., ATS = E(SL). For an IC (resp. OOC) process, we will denote
it as ATS0 (resp. ATS1). Thus, we want to have a prespecified ATS0 value.
For illustrative purposes, we considered for all the control charts, the desired
ATS0 value to be around 500, i.e., ATS0 ≈ 500. Any other value can be used.
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µ0 θ UCL 5% 10% 25% 50% 75% 90% 95% ATS SDTS

5 0.25 10 15 31 84 203 405 672 874 292.07 291.57
0.50 11 19 39 106 254 508 844 1098 366.76 366.26
0.75 12 34 70 190 458 915 1520 1978 660.44 659.94
1.00 12 26 53 143 343 686 1140 1463 495.33 494.83

10 0.25 18 29 59 160 386 771 1281 1666 556.60 556.10
0.50 19 30 61 167 401 802 1332 1733 578.98 578.48
0.75 19 20 41 111 268 535 888 1155 385.99 385.49
1.00 20 33 67 181 437 873 1449 1885 629.62 629.12

15 0.25 24 19 38 103 248 496 824 1072 358.27 357.77
0.50 26 31 64 174 419 837 1390 1808 603.88 603.38
0.75 26 21 43 116 279 558 926 1205 402.59 402.09
1.00 27 30 62 168 404 808 1341 1745 582.82 582.32

Table 1. The IC distribution of the Time to Signal for the c : 1/1 chart

In the following Tables 1-4, we present the IC statistical design of the c : 1/1
chart (Table 1), the c : 2/3 chart (Table 2), the c : 3/4 chart (Table 3) and
the c : 4/5 chart (Table 4). Also, we provide the percentile points 100f%,
f ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95} (in the respective columns) as well
as the IC mean and standard deviation for the distribution of the time to
signal SL in the columns entitled “ATS” and “SDTS”, respectively. It is
worth mentioning that due to the discrete nature of the process, it is not
always possible to achieve the desired ATS0 value. Therefore, in Tables 1-4,
the actual IC ATS value is as close as possible to 500.

From Tables 1-4 we notice that for some cases the IC ATS is above the

µ0 θ UCL 5% 10% 25% 50% 75% 90% 95% ATS SDTS

5 0.25 8 31 58 150 352 698 1156 1502 505.28 872.15
0.50 8 16 29 75 176 349 578 751 252.64 436.07
0.75 9 39 77 206 493 984 1633 2124 710.63 1229.76
1.00 9 29 58 155 370 738 1225 1593 532.97 531.06

10 0.25 14 23 42 104 243 480 793 1030 347.57 599.06
0.50 15 27 53 138 328 654 1084 1409 472.49 816.81
0.75 15 18 35 92 219 436 722 939 314.99 544.54
1.00 16 39 79 211 507 1011 1679 2183 730.11 728.19

15 0.25 20 23 42 105 245 485 802 1041 351.31 605.53
0.50 21 24 45 118 280 556 921 1198 401.91 694.56
0.75 22 37 73 195 467 932 1546 2011 672.85 1164.33
1.00 22 28 55 147 350 699 1159 1508 504.64 502.73

Table 2. The IC distribution of the Time to Signal for the c : 2/3 chart

desired value, while for the rest is below. This fact is attributed to the discrete
nature of the process. Thus, no specific trends can be identified. Also, as
it was expected, the distribution of the SL in all the examined cases is very
skewed. Therefore, the additional use of other performance measures (e.g.,
percentile points) is necessary. From the comparison with the case θ = 1 it is
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µ0 θ UCL 5% 10% 25% 50% 75% 90% 95% ATS SDTS

5 0.25 7 49 91 231 543 1076 1780 2313 778.72 1343.44
0.50 7 25 46 113 271 538 890 1156 389.36 671.72
0.75 7 17 31 77 181 358 593 770 259.57 447.81
1.00 7 13 23 58 136 269 445 578 194.68 191.85

10 0.25 13 48 87 222 520 1030 1705 2215 746.03 1286.84
0.50 13 24 44 111 260 515 852 1107 373.02 643.42
0.75 13 16 29 74 173 343 568 738 248.68 428.95
1.00 14 39 77 204 487 972 1612 2096 701.67 698.72

15 0.25 18 27 46 108 248 486 801 1039 353.18 606.67
0.50 19 29 54 138 324 643 1065 1384 465.35 803.32
0.75 19 19 36 92 216 429 710 922 310.23 535.54
1.00 20 39 78 207 495 988 1638 2131 710.30 713.25

Table 3. The IC distribution of the Time to Signal for the c : 3/4 chart

µ0 θ UCL 5% 10% 25% 50% 75% 90% 95% ATS SDTS

5 0.25 6 42 72 174 401 789 1301 1689 572.43 984.29
0.50 6 21 36 87 200 394 650 844 286.22 492.14
0.75 6 14 24 58 134 263 433 562 190.81 328.10
1.00 6 11 18 44 100 197 325 421 143.11 139.46

10 0.25 11 25 39 84 184 356 583 755 260.39 444.27
0.50 12 30 53 134 312 617 1021 1326 447.20 770.88
0.75 12 20 36 89 208 411 680 884 298.13 513.92
1.00 12 15 27 67 156 309 510 662 223.60 219.88

15 0.25 17 37 62 147 335 657 1083 1405 477.70 820.30
0.50 18 45 84 217 513 1019 1687 2193 736.83 1272.43
0.75 18 30 56 145 342 679 1125 1462 491.22 848.29
1.00 18 22 42 109 257 509 843 1096 368.42 364.62

Table 4. The IC distribution of the Time to Signal for the c : 4/5 chart

not difficult to see that a smaller value for the UCL is necessary, in order to have
(approximatelly) the same ATS0 value. This fact also reveals that if someone
uses the UCL value obtained in case θ = 1 when the intermediate times cannot
be ignored (i.e., when θ ∈ (0, 1)) then the actual time until an OOC signal will
be longer while the two distributions will be much more different, as well.
This can be confirmed from the values of the percentile points. Consider, for
example, the case µ0 = 5 for the c : 3/4 and c : 4/5 charts. Also, it is not
difficult to verify that for the same values of the design parameters, the ATS
for θ 6= 1 is 1/θ times the ATS for 0 < θ < 1 or, equivalently, E(SL) = E(L)/θ.

Note also that the SDTS is much larger than the ATS when 0 < θ < 1,
because considering geometrically distributed times between consecutive sam-
ples adds variability to the TS. Practitioners should have in mind that when
adopting a chart with a larger IC (resp. OOC) SDTS, there will be larger
probabilities of large deviations from the large (resp. small) IC (resp. OOC)
ATS, thus increasing the probability of having observations beyond UCL much
sooner or much later than expected. Therefore, in that case percentile points
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δ 1/1 2/3 3/4 4/5

1.0 385.99, 385.49 314.94, 544.54 248.68, 428.95 298.13, 513.92
268, 1155 219, 939 173, 738 208, 884

1.1 143.53, 143.03 95.91, 165.16 72.77, 124.43 79.95, 136.25
100, 429 67, 283 51, 211 57, 231

1.2 62.66, 62.16 38.43, 65.69 30.00, 50.51 32.10, 53.60
44, 187 27, 111 22, 84 23, 88

1.3 31.25, 30.74 19.17, 32.41 15.99, 26.39 17.26, 28.10
22, 93 14, 54 12, 42 13, 44

1.5 10.69, 10.17 7.65, 12.60 7.54, 11.98 8.64, 13.43
8, 31 6, 19 6, 17 7, 18

1.7 5.06, 4.53 4.58, 7.39 5.28, 8.18 6.44, 9.77
4, 14 4, 10 5, 10 6, 11

2.0 2.52, 1.95 3.20, 5.08 4.31, 6.59 5.57, 8.36
2, 6 3, 6 4, 7 5, 8

UCL 19 15 13 12

Table 5. Performance measures for runs rules charts for µ0 = 10, θ = 0.75

must be used in order to have a more clear picture of control chart’s perfor-
mance in terms of SL.

Numerical comparisons between the schemes we studied are given in Tables
5 and 6. In order to have a fair comparison, the IC ATS values of all schemes
were chosen to be as close as possible to the IC ATS value of the c : 1/1 chart.
However, due to the discrete nature of the data, this was not feasible for all the
competitive charts and thus, the results should be interpreted with caution.
Note also that the desired ATS0 is no longer ≈ 500 but the UCL values were
re-determined (where necessary) in order to have a similar IC performance for
the most of the Poisson charts. For a shift δ ∈ {1.0, 1.1, 1.2, 1.3, 1.5, 1.7, 2.0} we
provide the ATS, SDTS values (first row) as well as the median and the 95th

percentile point (second row) of the time to signal distribution, in two different
cases: For θ = 0.75, µ0 = 10 (Table 5) and θ = 0.25, µ0 = 15 (Table 6).

For larger shifts (i.e. δ > 1.5), either the c : 2/3 or the c : 1/1 chart attain
the lowest ATS value. Also, the c : r/m charts outperform the c : 1/1 charts
for small shifts (i.e. δ ≤ 1.5). Also, as δ increases, the ATS value tends to the
value r/θ (for the c : r/m charts).

5 Conclusions

In this work, we studied the compound run length distribution of various Pois-
son control charts. By using the fact that the exact run length distribution L
of each chart is a discrete phase-type distribution, we illustrated how one can
compute the exact distribution of the compound r.v. SL =

∑L
t=1 Yt, where

Y1, Y2, . . . are IID geometric r.v. with parameter θ. The statistical design of
the examined schemes was given under various IC scenarios, while comparisons
between the different control charts were given, as well. Moreover, the differ-
ences between the proposed and the classical setup, i.e., when the intermediate
times are not taken into account, were also highlighted.
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δ 1/1 2/3 3/4 4/5

1.0 385.27, 357.77 351.31, 605.53 353.18, 606.67 477.70, 820.30
248, 1072 245, 1041 248, 1039 335, 1405

1.1 131.38, 130.88 108.17, 184.74 102.76, 173.56 123.88, 208.37
91, 393 77, 314 74, 291 90, 348

1.2 58.60, 58.10 46.73, 78.66 45.59, 75.10 53.13, 86.60
41, 175 34, 131 34, 121 40, 138

1.3 30.69, 30.19 25.95, 42.93 27.02, 43.37 31.73, 50.11
21, 91 20, 69 21, 66 26, 75

1.5 12.26, 11.75 13.10, 21.09 15.88, 24.59 19.66, 29.85
9, 36 11, 32 14, 34 18, 38

1.7 7.07, 6.55 9.66, 15.34 13.11, 20.07 16.95, 25.46
5, 20 8, 22 12, 26 16, 31

2.0 4.75, 4.22 8.30, 13.12 12.16, 18.58 16.12, 24.18
3, 13 7, 18 11, 24 15, 29

UCL 24 20 18 17

Table 6. Performance measures for runs rules charts for µ0 = 15, θ = 0.25

Finally, it goes without saying that this setup can be used when the r.v. X
has any other discrete distribution or when the r.v. Y has a negative binomial
distribution or any other discrete probability model, suitable for describing
intermediate times. It should be stressed that the distribution of SL can be
derived in a similar manner, for any control chart for which its exact run length
distribution is a discrete-phase type one (e.g. a CUSUM one).
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Abstract 

This study was applied to the European Nordic countries (Denmark, Finland, Iceland, 

Norway and Sweden) which are referred by the European Commission as countries with 

high innovation performance.  
The analysed panel data concern the period between 1999 and 2014 and it was studied 

how different inputs of innovation affect the different outputs.  
The "innovation" variable was constructed using factor analysis, given that the 

Organisation for Economic Co-operation and Development considers that innovation is 

the result of a set of macro measures common to different countries. The factor obtained 

through the exploratory factor analysis represents the results of innovative activity and 

economic performance. 

It was analysed how the quality of human capital, the research and development efforts 

carried out by different economic agents affect the results of innovation. It was possible 

to conclude that countries with a higher proportion of applied research and more 

cooperation between researches carried out by companies, universities and the 

government lead to better economic results and to higher outcomes of intellectual 

property. 

 

Keywords: Innovation, Panel Data, Regression Models, Factorial analysis. 

1 Introduction 

Innovation is a central theme in current literature and the recognition of its 

importance has increased over the last few decades. As Porter [19] has pointed 

out innovation has become the challenge that defines global competitiveness. 

Panel data refers to a sectional and temporal sample, merging an approach of 
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time series with a cross-section approach Baltagi [1]. The use of panel data 

analysis allows us to analyse several individuals, in this case the Nordic 

countries. 

The choice of these countries is related with the fact that they are references in 

the field of innovation European Commission [10]. European Innovation 

Scoreboard (EIS) and the Global Innovation Index (GII) group different 

information for the construction of a single indicator of innovation. Therefore, 

Factor Analysis was used to construct a representative factor that can be 

considered as the output of the innovative activity.  

The main purpose of this investigation is to determine how different sources and 

approaches of research, as well as the quality of human capital, contribute to the 

outputs of innovation. 

2 Innovation 

Joseph Schumpeter mentioned the importance of innovation as a form of 

"creative destruction" that leads to value creation. Schumpeter [23] pointed out 

that this "weed" goes beyond the simple idea of creating something new, since it 

can also lead to the creation of new markets. 

According to the Oslo Manual 2005 [16] innovation is the implementation of a 

new or significantly improved product (good or service), process or method of 

marketing, or a new organizational method in business practices, workplace and 

external relations. Cunha et al [6] specify organizational innovation as being a 

way of establishing new agreements with clients or suppliers, new ways of 

providing after-sales service, new modus operandi for the relationship with 

customers, among other practices. 

Related to innovation are the concepts of change, invention and creativity 

Drucker [7]. And as said by Schumpeter [23] it is possible to distinguish: 

invention, innovation and diffusion. Teixeira [25] points out that innovation is a 

process, composed by three phases: Invention (creation of something new that 

results from the creation or acquisition of knowledge); Innovation 

(transformation or application of new knowledge) and Diffusion (acceptance 

and adoption of innovation, recognizing its economic utility). 

Innovation is a complex process, and it is also due to the many ways in which it 

is represented. As mentioned by Sarkar [22] it is a process that affects the 

different organizational areas. Depending on the degree of novelty of the results, 
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Description

1st Generation 

(1950 to 1960)
Technology push

Sequential and linear process in which the market

functions as a receiver of research results developed in

universities, considering that basic research is sufficient.

2nd 

Generation 

(1960 to 1970)

Market Pull

Sequential and linear process where needs are

opportunities to explore, initiating the process of creating

ideas, directing R&D efforts.

3rd 

Generation 

(1970 to 1980)

Coupling model

Continuous sequential process with interconnected steps

that relate different sectors of the company to the

scientific community and to other economic agents.

4th 

Generation 

(1980 to 1990)

Integrated 

business 

processes

Parallel process, with integrated development where

production and sales are integrated to work

simultaneously in the development of products / services.

5th 

Generation 

(after 1990)

System integration 

& networking

Process with vertical and horizontal integration within

companies, broadening the horizons of collaborative

research.

Innovation models

innovation can be classified as: Incremental (associated with gradual 

improvements), Radical (referring to the creation of something new) and 

Disruptive (it can originate a new industry or create a symbiosis between 

unrelated technologies until then). 

Innovation can have different degrees of novelty, it can also be differentiated 

through its "object" and as mentioned in the Oslo Manual [16] there are four 

types of innovation: product, process, organizational and marketing. 

As mentioned there are different forms and types of innovation. This is a 

process that affects several organizational areas, so there is an evolution in the 

way that this process can be developed. 

Table 1: Description of innovation models 

Source: adapted from Campos & Valadares [3], Rothwell [21] and Teixeira [25] 

According to the Oslo Manual [16] innovation goes beyond technological 

development; however, this remains the feature that has the greatest impact on 

organizations as well as on society. These models show the importance of 

research for innovation success and, per Castilho, Borges and Pereira [4], 

research is the development of a research based on a set of procedures that seek 

solutions to certain problems. This is a generic concept; however, it is sure that 

innovation influences and is influenced by two types of research: basic 

(fundamental) and applied. 

As referred by the World Intellectual Property Organization (WIPO) [5], 
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measures of innovation can be ambiguous, given that research is essential for 

innovative activity results. That is, the efforts employed essentially involve 

R&D, and research is the cornerstone of such efforts. 

Basic research is mostly performed at universities and their contribution is 

mainly to the scientific knowledge, while applied research is concerned on 

solving concrete "problems". In this way, applied research responds more 

effectively to the purpose of innovation Campos & Valadares [3]. According to 

the European Commission [17], research has increasingly and significantly 

contributed to results of the innovative activity, it is required to invest in R&D 

and this can be done by different agents: Companies, Universities and 

Government. 

The cooperation of different agents enable the creation of synergies, leveraging 

the sharing of information, technology and results as we can read in the Oslo 

Manual [16]. This systemic view of innovation was approached by Etzkowitz & 

Leydesdorf [12] by the Triple Helix model that considers the coordination 

between the different mechanisms and institutions to be fundamental, as shown 

in the following figure. 
 

Fig. 1: Triple Helix Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: adapted from Leydesdorff & Ivanova [13] 

As shown in figure 1, this relationship is considered by Etzkowitz [9] through 

three dimensions: relationship between each axis in function of the economic 

mission, mutual influence between them and creation of a new layer of 

organizations that result from the interaction of these three agents. Therefore, 

the investment in R&D programs carried out by each one of them must consider 

the research that is carried out by the others. 
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Since innovation is so important, it is necessary to find the best way to evaluate 

it, to take measures to promote it in a sustainable way. Referred to by the 

OECD, the collection of data on scientific and technological capacities at 

national level has become a priority. In 1963 the OECD developed a manual - 

Frascati Manual - which established a set of procedures for collecting data on 

human resources and R&D expenditures, so that it would be possible to assess 

and compare innovation between countries. 

In 1999, the OECD had 45 innovation indicators and currently has about 200 

innovation references to analyse scientific and technological practice, such as: 

international mobility of researchers and scientists; growth of the information 

economy; innovation by regions and industries; innovation strategies; among 

other things OECD [17] 

The European Union uses a set of tools to collect information on innovation: 

- Community Innovation Survey (CIS) - required for the EU member States, 

based on the conceptual framework set out in the Oslo Manual, as well as 

Eurostat methodological recommendations. 

- European Innovation Scoreboard (EIS) - the European Innovation Scoreboard 

was developed at the European Summit in Lisbon in 2000. Its purpose is to 

measure the innovation performance of EU countries and their comparison with 

other countries.  

As mentioned by Godinho [11] and Lhuillety, Raffo & Hamdars-Livramento 

[14] there are many ways in which innovation can be measured and there is no 

single indicator or measure that can reflect the full potential and innovative 

outcome of a country. In this way, the challenge is even greater because it is 

necessary to articulate correctly the different measures of innovation. 

Similarly, Roszko-Wojtowicz & Biateck [20], using multidimensional statistics, 

concluded that the set of 25 indicators used by the EIS can be effectively 

reduced. However, they draw attention to the fact that it includes inputs and 

outpost of innovation, which makes it difficult to analyse which inputs 

contribute the most to innovation success. In the same sense, other authors such 

as Lhuillery, Raffo & Hamdan-Livramento [14] point out the importance of 

distinguishing these two components of innovation. In the same way, Sarkar 

[22] reinforces the idea of a systemic approach that distinguishes input, process 

and output, allowing a better understanding not only of the innovation process 

but also of the determinants of its success. 
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3 Methodology 

The data collected (1999 to 2014) refers to the main Northern European 

countries, namely the Nordic countries: Denmark, Finland, Iceland, Norway and 

Sweden. The variables used were collected through the World Bank and the 

OECD. 

Using the Exploratory Factor Analysis (EFA), a single factor was obtained, 

considered representative of the results of the innovation efforts. The 

construction of this factor included the following variables: Registration of 

patents (PR) and trademarks (TR) made by residents, Exports of high 

technology in the pharmaceutical industry (EHTFI) and in the aerospace 

industry (EHTAI). 

The relational structure of the considered variables was evaluated by the EFA on 

the matrix of correlations, with extraction of the factors by the method of 

principal components. The retained factor had an eigenvalue greater than 1, in 

agreement with Screen Plot and the percentage of variance retained. The use of 

the different criteria allows a higher robustness in the retention of factors. 

To evaluate the validity of EFA, the KMO criterion was used, with a 

KMO=0,729 and the Bartlett Equilibrium test has a p-value very close to 0, one 

can concludes that AFE is adequate and that the variables are significantly 

correlated. 

Henson & Roberts [8] sustain that there is no consensus regarding the minimum 

cumulative variance acceptable for all the research areas. As mentioned by 

Taherdoost, Sahibuddin & Jalaliyoon [24] in natural sciences the admissible 

values are higher to 95%, while in humanities, values between 50% and 60% are 

already acceptable. It was considered that the 72% obtained are acceptable to 

proceed with the analysis.  

The obtained factor was: 

^

0,296 0,331 0,253 0,295INNOV PR TR EHTFI EHTAI     

For each econometric model presented was made a panel diagnosis, to 

determine the most suitable model. Through the results of F-Statistic, the 

Breusch-Pagan test and the Hausman test, it was found that, in all cases, the 

fixed effects model is the most adequate Pesaran [18]. 
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The presented models and analysed in section 4 aim to answer the main question 

of this study: how do different sources of innovation contribute to the 

entrepreneurial and commercial outputs of innovation? 

The variables used can be grouped as follows: 

- Business and commercial results of innovation: Patent registration (PR) and 

trademarks (TR) made by residents and exports of high technology 

goods/services in the pharmaceutical industry (EHTFI) and aerospace (EHTAI). 

This set of variables refers to the factor created using AFE and which is 

representative of the business and commercial outputs of innovation Roszko-

Wojtowicz & Biateck [20] 

- Human capital: higher education in engineering (HEE), higher education in 

business, law sciences (HEBL) and vocational programs (VP). This set of 

variables relates to the quality of human capital Valente [26] 

- Research and Development: R&D expenditure by companies (BERD), 

universities (HERD) and government (GOVERD), number of researchers (RES) 

and scientific publications (SP). These variables reflect innovation efforts 

European Commission [10] 

4 Results  

The results of the econometric models obtained are analysed here. Their analysis 

is complemented with descriptive statistics of some of the considered variables, 

comparing the countries under study. In the model (1), R&D investments made 

by companies contribute positively to innovation, contrary to the investments 

made by the universities and the government, which, although not statistically 

significant, show a negative sign. Another research perspective (researchers and 
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scientific production), show that not all types of research appear to have a 

positive impact on innovation outputs. About human capital, the contribution of 

training in business and law sciences has a positive impact in achieving business 

and commercial results of innovation. The analysis to the model (1), not being 

conclusive, raises the interest to try to verify if the contribution of the 

explanatory variables is different through the different innovation outputs 

considered. 

(1) INNOV (2) PR (3) TR (4) EHTFI (5) EHTAI

0,564057*** 411,014** 433,115 −57,6046 518,667***

(0,168618) (193,269) (685,198) (948,616) (188,557)

−0,487268 −1690,37*** −1211,57 9654,62*** −632,148*

(0,328954) (378,529) (1336,74) (1857,92) (369,301)

−0,536596 −504,28 5456,20*** −2206,12 −1198,35**

(0,490689) (555,119) (1993,97) (2724,68) (541,587)

−0,209773 2964,19** −10884,10** −15313,5** 1658,23

(1,04808) (1195,02) (4258,98) (5865,50) (1165,89)

3,13243*** −27,3018 15305,0*** 559,692 1546,51

(1,01792) (1152,79) (4136,45) (5658,20) (1124,69)

0,0110596* −13,0432* 73,9348*** 74,6904* 1,22994

(0,0065235) (7,50171) (26,5092) (36,8204) (7,31883)

0,00318607 9,32919 −79,5665 348,854** −16,5242

(0,0243858) (27,5731) (99,0943) (135,336) (26,9010)

−6,85333 9146,21* −56188,5*** −23028,8  −1675,69

(4,46935) (5115,01) (18161,7) (25105,8) (4990,31)

−1,83473** 1718,95* −997,705 −6861,26 −337,428

(0,788494) (904,877) (3204,13) (4441,38) (882,818)

RES

SP

cons 

INNOV: F(12,33) = 254,26*** , PR: F(12,34) = 128,37*** , TR: F(12,33) = 140,56***

*** p<0.01, ** p<0.05, * p<0.1 

EHTFI: F(12,34) = 136,70*** , EHTAI: F(12,34) = 27,82***

Number of observations: INNOV = 46 , PR = 47 , TR = 46 , EHTFI = 47 , EHTAI = 47

INNOV: R
2
=0,9893, INNOV:     =0,9870, PR: R

2
=0,9784, PR:     =0,9739, TR: R

2
=0,9808, TR:     =0,9766 

EHTFI: R
2
=0,9797, EHTFI:      =0,9751, EHTAI: R

2
 =0,9076, EHTAI:      =0,8881

(Standard errors in parenthesis)

HERD

GOVERD

HEE

HEBL

VP

Dependent variables: Model (1) - INNOV: Factor obtained through EFA; Model (2) - PR: Number of

patent registrations submitted by national applicants through the Patent Cooperation Treaty procedure or

with a national patent office; Model (3) - TR: Number of trademark applications made by national

applicants in a particular national intellectual property office; Model (4) - EHTFI: Volume of exports in the

pharmaceutical industry, in millions of USD; Model (5) - EHTAI: Volume of exports in the aerospace

industry, in millions of USD.

Explanatory variables: BERD, HERD and GOEVRD: Expenditures made by firms, universities and

government in R&D, as% of GDP; HEE: Proportion of people with higher education in Engineering and

Industry and HEBL: Proportion of people with higher education in Business and Law Sciences (relative to

total of people with higher education); VP: Percentage of vocational training programs in secondary and

post-secondary (non-tertiary) education based on programs geared specifically to a given class of

professions or trades; RES: Number of researchers per 1000 persons employed; SP: Number of publications 

in scientific journals, per million dollars of GDP, corresponding, according to the Policy Platform for

Innovation developed by the OECD and World Bank, a measure of the quality of scientific publications.

BERD
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Models (2) and (3) are related to intellectual property, with patents (2) being 

more associated with technological development, while trademark registration 

(3) has a greater link with the commercial component developed by Companies. 

Analysing the variables associated with R&D, the expenses of companies in 

R&D programs contribute positively in both models, being statistically 

significant when it comes to patent registration (2). Contrary, the impact of 

university spending is negative in both models. This can be justified by the fact 

that essentially applied research is carried out in companies seeking to create / 

improve products, services or processes (2) and to improve the competitive 

position in current or new markets (3). In the universities, the research done is 

mainly of the basic research, and can contribute to intellectual property, but not 

directly, as referred by the National Science Board (NSC) [15]. 

According to the EIS [10], R&D expenditures made by the Government aim to 

promote the innovative activity by the private sector and its contribution to 

innovation outputs may not be direct. Therefore, the negative coefficient of the 

GOVER variable of model (2) was expected. However, when it comes to 

trademark registration, Government expenditures have a positive impact that 

may be associated with its contribution to promote entrepreneurship and the 

registration of trademarks is encouraged both nationally and internationally - 

through the European Trademarks and Designs Network - a European global 

network of trademarks and designs. 

To complement the analysis of the impact of research on innovation outputs, 

there are two explanatory variables to consider: RES (researchers) and SP 

(scientific publications). In this case, the coefficients associated to these two 

variables are positive in the model (2) and negative in the model (3), which 

means that research done in the Nordic countries seeks to promote technological 

development. In other words, there is a higher balance between fundamental and 

applied research, which leads to positive results in the field of technological 

development Bentley, Gulbrandsen & Gulbrandsen [2]. These results would be 

expected, given that the Nordic countries have been leaders in the innovative 

activity over the last 13 years EIS [10]. 

Regarding the quality of human capital, the proportion of people with higher 

education in engineering (HEE) make a positive contribution to patent 

registration (2). This observation it is in harmony with the authors Bentley, 

Gulbrandsen & Gulbrandsen [2] who emphasized engineering as being the 

academic area whose proportion of applied research is higher. It was verified the 
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opposite on Trademark registration (TR), since the contribution of the variable 

HEE is negative. However, the impact of the proportion of people with higher 

education in business and law (HEBL) is positive, which can be justified by the 

fact that trademark registration is closely associated with commercial aspects. 

The variable VP has a negative coefficient in model (2) and a positive one on 

the model (3), which shows that vocational programs are more appropriate to 

certain business activities as the commercial area. 

Models (4) and (5) are related to commercial results of the innovative activity 

EIS [10]. Were selected two sectors of activity as a way of comparing the 

different contributions of the explanatory variables considered.  

It is important to highlight the impact of R&D expenditures thru the universities 

that presents a positive coefficient on the contribution of export of goods in the 

pharmaceutical industry sector (4). It is possible to reaffirm the high 

performance of the selected countries, which appear to have an adequate 

cooperation between applied and basic research. In the same sense, Bentley, 

Gulbrandsen & Gulbrandsen [2] had identified Norway and Finland as being 

among the 5 countries where the balance on these two types of research is 

higher. 

In both models (4 and 5), the scientific publications (SP) have a negative 

impact, which may be related to the areas that these publications respect. In the 

same sense, we have the variable RES that presents a different contribution to 

the outputs of innovation, through the areas to which these researchers are 

affected. 

As for the contribution of human capital, the proportion of people with a 

background in engineering (HEE) have a negative impact on the model (4) and a 

positive impact on the model (5). The proportion of people with a background in 

business and law sciences (HEBL) have a positive impact in both models, 

demonstrating once again that the quality of human capital influence differently 

the outputs of innovation. That is, the needs of human capital are distinguished 

by sector of activity NSC [15]. 

It is considered important to combine the analysis performed with a brief 

comparison between the selected countries. These 5 countries are considered 

leaders of innovation and strong innovators, both by the European Commission 

[10] and the Global Innovation Index [5], however there are differences among 

themselves. To make a comparison about the outputs of innovation, were used 

the dependent variables of the econometric models, having been converted per 
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the GDP (in millions de USD). 

Chart 1: Outputs of innovation per million GDP (USD) 

 

 

 

 

 

Analysing each of the dependent variables and establishing a comparison with 

the average values of the explanatory variables considered relevant in each case 

and for each country, the following conclusions are obtained: 

- Concerning the patent registration (PR), Finland (FI) and Sweden (SE) stand 

out. Based on the analysis of the model (2), company’s investments (BERD) are 

essential and these countries present averages of 2.37% and 2.45% (%of GDP) 

for Finland and Sweden. These countries are also the most outstanding in the 

proportion of people with higher education in engineering, with 0.26 (Finland) 

and 0.25 (Sweden). It should be noted that the number of researchers in Finland 

is significantly higher (around 16 researchers), while in the rest of the countries 

this figure is between 9 and 13. 

- In relation to trade mark registration (TR), Iceland (IS) stands out and as seen 

in model (3), the investments made by the government and higher education in 

business sciences and law are those who present the best contribution to this 

output of innovation. The variable GOVERD presents an average value of 0.52 

for Iceland, followed by Finland with 0.32. Likewise, it has been found that the 

HESBL is superior in this Iceland (0.41). Which shows its advantage in the 

trademark registration. 

- Pharmaceutical exports (EHTFI) shows that, Denmark (DK) is the country 

with the highest proportion of exports in relation to GDP, followed by Sweden. 

In the model (4), the variable HERD stands out and in this case the average 

R&D expenses made by the universities (HERD) is 0.70 and 0.80 in Denmark 

and Sweden respectively, being ahead of the other countries. 

- Regarding exports in the aerospace industry (EHTAI), the country that stands 

out is Iceland and, as mentioned in the analysis of the model (5), BERD, HEE 
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and HEBL are the variables that contribute most to the positive evolution of this 

variable. Not being the country that stands out with the most for investments 

made by companies in R&D (1.37% of GDP) or higher education in the areas of 

engineering and business sciences (0,49), appears to have a higher quality in the 

adequacy and channelling of the expenses incurred in innovation. 

Conclusion 

Having chosen the Nordic countries as examples in the appropriate investment 

and results of innovation, it was possible to verify that the innovation inputs 

contribute in different ways depending on the type of outputs of innovation.  

R&D investment made by companies are fundamental to the success of 

innovation and it was verified that the way these expenses are channelled should 

be done depending on the results that are intended to be achieved. However, it is 

possible to affirm that the applied research (made fundamentally by companies) 

leads to higher results. 

The number of researchers as well as the scientific publications are essential for 

the development of innovation, affecting differently the different outputs. In the 

same sense, human capital is crucial for innovation and its quality (here studied 

through higher education in engineering, business sciences and vocational 

programs) contributes in different ways to the results of innovation. 

Comparing the innovative performance of the Nordic countries, it was possible 

to verify that Sweden and Finland take a prominent position both in the results 

of the innovation and in the factors, that determine them. These countries are 

those that invest seriously in R&D made by companies, universities and the 

Government (creating synergies with companies). 

As for the number of researchers and scientific publications, the results, 

although favourable to innovation performance, were not conclusive, which 

reveals the need to study these variables but grouped by areas of research.  

In terms of human capital, Finland and Sweden are the countries with the 

highest proportions of people with higher education in engineering and business 

sciences. Nevertheless, it should be pointed out that the different areas of 

specialization contribute in different ways to innovation. 

References 

1. Baltagi, B. H. (2013). Econometric Analysis of Panel Data, 5th Edition, Willey. 

864



2. Bentley, P. J., Gulbrandsen, M. & Kyvik, S. (2015). The relationship between basic 
and applied research in universities. High Educ in Springerlink. (pp. 689-709). 

3. Campos, I. M. & Valadares, E. C. (2008). Inovação tecnológica e desenvolvimento 

económico. (Consultado a 20 de março de 2016). Disponível em 

http://www.schwartzman.org.br/simon/blog/inovacaomg.pdf.  
4. Castilho, A.P., Borges, N.R. & Pereira, V.T. (2014). Manual de Metodologia 

Científica. ULBRA. 

5. Cornell University, INSEAD & WIPO (2016). The Global Innovation Index 2016: 

Winning with Global Innovation, Ithaca, Fontainebleu and Geneva. 
6. Cunha, M. P., Rego, A., Cunha, R. C., Cabral-Cardoso, C. & Neves, P. (2016). 

Manual de Comportamento Organizacional e Gestão, 8ª Edição, Rh Editora. 

7. Drucker, P. F. (1997). Inovação e Gestão, 4ª Edição, Editorial Presença. 

8. Henson, R. K., & Roberts, J. K. (2006). Use of exploratory factor analysis in 
published research. Educational and Psychological Measurement. (vol.66, pp.393-

416).  
9. Etzkowitz, H. (2002). The Triple Helix of University - Industry - Government 

Implications for Policy and Evaluation. Science Policy Institute, SiSTER. 
10. European Commission (2016). European Innovation Scoreboard 2016, European 

Union, Belgium. 

11. Godinho, M. M. (2007). Indicadores de C&T, inovação e conhecimento: onde 

estamos? Para onde vamos? Análise Social, ISEG (Vol. 42. Pp. 239-274) 
12. Leydesdorff, L. & Etzkowitz, H. (1998). The Triple Helix as a Model for Innovation 

Studies. Science & Public Policy. (Vol. 25, pp. 195-203) 
13. Leydesdorf, L. & Ivanova, I. (2016). “Open innovation“ and “Triple Helix“ models 

of innovation: can synergy in innovation systems be measured?. Journal of Open 
Innovation. 

14. Lhuillery, S., Raffo, J. & Hamdan-Livramento, I. (2016). Measuring Creativity:  

Learning from Innovation Measurement. Economics & Statistics Series, WIPO 

15. National Science Board (NSB). (2012). Reserach & Development, Innovation and 
the Science and Engineering workforce. National Science Foundation. 

16. OECD (2005). Oslo Manual: Guidelines for collecting and interpreting innovation 

data, 3th Edition, OECD and Eurostat. 

17. OECD (2015). OECD Science, Technology and Industry Scoreboard 2015: 
Innovation for Growth and Society, OECD Publishing, Paris. 

18. Pesaran, M. H. (2015). Time series and panel data econometrics, 1th Edition, Oxford 

University Press. 

19. Porter, M. E. (2007). Estratégi e Vantagem Competitiva, Planeta Dagostini Editora. 
20. Roszko-Wójtowicz, E. & Biatek, J. (2016). A multivariate approach in measuring 

innovation performance. Journal of Economics and Business of Rijeka Faculty of 

Economics. (Vol. 2, pp. 443-479). 
21. Rothwell, P. (1994). Five generations of innovation models. International Marketing 

Review. (Vol.11, pp. 7-31). (Consultado a 15 de janeiro de 2017). Disponível em 

http://www.emeraldinsight.com/doi/abs/10.1108/02651339410057491. 
22. Sarkar, S. (2014). Empreendedorismo e Inovação, 3ª Edição, Escolar Editora. 

23. Schumpeter, J. A. (1939), Business Cycles: A Theoretical, Historical and Statistical 
Analysis of the Capitalist Process, New York: McGraw-Hill 

24. Taherdoost, H., Sahibuddin, S. & Jalaliyoon, D. (2014). Exploratory Factor Analysis; 

Concepts and Theory. Advances in Applied and Pure Mathematics (pp. 375-382). 
25. Teixeira, S. (2011). Gestão Estratégica, Escolar Editora. 
26. Valente, A. C. (2014). Inovação, Educação e Trabalho n Economia Europeia, 1ª 

Edição, Princípia Editora. 

865



 

866



_________________ 

17
th

  ASMDA Conference Proceedings, 6 - 9 June 2017, London, UK 
 

© 2017 CMSIM               

 

 

Risk-adjusted control charts with emphasis on
multivariate risk-adjusted survival time
CUSUM and EWMA control charts

Athanasios Sachlas1,2, Stelios Psarakis2, and Sotiris Bersimis3

1 Department of Statistics and Insurance Science, University of Piraeus, Piraeus,
Greece
(E-mail: asachlas@unipi.gr)

2 Department of Statistics & Laboratory of Statistical Methodology, Athens
University of Economics and Business, Athens, Greece
(E-mail: psarakis@aueb.gr)

3 Department of Statistics and Insurance Science, University of Piraeus, Piraeus,
Greece
(E-mail: sbersim@unipi.gr)

Abstract. In the last two decades, a modification of standard and advanced control
charts appeared in the bibliography to improve the monitoring mainly of medical
processes. This is the risk-adjusted control charts, which take into consideration the
varying health conditions of the patients. Biswas and Kalbfleisch (2008) outlined a
risk-adjusted CUSUM procedure based on the Cox model for a failure time outcome
while Sego et al. (2009) proposed a risk-adjusted survival time CUSUM chart for
monitoring a continuous, time-to-event variable that may be right-censored. In this
paper we have tried to present all the risk-adjusted control charts presented in the
literature. The risk-adjusted charts have been grouped into four categories: control
charts for continuous variables, control charts for attributes, time-weighted control
charts, and multivariate control charts. Finally, we present some preliminary results
on multivariate risk-adjusted survival time CUSUM and EWMA control charts.
Keywords: Control charts, Risk-adjustment, Statistical process monitoring.

1 Introduction

According to Hart et al. (2003) risk adjustment (RA) is a statistical technique
for reducing the effects of confounding factors that a patient may bring to a
health care encounter. There are broadly three categories of RA approaches
including randomization, stratification, and multiple regression models.

Benneyan and Borgman (2003) briefly discussed risk-adjusted sequential
probability ratio tests and longitudinal surveillance methods. Koetsier et al.
(2012) conducted a simulation study to evaluate the performance of risk-adjusted
control charts to monitor in-hospital mortality of intensive care unit patients.

Winkel and Zhang (2007) devoted the second part of their book on RA and
especially the sixth section on the presentation of several risk-adjusted con-
trol charts. In a same context, Zeng (2016) reviewed the main developments
concerning the two basic problems involved in RA monitoring establishing RA
models, which includes identifying the appropriate performance measures to
monitor and associated patient risk factors, constructing statistical models that
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characterize the dependency of the performance measures on the risk factors,
and change detection based on the established models, which includes esti-
mating baseline parameters of the RA models and detecting deviations from
them.

Cook et al. (2008) reviewed several RA techniques such as standardised mor-
tality ratios, risk-adjusted p chart, observed minus expected outcome (VLAD),
risk-adjusted cumulative sum (RA CUSUM), risk-adjusted sequential proba-
bility ratio test (RA SPRT), and risk-adjusted exponentially weighted moving
average (RA EWMA) charts. This overview is an introduction to the use of
RA methods to track mortality rates.

Grigg and Farewell (2004a) provided an overview of risk-adjusted charts
(the RA CUSUM, the resetting SPRT, the sets method and Shewhart chart),
with examples based on two data sets: the first consisting of outcomes follow-
ing cardiac surgery and patient factors contributing to the Parsonnet score;
the second being agesex-adjusted death-rates per year under a single general
practitioner.

Steward and Rigdon (2016) addressed the problem of risk-adjusted monitor-
ing as a change-point problem with several possible change-point models. For p
risk variables, there are 2p+1 possible change-point models, because each of the
slope parameters or the intercept in the logistic regression model can change.
Their approach generalizes previous risk-adjusted charts in that they look for
changes in any of the parameters. They adopted a Bayesian approach and found
the posterior distribution for the model (i.e., which coefficients changed), the
time of the change, and the values of the parameters for those that changed.
All three tasks are accomplished in the context of a single model.

The paper is organized as follows: Section 2 deals with risk-adjusted control
charts for continuous variables while Section 3 deals with risk-adjusted control
charts for attributes. Section 4 presents time-weighted risk-adjusted control
charts while Section 5 discusses multivariate risk-adjusted control charts. The
last section discusses several open problems on the field of risk-adjusted process
monitoring.

2 Risk-adjusted variable control charts

Alemi et al. (1996) presented a methodology for adjusting a health care orga-
nization’s control charts to reflect their patient population’s severity of illness
during different time intervals. They demonstrated that risk-adjusting expected
patient outcomes can change the assessments of the relative quality of care of-
fered by a health care organization in different time periods. According to the
authors, to risk-adjust control chart data you have to follow four steps. Firstly,
you determine the number of expected deaths after RA in each of the time pe-
riods. Secondly, you calculate the expected mortality rate for each time period,
while then you calculate the standard deviation of the expected mortality rate
for each time period. Finally, you calculate the risk-adjusted UCL and LCL
values for each time period. More specifically, to predict outcomes for each
patient a regression model which includes all the patient data is used. Once
the cases are assessed, their predictions are summed by time period to yield the
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expected number of deaths that should occur in each of the eight time periods.
Since the model only uses severity of illness variables to predict the number of
patients not discharged alive in each of the time periods, this model in effect
produces a risk-adjusted estimate of the number of deaths that should have
occurred in each time period.

Now that the number of risk-adjusted deaths has been calculated for each
time period, the next steps are to calculate the risk-adjusted expected mortality
rates

P̂i =

∑ni
j=1 Pij

ni

and the risk-adjusted standard deviations

Ŝi =

√∑ni
j=1(P̂ij(1− P̂ij))

ni

for these same time periods as well as their risk-adjusted lower control limit

LCLi = P̂i − ta/2Ŝi

and upper control limit
UCLi = P̂i + ta/2Ŝi.

In these equations,
∑ni
j=1 Pij is the expected number of deaths for a time period

and ni, is the number of cases for a time period. Here, P̂ij is the probability
that patient i in time period j dies. The risk-adjusted control limits are called
the Expected Upper Control Limit and the Expected Lower Control Limit,
respectively.

Alemi and Sullivan (2001) presented a tutorial on risk adjusted X-bar charts
and their applications to measurement of diabetes control, involving nine steps.

Hart et al. (2004) discussed the use of 3-sigma X̄ and S control charts for
continuous data that are often skewed. The key feature of these charts is their
application of risk-adjusted data in addition to actual performance data. The
resulting charts should decrease the occurrence of both type I and type II errors
as compared to the unadjusted control charts.

Zhang et al. (2012) developed a phase I risk-adjusted Shewhart control chart
for monitoring surgical performances. The risk-adjusted statistic used is shown
to be a likelihood ratio test statistic. The false alarm rate can be set as

αL = maximum

{
0.00135,

kL
Number of negative’s wt’s

}
and

αU = maximum

{
0.00135,

kU
Number of positive’s wt’s

}
for the lower- and the upper-sided chart, respectively. kL is the number
of operation cases (from the set of patients who survived) that can be re-
viewed/checked within constraints, following the idea of economic quality con-
trol while kU is the number of operation cases (from the set of patients who
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died) that can be reviewed/checked within constraints. The value 0.00135
comes from the traditional 3-sigma Shewhart control charts. Using the max-
imum of the two numbers is to ensure that the checking rate is not less than
0.135%.

The lower control limit can then be set at

LCL ≈ αL − th sample quantile of {wt|wt ≤ 0, for t = 1, 2, . . . , N}

while the upper control limit can then be set at

UCL ≈ (1− αU )− th sample quantile of {wt|wt > 0, for t = 1, 2, . . . , N}

and can be both obtained by using the bootstrap method.
Asadayyoobi and Niaki (2016) proposed a general Phase-I accelerated fail-

ure time-based risk-adjusted control chart for monitoring continuous surgical
outcomes based on a likelihood-ratio test derived from a change-point model.
Let Ti be a random variable denoting the failure time of the subject i, and
xi1, . . . , xip be the values of covariates for the same subject. The AFT model
is then

logTi = β0 + β1xi1 + β2xi2 + . . .+ βpxip + σεi,

where εi is the random disturbance term. Note that the only differences be-
tween the AFT model and the usual linear regression models are that there is a
σ before εi and that the dependent variable is logged. Define ψ(sl) as the param-
eter vector of the RA model for observations s+ 1 to l. Suppose an assignable
cause occurs at an unknown time τ , which leads to the change of the param-
eter vector from ψ(0l) = βT0 = (γT01, γ

T
02, . . . , γ

T
0K , β

T
0 )T , (in-control vector), to

ψ(τl) = βT1 = (γT11, γ
T
12, . . . , γ

T
1K , β

T
1 )T (out-of-control vector). If all the data

follow an identical distribution, i.e. ψ(0l) = ψ(τm) for all τ = u, u+1, . . . ,m−u,
then the process is in-control, where u (u > the number of coefficients) is the
minimum required sample size to estimate the parameters of the RA model.
The value of u is chosen so that at least one outcome with value 0 and one
outcome with value 1 exist among the sampled data from 1 to u and also from
m− u+ 1 to m. Then, the aim here is to evaluate the following hypotheses

H0 : ψ(0τ) = ψ(τm) −H1 : ψ(0τ) 6= ψ(τm), τ = u, u+ 1, . . . ,m− u.

ψ(0τ) or βT0 is the parameter vector of the RA model for observations 1 to τ
(before the change) and ψ(τm) or βT1 corresponds to the parameter vector after
the change.

3 Risk-adjusted control charts for attributes

Alemi and Oliver (2001) presented a step by step tutorial on the construction of
a p-chart taking into account the severity of the patients’ illness. In this chart,
both the observed and the expected rates are plotted. The expected rate of
falls is calculated by averaging the expectations regarding individual patients,
through the formula

Ei =
1

N

Ni∑
i=1

Eij ,
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where Eij is the expected fall rate of case j in time period i. The expected fall
rate can be calculated using the expected probability of falls for each patient.

Albers (2011) presented the way that information about category member-
ship can be used to adjust the basic negative binomial charts to the actual risk
incurred.

Hart et al. (2003) proposed a new class of control charts for attribute data.
The charts are either additive or multiplicative models depending on how ob-
served and risk-adjusted data are combined. These models have distinct prop-
erties and are different from standard Shewhart control charts in many aspects.
Risk-adjusted rates are obtained using multivariate logistic regression models.

The comparison of each patient’s demographic and clinical history with a
large reference population, the RA process estimates the a priori probability
of occurrence of some event for each patient. Month i will have ni of these
estimates, with their sum being the expected number of occurrences for the
month Ei. Because of the averaging methods of RA, the month-to-month
variation of the monthly Ei values tends to be much lower than that of the
observedOi values; the expected monthly counts are not binomially distributed.
To avoid any possible confusion between the distributional properties of the
observed monthly mortality count and the monthly expected mortality count
the monthly expected mortality rate (not proportion) is referred to here as
Ei/ni = rEi (where rEi is the expected rate).

Additive models work with the difference between the pOi and the rEi , i.e.
rDi = pOirEi . Because the difference in rates alone can be misleading because
its significance should be assessed in relation to the size of expected rate, a
multiplicative model should be considered. The multiplicative method the
authors considered was based on the indirect standardization approach. Ai is
the “adjusted observed occurrence count” indirectly standardized to the overall
expected rate, rE . The Ai values are the counts that would have occurred if
the same standard risks were observed each month and are assumed to be
binomially distributed. The risk-adjusted mortality proportion each month is
therefore

pAi =
Oi

(
rĒ
rEi

)
ni

.

Because the variation in rEi is small, as noted previously, the quotients rĒ
rEi

will be close to unity and the variations of the pAi values will be close to those
of pOi .

Zeng and Zhou (2011) proposed a Bayesian approach to risk-adjusted moni-
toring for cases where historical data are not available. Detection of change was
formulated as a model-selection problem and solved using a popular Bayesian
tool for variable selection, the Bayes factor.

Paynabar and Jin (2012) presented a general phase I risk-adjusted control
chart for monitoring binary surgical outcomes based on a likelihood-ratio test
derived from a change-point model. Different from the existing methods, this
paper further shows that the binary surgical outcomes depend on not only
the patient conditions described by the Parsonnet scores but also on other
categorical operational covariates, such as different surgeons.
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Mohammadian et al. (2016) proposed a risk-adjusted geometric control
chart for monitoring the number of patients survived at least 30 days after
a surgery. In this chart, the patient risk is modeled using a logistic regression.
The new scheme is proposed to be used in Phase-I where a likelihood ratio test
derived from a change-point model is employed.

4 Time-weighted risk-adjusted control charts

Lovegrove et al. (1997) improved the CUSUM chart that weights death and
survival by each patients risk status and provides a display of surgical perfor-
mance over time. This chart is called variable life-adjusted (VLAD) chart and
shows the difference between expected and actual cumulative mortality. Love-
grove et al. (1999) described an alternative approach which takes account of an
individual cardiac surgeon’s case-mix by explicitly incorporating the inherent
risk faced by patients due to a combination of factors relating to their age and
the degree of disease they have.

Poloniecki et al. (1998) proposed cumulative plots for the expected mortal-
ity counts minus the observed counts that could be applied, for example, to
physicians or hospitals.

Steiner et al. (2000) described a new CUSUM procedure that adjusts for
each patient’s pre-operative risk of surgical failure through the use of likelihood-
based scoring method.

Grigg et al. (2003) discussed the use of charts derived from the sequential
probability ratio test (SPRT): the CUSUM chart, RSPRT (resetting SPRT),
and FIR (fast initial response) CUSUM. They described the theoretical de-
velopment of the methods and explored some considerations including the ap-
proximation of average run lengths (ARLs), the importance of detecting im-
provements in a process as well as detecting deterioration and estimation of
the process parameter following a signal.

Sismanidis et al. (2003) explored the properties of the cumulative risk-
adjusted mortality (CRAM) chart, including the number of deaths before a
doubling of the death rate is detected.

Grigg and Farewell (2004b) proposed the risk-adjusted version of the Sets
method (Chen, 1978) for monitoring adverse medical outcomes and presented
the graphical representation of it, called the Grass plot.

Grigg and Spiegelhalter (2007) proposed a simple RA EWMA control chart.
The standard EWMA control chart is given by

Ei = γsi + (1− γ)Ei−1,

where γ is a smoothing constant, 0 < γ < 1. In the RA context, si is a score
assigned to patient i and E0 equals some suitable starting value that is set
equal to the (estimated) average patient score before any process change. The
functions of γ is the patient weights, e.g. the weight for patient i−2 is γ(1−γ)2.
To create the control chart we plot Ei versus time (actually patient number),
and the chart signals if Ei > hU or Ei < hL, where hU and hL are pre-specified
constants, called the upper and lower control limits, respectively.
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The RA EWMA chart is given by

ERi = γs̃i + (1− γ)ERi−1,

where s̃i = si − (Ê+
i − Êi) and Ê+

i = g−1(g(Êi) + βTui).
Biswas and Kalbfleisch (2008) outlined a RA CUSUM procedure based on

the Cox model for a failure time outcome. This work seems to be the first to
use survival analysis models for monitoring (Gandy et al., 2010). Gandy et al.
(2010) investigated how time to event models may be used for monitoring
purposes. They considered monitoring using CUSUMs based on the partial
likelihood ratio between an out-of-control state and an in-control state. They
also considered both proportional and nonproportional alternatives, as well as a
head start. Against proportional alternatives, they present an analytic method
of computing the expected number of observed events before stopping or the
probability of stopping before a given observed number of events.

Sego et al. (2009) proposed a risk-adjusted survival time CUSUM chart,
called RAST CUSUM for monitoring a continuous, time-to-event variable that
may be right-censored. RA is accomplished using accelerated failure time
(AFT) regression models.

Let Xi represent the survival time for patient i with survival function
P (Xi > xi) = S(xi,θi) and density f(xi,θi). The data are observed in pairs
(Ti, δi) where

Ti = min{Xi, c} and δi =

{
1 if Xi ≤ c
0 if Xi > c

where c is a fixed censoring time. The likelihood function for a single observa-
tion (ti, δi) is given by

L(θi|ti, δi) = [f(ti,θi)]
δi [S(ti,θi)]

1−δi .

The AFT model is based on the assumption that the survival function of pa-
tient i with observed covariate ui at time xi is the same as the baseline sur-
vival function, S0(xi,θ), evaluated at time xiexp{βTui}. The AFT model is
S(xi,θi|Ui = ui) = S0(xiexp{βTui},θ), where βi is a vector of regression
parameters and S0(xi,θ) = S(xi,θi|Ui = 0).

Numerous parametric distributions can be used to model survival times
with an AFT regression model, and be used in an RAST CUSUM chart.

To detect a shift from λ0 to λ1 = ρ1λ0, the log-likelihood score of the RAST
CUSUM chart is given by

Wi(ti, δi|Ui = ui) = log

(
[f(ti|λ = ρ1λ0,Ui = ui)]

δi [S(ti|λ = ρ1λ0,Ui = ui)]
1−δi

[f(ti|λ = λ0,Ui = ui)]δi [S(ti|λ = λ0,Ui = ui)]1−δi

)
.

With predefined scores, the RAST CUSUM statistic is then calculated using
using Zi = max(0, Zi−1 +Wi), i = 1, 2, . . ...

Sego et al. (2009) proposed a risk-adjusted survival time CUSUM chart,
called RAST CUSUM for monitoring a continuous, time-to-event variable that
may be right-censored. RA is accomplished using accelerated failure time re-
gression models. The general form of the risk-adjusted CUSUM (RA CUSUM)
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is given by

Z0 = 0 (1)

Zi = max(0, Zi−1 +Wi), i = 1, 2, . . .

where Zi is the CUSUM statistic and Wi is the CUSUM score. The chart gives
an alarm if Zi is larger then a control limit h. The CUSUM score is given by

Wi = log

{
L(θi1|ri)
L(θi0|ri)

}
,

where θi1 is the nominal out-of-control value of the parameter for patient i and
ri is the measured outcome (e.g. mortality status, survival time, or censoring
time).

A RA model θi0 = g(ψ,Ui), where Ui is a vector of covariates that reflect
the risk factors for patient i and ψ is a corresponding vector of regression
parameters, is used to predict θi0 for each newly arriving patient.

Steiner and Jones (2010) proposed an updating EWMA (uEWMA) control
chart to monitor risk-adjusted survival times. The uEWMA operates in a
continuous time; hence, the scores for each patient always reflect the most
up-to-date information. The uEWMA is defined as

Et = γsit + γ(1− γ)si−1,t + γ(1− γ)2si−2,t + γ(1− γ)3si−3,t + . . . ,

where sit is the score for patient i (where the index i gives the order of surgery)
at time t.

At time t, for patient i, we have at hand (xit, δit,ui), where xit is the
minimum of the current time since time zero, the time to death and the follow-
up time (or time at occurrence of a competing risk) each minus the time of
surgery, δit = 1 if patient i dies by time t and δit = 0 otherwise, and ui is a
vector of covariates. The values of the covariates are determined at the time of
surgery and are not updated as time passes.

Let, for patient i, denote t as the current time, ai as the time of surgery, ci
as the time of a competing risk (or follow-up time) and di as the time of a death.
Then xit = min{t, ci, di)} − ai. Note that ci and di represent realizations of
random variables only the smaller of which is observed. For patient i there are
three possibilities for (xit, δit):

1. Death: (xit, 1), where xit = di − ai is the time between surgery and death.
2. Success: (xit, 0), where xit = ci − ai is the time between surgery and the

follow-up time (or some competing risk).
3. At risk: (xit, 0), where xit = t − ai is the time between surgery and the

current time.

The patient scores, sit, are based on (xit, δit, ui); hence, as xit and possibly
δit change for case (3) as time passes, so will (some of) the scores. A patient in
case (3) can become case (1) or (2) or remain in case (3) with a larger xit. Note
that once a patient is in case (1) or (2) xit and δit (and thus the patient score)
stay the same. The patient scores also depend on the selected survival-time
distribution.
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Gombay et al. (2011) proposed four sequential curtailed and risk-adjusted
charts by using score statistics. They performed Monte Carlo simulations to
explore the merits of each of these methods in terms of ARLs as well as in
terms of type I probabilities. They also compared the proposed methods to
the RA-CUSUM chart. They illustrated the methodologies by using data on
monitoring performance of seven surgeons from a cardiac surgery center in the
UK.

Assareh et al. (2011) considered estimation of the time when a linear trend
disturbance has occurred in an in-control clinical dichotomous process in the
presence of variable patient mix. To model the process and change point, they
formulated a linear trend in the odds ratio of a Bernoulli process using hier-
archical models in a Bayesian framework. The performance of the Bayesian
estimator is investigated through simulations and the result shows that pre-
cise estimates can be obtained when they are used in conjunction with the
risk-adjusted CUSUM and EWMA control charts for different magnitude and
direction of change scenarios.

Jones and Steiner (2012) studied the effect of estimation error on risk-
adjusted binary CUSUM performance using actual and simulated data on pa-
tients undergoing coronary artery bypass surgery and assessed for mortality up
to 30 days post-surgery. The effect of estimation error was indicated by the
variability of the “true” average run lengths (ARLs) obtained using repeated
sampling of the observed data under various realistic scenarios.

Sparks (2016) developed an adaptive EWMA control chart that can be used
as either a p chart for monitoring significant departures from in-control non-
homogenous probabilities of failure or success or a risk-adjusted control chart
for success or failure of an event.

Assareh et al. (2015) developed change point estimation methods through
Bayesian hierarchical models for a clinical dichotomous process in the presence
of case mix. The performance of the Bayesian estimator is investigated through
simulations and the result shows that precise estimates can be obtained when
they are used in conjunction with the risk-adjusted CUSUM and EWMA con-
trol charts.

Richards et al. (2015) discussed the use of risk-adjusted monitoring nonho-
mogeneous Poisson processes.

Keefe et al. (2016) proposed a spatially risk-adjusted Bernoulli CUSUM
chart for concurrent observations to monitor foreclosure rates.

Ghasemi et al. (2016) applied a Bayesian estimation method to find the time
and the size of a change in patients’ post-surgery death or survival outcome.
The process is monitored in phase I using risk-adjusted log-likelihood ratio test
chart, in which the logistic regression model is applied to take into account
pre-operation individual risks. Markov Chain Monte Carlo method was ap-
plied to obtain the posterior distribution of the change point model including
time and size of the change in the Bayesian framework and also to obtain the
corresponding credible intervals.

Zhang et al. (2016) investigated the effect of estimation error on the perfor-
mance of risk-adjusted survival time CUSUM scheme in continuous time with
the cardiac surgery data. The impact was studied with the use of the median
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run lengths (medRLs) and the standard deviation (SD) of medRLs for differ-
ent sample sizes, specified in-control median run length, adverse event rate and
patient variability.

Zhang and Woodall (2016a) examined the effect of estimation error on the
in-control performance of the risk-adjusted Bernoulli CUSUM chart with dy-
namic probability control limits (DPCLs) while the same authors applied the
DPCLs developed for the upper risk-adjusted Bernoulli CUSUM charts to the
lower and two-sided charts and examine their in-control performance (Zhang
and Woodall, 2016b).

Oliveira et al. (2016) extended the risk-adjusted survival time cumulative
sum (RAST CUSUM) control chart to monitor a time-to-event outcome, pos-
sibly right censored, by considering a regression model in which the covariates
affect the cure fraction. The CUSUM scores are obtained for Weibull and log-
logistic promotion time model to monitor a scale parameter for nonimmune
individuals.

Recently, Hussein et al. (2017) explored the performance of risk-adjusted
CUSUM charts when the assumptions of independence and model correctness
are not met. They found out that if autocorrelations are present in the binary
series being monitored and such autocorrelations are ignored, the average run
lengths of the charts can deviate greatly from their design values. The impact
of model misspecification on the run lengths is not severe.

5 Multivariate risk-adjusted control charts

Shojaei and Niaki (2013) extended the RA-CUSUM scheme to monitor multi-
attribute medical processes for entities having different levels of risk. In the
new chart, called RA-MCUSUM there is a vector of weights for each patient
(wt) instead of one weight.

Assume that we want to monitor k patients with respect to n attitudes.
The elements of the i× n vector wt are

wt,i =

 log
[
K

(1−pt,i+pt,iR0i)
(1−pt,i+pt,iRAi)

]
, yt = 0

log
[
K

(1−pt,i+pt,iR0i)RAi
(1−pt,i+pt,iRAi)R0i

]
, yt = 1

for i = 1, 2, . . . , n and t = 1, 2, . . . , k. pt,i is the risk of patient t and R0i and
RAi are the odds ratios under the null and the alternative hypotheses for the
i-th attribute.

Having an initial i× n zero-vector s0, i.e. a vector with all elements equal
to 0, and using the relation

st = st−1 +wt,

we calculate
yt =

{
s′tΣ

−1st
}1/2

which is the quantity depicted in the control chart. If yt is greater than a
threshold h, then the medical process is diagnosed to be in out of control. Σ is
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the covariance matrix of the random vector wt. The authors used simulation
to estimate Σ and h. The constant parameter K appearing in wt,i is needed
to prevent from negative weights.

5.1 Multivariate time-weighted risk-adjusted control charts

Although several authors have dealt with multivariate CUSUM charts and
multivariate EWMA charts little or no work has been done to multivariate time-
weighted risk-adjusted control charts. In this work, we describe the multivariate
extensions of the time-weighted risk-adjusted charts.

Let Xji, represent the j survival time for patient i. The data are observed
in pairs (Tji, δji) where

Tji = min{Xji, c} and δji =

{
1 if Xji ≤ c
0 if Xji > c

where c is a fixed censoring time. The likelihood function for a single observa-
tion (tji, δji) is given by

L(θji|tji, δji) = [f(tji,θji)]
δji [S(tji,θji)]

1−δji .

To detect a shift from λ0 to λ1 = ρ1λ0, the log-likelihood score of the RAST
CUSUM chart is given by

Wji(tji, δji|Uji = uji) = log

(
[f(tji|λ = λ1,Uji = uji)]

δji [S(tji|λ = λ1,Uji = uji)]
1−δji

[f(tji|λ = λ0,Uji = uji)]
δji [S(tji|λ = λ0,Uji = uji)]

1−δji

)
.

The RAST MCUSUM statistic is then calculated using Zji = max(0, Zji−1 +
Wji), i = 1, 2, . . ..

Following a similar approach, the RAST MEWMA can be defined as

Ejt = γsjit + γ(1− γ)sji−1,t + γ(1− γ)2sji−2,t + γ(1− γ)3sji−3,t + . . . ,

where sjit is the j score for patient i (where the index i gives the order of
surgery) at time t.

Since we target to monitoring simultaneous more than one survival time,
we can use multivariate frailty models such as Gamma frailty.

6 Discussion

In this paper we have tried to present the most of the advances regarding the
risk- adjusted control charts presented in the literature. We followed a four
groups categorization: control charts for continuous variables, control charts
for attributes, time-weighted control charts, and multivariate control charts.

Moreover, we presented some preliminary results regarding multivariate
risk-adjusted survival time-weighted control charts. The central idea is to mon-
itor simultaneously more than one survival times. For example, one may be
interested in monitoring both the time of wound healing and the time the pa-
tient feels pain after a serious open heart surgery. Based on the work of Sego
et al. (2009) on risk-adjusted survival time CUSUM charts and of Steiner and
Jones (2010) on risk-adjusted survival time EWMA (uEWMA) we outlined the
corresponding multivariate control charts.
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Abstract. The stochastic properties of the p-variation of semimatingales, and recently the 
statistical properties of realized p-variation, have played important and crucial roles in 
the study of semimartingales and their applications. Realized p-variation can help solve 
problems involving hypothesis testing, diagnostic checking and parameter estimation for 
stochastic processes.  
In this paper random functions are constructed out of suitably normalized sums of p’th 
power of increments obtained from sample path readings for suitable values of p. Some 
properties are studied within a Banach space setting wherein stochastic equicontinuity 
ensures uniform convergence. These random functions are being proposed as  general 
purpose diagnostics for investigating the nature of the generating process under study 
using path sample values. Statistical results and simulation runs are proposed and 
discussed.  
 
Keywords: Itô semimartingales, realized p-variation, variationgram.  
. 
1  Introduction 

 
Needs to provide a suitably sophisticated theory of stochastic processes for 
modeling purposes have grown widely within many fields. The establishment of 
stochastic calculus set the stage for major advances in modeling complex 
phenomena. From Brownian Motion the passage to processes with jumps, 
effected quite a while ago through Lèvy processes, blossomed into many 
applications in various physical, engineering, biological and earth sciences. 
Finance entered the scene with vigour slightly later. But with its deep pockets it 
soon became a major stakeholder. This very active background serves to render 
fertile interfaces between mathematical theory and applications beyond what 
many practitioners in the two subfields seem to be aware of. 
 
Theoretical frameworks have been devised to offer scope and latitude wherein 
the complexity of systems under study can be addressed. Deep structural results 
from stochastic analysis have, and are still, being put into service for heavy duty 
work within stochastic modelling.  Once mathematical contexts are in place, 
theory is developed to show how properties possessed by models correspond to 
features existing within systems under study and are reflected in available data. 
Inferring from data up to the system producing it is a crucial modelling task. 
Statistics provides the support to translate inductive undertakings into useful 
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algorithms for understanding and controlling stochastically evolving dynamical 
systems. This could serve as a mission statement for Stochastics. 
     Stochastic processes have paths as possible realizations. Path properties are 
thus distinguishing features about which no decent theory should fail to provide 
results. One such property which goes beyond the continuity property is the 
existence or otherwise of the p-variation of a given path. 
    The smallest value of p for which the p-variation exists in the data-
generating-mechanism one is studying is a key question in many areas. 
However unless a continuous trace is available, data comes as lists of readings 
sampled over time. Observations are usually "sparse". Values in between 
adjacent actual readings are not available and we have to work with realized p-
variation. Statistics has to come to the rescue. It provides estimation techniques, 
hypotheses formulations and testing routines for various inferences needed by 
researchers and practitioners. 
  
Why Semimartingales? 
  
We shall work with semimartingales. Semimartingales occupy an important, 
high place in the hierarchy of stochastic process.  From the theoretical point of 
view their importance derives from stochastic analysis. In a precise sense, they 
are the farthest we can go in defining properly stochastic integration.  
      From the applications point of view it was financial mathematics which 
brought semimartingales back strongly into the limelight. They offer an elegant 
and theoretically fertile background for dealing with arbitrage and they are well 
suited to include stochastic volatility models. In many research circles Lèvy 
processes shot to great prominence quite a few decades ago are still much in 
vogue. Nevertheless, they are after all special cases of semimartingales, which 
offer wider generality and a better theoretical platform to understand how things 
work and where they fail.  
 
We take ( , , )Ω F P to be a a probability space  with increasing, right-continuous 

family of sub-s-algebras : 0t t ≥F forming a complete filtration. The real-

valued stochastic process tX  is a semimartingale if it is adapted, has a right-

continuous modification with left-hand limits and can be decomposed as the 
sum of a local martingale and a process of finite variation : t t tX M A= + . 

The local martingale part is in fact locally square integrable, that is a process 
which when stopped along some suitable stopping time sequence it yields a 
square integrable martingale. The finite variation part can have both a 
continuous component and jumps. It generates a product jump measure µ on 

+Ω×R . Paths can be purely continuous, that is they are made up of pure jumps 

or be a mixture of continuous trajectories and jumps. 
Semimartingales can be characterized by triplets of the form ( , , )B C ν  where 

B is the drift, C is the quadratic variation process associated with cX and ν is 
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the compensator of the jump random measureµ taking all processes concerned 

to be predictable. 
 
p-Variation of Paths 
 
For a given process ,tX with paths ( )ss X ω→  corresponding to each ω ∈ Ω  , 

subdivisions of the type 0 10 ... nt t t t= < < < = give us partition nP of [0, ]t , with 

corresponding variation given by 
1

1
i i

n

t t
i

X X
−

=

−∑ . As we let partitions vary we 

get a net of values generated by sums as above and the supremum of this net is 

declared to be the total variation : 
1

1

sup
i i

n

n

t t
i

X X
−

∈ =

−∑
P P

 where P is the set of all 

partitions. There are two problems with this measure of path behaviour.  
Firstly paths with finite variation form probabilistically a rather meagre 
collection within the context of stochastic processes. Secondly the set of all 
finite partitions offers too many fine selections possible as to allow one to pick 
up path oscillations and stretch them out to infinity.  
 
For most interesting and useful stochastic processes the total variation of paths 
is almost surely infinite. In Brownian motion if we change our focus to 

quadratic variation, 
1

2

1
i i

n

t t
i

X X
−

=

−∑ , we just about avoid drifting off to infinite 

by choosing partitions suitably "inattentive" to oscillations at a local level. They 
are partitions of time intervals with mesh size going to 0.     
 
Quadratic variation deserves special attention.  Results involving it date back to 
Paul Lèvy and it figured prominently in early works on martingales and 
eventually semimartingales by P.A. Meyer[9] and D. Lepingle[8]. Renewed 
recent interest in the study of the empirical counterpart of quadratic variation, 
realized quadratic variation especially in mathematical finance, feeds a 
relatively new stream of research. Seminal papers by Andersen, Bollerslev, Aït 
Sahhalia[1], Barndorff-Nielsen , Shephard[2] , Mancini and more recently 
Jacod[5],[6], [7] have produced a large amount of important results with useful 
empirical repercussions. 
 
A cardinal property for semimartingales is that they all have finite quadratic 
variation. The martingale component can have a continuous part as well as a 
part with jumps. The continuous martingale component will have unbounded 

variation with the increasing process ,c c
t tX X as compensator for the 

martingale part squared. The jumps might not be summable and so they also 
might need a compensator for us to write them meaningfully. This compensator 
forms part of tA in the decomposition above. 
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The quadratic variation process corresponding to semimartingaletX was in fact 

shown to be given by the increasing process 2, ,c c c c
t t t t s

s t

X X X X X
≤

  = + ∆  ∑ . 

We would also like to consider different values of the power p. When 2p >  for 

paths ( )ss X ω→ corresponding to each ω ∈ Ω  the p-variation process, 

whenever it exists, is given by:   ( )
pp

t s s
s t

S X X X −
≤

= −∑ . We note that this 

quantity is a process in its own right and does not derive from sample paths. 
 
We also saw that the choice of partitions needs to be restrained. In effect 
partitions should be chosen to correspond to sampling schemes from the 
empirical point of view. From the theoretical point of view one has to be 
especially careful to distinguish between the high frequency and the low 
frequency type of sampling schemes. The asymptotics are different.  
 
To make our context more manageable, we limit partitions of [0, ]t to have n 

equally spaced intervals, /it it n=  and sums of the type 
1

1

( , )
i i

n pn
t t t

i

V p X X X
−

=
= −∑  . 

Thus we formulate the statistical problem with sample path values from some stochastic 
process as follows : As the mesh size of partitions decreases, do sums of the type above 
converge in some sense to ( )p

tS X say? 

 
The asymptotic behaviour of the realized variation ( , )n

tV p X was studied in 

depth in the late 1970's. Convergence in probability gives a decent theory with 
useful results , notably those of Lepingle[8] and Meyer[9 ].  
In particular it was shown that: 

• For 2p > processes of bounded p-variation ( , )n
tV p X tend to 

( )p
tS X P -almost surely for each t +∈R . 

• (2, )n
tV X tends to ,c c

t tX X    in probability. 

• For 1 2p< < there is convergence to ( )p
tS X only if the continuous part 

of the semimartingale is zero and  ( )p
tS X < ∞ . 

The smallest p for which p-variation of a process exists is known as the 
Bloomenthal-Getoor index. Values of this minimal p less than 1 are not exciting 
because continuous components do not exist and jumps have to stick to being of 
finite variation. The level of activity is indeed low and nothing exotic takes 
place.  In fact a continuous component forces the minimal p to be 2. 
For the more interesting semimartingales, ( , )n

tV p X diverges to infinity for 

small values of p. However, with our partitions, equally spaced for which the 
mesh is given by /t n  if we normalize as follows: 
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1

1 /2
1 /2

1

( , )    if  0 2
( , )  

( , )                 if  2
i i

p
p nn p tn

t t t
i n

t

t
V p X pt

U p X X X n
n

V p X p
−

−
−

=

  ≤ ≤   = − =   
   >

∑
 

convergence results do in fact materialize.  
The map { ( , )( )}n

tp U p Xω ω→ → defines a statistical random function on 

which we shall apply a number of results, obtained fairly recently. However, we 
need to restrict further the class of semimartingales for which these results hold. 
 
Itô Semimartingales 
Itô semimartingales are semimartingales whose predictable characteristics 
( , , )B C ν are absolutely continuous with respect to Lebesgue measure. There are 

a number of representations of these processes. We give the following 
Grigelionis form: 

0

0 0

'( ) * ( ) *( )
t t

t s s s t tX X b ds dWσ κ δ µ κ δ ν µ= + + + + −∫ ∫  where sW is a Brownian 

Motion,  
0

t

t sB b ds= ∫ , 2

0

t

t sC dsσ= ∫ , { }| |( ) 1 xx x εκ <=  is a truncation function with 

'( ) ( )x x xκ κ= − , µ is a Poisson random measure, δ a predictable process on 

+Ω× ×R Rwhich satisfies 
0

( , , ) ( , , )
t

A A

t x dsdx ds x dxδ ω ν ω=∫ ∫ ∫  

The truncation function takes care of jumps with size decreasing to 0. 
 
We take tb and the process corresponding to δ  to be predictable, locally 

bounded processes with the latter also square summable. tσ is adapted and 

cadlag. We propose the convergence of ( , )n
tU p X in probability to a specific 

limit as an established result: 
 
Theorem 1 (Jacod) 
Let tX be an Itô semimartingale. For 0 2p< < , as the size of the partition mesh 

tends to 0, as n → ∞ , ( , )n
tU p X converges in probability, uniformly over [0, ]t  

to
0

2 1
( , )

2

tp
p

t s

p
U p X dsσ

π
+ = Γ  

 
∫ , that is: 

lim ( , ) ( , ) 0n
s s

n
U p X U p X

→∞
− − =P  

 
 
Proof of this theorem can be found in Jacod[6]  
 
Results for 2p = as well as for 2p > have been known in detail for 
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semimartingales in general since Lepingle[8]. For 2p > we have in fact 

stronger results because convergence occurs  P-almost surely. These results 
allow us to extend a limit function ( , )tU p X over the whole of +R  as follows: 

( )1
2

0

2 2

0

                                      for  0

2
             for 0 2

( , )

 ( )                 for  2

( )                               for  2

tp
p p

s

t t

s t

p
t

t p

ds p

U p X

ds S X p

S X p

σ
π

σ

+

=

 Γ < <
= 
 + =

 >

∫

∫

 

We note the potential jump at 2p = and call ( , )tU p X the variationgram  

because it gives an important graphical tool to characterize the nature of a 
semimartingale using the p-variation of a process.  
 
Four examples of variationgrams are next given (figures 1 to 4) showing typical 
plots for limit functionals ( , )tU p X , two for processes without jumps but with 

different Brownian components and two for processes with processes having 
jumps of different sizes. Processes being sums of the two types would be 
expected to have superimposed variationgrams. 

U
t

 
Fig. 1                                                              Fig.2 

 

 
Fig. 3                                                             Fig.4 
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The major theoretical difference between variationgrams for purely continuous 
and for pure jump processes is that their supports are disjoint. Other intuitions 
gathered from the plots and validated by theorems above  can be summarized as: 
i. The limit functionals make very strong distinctions between processes which 
are continuous, others which are pure jump processes and processes which are 
composed of continuous components and jumps. 
ii. features of the shape of the two curves ( symmetry or lack of it in the first, 
and whether the curve is increasing or decreasing in the second )  give some 
indications as to the nature of the underlying stochastic process. 
 
In practice we do not have these limiting functions, but we have sample path 
readings which yield statistical random functions.  The relevant statistical 
question we can ask is how close and fast does the estimator ( , )n

tU p X , the 

sample variationgram, converges in probability to ( , )tU p X again uniformly 

over [0, ]t for 0p > . There are a number of theorems in the literature for whom 

the authors claim a “Central Limit Theorem” status designed for this context. 
Going through the conditions given for the corresponding proofs to carry 
through, one can see that the situation for general semimartingales is complex. 
Therefore we shall make a number of assumptions which allow us to make use 
of asymptotic results later on. In practice these assumptions do not limit much 
the range of processes in common use.  
 
Condition 1.  
The diffusion (volatility) term takes the form of an Itô semimartingale: 

0

0 0 0

t t t

t s s s s sds dW dWσ σ µ η η= + + +∫ ∫ ∫ ɶɶ with sWɶ  an independent Brownian motion 

of tW , and tµ , tη , tηɶ  adapted, left continuous and with right hand limits.  

Condition s 
For 0 2s≤ ≤ The distribution function for the jump size satisfies the inequality: 
1

0 1

( , , ) ( , , )
s

x t x dx t x dxδ ω δ ω
∞

+ < ∞∫ ∫  

We quote a result from Jacod[6]. 
 
Theorem 2 (Jacod)  
Let tX be an Itô semimartingale which satisfies Conditions 1 and s in addition 

to the earlier ones above. Letting 0 2p< <  

i. For 0 1s≤ ≤  and fixed t +∈R the random variable ( , ) ( , )n
t t

n
U p X U p X

t
 − 

 

converges stably in distribution to: ( ) ( )211
2 2

0

2 tp
p p

sp dWπ σ
π

+ Γ + − Γ
   ∫

ɶ where 

tWɶ is a standard Brownian motion defined on an auxiliary probability space. 
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ii. For 1s >  and fixed t +∈R the random variable ( , ) ( , )n
t t

t
U p X U p X

n
 − 

 

converges in probability to 0. 
 
Proofs of these results can be found in Jacod[6]  
 
The Sample Variationgram 
 
The idea which we are pushing is that of looking at ( , )n

tU p X as a sequence of 

stochastic processes, generated by different path sample readings from some 
semimartingale, with values in an appropriately chosen Banach space of 
piecewise continuous functions. Actually all our random functions stay within 
the closed, positive cone of this Banach space. For each t +∈R , the original 

process has its own distinctive, deterministic function ( , )tp U p X→ . These 

functions can have at most just one jump and moreover they serve as limits to 
sample-derived random functions ( , )n

tp U p X→ in the corresponding sense. 

We would like to include [2, ]K  as domain of our functions because the contrast 

between what happens here and on [0,2]  can tells us a lot about the nature of 

the original stochastic process.  
 
For our Banach space we could take the product of two spaces of continuous 
functions, ([0,2 ]) ([2 , ])Kε ε− × +C C  for suitable small  0ε > and K larger than 

2 with the supremum norm. This formulation takes care of the jump at 
2p = whenever it arises for processes with continuous Brownian components. 

Sample variationgrams enforce continuity at 2, but not differentiability. One 
could thus investigate what happens on (2 ,2 )ε ε− + as there are different rates 

on the two sides of 2, but we shall refrain. For the sake of clarity we shall 
display graphs with domains [0,2 ] [2 , ]Kε ε− ∪ +  

 
What we shall procede to prove our main result: convergence in probability of 

( , )n
tU p X is uniform in p. 

 
Lemma 3 
Let tX be an Itô semimartingale. For each t +∈R , and fixed ω ∈ Ω  the 

collection of random functions indexed by n ∈N ,  
{ ( , )( ) : 0 2 }n

tp U p X pω ε→ ≤ ≤ −  

is stochastically equicontinuous in p.   
Note that (0, )( )n

tU X tω = for all n.  
{ ( , )( ) : 2 , }n

tp U p X p K nω ε→ + ≤ ≤ ∈Nis stochastically equicontinuous  in p. 
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Proof 
Given 0 , ' 2p p≤ < , we have 

( , ) ( ', )

( , ) ( , ) ( , ) ( ', ) ( ( ', ) ( ', ))

( , ) ( , ) ( , ) ( ', ) ( ', ) ( ', )

n n
t t

n n
t t t t t t

n n
t t t t t t n

U p X U p X

U p X U p X U p X U p X U p X U p X

U p X U p X U p X U p X U p X U p X A

− =

− + − − −

≤ − + − + − =  

where we call the last random variable on the RHS of the above inequality nA  

For fixed ω, ( , )tU p X is clearly continuous with respect to p on the compact 

set we are restraining it to. So ( , )tU p X is uniformly continuous.  

With p fixed, given any 0ε > there exists 0δ > such that: 

' ( , ) ( ', ) / 2t tp p U p X U p Xδ ε− < ⇒ − < .  

Now 
( , ) ( , ) ( ', ) ( ', ) / 2

( , ) ( , ) / 4 ( ', ) ( ', ) / 4

n n
t t t t

n n
t t t t

U p X U p X U p X U p X

U p X U p X U p X U p X

ε

ε ε

 − + − > ≤ 

   − > + − >   

P

P P

 

But both ( , )n
tU p X and ( ', )n

tU p X converge in probability to their respective 

limits. So given 0η > we can take N large enough such that for all n N> : 

( , ) ( , ) / 4 / 2n
t tU p X U p X ε η − > < P & ( ', ) ( ', ) / 4 / 2n

t tU p X U p X ε η − > < P  

With these choices we see that 
| '|
sup ( , ) ( ', ) ( , )n n

t t n
p p

U p X U p X A
δ

ε η
− <

− ≤ which 

for n N> gives us convergence of ( , )nA ε η to 0 in probability. 

[ ]( , ) ( , ) ( , ) / 4 ( ', ) ( ', ) / 4n n
n t t t tA U p X U p X U p X U p Xε η ε ε ε η   > ≤ − > + − > <   P P P

 
But this gives us precisely the result that ( , )n

tU p X is stochastically equi-

continuous. 
For the second result we can follow the scheme above, actually in a stronger 
manner, because convergence here is P -almost surely, and a fortiori in 
probability.

 
■ 

Theorem 4 
The statistical functional ( , )n

tU p X ( resp ( , )n
tU p Xɶ ) converges stably in 

probability to the random function ( , )tU p X uniformly in p on [0,2 ]ε− and in 

0 s t≤ ≤ :        
0 2
sup | ( , ) ( , ) | o (1)n

t t
p

U p X U p X
ε≤ ≤ −

− =
P

 

Convergence occurs almost surely to ( , )tU p X uniformly in p on [2 , ]Kε+ and 

in 0 s t≤ ≤ :
2

sup | ( , ) ( , ) | o(1)n
t t

p K
U p X U p X

ε+ ≤ ≤
− =  P -almost surely. 

Therefore ( , )n
tU p X can be considered to be an asymptotically unbiased and 

consistent estimator of ( , )tU p X . 
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Proof: 
Knowing that ( , ) ( , )n

t tU p X U p X−  converges pointwise in probability to 0 on a 

compact set, with ( , )tU p X  having no dependence on n, since we have 

established stochastic equicontinuity, we can conclude the result stated in the 
theorem using for example Theorem 2.1 Newey[10]. 

■ 
 
These results allow us to investigate the convergence properties of sums of  
functions of Itô semimartingales increments on partitions of decreasing mesh.  
 
Corollary 5 
The statistical random functions : 

( )1 1

1 /2

1

1
log log

2i i i i

pn p

t t t t
i

t t
p X X X X

n n− −

−

=

    → − − −    
    

∑  

are uniformly bounded in probability uniformly over p with the same range 
restrictions as for Theorem 4. 
 
Proof 

Using the mean value theorem for function 1 /2( )
ppf p a b−= , given 'p  we 

know there exists a q where 'p q p≤ ≤ and  

( )

1 1

1 1

1 /2 1 '/ 2
'

1

1 /2

1

( , ) ( ', )

1
| ' | log log

2

i i i i

i i i i

p pn p pn n
t t t t t t

i

qn q

t t t t
i

t t
U p X U p X X X X X

n n

t t
p p X X X X

n n

− −

− −

− −

=

−

=

   − = − − − =   
   

    − − − −    
    

∑

∑

 

For the LHS stochastic equicontinuity was established and that shows that the 
RHS must be asymptotically bounded in probability.  

■ 

It is worthwhile to study functions of the type 
1 /2

1

( , , )
pn

p

i

t
n x p x

n
ϕ

−

=

=∑ we are 

using in dealing with our variationgram and related ones. In particular, we 
consider the derivative wrt p which the previous corollary showed us has to be 
quite well-behaved. This can allow us to deduce interesting repercussions. The 
functions within the summation in the derivative have the form (log ) px a x+ . 

This function has contrasting behavior for different values of p. We note that 
special values of a and p interest us because we are interested in asymptotic 
behaviour. Thus we may assume 0a > . 
For 1x ≥ , (log ) px a x+ starts from 0 and increases indefinitely always below x 

but eventually exceeding any px but never reaching 1px + . 
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For 0 1x≤ ≤  (log ) px a x+ starts from 0 goes down to a minimal negative value 

at ( 1/ )a px e− += and then grows to a. Thus ( ) log  pg x x a x= + starts from 0 

grows for an initial stage achieving a maximum of (1 / ) /a pe p− + at ( 1/ )a px e− += and 

goes down to 0 at 1x = . This indicates that the statistical random function 

( )1 1

1 /2

1

1
log log

2i i i i

qn p

t t t t
i

t t
X X X X

n n− −

−

=

    − − −    
    

∑ has its very own virtues in 

giving more importance to certain brackets of low values in absolute value of 
the increments. A graph of the corresponding sample-derived random function 
could also help in inferences about the original data generating process. 
 
Simulations and Application 
To test the usefulness of the results above in practice we have run a huge 
number of simulations from which we pick a few.  These should be indicative of 
how the statistical random functions discussed above work on familiar 
processes. We have generated 1024 readings equally spaced in time s, so that 
0 1s≤ ≤ with 1t = . We have generated 10 samples from each of the following 
4 processes : Brownian motion, Compound Poisson, Cauchy and a sum of BM 
and Cauchy processes. The plots 1024

1
n
tU U=  against p were superimposed for 

each process and the graphs are displayed in figures 5 to 8. 
 

 U
1

0
2
4

1

 
Fig. 5                                                              Fig.6 

  
Fig. 7                                                              Fig.8 
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We notice again a number of features which in practice would be helpful to 
indicate which theoretical process would most likely be able to give samples 
with variationgrams obtained from real samples.  
 
We also ran an experiment with real data. 3763 Readings of values labelled by 
NASDAQ as “market close” covering just over a week’s readings were 
analysed. The actual period they were registered started on 28th  March 2016 at 
9:30 and ended on 8th Apr 2016 at 16:00. 
 
The sample variationgrams were computed and graphed for different 
frequencies: at the frequency supplied, every 10’th reading, every 50’th reading 
and every 100’th reading. The graphs are displayed in figures 9-12. 
 

U
n t

 
Fig. 9                                                             Fig.10 
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Fig. 11                                                             Fig.12 

 
From these figures it is clear that a number of features should be very important 
to modelers who are trying to obtain a decent process to mimic the data 
generating mechanism. As the frequency of available readings increases we see 
that the mixed nature of the underlying mechanism (continuous process plus 
purely discontinuous one) becomes more evident.  Also we can see how the 
quadratic variation increases.  
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Conclusion 
 
Having shown asymptotic unbiasedness and consistency the statistical random 
functions can now be used safely for various statistical inference tasks. We 
mention a few obvious ones : 

• Characterizing graphically specific types of processes as well as some 
of their properties 

• Constructing tests for deciding whether a set of readings is more likely 
to come from one dgm rather than from another 

• Test whether it is more likely that the paths of the dgm have jumps or 
not 

• Estimate the relative contributions of the drift plus compensation and 
the jumps to the dynamics of a given process 

There are other results about these functions related to rates of convergence and 
confidence intervals which refer us back to Theorem 2 and which would do with 
some more development in future work along this direction. 
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Abstract. Estimation of the Lévy measure through the increments of a Lévy process is a 

problem which attracted much attention over recent decades. The first such estimator 

comes much earlier from Rubin and Tucker but it has not been much in use.  Its 

performance is not satisfactory and researchers have tried alternatives. Various issues 
surround this statistical problem, most notably the behavior of the Lévy measure at the 

origin. Even increments from BM yield poor estimates. But Rubin-Tucker type 

estimators, that is distribution function estimators constructed out of 

increments Xik
coming from sample path values proposed in the more general form: 

( )

( ) {| | }1 1

1

1

ˆ ( ) 1
X

ik

X

ik

ik ik
ik

n X

X uki X

N b

N
G u n



  
   

can improve the performance.  
In this paper the authors study this estimator and look for suitable choices of the tuning 

parameter b and the functiony to improve estimator quality and convergence rates. 

Various classical and other recent results are put into use to obtain an estimator for an 

equivalent Lévy measure distribution function suitably transformed. The choice of the 

function  was guided by convergence results, in particular, the choice ( ) 2x x   for 

11 x   , with  close to 0 on the positive side, is shown to have special benefits which 

are studied in this paper. 

Keywords: Lévy measure, Lévy process, convergence rates, distribution function. 

 

1  Introduction 
The nonparametric estimation problem concerning Lévy processes has attracted much 

attention in the past decades. This was mainly fueled by the fact that Lévy processes have 

and still are being used heavily in various fields of study, most notably in Finance. The link 

between infinitely divisible distributions and Lévy process is well understood. This allows 

us to express the characteristic function  corresponding to the distribution of the 

increments of such processes via the so-called Lévy-Khitchine representation (or its 
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variants). In particular, throughout this paper we shall mainly concentrate on the Lévy-

Khitchine canonical representation which is expressed as follows: 

 

 .  (1.1) 

In equation (1.1),   is the drift term while  is a non-decreasing function of bounded 

variation such that . Moreover, H might have a jump at 0, this jump is equal in 

size to  which in turn is the variance of the Brownian motion component, if it exists. l  

and H together completely determine the infinitely divisible distribution and thus allow us 

to uniquely determine the law of any Lévy process. 

Rubin and Tucker[5] provide two nonparametric estimators for the function H. In 

particular, we focus on the first estimator which fits within the so-called high-frequency 

setting and which was inspired by the concepts illustrated in chapter 2, section 24 of 

Gendenko and Kolmogorov[4]. The primary concern of the latter authors was to find 

necessary and sufficient conditions for the existence of sums of independent infinitesimal 

random variables. To obtain useful results they used the function  

which squares small values and at the same time truncates large values to 1. This function 

clearly also features in the Rubin and Tucker estimator which can be defined as follows: 
2

21 { }1

1

1
1ˆ ( ) ik

ikik

n X

X uk X

N

N i
H u

 
   

where  represents the k
th
 increment within the i

th
 unit time interval of a Lévy process  

which is observed over  unit time intervals. For simplicity in this paper we assume that 

. Moreover, in each unit time interval we have n increments. Hence all the 

increments  share the same distribution with .  Rubin and Tucker show that this 

estimator converges P-a.s. to H at all points of continuity. However the authors do not 

comment about the rate of convergence nor about the asymptotic distribution of this 

estimator.  

Though the Rubin and Tucker estimator is considered as one of the earliest attempts to 

estimate the function H nonparametrically, it has rarely been used or discussed. Gegler and 

Stadmüller[1] consider an altered version of the above estimator by avoiding completely 

the interval close to 0. On the other hand, Caruana and Sant[2] study the behaviour of this 

estimator on intervals close to and including 0. In particular the authors also explore the idea 

of altering the above estimator by of using some fixed power of that is closer to 0 than 2. 

Furthermore Caruana and Sant[2] show that for the Brownian motion case, under certain 

conditions, their proposed estimator converges faster than the original Rubin and Tucker 

estimator over a unit time interval. Asymptotic normality of the estimator is also discussed.   

In this paper we propose to alter the power of  in such a way that this is a function 

involving :           
( )

( )

1

1 { }1 1
1ˆ ( )

X
ik

X
ik

ik

ik ik

N b n X

X uk XN i
G u n



  
   

where  for   a tuning parameter greater to but close to 0,  and b a suitable 

chosen normalizing factor is to be discussed later.  We study the behaviour of , which 
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is an estimator of a function  on an interval close to 0. As we shall see in section 2, when 

suitably transformed, the function  is equal to    

In the above estimator, we require the function  to be in such a way that 

 ( )

0
1 cos( )/ | |lim x

x
x x C


    .  cannot take value less than 2 at 0x   because if 

this were the case, the above requirement would not be satisfied. The validity of these 

statements will be used in the proof of theorem 2.1. We note that for other values of x  

convergence of the estimator is recovered by inserting  in .  

When we compare the function 
2 | | 2 | |

/1
x x

x x
  

  with x2 /1+ x2 ,  we  observe that both 

functions are bounded below by 0 and above by 1. However the former goes to 0 as 

x® ±¥  while the latter goes to 1. Hence these functions and therefore the estimators 

defined earlier,  operate on the set of incremetns of the Lévy process in different ways. The 

property which we just mentioned of the former function will be quite useful in the course 

of sections 3 and 4 as it will be exploited in certain sections of the proofs.   

The rest of the paper is organised as follows: in the next section we state and prove a 

modified version of the theorem concerning the canonical representation of the 

characteristic function of infinitely divisible distribtuions. This theorem gives us an 

alternative way of expressing the characteristic function of infinitely divisible distirbutions. 

We define the function  and discuss the relation between the  and . In section 3 we 

state and prove a number of theorems which are related to the limits of sums of 

infinitesimal random variables. These theorems, in particular theorem 3.3, will lay the 

theoretical foundation securing the validity of G.  In section 4 we discuss some of its 

properties. Section 5 contains a number of simulation results. These results corroborate our 

statements regarding properties of . Section 6 contains some concluding remarks. 

 

2  Modified version of the Canonical Representation 

The function  plays a key role in the proof of the canonical 

representation, which features in section 18 of Gnedenko and Kolmogorov[4]. As we shall 

see in this section, the theorem still holds if the power of x in the function  is altered. 

However, not any power of x which is less than 2 will do at 0x  . In fact we show that if 

the power of x is changed from 2 to  for 0   but close to 0, then the theorem 

still holds. However, in so doing we shall have to replace the function H by another 

function G that is shown to be of bounded variation. 

 

2.1 Theorem 

( )t  is the characteristic function of an infinitely divisible distribution, if and only if its 

logarithm can be expressed as follows: 
2 | |

2 | | 2 | |
log( ( )) 1

1
)

1
(

u

itu

u u

uitu
t i

u
t e d u

u
G



 
 



 

  
 
 
 

  


  

for 0  .   and  G  a non-decreasing function of bounded variation. At the 

integrand is well-defined taking its value to be its limit as 0u  . 
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Proof 

Only the necessity part of the proof is relevant to this paper. 

If ( )t  is the characteristic function of an infinitely divisible distribution
  F ,  then for 

n , 1/( ) [ ( )] n

n t t   gives a sequence of characteristic functions with corresponding 

distribution function 
nF . We next define 

 
| |

2

2 | |

2 | |

| |
( ) ( )

1 | |
x

u x

n n
x

x
u n dF x

n

G

x














  and 

 
  | |

2

2 | |

2 | |

1

( ) exp( ) 1 ( )
u

u

n nu

u

I
u

t itu n dG u













  .

 
The existence of each In(t) is guaranteed by the existence of  exp( ) 1 ( )nitx dF x . 

The corresponding sequence of functions converges pointwise to  log ( )t since 

 ( )lim [ ] log ( )1n
n

n tt 


 
 
. 

Next we consider     
  | |

2

2 | |

2 | |

1

( ) cos( ) 1 ( )
u

u

n nu
I t

u
dG

u

tu n u













  
. 

 

We use the above to prove that 
 
G

n
  which is an increasing function, is bounded. 

Let 
| | 1

( )n

u

n uA dG


   and 
| | 1

( )n

u

n uB dG


    and ( )n n n nB uC A dG   . 

For every  we have that for n sufficiently large  

 

Hence:       

The function  
2 | |

1
1 cos( )

u
u

u


 , for 0   has a minimum at ±u , which values we 

denote by  
2 | |

1
1 cos( )

u
C u

u



 




  . (Clearly the same value hold for u ). 

It can be shown that 
| | | || |u uu



  for all 0   and hence for all 0    
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| |

2 | |

1 | | | |
1 cos( )

3 3

u

u

u u
u

u




    

This implies that for ,  
2 | |

1
1 cos( ) 0

u
u

u


   and hence . Thus,  

 

Next, if we integrate the LHS and the RHS of the inequality: 

 

on the interval 0 2t   we obtain: 

 

Hence from the above we have that nG  is bounded. 

Moreover following the proof of theorem 1 in section 18 of Gnedenko and Kolmogorov[4] 

in our case also  as  uniformly with respect to n. Using these 

results  together with Theorem 3 bis in section 9 of Gnedenko and Kolmogorov[4] we can 

choose a subsequence from , which we denote by , which converges 

pointwise at all points of continuity to a function G  which is non decreasing function of 

bounded variation.  

We next put 
| |

2

| || |

| |
( )

u

k k

u

n k nn
u

udG
u




   , so that 

 
| |2 | |

2

2 | | 2 | |

1 | |

1 | | | |
1 ( )( )

uu

u uk k k

uitu itu
n k n n

u u
I t n ue iG td



  


 




    

By what we discussed in the previous pages, as  k®¥, the integral on the right hand side 

of this equation, converges to  
2 | |

2 | | 2 | |
1

1

1
( )

u

itu

u u

uitu
i

u
t dG

u
e u



 




 

  
 





 




  

Indeed since  lo( )) g (nI ft t then 
kn  must converge to some constant   . This 

completes the necessity part of the proof.  



At zero, the functions H and G both can experience a jump. However, for the latter the size 

of this jump is not equal to (as is for the former function) . Indeed for the Brownian 

motion case the jump is of size 
 

1/

1/
1/

2 | |

1/
{ }

2 | || |

1/

/2 1

| |
lim 1

1 | |

n

n
n

L

n
L u

Lxn

n

L

n L












 
 
  
 

.  
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Furthermore, for pure jump processes, the function G cannot experience a jump at zero.  In 

literature (1.1) is not the most widely used representation for the characteristic function of 

infintely divisble distributions. Indeed the Lévy Khintchine representation is the most 

frequently used. In the latter representation an infinitely divisible distribution (and hence the 

corresponding Lévy process) is fully determined via three parameters . This is 

the so-called Lévy triple were   is the Lévy measure. The relation between H in (1.1) and 

  is given through the equation: 
2

2

1( ) ( )x

x
dx H dx  .  Similarly 

2 | |

2 | |

1
( )( )

x

x

x
dx

x
G dx










 .  

 

3  Limit Theorems of Sums of Infinitesimal Random Variables 
 

The estimator proposed by Rubin and Tucker[5] is based on a remark present in page 121 

in Gnedenko and Kolmogorov[4] which is based on Theorem 1 of section 24. The 

theoretical foundation of the estimator which we propose in this paper will be based on a 

reformulation of this remark as presented in remark 3.4 below. Moreover, this remark is 

based on theorem 3.3 which is a reformulation of Theorem 1 in section 24 of Gnedenko 

and Kolmogorov[4].  

The proof of theorem 3.3 is based on a number of results, some of which can easily be 

adapted from theorems found in sections 22 and 23 in Gnedenko and Kolmogorov[4]. 

They are not included in this paper. It is important to note that the said authors were finding 

generic conditions under which sums of infinitesimal random variables converge.  

In the framework of this paper, from the  unit time interval each , has a distribution 

function which we denote by and corresponding characteristic function ( )k t . So in 

the first unit time interval we have:  where /1 / ( 1)k n kk nX LL   for 

 and likewise with for the i’th unit interval. Hence, the distribution of 

, like that of any iL , is the limit law of the distribution of this sequence of sums. 

Although we are primarily interested in the behavior of the estimator Ĝ  in an interval close 

to 0, which we arbitrarily take to be , in this section we shall consider a number of 

results that are true for any u . As a result, the estimator of G, which we define in the 

next section, will be valid for u . Moreover, for simplicity, in this section (and parts of 

the next section) we shall be working within the first unit time interval. Hence one of the 

indices of  will be fixed at 1. This will not stop us from going more general at the end 

of section 4 when the estimator is defined and its properties discussed. 

We start off by proving the following the following lemma which will play a key role in a 

number of subsequent proofs. 

3.1 Lemma  

For any  we have that  for all 

, where K  is some constant that depends on  . 

Proof: 
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We start by showing that the derivative of the function  is bounded for .  

The first derivative of    is given by  1 2 )1 log(xx x x
       . As 0x   this 

function tends continuously to 0 on the compact interval . Hence it must be bounded by 

some constant  which depends on  . But then the function is Lipschitz and for 

any  we have that: 

 

Taking a x y   and  b = x  we get the result. 

 

3.2 Theorem  

Let  be a sequence of independent, infinitesimal, random variables. If  the 

distribution of the sums  11 1 nnXX A   converges to a limit as  n®¥  for a 

sequence of real numbers 
 
A

n
, then there exists  , such that,  

 
2 | |

2 |
1

|1

x

x

n

k k

k

x
dF x C

x











 


  where , where    . 

 

Proof: 

We note that if 
  
X

1k
 is an infinitesimal random variable which has a median, which we 

denoted by , then 
  
sup | m

k
|® 0 and sup | | 0k  . We refer the reader to Gnedenko 

and Kolmogorov[4], section 23, pg 111 for further details concerning these two properties 

of infinitesimal random variables.  

We start by considering a sequence  such that ,
 

 as  . Then: 

     
2 | | 2 | | 2 | |
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We consider the terms in each summation on the right hand side separately. 
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if we choose say, for . 

In the second summation, we have that: 
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1 1 0

k k

n n

k kx m x

k k k kdF x dF xm m
    

     as  by a result which 

features in Gnedenko and Kolmogorov[4], page 105. 

Next we consider: 
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 . 

The function  has a maximum turning point when  . Yielding 

a maximum value of .  

Hence, it follows that  for any   provided that . 

Thus, 
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Next we need to show that the summations in the RHS go to zero as  . 

     2 2 2

1 1| | 1 | | 1 1 | | 2

2 2 2 0
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k x xkm mx

dF x dx m F x dF xx m x m
        

           

by a result which features in Gnedenko and Kolmogorov[4], page 105. 

2

1

lim ( ) 0
n

k

k
n

km 




    by a result which features in Gnedenko and 

Kolmogorov[4], page 111-112. 

 

Theorem 3.3 

Let  be a sequence of independent and infinitesimal random variables. The 

distribution function of the sums  

 11 1n n nX AX      (1.2) 

converges to a limit for some suitable chosen , if and only if the infinitely divisible laws 

converge and are such that the logarithm of their corresponding characteristic functions is 

given by the formula: 

  1

1

( ) ( )it
n

k k

k

x

n n kt dFiA t it e x 


      .  (1.3) 

The limit of the distribution functions for the two sequences coincide. 

 

Proof 

As before, we only need to prove the necessity part of the proof.  
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We start by setting , then the sum in (1.2) will converge if and only if 
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We set . Since  are infinitesimal then . 

Moreover it can also be shown that for sufficiently large n, 
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We next show that 
1
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k k  is bounded. 
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 Hence by letting , 
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We next consider each term in the RHS above. 

Using an argument similar to Gnedenko and Kolmogorov, pg113-114, it can be shown that  

that for n sufficiently large (such that | / 2|k  ) we have that: 

| / 2| | |

( ) 2| | ' ' ( )k k

x x

x xx dF dF
 


 

   

Hence, by theorem 2 in pg 111 which features in Gnedenko and Kolmogorov, it follows 

that, 
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Moreover, using theorem 3.2 and the fact that  but close to zero, then: 
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Finally, 
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Since  is a characteristic function, then its modulus cannot exceed one. Hence, 

 . This proves the necessity part of the proof. 

 

3.4 Remark 

Theorem 1 in section 19 in Gnedenko and Kolmogorov together with theorem 3.3 above 

allow us to state the conditions for the existence of a limit law for the sums in (1.2) as 

follows: 

There exists a sequence of real numbers guaranteeing convergence of the distribution 

laws of the sums in (1.2) of infinitesimal summands to a limit law if and only if there exists 

a non-decreasing function ( )G u  of bounded variation such that: 
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We denote the sum on the LHS by . Moreover, the function on the RHS is 

identical to the function  present in theorem 2.1 above.  Furthermore, since 

the power of x in the above is smaller than 2, then the term 
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  by the Marcinkiewicz-

Zygmund strong law of large numbers in Chow and Teicher[3]. This previously 

mentioned term also featured in Caruana and Sant[2] and is still required here.  

 

4  Modification of the Rubin and Tucker Estimator 
The method which we shall use to estimate G, is based entirely on remark 3.4. Indeed if we 

manage to remove, as we actually do, the need for  in the above remark then we can 

define an estimator of . Since the random variables 
 
X

ik
 are iid then we set n k  for 

1 k n   and similarly we set 
 
F

n
= F

k
. Here we leave n in the subscript to show that the 

distribution indeed depends on n.  Moreover, 
  
G

n
(u)  may be re-written as follows:  
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We next show that we can eliminate the need for .   

Let , for which we show that . To 

help us do that, let  and, by adapting the 

proof of lemma 2.11 and lemma 2.12 in Rubin and Tucker[5] it is easy to show that 

 and provided that  u is a point of continuity of the 

function G provided that  . It remains to show that this result is also true for . 

 

Theorem 4.1 

If  is a point of continuity of the function G then . 
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We next continue modifying the RHS of the inequality in (1.7):  
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From the first line to the second line we used (1.7). Furthermore from the 

second to the third line we used (2.2). 
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In a similar way it can be shown that 

| |

2
2 | |1

2 | |
sup  ( )l (m

1
)i

x x

nx

u

n

x

x

n
x G udF

 











 
   

Hence the theorem is proved. 
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Using theorem 4.1 together with remark 3.4 we can defined the following 

estimator for G: 
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The inner sum converges by the Marcinkiewicz-Zygmund strong law of large 

numbers. The outer average uses the usual strong law of large numbers to give 

us:  

, 

for any fixed n. Moreover combining this result with theorem 4.1 we conclude 

that: 

, 

provided that u is point of continuity of the function G. 

 

5 Simulation Results 
Lévy processes have two components: the continuous and the pure jump part. In Caruana 

and Sant[2] the continuous part has already been considered and an improved estimator 

over the Rubin and Tucker estimator was obtained, therefore in the simulations below, we 

consider more general Lévy processes. In particular, we consider a jump-diffusion process 

and the Cauchy process, the latter being a pure jump Lévy process of unbounded variation. 

These simulations were conducted to compare  with and 
  
H(u) . The Cauchy 

process was chosen with location and scale parameters both equal to 1, while the jump 

diffusion process  was chosen with 
 
B

t
 denoting Brownian motion such 

that 1 (0,1)t tB NB  ,  is a Poisson process with  and  are Gamma 

distributed with shape and scale parameters being 5 and 2 respectively. Hence this is a Lévy 

process having a continuous part as well as a pure jump part with finite activity.  The results 

of the simulations are illustrated in the diagrams below: 

 

         
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

 
           Fig. 1. Jump Diffusion Process                            Fig. 2. Cauchy Process 
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In all cases, the parameter   was chosen to be 0.001. In the figure 1, the red curve 

represents the Rubin and Tucker estimator  while the black curve represents the 

estimator  which has been suitably transformed in such a way that it can be compared 

with .  It is known that for the Brownian motion case, 
  
H(u) = 0  for   u < 0  and 

2( ) 1H u    for 0u  . Similarly, for the above mentioned jump diffusion process, 

 H  still experiences a jump of size  when . Furthermore since  are gamma 

distributed then  for  and  for values of u that are greater but 

close to zero.  In line with many other simulation conducted, evidence has been obtained 

that  is considerably superior to when a continuous component is present. 

Furthermore the parameter   can be tuned to give sharper estimates. For the Cauchy 

process, neither the function H nor G experience a jump at 0. Hence in Figure 2, we 

compare the function  (which is represented by the dark bold line) with the other five 

curves which represent , one for each simulation, each of which consists of 500 time 

increments with 1000 observations in each time increment). This shows that the estimator 

proposed does not introduce any irrelevant and misleading features even when a continuous 

component is missing. 

 

6. Conclusion 
In this paper we discussed in detail a modification of the so-called Lévy 

Khintchine canonical representation of infinitely divisible distributions. The 

main alteration was the change of power of the variable x present in the function 

.  As shown in this paper no power less than 2 will do. Indeed 

the power of x was carefully selected.  Furthermore the link between the 

modified canonical representation, the original canonical representation and 

other representations was also discussed. 

From this modified canonical representation we also derived an estimator for the 

function G. The estimator 
  
Ĝ(u)  was shown to have useful properties which can 

be used for statistical purposes and is superior to . Furthermore this 

estimator was compared not only with 
  
G(u)  but also with H(u).  
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Abstract: We use an advanced methodology based on the mortality rate of a 

population to explore the healthy life expectancy (HALE) estimates of the 

World Health Organization (WHO) from the Global Burden of Disease Study. 

First we calculate the loss of healthy life year estimator (LHLY) and then the 

healthy life expectancy (HLE). We use the full life tables from the Human 

Mortality Database (HMD). Our estimates are compared with the HALE 

estimates for Italy and other countries. Another direct estimation based on the 

mx and qx quantities provided from the Life Tables is also introduced and 

tested. 

Analysis of the health situation in Italy males and females is presented along 

with the healthy life expectancy estimates. 
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1  Introduction 
 

The debate in Europe is currently paying considerable attention on healthy life 

expectancy (HALE), focusing on some important subpopulations like those of 

the elderly and/or those of the females and males. Following the approach of 

the World Health Organization (WHO), health should be considered as having 

a dynamic nature, and should be taken into consideration in the context of life, 

as the ability to fulfill actions or to carry out a certain role in society. This is 

the so-called functional approach, taken by the WHO in the elaboration of the 

international frame of reference on the matter. 
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The most suitable indicator to measure the state of health of a population is 

health expectancy, which measures the length of life spent in different states 

of health.  

There are several methods to estimate health expectancies. Among them the 

most commonly used are the Sullivan and the multi-state, respectively based 

on classical life table and longitudinal data. 

The first method was pioneered by Wolfbein on the length of “working life” 

(Wolfbein 1949) and is described in details in Sullivan (1971); as it is well 

known, it combines the prevalence of disability obtained through a cross-

sectional survey and a period life table. 

The second method, named multi-state tables, was pioneered by Rogers 

(1975) and Willekens for migration and marital status (Willekens 1979; Hoem 

and Fong 1976) for the multi-state table of working life and Brouard for the 

introduction of the period prevalence of labor participation (Brouard 1980; 

Cambois et al. 1999, Giudici et al 2013). Multi-state models are based on the 

analysis of the transitions between states in competition with the probabilities 

of dying from each state. 

The information necessary for this type of analysis derives from longitudinal 

surveys. The result, in this case, is the so called period (or stable) prevalence 

and can be interpreted analogously to the stationary population of a period life 

table, as the proportion of the disabled amongst the survivors of successive 

fictitious cohorts, subject to the flows of entry on disability, recovery and 

death observed in the period under examination. 

Thus, the period health expectancy is the expected number of years to be spent 

in the healthy state by this fictitious cohort.  

In the classical life table analysis, the survivors of any age are supposed to be 

at the same risk of dying. When taking heterogeneity into account, the 

simplest model consists in considering two states (healthy vs unhealthy, 

enabled vs disabled), but assuming that the population in each state is 

homogeneous over time, i.e at each age they are at the same risks of changing 

their status. This corresponds to the common Markov hypothesis. 

Starting from the late 80’s a Global Burden of Disease (GBD) study was 

applied in many countries reflecting the optimistic views of many researchers 

and policy makers worldwide to quantify the health state of a population or a 

group of persons. In the time course they succeeded in establishing an 

international network collecting and providing adequate information to 

calculate health measures under terms as Loss of Healthy Life Years (LHLY) 

or Healthy Life Expectancy (HALE). 

So far the process followed was towards statistical measures including surveys 

and data collection using questionnaires and disability and epidemiological 

data as well (McDowell, 2006). 
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However, a serious scientific part is missing or it is not very much explored 

that is to find the model underlying the health state measures. Observing the 

health state measures by country from 1990 until nowadays it is clear that the 

observed and estimated health parameters follow a rather systematic way. The 

lessons learned during the last centuries were towards the introduction of 

models in the analysis of health and mortality. The classical examples are 

Edmund Halley for Life Tables and Benjamin Gompertz for the law of 

mortality and may others. Today our ability to use mass storage tools as the 

computers and the extensive application of surveys and polls to many 

political, social and economic activities directed the main health state studies. 

In other words we give much attention to opinions of the people for their 

health status followed by extensive health data collection. However, it remains 

a serious question: can we validate the health status results? As it is the 

standard procedure in science a systematic study as the Global Burden of 

Disease should be validated by one or more models. Especially as these 

studies are today the main tool for the health programs of many countries the 

need of verification is more important. 

 

 

2  Estimation with a model 
 

We test a simple model proposed by Skiadas (2015) and Skiadas and Skiadas 

(2017), which we briefly describe in the following, using Italian data and 

compare the results with those provided by the Italian National Institute of 

Statistics (ISTAT) and by the GBD. 

The model is based on two parameters, b and T, and it is: 

 

   (
 

 
)
 

 

 

T represents the age at which μx=1 and b is a crucial health state parameter 

expressing the curvature of μx. As the health state is improved b gets higher 

values.   

Figure 1 represents a mortality diagram and illustrates the idea behind the 

methods proposed. 
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Fig 1. – Mortality diagram 

 
 

 
 

The main task is to find the area Ex under the curve OCABO in the mortality 

diagram (see Figure 1) which is a measure of the mortality effect. This is done 

by estimating the following integral: 
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The resulting value for Ex in the interval [0, T] is given by the simple form: 

 

           
 

   
 

 

The total information for the mortality is the area provided under the curve μx 

and the horizontal axis. The total area Etotal of the healthy and mortality part of 

the life span is nothing else but the area included into the rectangle of length T 

and height 1 that is Etotal=T. The health area is given by: 

 

                     
  

   
 

 

It then follows that: 
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This is the simplest indicator for the loss of health status of a population. 

Another interesting and closely related estimator is in the form: 

 

    
      

          
 

 

This indicator is more appropriate for the severe and moderate disability causes. 

It provides larger values for the disability measures as the Etotal is larger or the 

Emortality area is smaller by means that as we live longer the disability period 

becomes larger. 

This method suggests a simple but yet interesting tool for estimating the loss of 

healthy life years (LHLY). A correction multiplier λ should be added for 

specific situations so that the estimator is in the form: 

 

     
      

          
  (   ) 

 

3  Estimation without a model (Direct estimation) 

 

As the needed data sets in the form of mx or qx data are provided from the life 

tables, we have developed a method of direct estimation of the loss of healthy 

life year estimators directly from the life table by expanding the life table to the 

right. 

 

  
      

          
 
   

∑   
 
 

 

 

The only need is to estimate the above fraction from the life table data. A 

similar indicator results by selecting the qx data from the life table and using 

the: 

  
      

          
 
   
∑   
 
 

 

 

In both cases the results are similar. The estimates from mx are slightly larger 

than from qx. In both cases the b estimators growth to a maximum at old ages 

and then decline. The selected b indicator for the life years lost from birth is that 

of the maximum value. A smoothing technique is used to avoid sharp 

fluctuations in the maximum range area. Both the estimation of the b indicator 

by this direct method and the method by using a model give similar results.   
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4  Applications 
 

Our preliminary results for the Italian data are encouraging as shown in figures 

2a and 2b. For both cases we have estimated the Healthy Life Expectancy 

(HLE) by the Direct Method (without a model) and by the Fit Method (with the 

simple model). Both methods provide close estimates and mainly for the males 

case. The HALE estimates (Salomon, et al. 2012, Murray et al. 2016 and WHO 

2001, 2002, 2013, 2014) are also close to ours especially for the latest years. 

Three of the nearby countries with Italy are also studied in Figure 3. For all 

countries, Switzerland, France and Austria, the estimates are close to the related 

HALE figures.  

It should be noted that our methods based on the Life Table data sets are easy to 

apply even for time periods when health and disease estimates are not collected. 

Even more the needed second method to straighten the HALE estimates is 

proposed and applied along with a third one to support the previous (Skiadas 

2015, 2016). Another three parallel methods based on Gompertz, Weibull and a 

Stochastic model (Skiadas & Skiadas 2010, 2014, 2015) provide similar and 

supporting estimates. 
 

 

Fig 2 HLE estimates and HALE estimates and confidence intervals for Italian 

males (left) and females (right) 
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Fig 3 HLE estimates and HALE estimates and confidence intervals for 

Switzerland, France and Austria males (left) and females (right). 
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Abstract. New algorithms for computing exponential and mixed power-
exponential moments of hitting times and accumulated rewards of hitting
type for semi-Markov processes are presented. The algorithms are based on
special techniques of sequential phase space reduction and recurrence rela-
tions connecting exponential moments of rewards.
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1. Introduction

In this paper, we study recurrent relations for exponential and mixed
power-exponential moments of hitting times and accumulated rewards of
hitting type for semi-Markov processes and present effective algorithms for
computing these moments. These algorithms are based on procedures of
sequential of phase space reduction for semi-Markov processes. The present
paper continue research study results presented in this paper results given in
the paper Silvestrov and Manca (2015), where analogous results have been
obtained for more simple power moments of hitting times and accumulated
rewards of hitting type for semi-Markov process. In the above paper, readers
can also find a survey of works in the area.

The paper includes five sections. In Section 2, we introduce Markov
renewal processes, semi-Markov processes and define hitting times and accu-
mulated rewards of hitting type. We also present basic stochastic relations
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and systems of linear equations for exponential and mixed power-exponential
moments of these random functionals. In Section 3, we describe a procedure
of phase space reduction for semi-Markov processes and formulas for com-
puting transition characteristics for reduced semi-Markov processes. We also
prove invariance of hitting times and their exponential and mixed power-
exponential moments with respect to the above procedure of phase space
reduction. In Section 4, we describe a procedure of sequential phase space
reduction for semi-Markov process and derive recurrent formulas for com-
puting exponential and mixed power-exponential moments of hitting times
for semi-Markov processes. In Section 5, we present a numerical example for
the corresponding recurrent algorithm for computing exponential moments
of hitting times for semi-Markov processes.

2. Semi-Markov processes and hitting times

In this section, we introduce Markov renewal processes and semi-Markov
processes. We define also hitting times and hitting accumulated rewards, and
give basic recurrent system of linear equations for their exponential moments,
which are the main objects of our studies. We refer to books by Silvestrov
(1980) and Janssen and Manca (2006, 2007), where one can find basic facts
about semi-Markov processes and hitting times and accumulated rewards.

2.1. Markov renewal processes and semi-Markov processes. Let
X = {0, . . . ,m} and (Jn, Xn), n = 0, 1, . . . be a Markov renewal process, i.e.,
a homogeneous Markov chain with the phase space X × [0,∞), an initial
distribution p̄ = 〈pi = P{J0 = i,X0 = 0} = P{J0 = i}, i ∈ X〉 and transition
probabilities,

Qij(t) = P{J1 = j,X1 ≤ t/J0 = i,X0 = s}, (i, s), (j, t) ∈ X× [0,∞). (1)

In this case, the random sequence ηn is also a homogeneous (embedded)
Markov chain with the phase space X and the transition probabilities,

pij = P{J1 = j/J0 = i} = Qij(∞), i, j ∈ X. (2)

As far as random variableXn is concerned, it can be interpreted as sojourn
time in state Jn−1 or as a transition time from state Jn−1 to state Jn, for
n = 1, 2, . . ..

We assume that the following communication conditions hold:

A: X is a communicative class of states for the embedded Markov chain Jn.

We also assume that the following condition excluding instant transitions
holds:
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B: Qij(0) = 0, i, j ∈ X.

Let us now introduce a semi-Markov process,

J(t) = JN(t), t ≥ 0, (3)

where N(t) = max(n ≥ 0 : Tn ≤ t) is a number of jumps in the time interval
[0, t], for t ≥ 0, and Tn = X1 + · · ·+Xn, n = 0, 1, . . ., are sequential moments
of jumps, for the semi-Markov process J(t).

This process has the phase space X, the initial distribution p̄ = 〈pi =
P{J(0) = i}, i ∈ X〉 and semi-Markov transition probabilities Qij(t), t ≥ 0,
i, j ∈ X.

2.2. Hitting times and accumulated rewards of hitting type. Let
us also introduce moments of sojourn times, for ρ ≥ 0 and i, j ∈ X,

φij(ρ) = Eie
ρX1I(J1 = j) =

∫ ∞
0

eρtQij(dt). (4)

Here and henceforth, notations Pi and Ei are used for conditional proba-
bilities and expectations under condition J(0) = i.

Note that, φij(0) = pij, i, j ∈ X.
We assume that the following condition holds, for some real ρ > 0:

Cρ: φij(ρ) <∞, i, j ∈ X.

Note that conditions B imply that φij(ρ) > 0, if pij > 0, while φij(ρ) = 0,
if pij = 0.

The first hitting time to state 0 for the semi-Markov process J(t) can be
defined as,

W0 = inf(t ≥ X1 : J(t) = 0) =
U0∑
n=1

Xn, (5)

where U0 = min(n ≥ 1 : Jn = 0) is the first hitting time to state 0 for the
Markov chain Jn.

The random variable W0 can also be interpreted as a reward accumulated
on trajectories of Markov chain Jn up to its first hitting to state 0.

The main object of our studies are power moments for the first hitting
times,

Φi0(ρ) = Eie
ρW0 , ρ ≥ 0, i ∈ X. (6)

Note that, Φi0(0) = 1, i ∈ X.
Conditions A and Cρ imply that there exists ρ0 ∈ (0, ρ] such that, for

% ∈ [0, ρ0] and i ∈ X,
Φi0(%) <∞. (7)
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Indeed, let us introduce conditional exponential moments, for i, j ∈ X,

ψij(ρ) =

{
φij(ρ)/pij if pij > 0,

1 if pij = 0.
(8)

and define, for % ∈ [0, ρ], the following function,

ψ(%) = max
i,j∈X

φij(%) (9)

If conditions A and Cρ hold, then function ψ(%) ∈ [1,∞), for % ∈ [0, ρ]
and it is continuous nondecreasing function in this interval such that ψ(%)→
1 as %→ 0.

The following relation takes place, for % ∈ [0, ρ] and i ∈ X,

Φi0(%) =
∞∑
n=1

∑
i0=i,i1,...,in−1 6=0,in=0

n∏
k=1

ψik−1,ik(%)pik−1,ik

≤
∞∑
n=1

ψ(%)n
∑

i0=i,i1,...,in−1 6=0,in=0

n∏
k=1

pik−1,ik

=
∞∑
n=0

ψ(%)nPi{U0 = n}. (10)

Condition A implies that Pi{U0 ≥ n} → 0 as n → ∞, for i ∈ X. Thus,
for any 0 < θ < 1, there exists integer nθ ≥ 1 such that, for i ∈ X,

Pi{U0 ≥ nθ} ≤ θ. (11)

This inequality implies that, for every i ∈ X and k ≥ 1,

Pi{U0 ≥ knθ} =
∑
j 6=0

Pi{U0 ≥ (k − 1)nθ, J(k−1)nθ = j}Pj{U0 ≥ nθ}

≤ θPi{U0 ≥ (k − 1)nθ} ≤ · · · ≤ θk. (12)

Inequalities (13) imply in an obvious way that, for for every i ∈ X and
n ≥ 1,

Pi{U0 ≥ n} ≤ θ
[ n
nθ

] ≤ Lθθ
n
nθ (13)

where Lθ = θ−nθ .
Finally, relations (10) and (13) imply that the following inequality holds,

for ρ0 ∈ [0, ρ] such that ψ(ρ0)θ
1
nθ < 1, and i ∈ X,

Φi0(ρ0) ≤
∞∑
n=0

Lθ(ψ(ρ0)θ
1
nθ )n <∞. (14)
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However, it should be noted that conditions A and Cρ do not guarantee
that the exponential moments Φi0(ρ) < ∞. The corresponding example is
given below.

In what follows, symbol Y
d
= Z is used to denote that random variables

or vectors Y and Z have the same distribution.
The Markov property of the Markov renewal process (Jn, Xn) implies that

following system of stochastic equalities takes place for hitting times,{
Wi,0

d
= Xi,1I(Ji,1 = 0) +

∑
j 6=0(Xi,1 +Wj,0)I(Ji,1 = j),

i ∈ X,
(15)

where: (a) Wi,0 is a random variable which has distribution P{Wi,0 ≤ t} =
Pi{W0 ≤ t}, t ≥ 0, for every i ∈ X; (b) (Ji,1, Xi,1) is a random vector, which
takes values in space X × [0,∞) and has the distribution P{Ji,1 = j,Xi,1 ≤
t} = Qij(t), j ∈ X, t ≥ 0, for every i ∈ X; (c) the random variables Wj,0 and
the random vector (Ji,1, Xi,1) are independent, for every i, j ∈ X.

By computing exponential moments in stochastic relations (15) we get,
for every 0 ≤ % ≤ ρ, the following system of linear equations for moments
Φi0(%), i ∈ X, {

Φi0(%) = φi0(%) +
∑
j∈X,j 6=0 φij(%)Φj0(%),

i ∈ X. (16)

Note that it is possible that the moment φij(%) equals to 0, while the
moment Φj0(%) equal to +∞ in relation (16). In such cases, one should set
the product 0 · ∞ to be 0 when calculating the products at the right-hand
side of equality (16).

Let consider the simplest semi-Markov process with the two-point phase
space X = {0, 1} and, also, assume that all probabilities pij > 0, i, j = 0, 1,
and, the exponential moments φij(ρ) ∈ (0,∞), i, j = 0, 1.

In this case system of equations (16) takes the form,{
Φ00(ρ) = φ00(ρ) + φ01(ρ)Φ10(ρ),
Φ10(ρ) = φ10(ρ) + φ11(ρ)Φ10(ρ).

(17)

If φ11(ρ) ≥ 1, then Φ00(ρ),Φ10(ρ) =∞ as follows from relations (17).
If φ11(ρ) < 1, then Φ00(ρ),Φ10(ρ) < ∞ and these moments are given by

formulas,

Φ10(ρ) =
φ10(ρ)

1− φ11(ρ)
, Φ00(ρ) = φ00(ρ) +

φ01(ρ)φ10(ρ)

1− φ11(ρ)
. (18)
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It should be noted that the finiteness of the exponential moment for
return time Φ00(ρ) does not guarantee the finiteness of the exponential mo-
ment Φ11(ρ). Indeed, according the above remarks, the exponential moments
Φ11(ρ),Φ01(ρ) =∞ if φ00(ρ) ≥ 1.

Necessary and sufficient conditions of finiteness for exponential moments
of hitting times are given in terms of so-called test-functions in Silvestrov
(2004) and Gyllenberg and Silvestrov (2008).

We refer to functions v(i), i ∈ X defined on the space X and taking value
in the interval [0,∞) as test-functions.

Let us introduce condition:

Dρ: There exists a test-function vρ(i), i ∈ X such that the following test
inequalities hold,

vρ(i) ≥ φi0(ρ) +
∑

j∈X,j 6=0

φij(ρ)vρ(j), i ∈ X.

The following lemma gives the pointed above conditions finiteness for
exponential moments of hitting times.

Lemma 1. Let conditions A, B and Cρ, for some ρ > 0, hold. Then,
exponential moments Φi0(ρ) <∞, i ∈ X if and only if condition Dρ holds. In
this case, inequalities Φi0(ρ) ≤ vρ(i), i ∈ X hold and the exponential moments
Φi0(ρ), i ∈ X are the unique solution of the system of linear equations (16).

It is useful to note that, in the above example with two-state semi-Markov
process, this is impossible to find a test function vρ(i), i = 0, 1 such that the
test inequalities penetrating condition Dρ holds, if φ11(ρ) ≥ 1.

Indeed, the second test inequality, which takes the form, vρ(1) ≥ φ10(ρ)+
φ11(ρ)vρ(1), can not hold in this case, since φ10(ρ) > 0.

Condition Dρ, however, holds if φ11(ρ) < 1.
Indeed, the test inequality penetrating this condition holds for test-functions

vρ(1) = φ10(ρ)
1−φ11(ρ)

and vρ(0) = φ00(ρ) + φ01(ρ)vρ(1) in the form of equalities.

The system of linear equation given in (16) has, for every 0 ≤ % ≤ ρ, the
matrix of coefficients I− 0P(%), where I = ‖I(i = j)‖ is the unit matrix and
matrix 0P(%) = ‖φij(%)I(j 6= 0)‖. Under conditions of Lemma 1, there exists
the inverse matrix,

[I− 0P(%)]−1 = ‖gi0j(%)‖. (19)

The elements of this matrix have the following probabilistic sense,

gi0j(%) =
∞∑
n=1

Eie
%Tn−1I(U0 > n− 1, Jn−1 = j), i, j ∈ X. (20)
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Thus, the formula for moments Φi0(%), i ∈ X has the following form,

Φi0(%) =
∑
j∈X

gi0j(%)φj0(ρ), i ∈ X. (21)

This is useful to note that the above remarks imply that condition A can
be replaced by simpler hitting condition:

A0: Pi{U0 <∞} = 1, i ∈ X.

In this paper, we propose an alternative method, which can be considered
as a stochastic analogue of Gauss elimination method for finding exponential
moments Φi0(ρ), i ∈ X.

2.3. Mixed power-exponentional moments. Let us introduce mixed
power-exponential moments, for ρ ≥ 0, r = 0, 1, . . . , i, j ∈ X,

φij(r, ρ) = EiX
r
1e
ρX1I(J1 = j) =

∫ ∞
0

treρtQij(dt). (22)

’
Note that φij(0, ρ) = φij(ρ), ρ ≥ 0, i ∈ X.
It is easily seen that condition Cρ implies that, φij(r, %) < ∞, for any

0 ≤ % < ρ, r = 0, 1, . . . , i, j ∈ X.
It is easily seen that for every 0 ≤ % < ρ, r = 1, . . . , i, j ∈ X, function

φij(%) has a derivative of order r, and it is the function φij(r, ρ).
Let us also introduce mixed power-exponential moments, for ρ ≥ 0, r =

0, 1, . . . , i ∈ X,
Φi0(r, ρ) = EiW

r
0 e

ρW0 . (23)

Note that Φi0(0, ρ) = Φi0(ρ), ρ ≥ 0, i ∈ X.
Condition Dρ implies that Φij(r, %) < ∞, for every 0 ≤ % < ρ and

r = 0, 1, . . . , i, j ∈ X.
Moreover, it is easily seen that for every 0 ≤ % < ρ, r = 1, . . . , i, j ∈ X,

function Φij(%) has a derivative of order n, and it is the function Φij(r, ρ).
Therefore, we can differentiate equations (16) and get the following sys-

tem of linear equation for every 0 ≤ % < ρ and r = 0, 1, . . .,{
Φi0(r, %) = λi0(r, %) +

∑
j∈X,j 6=0 φij(%)Φij(r, %),

i ∈ X, (24)

where

λi0(r, %) = φi0(r, %) +
∑

j∈X,j 6=0

r∑
l=1

(
r

l

)
φij(r − l, %)Φj0(l, %). (25)
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Note that λij(0, %) = φij(%), i, j ∈ X.
In the case r = 0, system (24) coincides with system (16).
Systems (24) have the same coefficient matrix 0P(%) but different free

terms λi0(r, %), for r = 0, 1, . . .. These systems should be solved recursively.
First, the system (24) should be solved for r = 0, where, as was mentioned

above, it coincides with the system of linear equation (16).
Second, we solve system (24) for r = 1. Note that expressions for the

free terms λi0(1, %) = φi0(1, %) +
∑
j∈X,j 6=0 φij(1, %)Φj0(0, %), i ∈ X include the

solutions Φi0(0, %), i ∈ X, of systems (24), for r = 0.
This recursive procedure can be repeated for r = 1, 2, . . .. The expressions

for the free terms λi0(r, %) given in (25) include the solutions Φi0(l, %), i ∈ X,
of systems (24) for l = 0, 1, . . . , r − 1.

3. Semi-Markov processes with reduced phase spaces

In this section, we describe an one-step algorithm for reduction of a phase
space for a semi-Markov process. We also give recurrent systems of linear
equations for power moments of hitting times for a reduced semi-Markov
process.

3.1. Reduced semi-Markov processes. Let us choose some state
k ∈ X and consider the reduced phase space kX = X \ {k}, with the state k
excluded from the phase space X.

Let us define the sequential moments of hitting the reduced space kX by
the embedded Markov chain Jn,

kVn = min(r > kVn−1, Jr ∈ kX), n = 1, 2, . . . , kV0 = 0. (26)

Now, let us define the random sequence,

(kJn, kXn) =

 (J0, 0) for n = 0,

(J
kVn ,

∑
kVn
r= kVn−1+1Xr) for n = 1, 2, . . . .

(27)

This sequence is also a Markov renewal process with phase space X ×
[0,∞), the initial distribution p̄ = 〈pi = P{J0 = i,X0 = 0} = P{J0 = i}, i ∈
X〉 and transition probabilities,

kQij(t) = P{ kJ1 = j, kX1 ≤ t/ kJ0 = i, kX0 = s}

= Qij(t) +
∞∑
n=0

Qik(t) ∗Q(∗n)
kk (t) ∗Qkj(t), t ≥ 0, i, j ∈ X. (28)

Here, symbol ∗ is used to denote the convolution of distribution functions
(possibly improper), and Q

(∗n)
kk (t) is the n times convolution of the distribu-

tion function Qkk(t).

926



In this case, the Markov chain kJn has the transition probabilities,

kpij = kQij(∞) = P{ kJ1 = j, / kJ0 = i}

= pij +
∞∑
n=0

pikp
n
kkpkj = pij + pik

pkj
1− pkk

, i, j ∈ X. (29)

Note that condition A implies that probabilities pkk ∈ [0, 1), k ∈ X.
The transition distributions for the Markov chain kJn are concentrated

on the reduced phase space kX, i.e., for every i ∈ X,∑
j∈ kX

kpij =
∑
j∈ kX

pij + pik
∑
j∈ kX

pkj
1− pkk

=
∑
j∈ kX

pij + pik = 1. (30)

If the initial distribution p̄ is concentrated on the phase space kX, i.e.,
pk = 0, then the random sequence (kJn, kXn), n = 0, 1, . . . can be considered
as a Markov renewal process with the reduced phase kX× [0,∞), the initial
distribution kp̄ = 〈 pi = P{kJ0 = i, kX0 = 0} = P{kJ0 = i}, i ∈ kX〉 and
transition probabilities kQij(t), t ≥ 0, i, j ∈ kX.

If the initial distribution p̄ is not concentrated on the phase space kX, i.e.,
pk > 0, then the random sequence (kJn, kXn), n = 0, 1, . . . can be interpreted
as a Markov renewal process with so-called transition period.

Let us now introduce the semi-Markov process,

kJ(t) = kJkN(t), t ≥ 0, (31)

where kN(t) = max(n ≥ 0 : kTn ≤ t) is a number of jumps at time interval
[0, t], for t ≥ 0, and kTn = kX1 + · · · + kXn, n = 0, 1, . . . are sequential
moments of jumps, for the semi-Markov process kJ(t).

As follows from the above remarks, the semi-Markov process kJ(t), t ≥
0 has transition probabilities kQij(t), t ≥ 0, i, j ∈ X concentrated on the
reduced phase space kX, which can be interpreted as the actual “reduced”
phase space of this semi-Markov process kJ(t).

If the initial distribution p̄ is concentrated on the phase space kX, then
process kJ(t), t ≥ 0 can be considered as the semi-Markov process with the
reduced phase kX, the initial distribution kp̄ = 〈 kpi = P{kJ1(0) = i}, i ∈ kX〉
and transition probabilities kQij(t), t ≥ 0, i, j ∈ kX.

According to the above remarks, we can refer to the process kJ(t) as a
reduced semi-Markov process.

If the initial distribution p̄ is not concentrated on the phase space kX,
then the process kJ(t), t ≥ 0 can be interpreted as a reduced semi-Markov
process with transition period.
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3.2. Transition characteristics for reduced semi-Markov pro-
cesses. Relation (29) implies the following formulas, for probabilities kpkj
and kpij, i, j ∈ kX,{

kpkj =
pkj

1−pkk
,

kpij = pij + pik kpkj = pij +
pikpkj
1−pkk

.
(32)

It is useful to note that the second formula in relation (32) reduces to the
first one, if to assign i = k in this formula.

Taking into account that kV1 is Markov time for the Markov renewal pro-
cess (Jn, Xn), we can write down the following system of stochastic equalities,
for every i, j ∈ kX,

kXi,1I( kJi,1 = j)
d
= Xi,1I(Ji,1 = j)

+ (Xi,1 + kXk,1)I(Ji,1 = k)I( kJk,1 = j),

kXk,1I( kJk,1 = j)
d
= Xk,1I(Jk,1 = j)

+ (Xk,1 + kXk,1)I(Jk,1 = k)I( kJk,1 = j),

(33)

where: (a) (Ji,1, Xi,1) is a random vector, which takes values in space X ×
[0,∞) and has the distribution P{Ji,1 = j,Xi,1 ≤ t} = Qij(t), j ∈ X, t ≥ 0,
for every i ∈ X; (b) (kJi,1, kXi,1) is a random vector which takes values in the
space kX × [0,∞) and has distribution P{kJi,1 = j, kXi,1 ≤ t} = Pi{kJ1 =
j, kX1 ≤ t} = kQij(t), j ∈ kX, t ≥ 0, for every i ∈ X; (c) (Ji,1, Xi,1) and
(kJk,1, kXk,1) are independent random vectors, for every i, k ∈ X.

Let us denote, for ρ ≥ 0, i, k ∈ X, j ∈ kX,

kφij(ρ) =
∫ ∞

0
eρt kQij(dt). (34)

Note that kφij(0) = kpij, i, k ∈ X, j ∈ kX.
By computing exponential moments in stochastic relations (33) we get,

for every i, j ∈ kX, the following system of linear equations for the moments

kφkj(ρ), kφij(ρ),  kφkj(ρ) = φkj(ρ) + φkk(ρ) kφkj(ρ),

kφij(ρ) = φij(ρ) + φik(ρ) kφkj(ρ).
(35)

Relation (35) yields the following formulas for moments kφkj(ρ) and kφij(ρ),
which should be used, for every i, j ∈ kX, k ∈ X,

kφkj(ρ) =
φkj(ρ)

1−φkk(ρ)
,

kφij(ρ) = φij(ρ) +
φik(ρ)φkj(ρ)

1−φkk(ρ)
.

(36)
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It is useful to note that the second formula in relation (36) reduces to the
first one, if to assign i = k in this formula.

Relation (36) imply that, under conditions A, B and Cρ, the following
condition is necessary and sufficient for finiteness of exponential moments

kφkj(ρ), kφij(ρ), i, j ∈ kX,

E
(1)
k,ρ: φkk(ρ) < 1.

Let us introduce mixed power-exponential moments, for ρ ≥ 0, r =
0, 1, . . . , i, k ∈ X, j ∈ kX,

kφij(r, ρ) =
∫ ∞

0
treρt kQij(dt). (37)

Note that kφij(0, ρ) = kφij(ρ), for ρ ≥ 0, i, k ∈ X, j ∈ kX.

Condition E
(1)
k,ρ implies that kφij(r, %) < ∞, for every 0 ≤ % < ρ, r =

0, 1, . . . , i, k ∈ X, j ∈ kX.
Moreover, it is easily seen that for every 0 ≤ % < ρ, r = 1, . . . , i, j ∈ X,

function kφij(%) has a derivative of order n, and it is the function kφij(r, ρ).
Therefore, we can differentiate equations (35) and get the following sys-

tem of linear equation, for every 0 ≤ % < ρ, r = 0, 1, . . . , i, j ∈ kX, k ∈ X, kφkj(r, ρ) = kλkj(r, ρ) + φkk(ρ) kφkj(r, ρ),

kφij(r, ρ) = kλij(r, ρ) + φik(ρ) kφkj(r, ρ).
(38)

where, for 0 ≤ % < ρ, r = 0, 1, . . . , i, k ∈ X, j ∈ kX,

kλij(r, %) = φij(r, %) +
r∑
l=1

(
r

l

)
φik(r − l, %) kφkj(l, %). (39)

Note that kλij(0, %) = kφij(%), for i, k ∈ X, j ∈ kX.
Relation (38) yields the following formulas for moments kφkj(r, %) and

kφij(r, %), which should be used, for every 0 ≤ % < ρ, r = 0, 1, . . . , i, j ∈
kX, k ∈ X, 

kφkj(r, %) = kλkj(r,%)

1−φkk(%)
,

kφij(r, %) = kλij(r, %) +
φik(%) kλkj(r,%)

1−φkk(%)
.

(40)

Formulas (40) have recurrent character since expressions for functions

kλkj(r, %), kλij(r, %) includes functions kφkj(l, %), l = 0, 1, . . . , r − 1.
For r = 0, formulas (40) reduce to formulas (36).

3.3. Exponential and mixed power-exponential moments for
hitting times of reduced semi-Markov processes. Let us assume that

929



k 6= 0 and introduce the first hitting time to state 0 for the reduced semi-
Markov process kJ(t),

kW0 = inf(t ≥ kX1 : kJ(t) = 0) =
kU0∑
n=1

kXn, (41)

where kU0 = min(n ≥ 1 : kJn = 0) is the first hitting time to state 0 by the
reduced Markov chain kJn.

Let also introduce, for ρ ≥ 0, i ∈ X, exponential moments,

kΦi0(ρ) = Eie
ρ kW0 , (42)

and, for ρ ≥ 0, n = 0, 1, . . . , i ∈ X, mixed power-exponential moments,

kΦi0(n, ρ) = Ei kW
n
0 e

ρ kW0 , (43)

Note that, kΦi0(0, ρ) = kΦi0(ρ), for ρ ≥ 0, n = 0, 1, . . . , i, k ∈ X and

kΦi0(0) = 1, for i, k ∈ X.

The following theorem plays the key role in what follows.

Theorem 2. The hitting times W0 and kW0 to the state 0, respectively,
for semi-Markov processes J(t) and kJ(t), coincide, for every k 6= 0 and,
thus, for every ρ ≥ 0, r = 0, 1, . . . , i ∈ X, k 6= 0,

Φi0(r, ρ) = EiW
r
0 e

ρW0 = kΦi0(r, ρ) = EiW
r
0 e

ρ kW0 . (44)

Proof. The first hitting times to a state 0 are connected for Markov chains
Jn and kJn by the following relation,

U0 = min(n ≥ 1 : Jn = 0) = min(kVn ≥ 1 : kJn = j) = kVkU0 , (45)

where kU0 = min(n ≥ 1 : kJn = 0).
The above relations imply that the following relation holds for the first

hitting times to state 0, for the semi-Markov processes J(t) and kJ(t),

W0 =
U0∑
n=1

Xn =
kVkU0∑
n=1

Xn =
kU0∑
n=1

kXn = kW0. (46)

The equality for mixed power-exponential moments of hitting times is an
obvious corollary of relation (46). �

Lemma 2. Let ρ ≥ 0 and conditions A, B, Cρ and Dρ hold for the
semi-Markov process J(t). Then, these conditions also hold for the reduced
semi-Markov process kJ(t), for any state k 6= 0.
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Proof. Holding of conditions A and B for the semi-Markov process kJ(t)
is obvious. Holding of condition Cρ for the semi-Markov process kJ(t) fol-
lows from relation (36). Holding of condition Dρ for the semi-Markov process

kJ(t) follows from Lemma 1. �

4. Algorithms of sequential phase space reduction

In this section, we present a multi-step algorithm for sequential reduction
of phase space for semi-Markov processes. We also present the recurrent algo-
rithm for computing exponential moments of hitting times for semi-Markov
processes, which is based on the above algorithm of sequential reduction of
the phase space.

4.1. Sequential reduction of phases space for semi-Markov pro-
cesses. In what follows, let i ∈ {1, . . . ,m} and let k̄i,m = 〈ki,1, . . . , ki,m〉 =
〈ki,1, . . ., ki,m−1, i〉 be a permutation of the sequence 〈1, . . . ,m〉 such that
ki,m = i, and let k̄i,n = 〈ki,1, . . . , ki,n〉, n = 1, . . . ,m be the corresponding
chain of growing sequences of states from space X.

Let us assume that p0 +pi = 1. Denote as k̄i,0J(t) = J(t), the initial semi-
Markov process. Let us exclude state ki,1 from the phase space k̄i,0X = X
of semi-Markov process k̄i,0J(t) using the time-space screening procedure de-
scribed in Section 3. Let k̄i,1J(t) be the corresponding reduced semi-Markov
process. The above procedure can be repeated. The state ki,2 can be excluded
from the phase space of the semi-Markov process k̄i,1J(t). Let k̄i,2J(t) be the
corresponding reduced semi-Markov process. By continuing the above pro-
cedure for states ki,3, . . . , ki,n, we construct the reduced semi-Markov process

k̄i,nJ(t).
The process k̄i,nJ(t) has, for every n = 1, . . . ,m, the actual “reduced”

phase space,

k̄i,nX = k̄i,n−1
X \ {ki,n} = X \ {ki,1, ki,2, . . . , ki,n}. (47)

The transition probabilities k̄i,npki,n,j′ , k̄i,npi′j′ , i
′, j′ ∈ k̄nX, and the expo-

nential moments k̄i,nφki,n,j′(ρ), k̄i,nφi′j′(ρ), i′, j′ ∈ k̄i,nX are determined for the
semi-Markov process k̄i,nJ(t) by the transition probabilities and the expec-
tations of sojourn times for the semi-Markov process k̄i,n−1

J(t), respectively,
via relations (32) and (36), which take the following recurrent forms, for
i′, j′ ∈ k̄i,nX and n = 1, . . . ,m,

k̄i,npki,n,j′ =
k̄i,n−1

pki,n,j′

1− k̄i,n−1
pki,n,ki,n

,

k̄i,npi′j′ = k̄i,n−1
pi′j′ +

k̄i,n−1
pi′ki,n k̄i,n−1

pki,n,j′

1− k̄i,n−1
pki,n,ki,n,

,
(48)

931



and 
k̄i,nφki,n,j′(ρ) =

k̄i,n−1
φki,n,j′

(ρ)

1− k̄i,n−1
φki,n,ki,n (ρ)

,

k̄i,nφi′j′(ρ) = k̄i,n−1
φi′j′(ρ) +

k̄i,n−1
φi′ki,n

(ρ) k̄i,n−1
φki,n,j′

(ρ)

1− k̄i,n−1
φki,n,ki,n (ρ)

,
(49)

Relation (49) implies that, under conditions A, B and Cρ, the following
condition is necessary and sufficient for finiteness of exponential moments

k̄i,n′
φki,n′ ,j′(ρ), k̄i,n′φi′j′(ρ), i′, j′ ∈ k̄i,n′

X, n′ = 1, . . . , n:

E
(n)

k̄i,n,ρ
: k̄i,n′−1

φki,n′ ,ki,n′ (ρ) < 1, n′ = 1, . . . , n.

Also, mixed power-exponential moments k̄i,nφki,n,j′(n, ρ), k̄i,nφi′j′(n, ρ), i′,
j′ ∈ k̄i,nX are determined for every 0 ≤ % < ρ, r = 0, 1, . . . by the following
recurrent relations,

k̄i,nφki,n,j′(r, %) =
k̄i,n−1

λki,n,j′
(r,%)

1− k̄i,n−1
φki,n,ki,n (%)

,

k̄i,nφi′j′(r, %) = k̄i,n−1
λi′j′(r, %) +

k̄i,n−1
φi′ki,n

(%) k̄i,n−1
λki,n,j′

(r,%)

1− k̄i,n−1
φki,n,ki,n (%)

,
(50)

where, for 0 ≤ % < ρ, r = 0, 1, . . . , i′, ki,n ∈ k̄i,n−1
X, j′ ∈ k̄i,nX,

k̄i,n−1
λi′j′(r, %) = k̄i,n−1

φi′j′(r, %)

+
r∑
l=1

(
r

l

)
k̄i,n−1

φi′ki,n(r − l, %) k̄i,nφki,nj′(l, %). (51)

Note that k̄i,nφki,n,j′(0, %) = k̄i,nφki,n,j′(r, %) and k̄i,nφi′j′(0, %) = k̄i,nφi′j′(%)
for i′, j′ ∈ k̄i,nX.

Relations (50) and (51) should be used recurrently, for r = 1, 2, . . ., since
expressions for functions k̄i,n−1

λki,nj′(r, %) and k̄i,n−1
λi′j′(r, %) include functions

ki,nφki,nj(l, %), j′ ∈ k̄i,nX, l = 0, 1, . . . , r − 1.

4.2. Recurrent algorithms for computing of moments of hitting
times. Let us k̄i,nW0 be the first hitting time to state 0 for the reduced

semi-Markov process k̄i,nJ(t) and k̄i,nΦi′0(ρ) = Ei′e
ρ k̄i,n

W0 , i′ ∈ k̄i,nX be the
exponential moments for these random variables.

By Theorem 1, the above exponential moments of hitting time coincide for
the semi-Markov processes k̄i,0J(t), k̄i,1J(t), . . . , k̄i,nJ(t), i.e., for n′ = 0, . . . , n,

k̄j,n′
Φki,n′0

(ρ) = Φki,n′0
(ρ), k̄j,n′

Φi′0(ρ) = Φi′0(ρ), i′ ∈ k̄i,nX. (52)

Moreover, exponential moments of hitting times k̄j,nΦki,n0(ρ), k̄i,nΦi′0(ρ),
i′ ∈ k̄i,nX, resulted by the recurrent algorithm of sequential phase space
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reduction described above, are invariant with respect to any permutation
k̄′i,n = 〈k′i,1, . . ., k′i,n〉 of sequence k̄i,n = 〈ki,1, . . . , ki,n〉.

Indeed, for every permutation k̄′i,n of sequence k̄i,n, the corresponding
reduced semi-Markov process k̄′i,n

J(t) is constructed as the sequence of states

for the initial semi-Markov process J(t) at sequential moment of its hitting
into the same reduced phase space k̄′i,n

X = X \ {k′i,1, . . . , k′i,n} = k̄i,nX =

X \ {ki,1, . . . , ki,n}. The times between sequential jumps of the reduced semi-
Markov process k̄′i,n

J(t) are the times between sequential hitting of the above

reduced phase space by the initial semi-Markov process J(t).
This implies that the transition probabilities k̄i,npki,nj′ , k̄i,npi′j′ , i

′, j′ ∈
k̄i,nX and the exponential moments k̄i,nφki,nj′(ρ), k̄i,nφi′j′(ρ), i′, j′ ∈ k̄i,nX and,
in sequel, exponential moments k̄i,nΦki,n0(ρ), k̄i,nΦi′0(ρ), i′ ∈ k̄i,nX are, for

every n = 1, . . . ,m, invariant with respect to any permutation k̄′i,n of the
sequence k̄i,n.

Let us now choose n = m. In this case, the reduced semi-Markov process

k̄i,mJ(t) has the one-state phase space k̄i,mX = {0} and state ki,m = i.
In this case, the reduced semi-Markov process k̄i,mJ(t) return to state 0

after every jump and hitting time to state 0 coincides with the sojourn time
in state k̄i,mJ(0).

Thus, the transition probabilities,

k̄i,mpi0 = k̄i,mp00 = 1. (53)

Also, by Theorem 1, moments,

Φi0(ρ) = k̄i,mΦi0(ρ) = k̄i,mφi0(ρ), (54)

and
Φ00(ρ) = k̄i,mΦ00(ρ) = k̄i,mφ00(ρ). (55)

Relations (54) and (55) imply that, under conditions A, B and Cρ, the
following condition is necessary and sufficient for finiteness of exponential
moments Φi0(ρ), i 6= 0,Φ00(ρ):

E
(m)

k̄i,m,ρ
: k̄i,n−1

φki,n,ki,n(ρ) < 1, n = 1, . . . ,m.

In fact, if condition E
(m)

k̄i,m,ρ
holds for some permutation k̄i,m = 〈ki,1, . . .,

ki,m−1, i〉 of the sequence 〈1, . . . ,m〉, it also holds for any other permutation
k̄′i′,m = 〈k′i′,1, . . . , k′i′,m−1, i

′〉 of the sequence 〈1, . . . ,m〉.
Thus, condition E

(m)

k̄i,m,ρ
is an alternative to condition Dρ.

The above remarks can be summarized in the following theorem, which
presents the recurrent algorithm for computing of power moments for hitting
times.
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Theorem 2. Let ρ ≥ 0 and conditions A, B, Cρ and Dρ hold for
the semi-Markov process J(t). Exponential moments Φi0(ρ) and Φ00(ρ) are
given, for every i = 1, . . . ,m, by formulas (54) and (55), where the expo-
nential moments k̄i,nφki,n,j′(ρ), k̄i,nφi′j′(ρ), i′, j′ ∈ k̄i,nX are determined, for
n = 1, . . . ,m, by recurrent formulas (49). The moments Φi0(ρ) and Φ00(ρ)
are invariant with respect to any permutation k̄i,m of sequence 〈1, . . . ,m〉 used
in the above recurrent algorithm.

In analogous way, we can get, for every 0 ≤ % < ρ, r = 0, 1, . . ., the
following relations,

Φi0(r, %) = k̄i,mΦi0(r, %) = k̄i,mφi0(r, %), (56)

and
Φ00(r, %) = k̄i,mΦ00(r, %) = k̄i,mφ00(r, %). (57)

and prove the following theorem.

Theorem 3. Let ρ ≥ 0 and conditions A, B, Cρ and Dρ hold for
the semi-Markov process J(t). Mixed power-exponential moments Φi0(r, %)
and Φ00(r, %) are given, for every i = 1, . . . ,m and 0 ≤ % < ρ, r = 0,
1, . . ., by formulas (56) and (57), where the mixed power-exponential moments

k̄i,nφki,n,j′(r, %), k̄i,nφi′j′(r, ρ), i′, j′ ∈ k̄i,nX are determined, for n = 1, . . . ,m,
by recurrent formulas (50) and (51). The moments Φi0(r, %) and Φ00(r, %) are
invariant with respect to any permutation k̄i,m of sequence 〈1, . . . ,m〉 used in
the above recurrent algorithm.

5. An example.

Let us consider a numerical example illustrating the recurrent algorithm
for computing power moment of hitting times and accumulated rewards of
hitting times for semi-Markov processes, based on sequential reduction of
their phase spaces.

Let J(t) be a semi-Markov process with the phase space X = {0, 1, 2, 3},
and the 4 × 4 matrix of transition probabilities, ‖Qij(t)‖, which has the
following form, for t ≥ 0,∥∥∥∥∥∥∥∥∥∥∥

1
2
I(t ≥ ln 10

9
) 0 0 1

2
I(t ≥ ln 10

9
)

1
2
(1− e−9t) 1

6
(1− e−9t) 1

6
(1− e−9t) 1

6
(1− e−9t)

0 1
2
(1− e−10t) 1

4
(1− e−10t) 1

4
(1− e−10t)

0 1
2
I(t ≥ ln 9

8
) 1

4
I(t ≥ ln 9

8
) 1

4
I(t ≥ ln 9

8
)

∥∥∥∥∥∥∥∥∥∥∥
. (58)

Let us compute the exponential moments of hitting times Φ00(ρ) and
Φ10(ρ), for ρ = 1, using the recurrent algorithm described in Sections 3 – 5.
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Note that we chosed parameters of semi-Markov transition probabilities
and the value of ρ in the way simplifying the corresponding numerical calcu-
lations.

The 4 × 4 matrices of transition probabilities ‖pij‖, for the embedded
Markov chain Jn and exponential moments ‖φij(1)‖ of transition times, for
the semi-Markov process J(t), have the following forms,∥∥∥∥∥∥∥∥∥∥∥∥

1
2

0 0 1
2

1
2

1
6

1
6

1
6

0 1
2

1
4

1
4

0 1
2

1
4

1
4

∥∥∥∥∥∥∥∥∥∥∥∥
and

∥∥∥∥∥∥∥∥∥∥∥∥

5
9

0 0 5
9

9
16

3
16

3
16

3
16

0 5
9

5
18

5
18

0 9
16

9
32

9
32

∥∥∥∥∥∥∥∥∥∥∥∥
. (59)

Let us first exclude state 3 from the phase space X = {0, 1, 2, 3} of the
semi-Markov process J(t). The corresponding reduced semi-Markov process

〈3〉J(t) has the phase space 〈3〉X = {0, 1, 2}.
The recurrent formulas (48), for transition probabilities of the embed-

ded Markov chain 〈3〉Jn, and (49), for exponential moments 〈3〉φij(1) of so-
journ times for the semi-Markov process 〈3〉J(t), have the following forms,

respectively, 〈3〉pij = pij + pi3p3j

1−p33
and 〈3〉φij(1) = φij(1) + φi3(1)φ3j(1)

1−φ33(1)
, for

i = 0, 1, 2, 3, j = 0, 1, 2.
The 4 × 3 matrices of transition probabilities ‖〈3〉pij‖ exponential mo-

ments ‖〈3〉φij(1)‖, computed according the above recurrent formulas, take
the following forms,∥∥∥∥∥∥∥∥∥∥∥∥

1
2

1
3

1
6

1
2

5
18

2
9

0 2
3

1
3

0 2
3

1
3

∥∥∥∥∥∥∥∥∥∥∥∥
and

∥∥∥∥∥∥∥∥∥∥∥∥

5
9

10
23

5
23

9
16

123
368

6
23

0 160
207

15
46

0 160
207

15
46

∥∥∥∥∥∥∥∥∥∥∥∥
. (60)

Let us now exclude state 2 from the phase space 〈3〉X = {0, 1, 2} of the
semi-Markov process 〈3〉J(t). The corresponding reduced semi-Markov pro-
cess 〈3,2〉J(t) has the phase space 〈3,2〉X = {0, 1}.

The recurrent formulas (48), for transition probabilities 〈3,2〉pij of the em-
bedded Markov chain 〈3,2〉Jn, and (49), for exponential moments 〈3,2〉φij(1)
of sojourn times for the semi-Markov process 〈3,2〉J(t), have the following
forms, respectively, 〈3,2〉pij = 〈3〉pij + 〈3〉pi2 〈3〉p2j

1− 〈3〉p22
and 〈3,2〉φij(1) = 〈3〉φij(1) +

〈3〉φi2(1) 〈3〉φ2j(1)

1− 〈3〉φ22(1)
, for i = 0, 1, 2, j = 0, 1.

The 3 × 2 matrices of transition probabilities ‖〈3,2〉pij‖ and exponen-
tial moments ‖〈3,2〉φij(ρ)‖, computed according the above recurrent formulas,
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take the following forms,∥∥∥∥∥∥∥∥∥
1
2

1
2

1
2

1
2

0 1

∥∥∥∥∥∥∥∥∥ and

∥∥∥∥∥∥∥∥∥
5
9

3490
4347

9
16

65037
102672

0 320
189

∥∥∥∥∥∥∥∥∥ . (61)

Finally, let us exclude state 1 from the phase space 〈3,2〉X = {0, 1} of
the semi-Markov process 〈3,2〉J(t). The corresponding reduced semi-Markov
process 〈3,2,1〉J(t) has the phase space 〈3,2,1〉X = {0}.

The recurrent formulas (48) and (49) for transition probabilities of the
embedded Markov chain 〈3,2,1〉Jn, expectations of sojourn times and sec-
ond moments of sojourn times for the semi-Markov process 〈3,2,1〉J(t) have
the following forms, respectively, 〈3,2,1〉pi0 = 〈3,2〉pi0 + 〈3,2〉pi1 〈3,2〉p10

1− 〈3,2〉p11
= 1 and

〈3,2,1〉φi0(1) = 〈3,2〉φi0(1) + 〈3,2〉φi1(1) 〈3,2〉φ10(1)

1− 〈3,2〉φ11(1)
, for i = 0, 1.

The 2× 1 matrix of exponential moments ‖Φi0(1)‖ = ‖〈3,2,1〉φi0(1)‖ com-
puted according the above recurrent formulas, take the following forms,

‖Φi0(1)‖ =

∥∥∥∥∥∥
282557
158067

57753
37635

∥∥∥∥∥∥ . (62)

In conclusion, we would like to note that recurrent algorithms presented
in the paper are subjects of effective program realization. These programs
let one compute power moments for hitting times and accumulated rewards
of hitting times for semi-Markov processes with very large numbers of states.
We are going to present such programs and results of large scale experimental
studies in future publications.
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Abstract. More than 120 million people are at risk of poverty or social exclusion in the 

EU. EU leaders have pledged to bring at least 20 million people out of poverty and social 
exclusion by 2020. The fight against poverty and social exclusion is at the heart of the 

Europe 2020 strategy for smart, sustainable and inclusive growth. Each individual 

member state will have to adopt one or several national targets.  

Presented article examines the aggregate indicator of poverty and social exclusion 
AROPE in the Slovakia and Czech Republic. Indicator AROPE is the sum of persons 

who are at-risk-of-poverty or severely materially deprived or living in households with 

very low work intensity as a share of the total population. Source for calculating of this 

indicator is harmonized EU SILC statistical survey. We focus on distribution of poverty 
and social exclusion in the regions of Slovakia and Czech Republic. We describe current 

trends for aggregate indicator in Slovakia and Czech Republic and compare our values 

and trends with others EU countries.  

Keywords: Europe 2020 Strategy, At-Risk-of-Poverty, Material Deprivation, Low Work 
Intensity, Region, EU SILC database. 

 

1  Introduction 
 

A strategy for smart, sustainable and inclusive growth, Europe 2020 was 

proclaimed by European Commission at the beginning of 2010. Primarily, it was 

a reaction on the impact of last world-wide economic crisis which revealed 

crucial structural deficiencies in EU economics. The strategy is formulated into 

five major goals concerning the assurance of general growth of EU [5]. 

Particularly, in social area the goal was defined in the following way: Reduction 

of the number of Europeans living below national poverty lines by 25%, lifting 

20 million people out of poverty and social exclusion is one of the five headline 

Europe 2020. Each individual Member State will have to adopt one or several 

(sub) national targets [7].  
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Target for Czech Republic: Reduce by 100 000 the number of persons living in 

poverty or social exclusion (- 100 000 persons).  

Target for Slovakia: Reduce to a rate of 17.2 % the number of persons living in 

poverty or social exclusion (compared to 20.6% in 2008) [8]. 

The presented paper focuses on a question whether and to what extent were the 

goals of strategy Europe 2020 in Czech Republic and Slovakia fulfilled in the 

period 2010 – 2014 and brings a comparison with results in other EU countries. 

Yet another goal is a decomposition of AROPE indicator into its components 

and an analysis of income distribution of individuals from particular subgroups 

endangered by poverty and social exclusion. The last goal elaborated in the 

paper is an estimation of poverty and social exclusion threat in particular Czech 

and Slovak regions and detection of significant regional differences.    

 

2  Poverty Measures and Definitions of the Indicators in EU 
 

Analysis of living conditions of individuals and household can be based on 

measurement of poverty and deprivation. Since the poverty is a complicated 

issue different approaches for measurement and analysis are used. The most 

importand possibilities are absolute and relative concepts, in EU a 

multidimensional relative approach of direct and indirect measurement is used. 

Among the indirect measures ranks the Foster-Greer-Thorbecke poverty 

measures defined using concept of generalized entropy [6]. EU employs 

measures of at-risk-of-poverty rate and poverty gap. 

Concepts of direct measurement analyse the living standart of inhabitants, e.g., 

material deprivation related to a reference point [9]. Basic reference in this field 

is P. Townsend’s Poverty in the United Kingdom [14] following the ideas of W. 

Runciman [10]. EU uses two important indicators: Severe material deprivation 

rate and Depth of material deprivation. Yet another possibility to identify 

endangered individuals is Low work intensity indicator. For quantitative 

evaluation of Europe 2020 goals an aggregated indicator AROPE (At-risk-of-

poverty or social exclusion rate) was defined in the following way.  

At-risk-of-poverty or social exclusion rate (AROPE) - The sum of persons who 

are: at risk of poverty (POV=1) or severely materially deprived (SMD=1) or 

living in households with very low work intensity (LWI=1) as a share of the 

total population, expressed in numbers or shares of the population. 

At-risk-of-poverty rate (POV=1) - Share of population aged 0+ with an 

equalised disposable income below 60% of the national equalised median 

income (after social transfers). The poverty risk rate must always be analysed in 

conjunction with the at-risk-of-poverty threshold. 

The equalised median income is defined as the household's total disposable 

income divided by its "equivalent size", to take account of the size and 

composition of the household, and is attributed to each household member 

(including children). Equalisation is based on the OECD modified scale. 

Severe material deprivation rate (SMD=1) – The share of the population 

lacking at least 4 items among the 9 following items. The household could not 

afford: 1. to face unexpected expenses; 2. one-week annual holiday away from 
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home; 3. to pay for arrears (mortgage or rent, utility bills or hire purchase 

instalments); 4. a meal with meat, chicken or fish every second day; 5. to keep 

home adequately warm, or could not afford (even if wanted to): 6. a washing 

machine; 7. a colour TV; 8. a telephone; 9. a personal car. 

Whereas the at-risk-of-poverty rate (POV) measures income to identify a lack of 

resources, the material deprivation rate (SMD) focuses on the ability of 

households or individuals to afford certain items. The effect of low income 

might be offset by high savings, access to credit or other sources. By focusing 

on expenses, the material deprivation rate could take these factors into account. 

Moreover, by measuring deprivation using a threshold (4 items) of and a list of 

items that are common to all Member States, the material deprivation is more 

sensitive to differences in living standards across countries than the poverty risk 

rate with its nationally defined poverty threshold. 

Low work intensity (LWI=1) - People aged 0-59, living in households, where 

working-age adults (18-59) work less than 20% of their total work potential 

during the past year. This indicator refers to people living in households with 

work intensity less than 0.2. 

 

  
Fig. 1. Comparison of AROPE indicators in EU countries (in the year 2008 and 2014) 

Source: Eurostat database, authors' construction 
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Topicality of the analysed issue can be documented by a wide range of papers 

dedicated to analyses of poverty and material deprivation and published recently 

Among the papers concerning situation in the Czech Republic and Slovakia 

ranks results of Želinský [15], Bartošová and Želinský [3], Bartošová and Bína 

[4], Stankovičová, Vlačuha and Ivančíková [12] and [13]. The computation of 

AROPE components are based on data from EU Statistics on Income and Living 

Conditions (EU-SILC). 

 

3  Comparison of AROPE indicators in EU countries 
 

Based on Fig. 1 it is obvious that in both Slovakia and Czech Republic the 

values of AROPE indicator shows lower values than average in EU countries 

(EU27). Situation in the field of poverty and social exclusion in Czech Republic 

is better than in Slovakia. The proportion of inhabitants suffering from poverty 

or social exclusion in Czech Republic in 2008 – 2015 was relatively stable. The 

AROPE indicator shows gentle decrease from 15.3% (2008) to 14.0% (2015), 

i.e. 1.3 percentage points. In Slovakia we can observe the decrease as well but 

the values are higher. The AROPE indicator in Slovakia decreased from 20.6% 

(2008 and 2010) to 18.4% (2015), i.e. by 2.2 percentage points. 

In 2008 the Czech Republic was at the 5
th
 place and in 2015 the position was 

even better (3
rd

 place). Slovakia was in 2008 on the 14
th

 place and in 2014 

performed better with 8
th
 position in the ranking of EU countries.  

 

 
Fig. 2. AROPE and its components in 

Slovak Republic (2010 – 2015) 

Source: Eurostat database 

 
Fig. 3. AROPE and its components in 

Czech Republic (2010 – 2015) 

Source: Eurostat database 

 

4  Trends of AROPE indicator by its components in Slovakia 

and Czech Republic in the period 2010-2015 
 

The AROPE indicator is composed from three partial indicators (components): 

POV, SMD and LWI. Each component has different subject and meaning and it 

is important to consider the development of particular components as well. The 

following table and graphs (Table 1, Fig. 2 - Fig. 3) show the change of AROPE 

indicator and its components in range from 2010 to 2015 Slovakia and Czech 
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Republic. It is obvious that in case of Slovakia we observe in the considered 

period decrease of all three partial components, but most significant was the 

decrease of SMD indicator. In the Czech Republic the change of partial 

indicators was less fluent, but even in this case all three indicators declined. 

From Fig. 3 we can observe that in 2013 the partial indicators decreased, 

particularly the indicator of monetary poverty (POV). In 2014 in the Czech 

Republic all three components again increased.  

 

indicator geo\time 2010 2011 2012 2013 2014 2015 

AROPE 

EU28 23.7 24.3 24.7 24.6 24.4 23.7 

CZ 14.4 15.3 15.4 14.6 14.8 14.0 

SK 20.6 20.6 20.5 19.8 18.4 18.4 

POV 

EU28 16.5 16.8 16.8 16.7 17.2 17.3 

CZ 9.0 9.8 9.6 8.6 9.7 9.7 

SK 12.0 13.0 13.2 12.8 12.6 12.3 

SMD 

EU28 8.4 8.8 9.9 9.6 8.9 8.1 

CZ 6.2 6.1 6.6 6.6 6.7 5.6 

SK 11.4 10.6 10.5 10.2 9.9 9.0 

LWI 

EU28 10.3 10.5 10.5 10.9 11.2 10.6 

CZ 6.4 6.6 6.8 6.9 7.6 6.8 

SK 7.9 7.7 7.2 7.6 7.1 7.1 

Table 1. AROPE indicator and its components (POV, SMD, LWI) in SK, CZ 

and average EU28 in the period 2010 – 2015 (as % of total population) 
Source: Eurostat database 

 

  
Fig. 4. At-risk-of-poverty thresholds in SK and CZ in the years 2008 – 2015 

(left: in EUR; right: in PPS) 
Source: Eurostat database, authors' construction in Excel 

 

Values of AROPE indicator are mostly influenced by the partial indicator of the 

poverty risk rate (POV). The poverty risk rate must always be analysed in 

conjunction with the at-risk-of-poverty threshold. The progress of at-risk-of-

poverty threshold in the Slovakia and Czech Republic (in EUR and in PPS for 

2010 – 2015 is depicted on Fig. 4. Values of at-risk-of-poverty threshold in the 
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Czech Republic (year 2008: 3641 EUR or 5835 PPS; year 2014: 4573 EUR or 

6654 PPS) are in all cases higher than in case of Slovakia (year 2008: 2875 EUR 

or 4058 PPS; year 2014: 4086 EUR and 5883 PPS). In 2008 the difference in 

poverty thresholds between Slovakia and Czech Republic was as high as 766 

EUR (1777 PPS), in 2014 it was 487 EUR (771 PPS) and in 2015 decreased to 

only 296 EUR but in PPS increased to 859 PPS. 

 

5  Analysis of AROPE indicator by its components in Slovakia 

and Czech Republic in the year 2014 
 

As we already mentioned, the AROPE indicator is composed from three partial 

indicators: POV, SMD and LWI. Each component has different subject and 

meaning and it is important to consider the development of particular 

components as well. The following tables (Table 2 and 3) show the frequencies 

of AROPE and its components in 2014 in the Slovakia and Czech Republic.  

 

 

SK (2014) CZ (2014) 

AROPE_B Frequency Percent Frequency Percent 

0 4257775 81.6 8783724 85.2 

1 960242 18.4 1531695 14.8 

Total 5218017 100.0 10315419 100.0 

Table 2. AROPE indicator in SK and CZ in the year 2014  

(numbers of persons in population and as % of total population) 
Source: EU-SILC SK and CZ 2014, authors' calculation in SAS Enterprise Guide 

 

   
SK CZ 

AROPE_B 
AROPE 
(3 digits) 

AROPE Pearsons % Pearsons % 

AROPE_B = 0 000 0 4258 81.6 8784 85.2 

AROPE_B = 1 

001 1 51 1.0 152 1.5 

010 10 240 4.6 335 3.2 

011 11 10 0.2 42 0.4 

100 100 326 6.2 490 4.7 

101 101 70 1.3 195 1.9 

110 110 100 1.9 116 1.1 

111 111 163 3.1 202 2.0 

Total sum of AROPE_B = 1  960 18.4 1532 14.8 

POV = 1 1.. 100+101+110+111 659 12.6 1002 9.7 

SMD = 1 .1. 10+11+110+111 514 9.9 695 6.7 

LWI = 1 ..1 1+11+101+111 294 5.6 591 5.7 

Table 3. AROPE indicator and its components in SK and CZ in the year 2014  

(numbers of persons (in thousand) in population and as % of total population) 
Source: EU-SILC SK and CZ 2014, authors' calculation in SAS Enterprise Guide 
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Fig. 5. Kernel estimates of density of equivalised disposable income 

for hole population (SK and CZ, in year 2014) 

 
Fig. 6. Kernel estimates of density 

of equivalised disposable income  

for population with AROPE_B=1  
(SK and CZ, in year 2014) 

 
Fig. 7. Kernel estimates of density 

of equivalised disposable income 

for population with POV=1 
(SK and CZ, in year 2014) 

 
Fig. 8. Kernel estimates of density 
of equivalised disposable income 

for population with SMD=1 

(SK and CZ, in year 2014) 

 
Fig. 9. Kernel estimates of density 
of equivalised disposable income 

for population with LWI=1 

(SK and CZ, in year 2014) 
Source: EU-SILC SK and CZ 2014 database, authors' construction in R 
 

Fig. 5 – 9 present kernel density estimates (see, e.g., [1]) of equalised disposable 

incomes of the whole population (see Fig. 5), inhabitants endangered by risk of 
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monetary poverty or social exclusion (AROPE_B = 1), inhabitants at risk of 

monetary poverty (POV = 1), material deprivation (SMD = 1) and showing low 

work intensity (LWI = 1).  

 

 
Fig. 10. Box-plots for equalised disposable 

income in Slovak Republic 

(AROPE_B = 1) 

 
Fig. 11. Box-plots for equalised disposable 

income in Slovak Republic  

(AROPE_B = 1 and EQ_INC20 < 20000) 

Source: Data EU-SILC SK 2014, authors' construction in SAS Enterprise Guide 

 

 
Fig. 12. Box-plots for equalised disposable income in Czech Republic 

(AROPE_B = 1) 

Source: Data EU-SILC CZ 2014, authors' construction in SAS Enterprise Guide 

 

We performed more detailed analysis of equalized disposable income according 

to the components of AROPE indicator based on the date from sample survey 

EU-SILC 2014 in Slovakia and Czech Republic (Fig. 10 – 12). The analysis 

showed that in case of Slovakia in some households occurs extremely high 

values of equalised disposable incomes per individual in case of individuals 

only with SMD (AROPE = 10), or SMD together with LWI (AROPE = 11). 

This effect does not appear in the data from Czech Republic where all values of 

equalised disposable income are lower than 20 000 EUR. 
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Box-plots (Fig. 10 – 12) show that the level of equalised disposable incomes in 

this group is significantly higher, frequently higher than the official poverty 

threshold in the country. Therefore, such individuals are not endangered by 

poverty (POV), but perceive subjectively material deprivation (SMD) or live in 

the household with low work intensity (LWI).   

 

5  Analysis of AROPE indicator by NUTS 2 regions in Slovakia 

and Czech Republic 

 
The development of AROPE indicator in Slovakia and Czech Republic is 

favourable. The proportion of individuals suffering from poverty and social 

exclusion in the population decreases in the long-run (2005 – 2015) and values 

in both countries are lower than EU27 or EU28 average (Fig. 13). The graphs 

also present the fact that in particular NUTS 2 regions the values of aggregated 

AROPE indicator decrease. We can observe that in Slovakia and also in Czech 

Republic probably significant differences in the values of AROPE indicator 

appear (according to the NUTS 2 regions). The highest values of indicator in 

Slovakia appear in case of region SK04 (Eastern Slovakia) and in case of Czech 

Republic it appears in two regions: CZ04 (North-west) and CZ08 (Moravian-

Silesian). 

 

    
Fig. 13. AROPE by NUTS 2 regions in SK and CZ (in the years 2005 – 2015) 

Source: Eurostat database, authors' construction in Excel 

 

Based on the data of EU-SILC for Slovakia and Czech Republic in 2014 we 

performed more detailed analysis of distribution of population and their 

equalised disposable incomes in case of at risk poverty or social exclusion 

subgroup according to NUTS 2 regions. From the results (Table 4 and 5) it is 

obvious that in both countries persist significant regional differences in poverty 

or social exclusion (AROPE_B = 1) but also in level and variability of equalised 
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disposable incomes (EQ_INQ20) of the individuals in considered NUTS 2 

regions. 

Pearson chi-square was used to test the hypothesis concerning the homogeneity 

of distribution in case of at risk of poverty or social exclusion according to 

regions and distribution of population in regions NUTS 2 (DB040). In both 

countries the test rejected null hypothesis concerning the homogeneity of 

distributions (p-values were significantly lower than 0.0001 in both countries).  

 

   

EQ_INC20 (AROPE_B = 1) 

Region 

(DB040) 

% of 

population 

% of population 

in AROPE_B = 1 Mean Std Dev Median 

SK01 11.5% 10.3% 5677.5 5791.5 4770.1 

SK02 33.9% 28.4% 3892.8 1976.3 3597.1 

SK03 24.9% 27.4% 3526.4 1736.5 3428.8 

SK04 29.7% 33.9% 3691.6 2267.2 3248.7 

Table 4. Distribution Slovak population by NUTS 2 regions and descriptive 

statistics for equalised disposable income (EQ_INC20) for population at risk of 

poverty rate or social exclusion (AROPE_B = 1) in the year 2014 
Source: EU-SILC SK 2014, authors' calculation in SAS Enterprise Guide 

 

   
EQ_INC20 (AROPE_B = 1) 

Region 

(DB040) 

% of 

population 

% of population 

in AROPE_B = 1 Mean Std Dev Median 

CZ01 11.7% 8.1% 5077.5 2257.1 4523.7 

CZ02 12.3% 8.1% 5099.0 1970.6 4466.6 

CZ03 11.5% 9.7% 4490.7 1565.7 4173.3 

CZ04 10.6% 15.7% 4376.9 1539.2 4059.5 

CZ05 14.4% 13.6% 5044.0 2708.4 4304.6 

CZ06 16.0% 13.8% 4783.0 1819.6 4388.0 

CZ07 11.7% 13.3% 4590.5 2219.6 3998.0 

CZ08 11.7% 17.7% 4258.8 1663.7 4083.9 

Table 5. Distribution Czech population by NUTS 2 regions and descriptive 

statistics for equalised disposable income (EQ_INC20) for population at risk of 

poverty rate or social exclusion (AROPE_B = 1) in the year 2014 
Source: EU-SILC CZ 2014, authors' calculation in SAS Enterprise Guide 

 

In Slovakia (Table 4) lower proportion of individuals at risk poverty or social 

exclusion appear than the proportion of region in the population in case of two 

regions, namely SK01 (Bratislava region: 10.3% < 11.5% population) and SK02 

(Western Slovakia: 28.4% < 33.9% population). In region SK03 (Central 

Slovakia: 27.4% > 24.9% population) and SK04 (Eastern Slovakia: 33.9% > 

29.7% population) the situation is opposite. There appears higher proportion of 

persons suffering from poverty and social exclusion than is the corresponding 

part within population. The worst situation concerning the occurrence of 

individuals at risk poverty or social exclusion appears in SK04 region. 
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In the Czech Republic (Table 5) appears the lowest proportion at risk of poverty 

or social exclusion in regions CZ01 (Praha: 8.1% < 11.7% population) and 

CZ02 (Central Bohemia: 8.1% < 12.3% population). But also in other 3 regions 

is lower proportion of inhabitants suffering from the risk of poverty or social 

exclusion than is the proportion of inhabitants from the regions. Namely regions 

CZ03, CZ05 a CZ06. High proportion of inhabitants at risk of poverty or social 

exclusion is particularly in the regions CZ04 (North-west) a CZ08 (Moravian-

Silesian). 

Together with the appearance of poverty and social exclusion relates also low 

level of incomes. We analysed the level of equalised disposable income 

(EQ_INQ20) in NUTS 2 regions in Slovakia and Czech Republic for inhabitants 

living in household at risk of poverty and social exclusion, i.e. AROPE_B = 1 

(Table 4 - 5, Fig. 14 - 15).  

The results show that in Slovakia among inhabitants at risk of poverty and social 

exclusion (AROPE_B = 1) appear also persons (or households) with extremely 

high equalised disposable incomes, namely incomes over 20 000 EUR 

(EQ_INC20 > 20000). Such extremely high incomes appear in two Slovak 

regions, namely in SK01 and SK04. In EU-SILC data from the Czech Republic 

such extremely high values of equalised disposable income do not appear. It 

presents the fact that particularly the SMD component of the AROPE indicator 

where the respondents of EU-SILC answers nine items concerning SMD is 

strongly loaded by subjective perception of respondent (see Fig. 18 and 19). 

 

 
Fig. 14. Box-plots for equalised disposable 

income in Slovak regions NUTS 2  

(2014, AROPE_B = 1) 

 
Fig. 15. Box-plots for equalised disposable 

income in Czech regions NUTS 2  

(2014, AROPE_B = 1) 

Source: EU-SILC 2014 database, authors' construction in SAS Enterprise Guide 

 

The significance of differences in level of equalised disposable incomes of 

individuals endangered by poverty or social exclusion (AROPE_B = 1) was 

tested using Kruskal-Wallis test with Wilcoxon Scores because incomes are 

highly skewed and their variability is non-homogenous in regions of Slovakia 

and Czech Republic. For both countries we rejected null hypothesis concerning 

equality of median scores in NUTS 2 regions (p-values < 0.0001). Therefore, we 

can claim that the level of equalised disposable incomes in the regions of 

Slovakia and Czech Republic significantly differs. 
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Fig. 16. Box-plots for equalised 

disposable income in Slovak regions 
NUTS 2 (POV=1) 

 
Fig. 17. Box-plots for equalised disposable 

income in Czech regions NUTS 2  

(POV=1) 

 
Fig. 18. Box-plots for equalised 

disposable income in Slovak regions 

NUTS 2 (SMD=1) 

 
Fig. 19. Box-plots for equalised disposable 

income in Czech regions NUTS 2  

(SMD=1) 

 
Fig. 20. Box-plots for equalised 

disposable income in Slovak regions 

NUTS 2 (LWI=1) 

 
Fig. 21. Box-plots for equalised disposable 

income in Czech regions NUTS 2  
(LWI=1) 

Source: EU-SILC SK and CZ 2014 database, authors' construction in SAS EG 
 

On the graphs (Fig. 14 – 21) we can observe distribution of equalised disposable 

income (EQ_INC20) in particular components of AROPE indicator in Slovak 

and Czech NUTS 2 regions. 

The distribution of equalised disposable incomes for inhabitants at risk of 

poverty (POV = 1) obviously appears under the poverty threshold (in 2014: 
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Slovakia 4086 EUR and Czech Republic 4573 EUR, see Fig.4). The 

distributions in regions are skewed and modus of the distribution is skewed 

towards the poverty threshold. Variability of incomes in Slovakia differ in 

regions. The highest variability shows in region SK01 (Bratislava). But the 

highest mean and median of incomes appears in SK02 (Western Slovakia). In 

the region CZ04 (North-west) we can observe the lowest values of mean and 

median incomes in the Czech Republic. The variability of incomes is more 

uniform in the Czech Republic. 

Values of equalised disposable incomes for individuals endangered by material 

deprivation (SMD = 1) can be higher than the national poverty threshold. The 

values are influenced by subjective assessment of SMD and therefore it happens 

that even individuals with quite high level of incomes subjectively perceive that 

they cannot get some of the 9 items enumerated in the EU-SILC questionnaire. 

In Slovakia such extreme values of incomes (EQ_INC20 > 20000) appear in 2 

regions: in the wealthiest SK01 and in the poorest SK04. 

Incomes of inhabitants with low work intensity (LWI = 1) appears in regions of 

Slovakia significantly lower (under 5000 EUR) than in the Czech Republic. In 

the region SK04 an extremely high income over 20 000 EUR appeared. 

 

Conclusions 
 

Based on the results of data from Eurostat database we can claim that the 

proportion of inhabitants at risk of poverty or social exclusion (AROPE) in 

Slovakia and Czech Republic lies bellow the mean of EU27 (or EU28) and in 

2008 – 2015 was further decreasing. Although the ratio of inhabitants under the 

risk of poverty and social exclusion in the whole EU did not decrease (actually 

increase of about 1699 thousand persons), but in Slovakia and Czech Republic 

the decrease took place. In the period 2008 – 2015 in Slovakia the number of 

inhabitants at risk of poverty and social exclusion decreased about 148 thousand 

and about 122 thousand in the Czech Republic. Czech Republic thus succeeded 

in fulfilling the goal (sub-target: reduce by 100 000 the number of persons living 

in poverty or social exclusion) which was set in this field in the strategy Europa 

2020. Slovakia set the goal in a relative way, particularly aims to reduce a rate 

from 20.6% in 2008 to 17.2 % in 2020. In 2015 Slovakia achieved value of 

AROPE indicator equal to 18.4% and therefore it is necessary to continue in 

efforts to reduce the rate further, but the trend is positive.  

Based on the results from Slovak and Czech EU-SILC data in 2014 we can state 

that regional disparities still persist in both Slovakia and Czech Republic. 

Disparities are present not only in distribution of inhabitants at risk of poverty 

and social exclusion in particular regions but also in the level and variability of 

equalised disposable income of those inhabitants in regions of Slovakia and 

Czech Republic. The most problematic component of AROPE indicator appears 

to be the SMD component suffering seriously from the subjectivity of 

respondent perception. 
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Abstract. The present paper deals with the application of neuro-fuzzy techniques to the 
measurements of attitudes. The methodology used is illustrated and evaluated on data 
drawn from a large-scale survey conducted by the National Centre of Social Research of 
Greece, in order to investigate opinions, attitudes and stereotypes towards the “other” 
foreigner. The illustration provides a meaningful way of classifying respondents into 
xenophobic levels, taking also into account other important socio-demographic 
characteristics, such as age, education, gender, political beliefs, religion practice and the 
way each question is answered by the respondent. The methodology provides a way of 
classifying respondents whose responses are identified as questionable. 
Keywords: Likert scales, attitude measurement, neuro-fuzzy systems. 

 
 

1  Introduction 
 
The present paper develops a neuro-fuzzy technique for measuring an attitude.  
Many definitions have been provided in the literature as to what constitutes an 
attitude. For example in Hoog and Vaughan[3] an attitude is defined as ‘a 
relatively enduring organization of beliefs, feelings, and behavioral tendencies 
towards socially significant objects, groups, events or symbols’. According to 
Eagly and Chaiken[1] an attitude is ‘a psychological tendency that is expressed 
by evaluating a particular entity with some degree of favor or disfavor’. In 
psychology, an attitude is a psychological construct, it is a mental and emotional 
entity that inheres in, or characterizes a person (Perloff [7]). How to measure 
attitudes has also been an issue of utmost importance in social sciences and 
numerous rating scales have been suggested in the past for that reason. The most 
commonly used rating scale is the Likert scale developed in 1932 (Likert[5]) by 
the American psychologist Rensis Likert. It is composed of third-person 
items/questions and it rates the respondents by asking them to place themselves 
on a scale of favor/disfavor with a neutral midpoint. Therefore a respondent is 
asked to select between several response categories, indicating various strengths 
of agreement and disagreement. The response categories are assigned scores and 
the respondents' attitudes are measured by their total score, which is the sum of 
the scores of the categories the respondents have chosen for each item-question. 
When this traditional type of methodology is used the respondent's attitude is 
assessed by examining the response categories he/she chooses in a number of 
items/questions. In this study we provide a hybrid expert system that classifies 
respondents into levels of xenophobia. The focus is on the development of a 
neuro-fuzzy system that will measure the specific attitude, taking into account a 
number of important factors such as age, level of education, gender, political 
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and religion beliefs and finally the way each question is answered by the 
respondent. The proposed system takes into account the answers for each 
respondent and distinguishes between questionable and non-questionable 
answers. The intelligent system put forward in the present paper simulates the 
respondent's final score when the answers are not questionable and takes into 
account a number of other crucial factors when the answers are questionable so 
as to classify the respondents into xenophobic levels, reducing therefore the 
uncertainty. 
This approach is an extension of the methodology suggested in Symeonaki and 
Kazani[11] and it can be used in every real problem where researchers would 
like to classify respondents with the aid of Likert scales to different levels of 
belief, feeling or opinion towards a specific object. 
Recently, there have been attempts to combine expert systems with attitude 
scaling. In Symeonaki et al.[10] a fuzzy system based on factor analysis is 
proposed whereas in Symeonaki and Michalopoulou[9] cluster analysis and 
fuzzy k-means is used in order to produce a more reliable final scale. Moreover, 
in Symeonaki et al.[12] and in Symeonaki and Kazani [8] a fuzzy system that 
measures xenophobia in Greece is suggested. In addittion, Lalla et al.[4] 
proposed a fuzzy system to analyze qualitative ordinal data produced by a 
course-evaluation questionnaire and Gil and Gil[2] provided a guideline to 
design questionnaires allowing free fuzzy-numbered response format. 
The paper has been organized in the following way. Section 2 provides some 
information concerning the data and the methodology used in the present study 
and the respective results. The next Section discusses the validation of the 
proposed neuro-fuzzy approach. Section 4 discusses the results and provides 
concluding remarks and aspects of future work. 
 
 
2  Data, Methodology and Results 
 
The Likert scale studied in the following sections is included in the 
questionnaire of a large-scale survey conducted under the auspices of the 
National Centre for Social Research1 that was designed in order to measure 
xenophobia (Michalopoulou[6]). More specifically, the following questions 
were given (see Symeonaki et al. [12]): 

1. Foreigners who live in our country must have equal rights with us. 
2. Many of the foreigners who live in our country are responsible for the 

increase in the crime rate. 
3. Foreigners must have lower wages even when they do the same job as 

we. 
4. The foreigners in our country increase unemployment for Greeks. 
5. The local authorities must organize events so we get to know the 

foreigners who live and work here. 

                                                
1 www.ekke.gr 

954



 

6. I would never marry a foreigner. 
7. I would never work for a foreigner. 
8. We should facilitate foreigners who want to settle in our country. 
9. Foreigners who work in our country do harm to our economy. 
10. The state must organize programmes of further education to help those 

foreigners who live in our country. 
11. The more foreigners there arrive the lower the wages get. 
12. We must create reception departments in our schools for the 

foreigners’ children. 
13. Only as tourists should foreigners come. 
14. Work permits must be given to foreigners who want to live here. 
15. We must close our borders to foreigners who come to work here. 

 
The units had 5 response categories, ranging from total agreement to total 
disagreement. The sample of the survey was 1200 individuals, aged 18-80 years, 
residents of Macedonia, Northern Greece, during the time of the fieldwork. 
Let us now provide a very brief introduction to the theory of Fuzzy Logic 
presented by L. A. Zadeh [13] in 1965 and the theory of artificial neural 
networks. 
In fuzzy set theory when  is a fuzzy set and  is a relevant object, the 
statement,  is a member of , is not necessarily either true or false, but it may 
be true only to some degree represented by the membership function of the 
fuzzy set , . A membership function is a curve that defines how each 
point in the input space is mapped to a membership value in [0,1]. Fuzzy 
systems are systems in which variables have as domain fuzzy sets encoding 
structured, heuristic knowledge in a numerical framework.  
The operation of an artificial neural network is based on a recurrent 
interconnection of simple processing units, called the neurons. Each neuron 
receives an input, a vector  and produces an output  (Figure 1) through the 
equations: 

 

 

where  represents the activation threshold and  is called the transfer 
function that relates the input information  with the weights  that are stored 
in the neuron. In most cases it is of the form: 

 

 

	A 	x
	x 	A

	A 		mx(A)

	x 	 y

   U = f (x,w)−θ

   y = a(u)

θ    f (x,w)
	x 	w

   
f (x,w) = wixi

i=1

m

∑
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Fig. 1. Typical form of an artificial neuron. 
 

 
The function α is called the activation function and it generally takes values 
according to: 
 

α(u) = 1, if  u>0 και α(u) = 0, αν u<0. 

 

Neural networks are in fact a mass of interconnected simple units and the way 
the interconnection is carried out defines the network's structure and therefore 
the way it operates. In order to describe the structure of a network, the nodes 
(i.e. the neurons) are assumed to be laying in different layers and the basic 
architecture consists of three types of neuron layers: input, hidden, and output. 
The nodes that belong to the same layer are being evaluated simultaneously. 
Another significant matter of artificial neural network modeling is its ability of 
learning, its ability of adopting and changing its elements in order to simulate a 
given behaviour. 
Our objective here is to develop a neuro-fuzzy system that classifies respondents 
into xenophobic levels. We denote by: 
 

• : the number of questions (here =15) 
• : the j-the question  

• : the answer of the i-th respondent to the  question, i.e, 

,  . 

• : the response vector of the i-th respondent to items-questions 

, , ..., , i.e. . 

y
f

w1

w2

wm

x1

x2

xm

...

...

a(u)

	m 	m

	
Qj 		 j =1,2,...,m

		qj(i) 	
Qj

		qj(i)=1,2,3,4	or	5 		∀i =1,2,...,1200,	∀j =1,2,...,m

			x(i)

		Q1 		Q2 	Qm 			x(i)= [q1(i),q2(i),...,qm(i)]
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A first step would be to distinguish between questionable and non-questionable 
answers. We assume that non-questionable answers are those based on which 
we can classify the respondent to different levels of xenophobia without 
uncertainty. For example, if the response vector of the i-th respondent is 

 then the respondent’s score is equal to 15 and he/she is 
classified into the category denoting a non-xenophobic person, without 
uncertainty. Let us now examine what could be defined as questionable 
answers. Those answers include a series of responses that lead to a questionable 
outcome, where the respective respondents cannot be classified to xenophobic 
levels with certainty. Consider, a respondent that answers that he/she would be 
willing to marry a foreigner and generally holds a non-xenophobic attitude if 
one looks at the answers he/she provides, but strongly disagrees with working 
for a foreigner or believes that only as tourists should foreigners come. His/her 
response vector would look like 		x = (1,1,1,1,1,1,5,1,1,1,1,1,5,1,1)  and we 
could say that there is an ambiguity as to the level of xenophobia that he/she 
holds.  There exist, therefore, certain sets of responses that may lead to an 
uncertain classification. In those cases there are more factors that need to be 
taken into account. 
Now, for the purpose of this study a statistical analysis was performed on the 
data with the aid of IBM Statistics SPSS 24.0. The values of all negatively 
worded items were reversed in order to achieve correspondence between the 
ordering of the response categories. Summing up the response categories that 
they have chosen and dividing by the number of the questions estimated the 

mean scores for each respondent, i.e. , where  denotes the 

number of questions.   
 
Definition 2.1 The i-th respondent’s answer  is said to be questionable at 

level d if .  

 
 
Definition 2.2 The i-th respondent’s answer  is said to be non-questionable 

at level d if 
		
∃ j : qj(i)− xen ≥d . 

 
 
We denote questionable answers at level d by QA-d, whereas NQA-d denotes the 
non-questionable answers at level d. For the purpose of this analysis we 

			x(i)= [1,1,....,1]

		
xen=

qj(i)
i=1

m

∑
m 	m

			x(i)

		
∃j : 	 qj(i)− xen ≥d

			x(i)
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consider QA-3 and NQA-3 answers. This means that we define questionable 
answers to be those for which there exists at least one answer (response category 
chosen by the respondent) whose absolute difference to his/her mean 
xenophobic score is equal or greater to 3. For example if the i-th respondent’s 
response vector is , then his/her response vector would be 
identified as questionable since there exists a 

. The sample was split into two 

categories: respondents providing non-questionable answers and 
respondents providing questionable answers . The artificial neural 
network system determines the classification of the respondents in the case of 
NQA-3. For the case of the QA-3 we develop two fuzzy systems, since there 
exist several factors that need to be considered and the classification is not 
ambiguous. The first fuzzy system takes into account a set of rules and 
determines the degree of belief (TRUST) about the xenophobic level of the 
respondent that will determine the way this answer will be scored. The second 
fuzzy system determines the xenophobic level, considering the degree of belief 
(TRUST), which is the output of the first fuzzy system and the score of the 
respondent. Subsequently, a final level is provided for each respondent based on 
the results (outcomes) of all systems. The neural network that was implemented 
is a three-layer Back Propagation network (Figure 2). The structure of the 
proposed intelligent classification system is shown in Figure 3 and a part of the 
NQA-3 is revealed in Table 1. 
 
 

 
 Input Layer Hidden layer  Output Layer  

Fig. 2. The structure of the implemented artificial neural network. 
 

			x(i)= [5,1,1,...,1]

		
j =1: 	 q1(i)− xen = 5−1.26 =3.73≥3

		(N = 930)
		(N =160)

x1

x2

x3

y1

y2

y3
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Fig. 3. The structure of the proposed system 
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Non questionable answers Level of Xenophobia 

		x = (1,1,...,1)  1 

		x = (2,1,...,1)  1 

		x = (2,2,...,2)  2 

		x = (2,2,...,1)  2 

		x = (3,3,...,3)  3 

		x = (2,2,...,3)  2 

		x = (4,4,...,4)  4 

		x = (4,4,...,5)  4 

		x = (5,5,...,5)  5 

		x = (5,5,...,4)  5 
Table 1. An excerpt of non questionable answers and their classifications to 

levels of xenophobia 
 
For non-questionable answers the Neural Network Toolbox of MATLAB 
R2014a was used and the xenophobic levels were determined. For validation the 
analysis was repeated with the Neural Network analysis provided by IBM 
Statistics SPSS 24.0 and the same results were given as outcomes with very 
slight differences.  
For the questionable answers we firstly develop the following system that has 
five inputs and one output. The inputs are factors that determine xenophobia: 
Age, Education, Sex, Politics and Religious Practice. The output is the degree of 
belief or trust that the specific respondent is xenophobic. Figure 4 provides the 
inputs and output of the first system whereas Figure 5 presents the fuzzy 
partitioning of Age, Education, Sex, Politics and Religious Practice. 
 

 
Fig. 4. Input and Output of the fist fuzzy system 
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Age is measured in years, Education in one of the categories from 
1=Illiterate/has left primary school to 7=Postgraduate degree, Gender is either 
Male (1) or Female (2), Politics is a variable that takes values from 1 (Left 
wing) to 10 (Right wing) and Religious practice (how often do you go to 
church) takes values from Every Sunday or more often (1) to Never (5). 
Therefore, a possible input for the first fuzzy system would be 

. The fuzzy partition of the output of the first fuzzy system 
is presented in Figure 6. 
 
An excerpt of the fuzzy rule base for TRUST, which consists of 28 inference 
rules of the canonical form, i.e. IF-THEN rules, is the following: 
 

1. IF (Age, Education, Gender, Politics, ReligiousPractice) IS 
(Young, High, Male, LeftWing, Rarely), THEN Trust IS Low. 

2. IF (Age, Education, Gender, Politics, ReligiousPractice) IS 
(Young, High, Female, LeftWing, Rarely), THEN Trust IS Low. 

3. IF (Age, Education, Gender, Politics, ReligiousPractice) IS 
(Old, Low, Female, RightWing, Frequently), THEN Trust IS 
High, etc. 

 
Table 2 provides an excerpt of the respondents’ socio-demographic 
characteristics (those who provided the questionable answers) and their 
output (trust in being xenophobic (values from 0 to 1)). 
 
 
Respondent Age Education Gender Politics Religion 

Practice 
Degree 
of 
Belief 

4 31 4 1 3 3 0.14 
15 30 5 1 3 4 0.15 
18 60 3 2 3 1 0.48 
24 59 4 1 2 4 0.19 
34 32 4 1 5 3 0.61 
35 43 1 2 5 2 0.65 
37 28 3 2 2 4 0.15 
60 36 4 2 1 1 0.17 
64 78 4 1 5 3 0.48 
65 63 3 1 4 1 0.48 

 Table 2. An excerpt of the respondents’ socio-demographic characteristics 
(QA-3) and their output (trust in being xenophobic) 

 
 

 

		input = [23,4,1,4,3]
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Fig. 5. Fuzzy Partitions of Age, Education, Sex, Politics, Religious Practice 
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Fig. 6. The fuzzy partition of the variable Trust 

 
 
We then proceed with the development of the second system that has two inputs 
(the respondent’s score (RespondentScore) and the degree of belief (Trust)) and 
provides as an output the xenophobic level of the respondent 
(XenophobiaLevel). The inputs and the output of the system are presented in 
Figure 7. 
 
 

 
Fig. 7. Input and Output of the second system 

 
 
A possible input for the first fuzzy system would be . The 
fuzzy partition of Trust and RespondentScore can be seen in Figure 8. 
 

		input = [0.52	29]
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Fig. 8. Fuzzy partition of Trust and RespondentScore  
 
 

 
Fig. 9. Fuzzy partition of XenophobiaLevel 

 
 
An excerpt of the fuzzy rule base for XenophobiaLevel, which consists of  IF-
THEN inference, is now provided: 
 

1. IF (Trust, RespondentScore) IS (Low, Low), THEN XenophobiaLevel 
IS Low. 

2. IF (Trust, RespondentScore) IS (Medium, Medium), THEN 
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XenophobiaLevel IS Medium. 
3. IF (Trust, RespondentScore) IS (High, High), THEN XenophobiaLevel 

IS High, etc. 
 
3  Validation 
 
In order to validate the suggested method, the neuro-fuzzy scores were 
correlated with five single items that are considered in the literature as 
indicators of xenophobia (Eurobarometer 1989). The same procedure was used 
in order to validate the proposed method in Symeonaki et al.[12] where a fuzzy 
set theory solution to combining Likert items into a single overall scale (or 
subscales) was presented. A combination of four of these items was used as an 
indicator of xenophobia (Michalopoulou et al.[6]). These indicators measure 
xenophobia based on the perception of the number of ‘others’ (of another 
nationality or religion) and the disturbance caused by their presence. Table 3 
provides the reader with the combined results (QA-3 and NQA-3) for the first 67 
respondents. 
The indicators used are given in Table 4, whereas Table 5 exhibits the 
correlation analysis results between xenophobia neuro-fuzzy and crisp and all 
xenophobia indicators. As expected xenophobia crisp and neuro-fuzzy are 
highly correlated. As shown neuro-fuzzy scores are higher correlated with all 
xenophobia indicators, thus obviously producing a more accurate measurement 
of xenophobia (Table 6). 
 
4  Conclusions 
 
Central to attitude measurement in social survey research is Likert scaling 
theory. The present paper puts forward an intelligent system that simulates the 
respondent's final score when the answers are not questionable and takes into 
account a number of other crucial factors when the answers are questionable in 
order to classify the respondents into xenophobic levels reducing therefore the 
uncertainty. The proposed methodology is illustrated using raw data of a survey 
designed to measure xenophobia but it can be applied in Likert scaling in 
general. The presented methodology, moreover suggests that semantic 
information, usually available by the experts of the attitude domain, must also 
be taken into account, together with results of the statistical analysis produced 
by the current or previous studies and therefore can handle the uncertainty 
introduced to attitude measurement in social survey research. The findings show 
that the measurement of xenophobia levels produced is valid and more accurate 
since correlation analysis revealed that a) xenophobia scores (neuro-fuzzy and 
crisp) are highly correlated and more importantly, b) neuro-fuzzy scores are 
higher correlated with a number of xenophobia indicators.  
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Respondent 

Level 
of 

Xenophobia 
 

C 

Level 
of 

Xenophobia 
 

NF 

Respondent 

Level 
of 

Xenophobia 
 

C 

Level 
of 

Xenophobia 
 

NF 
1 3 2.73 32 3 3.07 
2 3 3.27 33 1 1.07 
3 3 3.41 34 5 4.35 
4 2 1.78 35 4 4.35 
5 2 2.23 36 3 3.14 
6 3 3.52 37 1 1.65 
7 4 3.77 38 3 3.27 
8 4 3.91 40 2 2.24 
9 4 3.45 41 2 1.83 

10 3 3.28 44 1 1.30 
11 3 3.01 45 3 3.03 
12 2 2.28 46 1 1.16 
13 3 2.55 47 3 2.88 
15 2 1.65 49 2 2.43 
16 2 2.35 51 2 2.48 
18 5 4.12 52 4 3.90 
19 3 2.71 54 3 3.33 
20 3 3.34 55 2 2.43 
21 2 2.16 56 1 1.07 
22 2 2.30 57 2 2.40 
24 2 1.65 60 2 1.65 
25 1 1.28 61 1 1.28 
26 3 2.95 62 2 2.23 
27 3 3.15 63 3 3.23 
28 3 3.36 64 4 4.12 
29 3 2.65 65 4 4.12 
30 5 4.94 66 2 2.25 
31 2 2.48 67 4 3.88 

 
Table 3. Levels of Xenophobia (classical (C) and Neuro-fuzzy approach (NF)) 

for the first 67 respondents 
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Indicator Question 

1 During the last years individuals from other countries which 
are not members of the European Union have come to live and 
work in Greece. According to your opinion, these foreigners 
who live today in Greece are too many, many but not too 
many, not too many. 

2 How do you feel about the presence of individuals of another 
nationality? Disturbing or not disturbing? 

3 How do you feel about the presence of individuals of another 
religion? Disturbing or not disturbing? 

4 In your opinion these individuals of another nationality are too 
many, many but not too many or not too many. 

5 In your opinion these individuals of another religion are too 
many, many but not too many or not too many 

6 Combination of Indicators 2-5 
Table 4.  Indicators of xenophobia 
 
 

 Xenophobia (NF) Xenophobia (C) 
Xenophobia (NF)  0,924 
Xenophobia (C) 0,924  
*Note: N=1,090, p<0.001. 

Table 5. Pearson's Correlation Coefficients, Xenophobia (classical (C) and 
Neuro-fuzzy approach (NF)) 

 
Indicator Xenophobia (NF) Xenophobia (C) 
1 -0,264 -0,246 
2 -0,432 -0,422 
3 -0,387 -0,360 
4 -0,245 -0,217 
5 -0,212 -0,192 
6 0,451 0,428 
*Note: N=1,090, p<0.001. 

Table 6. Spearman's rho Correlation Coefficients 
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Abstract. In the present paper1 the estimation of different indicators that can be used in 
order to capture the extent and forms of early job insecurity is studied. This specific 

matter has been receiving increasing research and policy attention throughout the two last 

decades. The present study proposes a new composite index for measuring the degree of 

early job insecurity on the basis of the estimation of the transition probabilities between 
labour market states and school-to-work transitions, with raw data drawn from the 

European Union’s Labour Force Survey (EU- LFS) for the year 2014. This indicator 

captures the whole spectrum of early job insecurity in a single measurement. Thus, an 

attempt is made to provide a new index of early job insecurity, connecting it also to 
school-to-work transition probabilities, that captures the extent of early job insecurity.  

Keywords: Early job insecurity, labour market transition probabilities, EU-LFS. 

 

 

 

1  Introduction 

 

The measurement of early job insecurity and labour market exclusion is not a 

straightforward procedure, since ‘ideal’ indicators for early job insecurity don’t 

actually exist. Different indicators though, such as the unemployment rate, the 

youth unemployment rate, the youth to adult unemployment ratio, or the NEET 

indicator can serve as useful tools, when comparing job insecurity in different 

countries. When one wants to compare early job insecurity (EJI) among 

different European countries or study the evolution of early job insecurity over 

                                                 
1 This paper has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 649395 (NEGOTIATE – Negotiating early 
job-insecurity and labour market exclusion in Europe, Horizon 2020, Societal Challenge 6, 
H2020-YOUNG-SOCIETY-2014, Research and Innovation Action (RIA), Duration: 01 March 
2015 – 28 February 2018). 
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time, it is difficult, if not impossible, to take into account numerous indicators 

simultaneously. Thus, there is a strong need to provide one single indicator of 

early job insecurity that takes into account all possible indices connected to EJI 

for which we have reliable data to depend on.  In the present paper we provide a 

composite index of EJI based on a number of indicators that we measure using 

raw data drawn from the EU-LFS, in order to estimate and compare early job 

insecurity among European countries. 

When it comes to measuring early job insecurity and patterns of school-to-work 

transition, several methodological approaches have been proposed. In 

Karamessini et al.[10] and in Dingeldey et al.[7] an attempt was made to 

provide a definition of early job insecurity and to connect early job insecurity 

with school-to-work transitions. Symeonaki et al.[20, 22] studied the transition 

flows between labour market states for young individuals based on the EU-LFS 

and the EU-SILC data. In Eurofound[8] the labour market situation of young 

people in Europe is presented, focusing in particular on the school-to-work 

transition, in terms of the amount of time it takes to start the first job after 

education, while also monitoring the more general transition to adulthood, the 

age at which young people leave the parental home. In Brzinsky-Fay[4] 

sequences of school-to-work transitions are studied in ten European countries 

using the exploratory methods of optimal matching and cluster analysis. The 

process of labour market entry is observed for five years after leaving school by 

examining monthly labour market statuses. Christodoulakis and Mamatzakis[6] 

applied a Bayesian approach that employed a Monte Carlo integration procedure 

to expose the empirical posterior distribution of transition probabilities from 

full-time employment to part-time employment, temporary employment and 

unemployment and vice versa, in the EU 15. Additionally, Alvarez et al.[1] 

study the labour dynamics of the population by fitting a stationary Markov chain 

to the Argentine official labour survey. On the other hand, Betti et al.[2] 

describe some aspects of school-to-work transitions by analysing the 

employment situation of individuals as a function of the time elapsed since the 

completion of education and training, with a special focus on the patterns in 

Southern European countries. Ward-Warmedinger and Macchiarelli[24] present 

information on labour market mobility in 23 European countries, using the 

Eurostat’s Labour Force Survey data over the period 1998-2008, whereas in 

Flek and Mysíková[9], the labour market flows, i.e. flows between employment, 

unemployment and inactivity, are analysed using Markov transition systems in 

order to draw conclusions on unemployment dynamics in Central Europe. 

Markov system analysis is also used in Symeonaki and Stamatopoulou[23] in 

order to analyse labour market dynamics in Greece and in Karamessini et al.[12] 

Markov systems are used to estimate the school-to-labour market entry 

probabilities for a number of European countries with raw data drawn from the 

EU-LFS datasets for 2013. Bosch and Maloney[3] discuss a set of statistics for 

examining and comparing labour market dynamics based on the estimation of 

continuous time Markov transition processes. They then use these to establish 

stylised facts about dynamic patterns of movement with the aid of panel data 
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from Argentina, Brazil and Mexico. Moreover, the socio-economic background 

and the degree to which it affects the transition process has also been studied in 

the literature, as individuals from poorer households have lower job prospects, 

while educational background may postpone their first entry in countries with 

strong family support system. Educational qualification and skills also have a 

strong effect on transitions from school-to-work, as low educated people hardly 

escape from spells of unemployment and inactivity, restricted mostly on 

temporary contracts (Quintini et. al [15]). Additionally, Scherer[17] shows that 

compared to Germany and Great Britain, in Italy the parental educational 

attainments has a negative effect on young people’s speed of entry, as the more 

educated parents support their offspring in longer searches for better jobs. 

Gender plays an important role in young people’s integration, since young 

women seem to face more problems relating to their transition than their male 

counterparts, with higher probabilities of being inactive or in non-standard 

employment for longer periods of time, while caring responsibilities also delay 

their entrance on labour market (Sigle-Rushton and Perrons[16]; Plantenga et. 

al[14]). The methods most commonly used to examine school-to-work 

transitions as a sequence and not as a single event are the optimal matching 

method and the cluster analysis (McVicar and Anyadike-Danes[13]; 

Scherer[18]; Schoon[19]). Brzinsky-Fay[5] presents the main advantages and 

disadvantages of sequence analysis in comparison to event history analysis. 

Here, in order to capture the whole spectrum of early job and employment 

insecurity we use indicators, referring to different aspects of EJI: indicators that 

refer to labour market outcomes and to quality of job, indicators for employment 

insecurity and for transition from school-to-work. These indicators, estimated 

for the 15-24 age group, should be considered as complementary rather than 

competing and are combined into a single composite indicator of EJI. The 

results reveal that countries differ when early job insecurity is considered and 

the values of the proposed index vary between -0.84 for Switzerland (lowest 

early job insecurity) to 1.01 for Greece (highest early job insecurity). 

The paper is onganised in the following way. Section 2 provides the estimations 

of the early job insecurity indicators for the European countries based on the 

EU-LFS data of 2014. Section 3 presents the new composite index of EJS and 

provides the results for these countries, sorting them from countries of low EJI 

to countries with high EJI. Section 4 provides the reader with the conclusions of 

the study and aspects of future work. 

 

2  Indicators of early job insecurity 

As earlier mentioned, to capture the entire range of early job and employment 

insecurity we use indicators, referring to distinctive traits of EJI: indicators that 

refer to labour market outcomes and to quality of job, indicators for employment 

insecurity and for transition from school-to-work. These indicators are estimated 

for the 15-24 age group, from raw data drawn from the EU-LFS survey. Table 1 
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provides the indicators that are measured and their description, thus offering 

information of how these were actually measured. 

Typical indicators used for the measurement of early job insecurity provided in 

the present analysis are the Youth Participation Rate (Ind1), the Youth 

Employment Rate (Ind2), the Youth Unemployment Rate (Ind3), the Youth 

Unemployment Ratio (Ind4), the incidence of long-term unemployment (Ind5) 

and the NEET (not in Employment, Education or Training) indicator (Ind6).  

Indicators, directly linked to the quality of jobs, are the incidence of temporary 

and part-time employment (Ind7 and Ind8), the incidence of underemployed 

part-time workers (Ind9) and working intensity measured as the distribution of 

employees according to usual weekly hours worked (hour bands) (Ind10). 

Another important aspect is connected to the transition of young individuals 

from school (education or training) to work. It is well accepted that young 

people’s pathways from school to sustained work have become more and more 

rough and irregular and the probability of someone who has completed full-time 

education to move effectively into full-time occupation decreases, whereas the 

probability of engaging into part-time or temporary employment increases. 

Therefore, it is important to highlight useful indicators that fall into the category 

of measuring school-to-work transitions. In this respect, we estimate the 

probability of an individual that has concluded education or training to enter 

each one of the three labour market states: employment (Ind11), unemployment 

(Ind12) and inactivity (Ind13). This part of analysis will be handled with the aid 

of Markov system theory. 

Two other useful indicators for measuring employment insecurity are the job 

finding rate and the job separation rate. In the present paper, as is the case with 

empirical studies (Hobijn and Sahin[10]), we will use the percent of 

unemployed individuals at time t-1, who are employed at time t as the job 

finding rate (Ind14) and the percent of employed individuals in time t-1, who 

are not employed at time t as the separation rate (Ind15). 

Moreover, two indicators regarding relative changes in unemployment rates are: 

the Youth to Adult Unemployment Ratio (Ind16) and the Relative 

Unemployment Rate of those individuals with low skills to those individuals 

with high skills (Ind17), as it provides evidence of how education and training 

influences unemployment. 

Table 2 provides the reader with the estimations of all indicators that relate to 

labour market outcomes (Ind1 – Ind6), for all European countries, for 2014. In 

an analogous way, Table 3 and 4 present the values of the indicators regarding 

the job quality for the same year and countries (Ind7 – Ind10). The probabilities 

that can be used as indicators for school-to-work transition are given in Table 5 

(Ind11 – Ind13), followed by Table 6, which reveals the indicators for 

employment (in)security (Ind14 – Ind15). Finally, Table 7 provides indicators 

concerning the relative changes in unemployment rates (Ind16 – Ind17). 
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Table 1 Early job insecurity indicators, Ages: 15 – 24, EU-LFS, 2014 

INDICATORS DESCRIPTION 

Ind1 Youth Participation Rate  

Ind2 Youth Employment Rate  

Ind3 
Youth Unemployment 

Rate 
 

Ind4 
Youth Unemployment 

Ratio 
 

Ind5 
Incidence of long-term 

unemployment 

Young unemployed (12 months or more) as % of all 

young unemployed

 

Ind6 NEET rate  
The population not in employment, education or 

training as a percentage of total population 15-24 

Ind7 
Incidence of temporary 

employment 
As % of all employees

 

Ind8 
Incidence of part-time 

employment 
As % of all employed

 

Ind9 
Underemployed part-time 

workers 
As % of total part-time workers 

Ind10 Working time 
Distribution of employees according to usual weekly 

hours worked (hour bands) 

Ind11 

Probability of entry to 

employment from 

education and training 

Markov system 

Ind12 

Probability of entry to 

unemployment from 

education and training 

Markov systems 

Ind13 

Probability of entry to 

inactivity from education 

and training 

Markov systems 

Ind14 Job finding rate 
Percent of unemployed at time t-1,  

who are employed at time t 

Ind15 Job separation rate 
Percent of employed in time t-1, who are not employed 

at time t 

Ind16 
Youth to Total 

Unemployment Ratio 
 

Ind17 
Relative UR low 

skills/high skills  
 

 

Number of individuals in the labour force, aged 15- 24

Total number of individuals, aged 15 - 24 

Number of employed individuals, aged 15-24

Total Population, aged 15 - 24 

Number of unemployed individuals, aged 15 - 24

Number of individuals in the labour force, aged 15 - 24 

Number of unemployed individuals, aged 15-24

Total population, aged 15-24 

Youth unemployment rate (age: 15-24)

 Total unemployment rate (age>15) 

UR of those ISCED < 3 (HATLEV = 1

UR of those ISCED ³ 3 (HATLEV = 2 or 3)
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Table 2 Basic labour market indicators, 2014 

Country Ind1 Ind2 Ind3 Ind4 Ind5 Ind6 

Austria 67.1 61.1 8.9 5.9 16.4 10.8 

Belgium 49.6 41.5 16.4 8.1 40.1 14.9 

Bulgaria 45.6 37.4 18.0 8.2 57.1 24.6 

Croatia 51.4 34.8 32.3 16.6 51.6 22.3 

Cyprus 57.5 42.5 26.2 15.1 37.2 19.7 

Czech 

Republic 
51.3 45.8 10.6 5.4 28.0 12.2 

Denmark 67.4 59.7 11.4 7.7 11.8 10.3 

Estonia 56.6 50.0 11.5 6.5 35.7 14.3 

Finland 61.0 51.4 15.7 9.6 7.6 12.5 

France 53.5 43.3 19.1 10.2 31.0 17.2 

Germany 61.8 57.6 6.8 4.2 26.9 8.9 

Greece 49.3 27.1 45.0 22.1 65.3 27.3 

Hungary 47.3 40.8 13.9 6.6 35.9 17.2 

Ireland 53.2 43.0 19.1 10.1 46.0 18.4 

Italy 41.5 28.3 31.6 13.1 59.5 27.3 

Latvia 58.7 50.3 14.4 8.4 27.7 15.8 

Lithuania 51.8 44.2 14.7 7.6 28.2 13.2 

Luxemburg 49.5 43.0 13.0 6.4 - 6.9 

Netherlands 74.0 66.0 10.8 8.0 19.6 8.9 

Norway 63.7 59.3 6.8 4.3 15.8 8.6 

Poland 53.2 44.4 16.5 8.8 35.1 15.8 

Portugal 52.3 39.0 25.4 13.3 41.8 16.6 

Romania 48.6 41.0 15.6 7.6 38.7 20.0 

Slovakia 50.1 39.4 21.3 10.7 60.0 18.3 

Slovenia 52.9 42.9 18.9 10.0 - 14.0 

Spain 54.6 33.0 39.6 21.7 40.3 22.7 

Sweden 65.9 55.0 16.7 11.0 8.4 10.4 

Switzerland 75.8 70.1 7.6 5.7 21.9 8.8 

UK 66.7 58.4 12.5 8.4 27.5 14.3 

Notes: Not reliable results for IS. Small samples for LU, MT, SI. 
Sources: EU-LFS, 2014 
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Table 3 Basic labour market indicators, 2014 

Country Ind7 Ind8 Ind9 

Austria 23.7 23.8 29.6 

Belgium 22.1 20.2 39.4 

Bulgaria 9.3 3.4 - 

Croatia 40.1 7.1 62.9 

Cyprus 27.1 18.3 75.7 

Czech Republic 20.3 7.2 15.5 

Denmark 19.3 51.4 17.1 

Estonia 7.2 13.0 11.2 

Finland 34.9 29.7 28.7 

France 39.6 19.0 56.3 

Germany 38.4 21.8 21.6 

Greece 23.3 16.6 83.4 

Hungary 17.9 5.6 46.0 

Ireland 21.1 30.7 34.9 

Italy 40.6 25.7 23.0 

Latvia 5.1 7.1 - 

Lithuania 4.9 9.6 27.4 

Netherlands 47.3 64.2 25.2 

Norway 22.8 42.3 25.4 

Poland 53.6 9.7 49.7 

Portugal 49.1 14.7 65.0 

Romania 3.8 10.5 57.3 

Slovakia 17.6 6.3 - 

Slovenia 49.7 22.7 - 

Spain 54.2 28.3 67.0 

Sweden 42.1 36.8 35.7 

Switzerland 36.3 27.0 34.7 

UK 10.6 27.5 34.5 

Sources: EU-LFS, 2014 
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Table 4 Working time indicators, 2014 

Country Working time 

 1-19 20-29 30-34 35-39 40+ 

Austria 10.7 7.3 4.6 30.8 46.6 

Belgium 7.2 10.2 6.7 49.7 26.1 

Bulgaria 0.2 2.5 0.7 0.2 96.4 

Croatia 0.9 3.0 1.2 0.5 94.5 

Cyprus 3.6 7.5 5.1 20.1 63.6 

Czech 

Republic 

2.0 4.0 1.7 15.1 77.2 

Denmark 41.4 6.9 6.1 41.5 4.0 

Estonia 3.5 5.8 2.8 2.3 85.6 

Finland 17.1 8.7 7.1 38.0 29.1 

France 5.4 8.9 4.2 59.8 21.7 

Germany 13.4 5.1 3.6 24.1 53.9 

Greece 5.9 11.4 5.5 1.7 75.5 

Hungary 0.7 3.4 1.7 0.5 93.8 

Ireland 13.3 14.8 5.3 33.0 33.6 

Italy 6.7 15.4 6.2 10.1 61.4 

Latvia 0.9 4.1 2.1 0.7 92.2 

Lithuania 1.3 7.7 1.4 2.2 87.5 

Netherlands 41.5 12.7 10.8 13.3 21.7 

Norway 28.0 8.0 6.1 51.3 6.6 

Poland 2.0 4.9 2.2 1.6 89.3 

Portugal 4.5 6.8 2.4 5.6 80.8 

Romania - 0.6 0.3 0.2 98.9 

Slovakia 2.1 4.5 0.7 11.4 81.3 

Slovenia 6.5 8.5 3.1 1.1 80.7 

Spain 11.8 15.0 6.4 9.7 57.1 

Sweden 16.1 9.8 10.0 12.7 51.4 

Switzerland 12.1 6.3 5.3 4.1 72.2 

UK 15.4 9.7 5.4 26.4 43.1 

Notes: Not reliable results for IS, LU, MT. Small samples for CY, EE, LV. 

Sources: EU-LFS, 2014 
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Table 5 Indicators for transition from school to work, 2014 

Country School-to-Work 

Transition 

Probability  

School-to-

Unemployment 

Transition 

Probability  

School-to-

Inactivity 

Transition 

Probability  
AT 0.684 0.157 0.159 

BE 0.566 0.257 0.177 

BG 0.369 0.358 0.273 

CH 0.784 0.079 0.137 

CZ 0.657 0.324 0.019 

DK 0.663 0.228 0.109 

EE 0.600 0.185 0.215 

EL 0.194 0.513 0.293 

ES 0.224 0.377 0.399 

FI 0.582 0.239 0.179 

FR 0.583 0.310 0.107 

HR 0.297 0.695 0.008 

HU 0.500 0.343 0.157 

IT 0.274 0.637 0.089 

LT 0.643 0.217 0.140 

LV 0.608 0.248 0.144 

PL 0.535 0.340 0.125 

PT 0.443 0.500 0.057 

RO 0.358 0.528 0.114 

SE 0.619 0.306 0.075 

For the countries for which MAINSTAT and WSTAT1Y (or both) are EMPTY the respective 

transition probabilities cannot be estimated 

 Sources: Own Calculations, EU-LFS, 2014 
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Table 6 Indicators for employment (in)security 

Country Job Finding Rate Job Separation Rate
2
 

Austria 44.45 12.5 

Belgium 32.05 9.35 

Bulgaria 18.20 7.75 

Croatia 25.35 12.85 

Cyprus 41.80 12.3 

Czech Republic 59.65 4.65 

Denmark 48.10 13.40 

Estonia 46.70 12.15 

Finland 32.00 19.50 

France 33.6 15.50 

Germany - - 

Greece 14.75 13.50 

Hungary 44.10 9.05 

Italy 19.60 11.85 

Latvia 51.90 14.90 

Lithuania 47.35 7.80 

Malta 43.75 14.25 

Poland 32.65 9.15 

Portugal 34.85 15.60 

Romania 13.80 6.05 

Slovakia 32.80 9.25 

Slovenia 27.85 29.00 

Spain 27.05 14.10 

Sweden 42.80 19.10 

Switzerland 53.55 14.6 

For the countries for which MAINSTAT and WSTAT1Y (or both) are EMPTY the respective rates  

cannot be estimated. 
Sources: EU-LFS, 2014 

 

 

 

                                                 
2 In this report, we omit inactivity-unemployment flows and focus only on employment-
unemployment flows. See Shimer (2007) and Barnichon (2009) for evidence supporting this 
choice. 
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Figure 1 displays the values of Job Finding Rates and Job Separation Rates for 

the European countries.  

 

Fig. 1. Job finding rates and job separation rates across European countries,  

15 – 29, EU-LFS, 2014 
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Table 7 Relative changes in unemployment rates 

Country Youth to Total UR 
Relative UR, low skills/high 

skills 

Austria 1.58 2.12 

Belgium 1.92 2.49 

Bulgaria 1.58 2.46 

Croatia 1.87 2.01 

Cyprus 1.63 1.25 

Czech 

Republic 
1.73 3.61 

Denmark 1.73 1.55 

Estonia 1.57 1.87 

Finland 1.82 2.34 

France 1.85 2.11 

Germany 1.38 2.68 

Greece 1.70 1.03 

Hungary 1.80 2.59 

Ireland 1.69 2.41 

Italy 2.49 1.29 

Latvia 1.32 2.26 

Lithuania 1.37 2.74 

Luxemburg 2.15 - 

Netherlands 1.45 2.12 

Norway 1.95 2.46 

Poland 1.84 1.89 

Portugal 1.82 1.27 

Romania 2.29 1.00 

Slovakia 1.61 2.78 

Slovenia 1.95 1.47 

Spain 1.62 1.54 

Sweden 2.09 3.06 

Switzerland 1.66 1.41 

UK 2.04 2.43 

Notes: Not reliable results for LU and CY 

Sources: EU-LFS, 2014 
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3  A composite index of early job insecurity 

 

In the present section we define the composite index of early job insecurity and 

estimate its values for all European countries for which we have the necessary 

data (variables).  

 

The composite index is defined as: 

 

 

		

EJI =

w
d

i
i=1

d

å ×

w
ij
×zInd

ij
j=1

d
i

å

w
ij

j=1

d
i

å

w
d

i
i=1

d

å
,    (1) 

where: 

 

	d : the number of dimensions (here d=5) 

	
d

i
: the number of indicators in the i-th dimension 

	
w

ij
: the weight of the j-th indicator in the i-th dimension 

	
w

d
i

: the weight of the i-th dimension 

	
zInd

ij
: the z-score of the j-th indicator in the i-th dimension. 

 

Using Equation (1) we estimate the values of EJI for the European countries.  

 

The values are presented in Table 8. 
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Table 8 Early Job Insecurity Indicator, EU-LFS, 2014 

 Country 
Early Job Insecurity 

Index 

1.  Switzerland -0.84 

2.  Denmark -0.79 

3.  Austria -0.68 

4.  Estonia -0.45 

5.  Lithuania -0.38 

6.  Finland -0.29 

7.  Czech Republic -0.41 

8.  Sweden -0.24 

9.  Belgium -0.14 

10.  France -0.07 

11.  Hungary -0.01 

12.  Poland 0.01 

13.  Romania 0.16 

14.  Portugal 0.25 

15.  Croatia 0.60 

16.  Italy 0.61 

17.  Spain 0.84 

18.  Greece 1.01 

 

 

4  Conclusions 

 

In the present paper we provided a composite index of EJI based on a number of 

indicators that we measured using raw data drawn from the EU-LFS, in order to 

estimate and compare early job insecurity among European countries. It is 

obvious that early job insecurity differs among European countries. Countries 

with low EJI can be identified (Switzerland, Denmark, Austria for example), 

whereas countries of high EJI are also recognisable. Croatia, Italy, Spain and 

Greece are the countries facing worrying EJI. Figure 2 provides the map of early 

job insecurity for 2014. 
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Fig.2. Mapping Early Job Insecurity 

 

Early job insecurity can have multiple consequences: Systematic labour market 

exclusion of young people at the very beginning of their professional careers, 

the growing discourses over the ‘threat of a lost generation’, accompanied by a 

multi-faceted social malaise that includes among others high risks of poverty, 

precarity, social exclusion, disaffection, insecurity, scarring, higher propensity 

towards offence and crime, as well as (mental and physical) health problems, to 

name but a few. Therefore, it is very important to activate effective policies that 

can prevent the unfavourable effects of early job insecurity and youth 

unemployment. In this paper we have provided evidence based on empirical 

data that early job insecurity exists, it can be measured and it must be tackled 

since it exhibits worrying trends for a lot of European countries. Further 

research will be perused with the EU-LFS data for 2015.  
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Abstract. The scope of this work was to evaluate the autoregressive integrated moving average (ARIMA) model as 

a frost forecast model for South Tyrol in Italy using weather data of the past 20 years which were recorded by 150 

weather stations located in this region. Accurate frost forecasting should provide growers with the opportunity to 
prepare for frost events in order to avoid frost damage. The radiation frost in South Tyrol occurs during the so-called 

frost period, i.e. in the months of March, April and May during calm nights between sunset and sunrise. In case of a 

frost event, the farmers should immediately switch on water sprinklers. The ice cover, which is built on the trees, 

protects the buds and blossoms from damage. Based on the analysis of time series data, the linear regression and 

ARIMA models were compared and evaluated. The best result was achieved by the ARIMA model, with the optimal 

value of 1.0 for recall in case of forecast of 95% confidence intervals. This means that all frost cases could be 

correctly predicted. Despite the encouraging results for recall, the rate of false positives with a sensivity of 21% is 

too high, such that further investigations are desirable (e.g., testing VARIMA models, which are a multivariate 
extension of ARIMA models). The graphical illustration of the 95% confidence intervals of the ARIMA model 

forecast and the linear models forecast should be helpful in frost prediction and could be integrated in the electronic 

monitoring system that permits forecasting of frost weather phenomena.  
Keywords: Frost Forecast, ARIMA Models, Time Series Prediction Models 

 

 

1  Introduction 
 

Accurate frost forecasting should provide growers in South Tyrol with the opportunity to prepare for 

frost events in order to avoid frost damage. The higher the level of forecast accuracy, the lower the risk 

of frost damage. Damage to apple orchards brought by freezing night temperatures can cause high crop 

yield losses to the growers. The critical period for frost damage in apple orchards are the months of 

spring March, April and May. The radiation frost occurs during clear nights with little or no wind after 

sunset and lasts until after sunrise. 
 

Over-plant conventional sprinklers are widely used in South Tyrol as effective frost protection method 

for apple orchards. The ice cover prevents the temperature of the protected plant from falling below the 

freezing point. Sprinkling must start with the onset of the critical temperature and be maintained until the 

temperature rises above 0° C. This work describes frost prediction in apple orchards based upon a non-

seasonal ARIMA model and three different Linear Regression models.  
The general autoregressive moving average (ARMA) model was described first in 1951 by Peter Whittle 

in his thesis “Hypothesis testing in time series analysis”. The ARIMA model is a generalization of the 

ARMA model. Nowadays it is widely used in time series analysis. However, there exists only little 

literature about frost forecasting with ARIMA. 
In Castellanos et al. [9] the authors apply the ARIMA model to forecast the minimum monthly 

absolute temperature and the average monthly minimum temperature following the Box and Jenkins 

methodology. 
Another interesting research project about frost forecasting of minimum temperature in the Alpine 

area is described by Eccel et al.[8]. In this work a simple linear model (LR), a random forest (RF) model 

and a neural network (NN) model were compared and evaluated. The results achieved by RF were 
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slightly superior to those of other methods. The linear regression model for frost forecasting was 

introduced and implemented by Snyder et al.[2]. 
 

2  Weather database 
 

The weather database holds data from about 150 weather stations, which have been operating since the 

year 1993. The weather stations are distributed in apple orchards at an elevation between 200-1100 

m.a.s.l. 
Currently, the database continues to receive data every 5 minutes via radio waves or GPRS. The 

measurements include atmospheric conditions, air and soil temperature, relative air humidity, soil 

humidity at a depth of 10, 30 and 50 cm, wind speed and direction, precipitation amounts, and the 

relative humidity at leaf surfaces. Moreover, the database contains information of the geographic 

coordinates of each station (latitude, longitude and altitude). 
The historical climate patterns of the past 20 years stored in the weather database can serve as indicator 

of the climate for future time points. Based on the measurements of the past years we calculated the 

forecast of frost weather phenomena and compared the prediction against the observed temperature in 

order to evaluate the results. 
 

 

Measurement Unit 

wet bulb temp (60 cm) ◦C 

dry bulb temp (60 cm) ◦C 

rel. air humidity % 

air temp (2 m) ◦C 

wind speed m/sec 

wind direction N/S/E/W 

leaf surface humidity % 

precipitation mm 

irrigation ON/OFF 

irrigation mm 

soil temp (-25 cm) ◦C 

min interval air temp (2 m) ◦C 

max interval air temp (2 m) ◦C 

min interval rel. air humidity % 

max interval rel. air humidity % 

max interval wind speed m/sec 

soil humidity (-10 cm) % 

soil humidity (-30 cm) % 

soil humidity (-50 cm) % 

Tab. 1.  Variables that were recorded by the weather stations. 
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3  ARIMA forecast model 

The autoregressive integrated moving average (ARIMA) models are a widely used approach to time 

series forecasting based on autocorrelations in the data. 

3.1. Stationarity and differencing 

ARIMA models as described by Hyndman and Athanasopoulos[7] require that the time series to 

which they are applied be stationary. A stationary time series is one whose properties like the mean, 

variance and autocorrelation do not depend on the time point at which the series is observed. A 

stationary time series has no predictable pattern in the long-term. The time plots show a horizontal 

pattern with constant variance. A non-stationary time series can be transformed into a stationary one 

by computing the differences between consecutive observations. This transformation is known as 

differencing. The first-order differenced series can be written as: 
   

             (1.1) 

 

If the result of the first-order differencing is still a non-stationary time series, second-order differencing 

can be applied to obtain a stationary time series (Hyndman and Athanasopoulos[7]): 

  

                (1.2) 

 

One approach to identify non-stationarity is an ACF (autocorrelation function) plot. The ACF plot 

shows the autocorrelations, which measure the relationship between yt and yt−k for k (k = 1, 2, 3….) 

lags. In case of non-stationarity the ACF will slowly decrease. 
Further widely used tests are the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test and the Augmented 

Dickey-Fuller test (ADF). 
 
 

 
 

 
 
 

                                                                      Fig. 1. Non-stationary time series 
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                                     Fig. 2. ACF before differencing 
 

      Fig. 3. PACF before differencing 

 

 
 

 

 

 
 

 

 
 

        Fig. 4. Differenced time series 

 

 

 

 

  
                                      Fig. 5. ACF after differencing 

 
          Fig. 6. PACF after differencing 
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3.2. Non-seasonal ARIMA models 

The non-seasonal ARIMA model described by Hyndman and Athanasopoulos[7] is a combination of an 

AR(p) model, differencing and an MA(q) model and can be written as: 

   

                    
 
   

                    (1.3) 

where: 

     is the differenced series,  

   is white noise, 

  is a constant, 

   and   are the order of the AR and the MA model, respectively. 

 
A non-seasonal ARIMA model is written in the form: 

      (     ) (1.4) 

where: 

  means order of the autoregressive part AR( );  

  means degree of first differencing involved;  

  stands for order of the moving avarage part MA( ). 

 

 

  
Fig. 7. ARIMA(4,1,4) forecast from 22:00 until sunrise. 

The observed temperature is shown as full line. 
 

Fig. 8. ARIMA(4,1,4) forecast shown with the 

temperature of the previous three days. 
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In Figure 7, a forecast plot for ARIMA(4,1,4) built on the wet bulb temperature time series is shown for 

the 4
th
 of March 2006 for the station 14 in Terlano as a green dashed line together with the observed data 

and the confidence intervals. In this example the point forecast suits well the real data. Figure 8 shows 

the forecast plot (blue line) with blue shadowed confidence intervals together with the observed time 

series data of the previous three days.  
 

 

4  Model building 

As preliminary step for the analysis we tested ARIMA models for the wet bulb and dry bulb temperature 

time series. We ran numerous trials in order to optimize the length of time series to be included in the 

model and the time frequencies. The results were best when the frequency was 30 minutes and the length 

was approximately equal to the length of the frost period. We compared also the results of the manually 

created ARIMA models following the steps of the procedure described by Hyndman and 

Athanasopoulos[7] with those created by the automatic ARIMA function auto.arima() from the R 

package “forecast” for “Forecasting Functions for Time Series and Linear Models”. Altogether, the 

results obtained manually and automatically were quite comparable. 

For the calculation of the sunrise and sunset time we used the geographic coordinates of the station from 

the database. 

 

4.1. ARIMA and Linear Regression models 

The scope of the first analysis was to compare automatically modelled ARIMA (1.4) for the dry bulb 

temperature time series and three linear regression (LR) forecast models, which are variations of the 

model described by Snyder et al.[2]: 

 

 

 
                                        (1.5) 

 
                                       (1.6) 

 
                                        (1.7) 

 

where: 

           is the dry bulb temperature at 60 cm above ground at sunrise 

          is the dry bulb temperature at 60 cm above ground at sunset 

          stands for the dew point temperature at sunset 

          is the wet bulb temperature at 60 cm above ground at sunset 

         is relative humidity at sunset 

 

For the test 100 forecasts for each model were calculated and tested on a randomly chosen data set. The 

point forecast, lower bound of the 80% and the 95 % confidence interval were calculated.  
 

4.2. Binary classification of the frost data 

The following test conditions were defined: 

 frost - positive condition, when the predicted variable, dry bulb temperature at 60 cm above 

ground falls below 0°C at sunrise. 
 no frost - negative condition, when the predicted variable, dry bulb temperature at 60 cm above 

ground does not fall below 0°C at sunrise. 
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4.2. Training and test set 

The data set for the forecast was selected in the following manner: 

 

1. Choose randomly one station from all stations. 
2. Choose randomly one year from the range of years. 

3. Choose randomly one day for the forecast from the relevant frost period (from March until May). 
 

We selected randomly 47 frost cases and 53 days without frost, altogether 100 days. As training set a 30-

days time period before the previously randomly selected day of the forecast was chosen. As a test set 

served the day of the forecast itself. Next, the following two-step procedure was conducted: 
 

1. Calculate the ARIMA non-seasonal model on the training set. 

2. Test the model on the test set. 

 

5  Evaluation 
 

In order to assess the quality of a forecast we considered the following quantities: accuracy, recall and 

specificity. Accuracy is defined as ratio of all correctly recognized cases to the total number of test cases. 

The recall is defined as ratio of true positives to all frost cases. The specificity is ratio of true negatives 

to all no frost cases. 

On the basis of the recall value for the point forecast the LR model 3 with recall value equal to 70% 

could be identified as the best model. The two other LR models and the ARIMA model reached a recall 

value of about 60%. The specificity values for all models were between 96% and 100%. The accuracy 

for the point forecast was between 79% (ARIMA) and 85% (LR model 3). The test results for the 80% 

and 95% confidence intervals for the linear regression models were quite similar. Their recall values 

reached from 68% to 83%, the specificity from 85% to 91% and the accuracy from 79% and 85%. The 

model 2 was the best in this group for both confidence intervals. For the test level of the 80% and 95% 

confidence interval lower bounds, the best model was ARIMA, which reached higher values for recall 

than the linear regression models. In case of the 95% CI lower bound the optimal value of 1.0 for the 

recall was achieved. Unfortunately, the payoff of the good results for recall was a low value for 

specificity of 20% only, which resulted in a low accuracy of 58%. 
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Fig. 9. Evaluation results of ARIMA and linear regression models. 

 
 

 

6 ARIMA model selection 

The scope of the second analysis was to study, which ARIMA model parameters were selected for the 

forecast by the automatic model building function auto.arima() from the R package “forecast”. The 

forecast was made for 500 selected days. We chose randomly one station from the range of all 

stations, one year, one day from the frost period and calculated the model for the previous 30 days 

before the randomly selected day. 

The results of the trial showed that there was a wide range of possible model parameter sets. The 

distribution of p and q values is shown in Figures 10 and 11, respectively. At the same time it is 

notable that the p and q values are correlated. The higher the p the higher the q value. The correlation 

between p and q is shown in Figure 12. On the other hand, the p and q values are not correlated when 

d=0, which confirmed the test for association between paired samples, using Pearson’s product 

moment correlation coefficient. The p-value for the statistical significance was above the conventional 

threshold of 0.05, so the correlation is not statistically significant.  

. 
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 Fig. 10. Count of p 

 

Fig. 11. Count of q 

 

 

 

 

 

 

 
Fig. 12. Conditional plot of p versus q given d. 

 

 

 

 

Conclusions 
 

This work described frost prediction in apple orchards based upon time series models; a non-seasonal 

ARIMA model and three different Linear Regression models. The model should help in the design of an 

electronic monitoring system that permits forecasting of frost weather phenomena. Based on analysis of 

time series data and numerous trials, the proposed models could be compared and evaluated. The 

following observations regarding temperature forecast for up to twelve hours after sunset were made: 

• For the test level of the lower bound of the 80% and 95% confidence intervals, the ARIMA 

model reached higher values for recall (the ratio of correctly recognized frost cases to all frost 

cases) than the linear regression models. In case of ARIMA models and the lower bound of the 
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95% CI, the optimal value of 1.0 for the recall was achieved, which means that all frost cases 

could be correctly forecast. 
• Unfortunately, the payoff of the good results for recall is the low value for the specificity  of 20% 

only. This means risk of frequent false alarms. 
 

Despite the high risk of false alarms, the ARIMA model offers encouraging results worth further 

investigations. Linear regression models can be further improved as well. Here is a list of several 

complementary analysis steps, which could be tried out towards more accurate forecasting: 

• Vector ARIMA models (VARIMA), which are a multivariate extension of ARIMA models 

should be tested. The vector of predictors variable in Linear Regression models could be 

extended by wind speed and soil temperature, which would likely lead to more precise forecast. 
• The length of the training data can be still optimized in order to find the optimal fit. 

• The orders p and q of the ARIMA model should be studied in order to find out potential 

correlations with temperature. This would allow to exclude some of the models. 
• A similarity study of the forecast coming from different stations should be made. Such similarity 

information could turn out to be helpful in the ARIMA model selection.
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Abstract. Markov chain Monte Carlo adaptive methods by creating computationally 

effective algorithms for decision-making of data analysis with the given accuracy are 
analyzed in this paper. The task for estimation of parameters of the multivariate stable 

symmetric vector law which is constructed in hierarchical way is described and solved in 

this paper. To create the adaptive MCMC procedure, the sequential generating method is 

applied for Monte Carlo samples, introducing rules for statistical termination and for 
sample size regulation of Markov chains. Statistical task, solved by this method, reveal 

characteristics of relevant computational problems including MCMC method. 

Effectiveness of the MCMC algorithms is analyzed by statistical modeling method, 

constructed in the paper. Tests made with financial data of enterprises, confirmed that 
numerical properties of the method correspond to the theoretical model. Tests of 

algorithms have shown that adaptive MCMC algorithm allows obtaining estimators of 

examined distribution parameters in lower number of chains, and reducing the volume of 

calculations approximately two times. The algorithms created in this paper can be used to 
test the systems of stochastic type and to solve other statistical tasks by MCMC method. 

Keywords: Monte Carlo method, EM algorithm, maximum likelihood method, stable 

distributions, stochastic optimization. 
 

1  Introduction 
 

Stochastic processes can be modelled, estimated and predicted by probabilistic 

statistical methods, using the data that describes the course of the process. 

Markov chain Monte Carlo (MCMC) is a computer simulation method, which is 

widely used in statistics, technology, physics, bioinformatics, etc. (Rubinstein, 

Kroese[12], Spall[15]). MCMC method is often applied to calculate 

probabilities or rare events by importance sampling, in data analysis by EM 

(expectation maximization) algorithm, for practical application of Bayesian 

method by modeling the posterior distribution and using numerical methods in 

determining their parameters, etc. (Booth and Hobert[2], Koopman et al.[8], 

Zeger and Karim[17]). 

Known MCMC algorithms usually generate some or several chains, determining 

convergence by empirical method and recording large enough Monte Carlo 

sample size in all chains (Bradley and Thomas[3]). It is evident that these 
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procedures are not very effective from the computational viewpoint as 

generation of chains uses too much computer’s time, and in case of empirical 

termination of chain generation, statistically significant convergence might be 

not achieved yet. What is more, while applying MCMC, the problem often 

occurs in deciding what Monte Carlo sample size should be generated for 

separate chains. 

The research object of this paper is adaptive Markov chain Monte Carlo method 

study, its numerical realization and application in data analysis, regulation 

techniques of assessment of accuracy of estimators, selection of number of 

chains, algorithm termination, and Monte Carlo sample size for separate chains. 

 

2  Stable symmetric vector distribution 
 

Zolotarev’s expression of stable distribution   ,,S  density is used in this 

paper (Золотарев[18]): 
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In one-dimension case, it is known that 21 sss  , where: 

1s  – random stable variable with skewness parameter 1  and shape 

parameter 11  ; 

2s  – another random stable variable with skewness parameter 0  and shape 

parameter 2 ; 

s  – random stable variable with skewness parameter 0  and shape 

parameter 21    (Rachev and Mittnik[10], Ravishanker and Qiou[11]). 

While applying this method, it is usually selected that 2s  would be a random 

variable, which is normally distributed, i.e., 
2

1


   and 22  . In this way, 

the multivariate stable symmetric vector can be expressed through normally 

distributed random vector, and  -stable variables (Rachev and Mittnik[10], 
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Ravishanker and Qiou[11]) as 21 ssX   , where 1s  – subordinator with 

parameter  , random vector  ,0~2 Ns  and   is a random vector of mean. 

 

3  Estimators of maximum likelihood approach 
 

From computational viewpoint, MCMC approach allows us to solve the 

equations, which include complex multivariate integrals, by constructing 

Markov chain of Monte Carlo samples. These equations can often be derived as 

necessary condition of optimality for some stochastic criteria (Polyak[16]). In 

this paper, likelihood functions that describe these criteria are assumed as 

continuous and smoothly differentiated, therefore, MCMC method can be 

interpreted as gradient descent method for this likelihood function. Usually, it is 

possible to prove that EM algorithm, widely used in statistics, is a separate case 

of stochastic gradient search. 

Let’s consider that the sample  KXXXX ,,, 21   consists of independent d-

variate stable vectors. The likelihood function of this sample is (Ravishanker 

and Qiou[11]): 
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The log-likelihood function of this sample is: 
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Estimators of parameters are calculated by fixed-point method (Sakalauskas and 

Vaiciulyte[14]): 
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EM algorithm can be used to solve the equations (4), (5) after integrals (6) and 

(7) are calculated by Monte Carlo method. When   and   are fixed, the shape 

parameter estimate can be obtained by solving the exercise of one variable 

minimization. 

 

4  Adaptive Markov chain Monte Carlo algorithm 
 

Let’s say the initial values 
000 ,,   are selected, then k  number of Markov 

chains is generated, and estimates 
kkk  ,, in each chain are calculated. Let’s 

say 
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where ,,,2,1 kNj   kN  – is Monte Carlo sample size of the k
th

 chain. Then 

the sums are calculated: 
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that are necessary to receive estimators in the next iteration, according to (4) and 

(5) and EM algorithm: 
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Then the consistent Monte Carlo estimator of log-likelihood function is 

obtained: 
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The 95% confidence interval for likelihood function is: 

 

1003



   
.

2
,

2

1
2

1
2 














 


K

i
k

i

k
ik

k

k
K

i
k

i

k
ik

k

k K
P

PP
N

N
LK

P

PP
N

N
L  (16) 

 

Some or several chains are usually generated in the known MCMC algorithms, 

when fixed and large enough Monte Carlo sample size is detected in all chains 

and by estimating convergence empirically (Bradley and Thomas[3], Brooks 

and Roberts[5]). One way of solving the problem of selecting the Markov chain 

size is to terminate the generation of chain if samples, calculated in adjacent 

chains, do not differ statistically after applying statistical methods for 

verification of hypothesis on differences and matches of aforementioned 

samples (Brooks and Gelman[4], Sakalauskas[13]). Some authors attempted to 

introduce tests for comparison of two adjacent chains, however, these tests are 

one dimensional or allow to compare two vectors at best (Gelman and Rubin[7], 

Brooks and Gelman[4], Flegal et al.[6]), while in practical exercises probability 

distributions are often described by several vectors and several matrixes. 

Monte Carlo chains are generated, according to formulas (13), (14) the length of 

confidence interval (16) becomes lower than chosen value  , 0 , and 

statistical hypothesis about matching of mean vectors and covariance matrices 

in two adjacent iterations :0H kk  1 , kk  1  is not rejected. To test 

this hypothesis, the Anderson[1] criterion is used: 
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Therefore, the statistical hypothesis is rejected according to the criteria (17) if: 

 

,, p
kH   (18) 

 

where p,  – is 2
p  distribution quantile with  3

2

1
 ddp  degrees of 

freedom,   – significance level (Krishnaiah[9]).  

Another problem, related to reduction of calculation volume, is regulation of 

Monte Carlo sample size in separate chains. In fact, there is no need to generate 

large Monte Carlo samples when constructing first chains of Markov chain 

because smaller sample sizes are enough for iterative modification of model 

parameters. Large Monte Carlo samples should be generated only at the end of 

Markov chain, when statistical criterion is compatible with hypothesis on 

concurrence of the last chains of probabilistic models. Methods of Monte Carlo 
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sample size regulation are proposed and simulated by computer in this paper by 

using statistical criterion about uniformity of Monte Carlo sample distributions 

in two Markov chains.  

To regulate Monte Carlo sample size, the rule, analogical to rule, which is 

applied in stochastic programming, is introduced (Sakalauskas[13]): 

 

,,
1

pk

k
k

H

N
N   (19) 

 

where in separate case   can be equal to  . Application of this rule allows to 

choose the Monte Carlo sample size in Markov chain rationally, also ensures the 

convergence of sets (13) and (14) into optimal value of likelihood function with 

probability 1 (Sakalauskas[13]). 

 

5  Computer modeling 
 

The algorithm created was tested with chosen simulated data and share data of 3 

telecommunication enterprises: AT&T, BellSouth and CenturyLink. By using 

MCMC algorithm, described in the paper, 50k  Markov chains were 

generated. The sample size limit 500kN  was applied to avoid too small or 

too large values. In this case, termination conditions of the algorithm were 

satisfied after 28k  iterations. 

Fig. 1–4 depict dependences when the length of confidence interval does not 

exceed 2,0 . As it might be observed in fig. 8, the log-likelihood function is 

decreasing until the zone of possible solution is achieved. The presented 

dependences in fig. 9 show that the confidence interval decreases down to the 

required value of 0,2. In fig. 10, N real is obtained by terminating sample 

generation when the length of confidence interval does not exceed the critical 

value 2,0 . N predictable is Monte Carlo sample size, calculated according 

to rule (19). Termination test is depicted in fig. 4, where critical value is the 

value of 0,999-quantile of 2
p  distribution with 9p  degrees of freedom 

(equal to 27,88). 
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Fig. 3. Sample size kN  Fig. 4. Termination test kH  
 

Analogical research of share prices was carried out with the following 5 

enterprises: AT&T, Bellsouth, CenturyLink, CBS, and Sprint. In table 2, the 

fixed and regulated by rule (19) Monte Carlo sample size is presented, required 

to meet the conditions for algorithm termination. 
 

Table 2. Comparison of standard and adaptive MCMC algorithms of stable symmetric 
vector distribution 

Dimension 

d 
  Sample size k 

kN in the 

last iteration  
Total N 

3 

0,1 
regulated 28 6 478 88 004 

fixed 30 7 000 210 000 

0,2 
regulated 28 1 646 32 346 

fixed 29 2 000 58 000 

5 

0,1 
regulated 23 11 724 156 567 

fixed 19 12 000 228 000 

0,2 
regulated 12 2 519 16 904 

fixed 19 3 000 57 000 
 

Comparison of created algorithm with a standard MCMC algorithm with fixed 

sample size has revealed that it allows to obtain the estimators symmetric stable 

vector law with the necessary accuracy in lower number of chains, and, thus, 

reducing the volume of calculations by almost two times. 

 

Conclusions 
 

The statistical adaptive MCMC algorithm for researching parameters of the 

multivariate stable symmetric vector distributions was constructed. It was 

shown that this method realizes log-likelihood function stochastic gradient 

search, implementing it with EM algorithm. Methods and algorithms for 

statistical estimation of Markov chains differences were proposed and analyzed 

using standard Hoteling and Anderson’s criteria. Sample sizes were taken as 

inversely proportional to the ratio of termination statistic and quantile of 
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termination criterion. This algorithm was applied for creation of model of share 

data of telecommunication. Efficiency of MCMC algorithms was tested by 

statistical modeling. Tests of algorithms behaviour have shown that adaptive 

MCMC algorithm allows to obtain estimators of examined distribution 

parameters in lower number of chains, and reducing the volume of calculations 

approximately two times. Algorithm can be used to test the systems of 

stochastic type and to solve other statistical tasks by MCMC method. 
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Abstract. Considering the impact factor by Journal Citation Report as a measurement of the 

scientific quality of a journal, a logit regression model has been fitted in order to select the most 

influential bibliometric variables to estimate the forementioned indicator. In particular the study has 
focused in journals belonging to the field Dentistry and the explicative variables have been: H index 

of the journal, H index of the editor in chief, percentage of papers whose researchs have been 

supported by external institutions, as well as other factors related to the contents and framework of 

the journal. Regarding to this criterion, the logit model provides a correct classification rate of 
83.3% for a cut-point of 0.5. 

Keywords: H-index, journal citation report, logit regression. 
 
 

 

1  Introduction 
 

On the last decades several indicators to evaluate the quality of scientific journals have 

been developed being one the most common and useful the impact factor (IF) provided by 

the Journal Citation Reports (Thomson Reuters), that is a relative quality index obtained 

by dividing the number of yearly citations received by a journal into the total number of 

papers published in this journal, both related to the last two years. The IF allows to divide 

a set of journals of a certain field ordered decreasingly in groups by quantiles such as 

terciles, quartiles or percentiles. 

In order to estimate and forecast the IF several explanatory variables including the H 

index of the own journal and the one of the editor-in-chief, the percentage of papers 
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published in this journal whose research received public or private finantial support 

(Bornmann et al.[2]), as well as other qualitative characteristics such as the aim of the 

journal (including survey papers, theoretical, applicative,...) or diffusion along the world 

can be considered. 

The aim of this paper is to estimate a logit regression model to explain the IF rank from 

the above mentioned covariables and factors, but studying previously an optimal criterion 

for dividing the IF in two groups. For that we started from a division of IF in terciles, as is 

usual in science evaluation in the field of Mathematics and Statistics, and a comparison 

among the means of the independent quantitaive variables of the model was performed 

once the Gaussian hypothesis was tested. The essay was achieved with journals of 

Dentistry, that is a field of increasing interest in bibliometric studies (Lucena et al.[3]). 

 

 

2  Statistical Methodology 
 

The database used has been InCites
TM

 Journal Citation Reports
®

, edition 2016, with free 

access for the University of Granada. Dentistry field includes 91 journals and, if they are 

ordered by decreasing IF, two of them: Dental Materials Journal and Medicina Oral, 

Patología Oral y Cirugía Bucal were in the same place 60 with an IF of 1.087. So they 

can easily divided in terciles. Moreover, a stratified sampling by terciles was performed 

choosing in a random way 12 journals in each stratum, obtaining in this way a sample size 

of 36, corresponding to a sampling fraction nearly to 40%. The selected journals are 

included in Table 1 together the following variables: 

 IF rank in the field (R) 

 H-index of the journal (H-J) 

 H-index of the editor-in-chief (H-Ed) 

 Sections (S): homogeneous framework (1) or including sections (2) 

 Type of journal (T): generalist (1) or specialized (2) 

 Percentage of papers with external finantial support (P) 

 Anscombe transformation (AnsP) 

 

H-J and H-Ed were calculated from Scopus
®
 database while information about S and T 

was obtained by reading the own journals. With regard to estimate P a sample of 100 

papers for each one of the 36 sampled journals corresponding to the same time interval of 

the considered IF’s, was looked up. In order to deal with a quantitative continuous 

variable, P was transformed to a Gaussian variable by means of (Anscombe[1]): 

arcsin(P/100)
½
. All this information is included in Table 1. Journals were divided in three 

groups by terciles, so that there were twelve in each one. 

The preliminary step in the further development was to check the normality of the 

numeric explanatory variables by means of the Kolmogorov-Smirnov test, with Lilliefors 

significance correction for critical values. Once that all the involved variables could be 

processed as Gaussian, the hypothesis of equality among means of H-J, H-Ed and AnsP 

by terciles was tested by a simple ANOVA together the Levene’s test for checking 

equality of variances. Furthermore, when ANOVA resulted significant, a post-hoc LSD 
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test (least significant diference) was applied in order to look for grouping between 

terciles. As can be seen in next section, a cluster between second and third tercil was 

found for the three variables so that, in fact, there were only two categories that will be 

called Level. 

 

 

Journal IF R H-J H-Ed S T P AnsP 
J. Dent. Res. 4.602 2 133 48 1 1 63% 0.91691 

Dent. Mater 3.931 5 101 41 1 2 62% 0.90658 

J. Clin. Periodontol. 3.915 6 109 55 2 2 56% 0.84554 

Clin. Oral Implant. Res. 3.464 7 111 29 1 2 34% 0.62253 

J. Dent. 3.109 8 80 17 1 1 43% 0.71517 

Mol. Oral Microbiol. 3.061 9 61 39 1 2 83% 1.14581 

J. Endod. 2.904 10 103 52 2 2 39% 0.67449 

Int. Endod. J. 2.842 12 86 35 2 2 67% 0.95886 

J. Oral Facial Pain Headache 2.824 13 55 52 1 1 32% 0.60126 

 Int. J. Oral Sci. 2.595 15 23 58 1 1 36% 0.64350 

Clin. Oral Investig. 2.207 21 50 33 1 2 36% 0.64350 

Int. J. Oral Maxillofac. Implants 1.690 25 24 25 1 2 54% 0.82544 

J. Oral Maxillofac. Surg. 1.231 32 89 8 2 2 19% 0.45103 

J. Adhes. Dent. 1.194 34 51 34 1 2 33% 0.61194 

J. Cranio-MaxilloFac. Surg. 1.182 35 56 37 1 2 20% 0.46365 

Odontology 1.640 38 8 8 1 1 40% 0.68472 

Int. J. Prosthodont. 1.592 40 71 43 1 2 30% 0.57964 

J. Evid.-Based Dent. Pract. 1.563 41 15 27 2 1 42% 0.70505 

Eur. J. Orthodont. 1.272 42 60 21 1 2 26% 0.53507 

Gerodontology 1.262 44 38 29 1 1 30% 0.57964 

Dent. Traumatol. 1.237 45 63 26 1 2 21% 0.47603 

J. Esthet. Restor. Dent. 1.231 50 42 28 1 2 34% 0.62253 

J. Public Health Dent. 1.171 53 48 38 1 2 52% 0.80540 

Med. Oral Patol. Oral Cir. Bucal 1.162 60 32 32 2 2 38% 0.66422 

Int. J. Periodontics Restor. Dent. 1.154 63 61 34 1 2 23% 0.50018 

Implant Dent. 1.117 64 44 8 1 2 31% 0.59050 

Brit. Dent. J. 0.844 65 59 3 1 1 20% 0.46365 

Int. Dent. J. 0.830 66 47 43 2 1 49% 0.77540 

Head Face Med. 0.800 67 10 19 1 1 27% 0.54640 

Aust. Endod. J. 0.795 68 24 2 1 2 25% 0.52360 

J. Adv. Prosthodont. 0.791 70 12 12 1 2 28% 0.55760 

Quintessence Int. 0.789 72 25 25 1 1 14% 0.38350 

J. Oral Sci. 0.784 73 1 18 1 1 37% 0.65389 

Pediatr. Dent. 0.767 74 50 12 2 1 28% 0.55760 

J. Dental Sci. 0.449 75 8 31 1 2 51% 0.79540 

Int. J. Dent. Hyg. 0.421 76 23 15 1 2 28% 0.55760 

 

Table 1. Data of IF and of explanatory variables included in the study 

The last stage of the analysis was to estimate a logit regression equation taking as 

response the new variable Level and as covariates H-J, H-Ed and AnsP, and as factors S 

and T. 
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3  Results 
 

The Kolmogorov-Smirnov test for the variables H-J, H-Ed and AnsP concluded the 

normality of the three variables as can be seen in Table 2. 

 

K-S test H-J H-Ed AnsP 

Z 0.721 0.397 0.735 

p-value 0.676 0.998 0.652 

 

Table 2. Normality test for variables H-J, H-Ed and AnsP 

 

 

An ANOVA test for the above mentioned variables, previous application the Levene’s 

test for homogeneity of variances, concluded significant differences among terciles for 

the three ones, as shows Table 3. 

 

Variables Levene p-value ANOVA p-value 

H-J 2.857 0.072 9.435 0.001 

H-Ed 0.470 0.629 9.681 0.000 

AnsP 2.335 0.113 9.387 0.001 

 

Table 3. ANOVA and Levene’s tests among terciles for H-J, H-Ed and AnsP 

 

 

Then the post-hoc LSD test provided groupings among terciles so that in all cases the 

second and third terciles showed a similar behaviour and at the same time different from 

the first tercil (see Table 4). Their associated 95% confidence intervals are represented in 

Figure 1. This result allowed to introduce a new classificatory variable for quality of the 

journals, that will be called Level, with two categories: first tercil (1) and second-third 

tercils (2). 

 

Tercil 

JCR 

 

N 

Groups for H-J Groups for H-Ed Groups for AnsP 

1 2 1 2 1 2 

1 

2 

3 

12 

12 

12 

78.00  

47.75 

30.33 

40.33  

27.58 

18.50 

0.79  

0.60 

0.58 

p-value  1.000 0.126 1.000 0.078 1.000 0.680 

 

Table 4.LSD test associated to ANOVA of terciles for H-J, H-Ed and AnsP 
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Fig. 1. 95% LSD confidence intervals 
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Taking as response the binary variable Level, a preliminary logit regression model with 

explanatories covariables H-J, H-Ed and AnsP and S and T as factors was estimated. The 

corresponding Nagelkerke’s pseudo-R
2
 coefficient was 0.794 and estimated parameters of 

the model appear in Table 5. 

 

Variable Coefficient p-value 

H-J -0.075 0.037 

H-Ed -0.089 0.168 

AnsP -17.976 0.038 

S -4.135 0.096 

T -1.784 0.287 

Constant 23.630 0.014 

 

Table 5.  Estimated coefficients of the preliminar logit regession 

 

 

It can be noticed that factors S and T are not significant al level α=0.05, neither H-Ed. 

Therefore, reestimating the coefficients by means of a stepwise procedure, the final logit 

model with selected variables appears in Table 6. The Nagelkerke’s pseudo-R
2
 coefficient 

was 0.661: 

 

Variable Coefficient p-value 

H-J -0.050 0.024 

AnsP -12.435 0.016 

Constant 11.579 0.003 

 

Table 6. Estimated coefficients of the final logit regession 

 

 

Stepwise method for selection of variables to be included in the model must be carefully 

used because, when all the variables are included, predicted variables have low bias but 

large variance. Moreover, sometimes multicollinearity among variables induces to delete 

some important ones and prevail some independent variables with difficult interpretation 

(Steyerberg et al.[4]). 

 

The correct classification rate (CCR) of the final model that includes only as independent 

variables H-J and AnsP, for a cut-point of 0.7 was 80.6% as figures in Table 7, where the 

percentage of success for journals of Level 2 was 83.3%.  

 

 Estimated Level  

CCR Real Level 1 2 

1 8 4 66.7% 

2 2 22 91.7% 

  Total 83.3% 

 

Table 7. CCR provided by the logit model (cut-point: 0.5) 
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Conclusions 
 

Once the journals of the field Dentistry have been decreasingly ordered according their 

impact factor (JCR) and grouped by terciles, significant differences were found among 

these groups for the variables H-J, H-Ed and AnsP, what motivated the introduction of a 

new quality indicator called Level with two categories of journals depending on they 

belong to the first tercil or to the second and third tercil, on the basis of their behavior. 

Then a logit regression model was estimated taking Level as response variable and as 

independent variables the factors S and T, and covariates the above mentioned H-J, H-Ed 

and AnsP. Only H-J and AnsP were considered in the final model for significance level 

0.05. The model was tested with the sampled journals providing a CCR up to 80% taking 

as cut-point 0.5. 

 

The preliminary model including all the covariates and factors would give a higher CCR, 

near to 90% but including several non-significant covariates and factors. 
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LAWS OF LARGE NUMBERS FOR NON-HOMOGENEOUS
MARKOV SYSTEMS

P.-C.G. VASSILIOU

Department of Statistical Sciences, University College London.

Abstract. In the present we establish Laws of Large Numbers for Non-
Homogeneous Markov Systems and Cyclic Non-homogeneous Markov systems.
We start with a theorem, where we establish, that for a NHMS under certain
conditions, the fraction of time that a membership is in a certain state, as-
ymptotically converges in mean square to the limit of the relative population
structure of memberships in that state. We continue by proving a theorem
which provides the conditions under which the mode of covergence is almost
surely. We continue by proving under which conditions a Cyclic NHMS is
Cesaro strongly ergodic. We then proceed to prove, that for a Cyclic NHMS
under certain conditions the fraction of time that a membership is in a certain
state, asymptotically converges in mean square to the limit of the relative pop-
ulation structure in the strongly Cesaro sence of memberships in that state.
We then proceed to establish a founding Theorem, which provides the condi-
tions under which, the relative population structure asymptotically converges
in the strongly Cesaro sense with geometrical rate. This theorem is the basic
instrument missing to prove, under what conditions the Law of Large Num-
bers for a Cycl-NHMS is with almost surely mode of convergence. Finally, we
present two applications �rstly for geriatric and stroke patients in a hospital
and secondly for the population of students in a University system.

1. Introductory notes

One of the most celebrated theorems in probability theory is the Law of Large
Numbers (Grimmett and Stirzaker (2001)). The Law of Large Numbers were also
studied for �nite Markov chains (Kemeny and Snell (1981). The Law of Large
Numbers for a regular homogeneous Markov chain states, that if �j is the limiting
probability of being in state j independent of the initial state, then also �j represents
the fraction of time, that the process can be expected to be in state j for a large
number of steps. The Law of Large Numbers for Markov chains is also linked with
the Martingale Convergence Theorem (Kemeny, Snell and Knapp (1976). Laws
of Large Numbers were also studied for non-homogeneous semi-Markov processes
by Vadori and Swishchuk (2015). For Markov chains in general state spaces there
exists a chapter on Laws of Large Numbers in Meyn and Tweedie (2009), where
the theory of martingales is the main instrument for proving various types of LLN.
These laws are of value for Markov chains exactly as they are for all stochastic
processes: the LLN and CLT, in particular, provide the theoretical basis for many

Date : March 14, 2017; The present was a Keynote Talk at the conference ASMDA2017 London.
2000 Mathematics Subject Classi�cation. Primary 60J10,60J20.
Key words and phrases. Non-Homogeneous Markov Systems, Cyclic Non Homogeneous

Markov Systems, Laws of Large Numbers.
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2 P.-C.G. VASSILIOU

results in the statistical analysis of chains as they do in related �elds. For this and
other applications, the reader is referred to Hall and Heyde (1980).
In the present paper we will study the Laws of Large Numbers for Non-Homogeneous

Markov Systems and for Cyclic Non-Homogeneous Markov systems. The theory of
NHMSs has its roots in the use of Markov models in manpower systems, which
started with the work of Young and Almond (1961) and Bartholomew (1963).
Young�s motive was the application of homogeneous Markov chain models in the
British University system. Bartholomew created important multiple renewal theory
models for various social processes and his �rst related book Bartholomew (1967)
among other things, provided an important theoretical reference of applied prob-
ability style for everyone. The concept of Non-homogeneous Markov systems was
�rst introduced in Vassiliou (1982). From then onwards a vast literature in a great
variety of journals was created by many authors, a sample of which could be found
in the review papers by Vassiliou (1997) and Ugowgo and McClean (2000). The
motive was to provide a more general framework for a number of Non-homogeneous
Markov chain models in manpower systems. There is also a great variety of applied
probability models, that could be accommodated in this general framework. Let
us consider a population (system), which is strati�ed into classes (states) according
to various characteristics. The members of the system could be sections of human
societies, parts of the animal kingdom, populations of �sheries, biological micro-
organisms, particles in a physical phenomenon, various types of machines, various
types of cells or viruses of the human body etc. The members of the system are
categorized into various states, according to the problem at hand. The set of states
are assumed to be exclusive, so that each member of the system may be in one
and only one state at a given time. We call population structure, the vector con-
taining the number of members of each state in the system. Members are leaving
the system in a stochastic way and also new members are entering the system in
a stochastic way. In fact a non-homogeneous Markov chain is a NHMS with one
particle as a member, which never leaves the system and in which no other particles
enter.
There are a large number of applications of the theory of NHMS and in quite

diverse areas, where the present results will have an impact. We will only refer
to some of these applications that contribute to the health care of human beings.
For example, applications to the evolution of the population of HIV virus within
the human of T-cells in Mathiew et. al. (2006), and Foucher et.al. (2005); gene
expression sequences in McClean et.al. (2003); in hospital and geriatric patient
care McClean et.al. (1998a, 1998b), Taylor et.al. (2000), Faddy and McClean
(2005), Garg, McClean et. al. (2010), McClean and Millard (2007), Marshal et.al.
(2002), Marshal and McClean (2003,2004).Garg, McClean et. al. (2009), McClean
et.al. (2007), McClean et.al. (2009),Lalit et.al. (2010), McClean et.al. (2014) and
McClean et.al. (2014b).
The paper is organized as follows: In section 2 we provide basic concepts and

useful results for a NHMS, which are known or slightly amended. Also we pro-
vide some useful in what follows theorems on the various modes of convergence of
random variables in a probability space. The results in this section will be used
repeatedly in the sections that follow. In section 3 we �rst prove a theorem which
is a Law of Large Numbers for a NHMS. We prove, that for a NHMS under certain
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conditions the fraction of time that a membership is in a certain state, asymptot-
ically converges in mean square to the limit of the relative population structure
of membership in that state. In a second theorem in the same section we provide
and prove under what conditions the mode of convergence in the previous basic
result is almost surely. In section 4 we study the important category of Cyclic
NHMS, a concept which was motivated by the work of Gani (1963) on students
enrolment at Michigan state University and Bartholomew (1982). We prove in two
theorems, under what conditions the relative population structure of a Cycl-NHMS
asymptotically converges in the strongly Cesaro sense. In section 5 we �rst prove a
theorem which is a Law of Large Numbers for a Cycl-NHMS. We prove, that for a
Cycl- NHMS under certain conditions the fraction of time that a membership is in
a certain state, asymptotically converges in mean square to the limit of the relative
population structure in the strongly Cesaro sense of membership in that state. We
then proceed to establish a founding Theorem, which provides the conditions un-
der which the relative population structure asymptotically converges in the strongly
Cesaro sense with geometrical rate. This theorem is the basic instrument missing
to prove, under what conditions the Law of Large Numbers for a Cycl-NHMS is
with almost surely mode of convergence. In section 6 we provide applications of
the present results in section 3 to geriatric and stroke patients. Also, we provide
applications of the results in section 4 and 5 for the movements of students in a
University system.

2. Basic concepts and useful results for a NHMS in discrete time

We �rstly recall the concept of an NHMS and introduce concepts and known
results necessary for the study of the Law of Large numbers for NHMSs. Consider
a population (system) which is strati�ed into classes (states) according to various
characteristics. Let S = f1; 2; :::; kg be the set of states, that are assumed to be
exclusive and exhaustive. Let, that we have a discrete time scale t = 0; 1; 2; ::: and
fP (t)g1t=0 be the sequence of transition probability matrices between the states.
Assume, that we have wastage from the system and denote by ! the state which
represents the external environment of the system to which the population mem-
bers, who leave the system go. Let fp! (t)g1t=0 be the vector of probabilities of
wastage from the various states of the system. Let fT (t)g1t=0 be the total number
of memberships of the system at time t, which is assumed to be a realization of
a known stochastic process. We assume that each member holds a membership,
which is left, when the member leaves the system and is taken by new members en-
tering the system to replace leavers or to expand the system. Apparently, T (t) � 0
and it is assumed that �T (t) = T (t+ 1) � T (t) � 0: Let fp0 (t)g1t=0 be the
vector of probabilities of allocation of replacements and new memberships, in the
various states of the system, which is being done independently of internal move-
ments. Denote by Q (t) = P (t) + p>! (t)p0 (t); then Q (t) is a stochastic matrix,
and the non-homogeneous Markov chain de�ned by the sequence fQ (t)g1t=0 will be
called the imbedded non-homogeneous Markov chain of the NHMS. De�ne by Ni (t)
the random variable representing the number of memberships in state i at time
t; N (t) = [N1 (t) ; N2 (t) ; :::; Nk (t)] the vector of the random variables represent-
ing the population structure of the NHMS. Let q (t) = N (t) =T (t) be the relative
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population structure. De�ne by

(2.1) q (s; t) = [q1 (s; t) ; q2 (s; t) ; :::; qk (s; t)] ;

where

(2.2) qj (s; t) = P [Xt = j j q (s)] ; for s � t;
then from Georgiou and Vassiliou (1992) p.140 we get that

(2.3) E [q (t� 1; t)] = a (t� 1)q (t� 1)Q (t� 1) + b (t� 1)p0 (t� 1) ;
where

(2.4) a (t� 1) = T (t� 1)
T (t)

and b (t� 1) = T (t)� T (t� 1)
T (t)

:

also we get that

(2.5) E [q (0; t)] = a (t� 1)E [q (0; t� 1)]Q (t� 1) + b (t� 1)p0 (t� 1) ;
from which recursively we get (see Georgiou and Vassiliou (1992) p.149) that

E [q (0; t)] =
T (0)

T (t)
q (0)Q (0; t� 1) (2.6)

+
1

T (t)

tX
�=1

�T (� � 1)p0 (� � 1)Q (� ; t� 1) ;

where Q (s; t) = Q (s)Q (s+ 1) :::Q (t) for s � t: We set Q (s; t) = I the identity
matrix for s > t: Note also that we set q (s; t) = 0 for s > t:
We denote by

E [q (s; t)] = [E [q1 (s; t)] ;E [q2 (s; t)] ; :::;E [qk (s; t)]] ;

and apparently we have

E [q (s; t)] =
T (s)

T (t)
q (s)Q (s; t� 1)

+
1

T (t)

tX
�=s+1

�T (� � 1)p0 (� � 1)Q (� ; t� 1) :

We denote by E
�
q(i) (s; t)

�
if it is known that

q (s) =

240; 0; :::; 1|{z}
i�th

; :::; 0

35 ;
and the vector E

�
q(i) (s; t)

�
is then

E
h
q(i) (s; t)

i
=
h
E
h
q
(i)
1 (s; t)

i
;E
h
q
(i)
2 (s; t)

i
; :::;E

h
q
(i)
k (s; t)

ii
:

LetMn;m (R) be the vector space of all n�m real matrices SMn;n ; the vector
space of all n � n stochastic matrices. Let Q 2 SMn;n;then it is regular if it�s
states consist of a single communicating class which is aperiodic or equivalently Q
has 1 as the only eigenvalue with modulus 1 and with geometric multiplicity one.
For A 2 Mn;n (R) we de�ne the norm k:k

kAk = sup
i2S

X
j2S

jaij j :
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Now from Vassiliou (1981) we get the following theorem:

Theorem 1. Let a NHMS and let that

a) limt!1 kQ (t)�Qk = 0 and Q a regular stochastic matrix;
b) limt!1 kp0 (t)� p0k = 0;
c)limt!1 [�T (t) =T (t)] = 0;
then

lim
t!1

kE [q (0; t)]� q (1)k = 0;

where q (1) is the row of the stable stochastic matrix Q (1) = limt!1Q
t.

From Isaacson and Madsen p.157 and p. 170 we get the following two theorems

Theorem 2. A non-homogeneous Markov chain with transition matrices fQ (t)g1t=0
is strongly ergodic if and only if there exists a constant matrix Q such that for each
m

lim
t!1

kQ (m; t)�Qk = 0:

Theorem 3. Let fQ (t)g1t=0 be a sequence of transition matrices corresponding to
a non-homogeneous Markov chain. If limt!1 kQ (t)�Qk = 0 where Q is weakly
ergodic, then the chain is strongly ergodic.

Following the steps of the proof of Theorem 1 in Vassiliou (1981) and using
Theorems 2 and 3 we arrive at

Theorem 4. Let a NHMS and let that

a) limt!1 kQ (t)�Qk = 0 and Q a regular stochastic matrix;
b) limt!1 kp0 (t)� p0k = 0;
c)limt!1 [�T (t) =T (t)] = 0;
then

lim
t!1

kE [q (s; t)]� q (1)k = 0; for every s � t:

Let a probability space (
;F ;P) and a sequence of random variables fXng1n=0
with Xn : 
 ! R. It is well known that there are various modes of convergence
of the sequence fXng1n=0 to a random variable X : 
 ! R. We now provide the
formal de�nition of three of these modes.

De�nition 1. Let a probability space (
;F ;P) and a sequence of random variables
fXng1n=0 with Xn : 
 ! R and a random variable X : 
 ! R. We say that
the sequence of random variables fXng1n=0 converge almost surely to the random
variable X if the event

f! 2 
 : Xn (!)! X (!) as n!1g ;
has probability one. We will denote this type of convergence by

Xn
a:s:! X or lim

n!1
Xn = X a.s.

De�nition 2. Let a probability space (
;F ;P) and a sequence of random variables
fXng1n=0 with Xn : 
! R and a random variable X : 
! R. If jXnj and jXj are
in Lp where 1 � p � 1; i.e., E [jXp

nj] <1 for all n and E [jXj] <1, then we say
that the sequence of random variables fXng1n=0 converges to X in p-th mean and
we denote it by

Xn
Lp! X;
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6 P.-C.G. VASSILIOU

if and only if
lim
n!1

E fjXn �Xjpg = 0:

One of the most useful modes of convergence is the mean square, that is, for
p = 2 we have

Xn
L2! X; or Xn ! X in mean square, or Xn

m:s:! X:

De�nition 3. Let a probability space (
;F ;P) and a sequence of random variables
fXng1n=0 with Xn : 
 ! R and a random variable X : 
 ! R. We say that
Xn ! X in probability, and we write Xn

P! X, if

P (jXn �Xj > �)! 0 as n!1 for all � > 0:

From Grimmett and Stirzaker (2001) p.311 we get the following Theorem.

Theorem 5. Let a probability space (
;F ;P) and a sequence of random variables
fXng1n=0 with Xn : 
 ! R and a random variable X : 
 ! R. Then (a) If

r > s � 1 and Xn
Lr! X then Xn

Ls! X. (b) If Xn
L1! X then Xn

P! X. The
converse assertions fail in general.

Note that any sequence fXng1n=0 which satis�es Xn
P! X necessarily contains

a subsequence fXni : 1 � i <1g which converge almost surely. From Grimmett
and Stirzaker (2001) p.314 we get the following Theorem.

Theorem 6. Let a probability space (
;F ;P) and a sequence of random variables

fXng1n=0 with Xn : 
 ! R and a random variable X : 
 ! R. If Xn
P! X, there

exists a non-random increasing sequence of integers n1; n2; ::: such that Xni
a:s:! X

as i!1:
Also from Grimmett and Stirzaker (2001) p.310 we get the following Theorem.

Theorem 7. Let a probability space (
;F ;P) and a sequence of random variables
fXng1n=0 with Xn : 
 ! R and a random variable X : 
 ! R. If Pn (�) =
P (jXn �Xj > �) satis�es X

n

Pn (�) <1 for all � > 0

then Xn
a:s:! X:

Theorem 8. (Chebychov inequality). Let a probability space (
;F ;P) and a ran-
dom variable X : 
! R. Then

P (jXj � a) �
E
�
X2
�

a2
if a > 0:

From Huang, Isaacson and Vinograde (1976) we amend slightly the basic theorem
to get that

Theorem 9. Let a probability space (
;F ;P) and a non-homogeneous Markov
chain de�ned by the sequence of transition matricesfQ (s; t)gs;t. Let limt!1 kQ (t)�Qk =
0 geometrically fast with Q a regular stochastic matrix. Then kQ (s; t)�Qk = 0
geometrically fast uniformly in s: That is, for every s there exists constants c > 0
and 0 < b < 1 such that

kQ (s; t)�Qk � cbt�s:
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From Vassiliou and Georgiou (1990) p. 541 we get the following theorem:

Theorem 10. Let an NHMS be given with fP (t)g1t=0, fT (t)g
1
t=0, fpk+1 (t)g

1
t=0,

fp0 (t)g1t=0. Assume that

a) lim
t!1

kP (t)�Pk = 0, b) lim
t!1

kpk+1 (t)� pk+1k = 0, c) kp0 (t)� p0k = 0;

the rate of convergence is geometric in all cases and Q = P+ p|!p0 is regular.
Also, T (t) � T (t� 1) and�

�T (t)

T (t)

�1
t=0

converges to zero geometrically fast.

Then the sequence of relative structures converges to q (1) = p0Q1 geometrically
fast, where Q1 = limt!1Q

t:

3. Laws of Large Numbers for a NHMS

In the present section we will study the Law of Large Numbers for a NHMS. We
will start with the mode of mean square convergence and then we will proceed to
prove almost sure convergence. Let Xt the random variable representing the state
of a membership at time t. De�ne by

(3.1) uj (t) =
n
1 if Xt=j
0 if Xt 6=j

o
;

also let yj (t) be the random variable representing the number of times the mem-
bership is in state j up to time t, i:e:, Xs = j, 1 � s � t; �j (t) be the random
variable representing the fraction of time the membership is in state j up to time
t. We have that

(3.2) yj (t) =
tX

s=1

uj (s) and �j (t) =
yj (t)

t
:

Denote by

u (t) = [u1 (t) ; u2 (t) ; :::; uk (t)] , y (t) = [y1 (t) ; y2 (t) ; :::; yk (t)] ,

and
� (t) = [�1 (t) ; �2 (t) ; :::; �k (t)] :

We will now provide and prove the following theorem of the Law of Large Numbers
for a NHMS

Theorem 11. Let a probability space (
;F ;P) and a NHMS as de�ned in section
2. Assume that a) limt!1 kQ (t)�Qk = 0 and Q a regular stochastic matrix; b)
limt!1 kp0 (t)� p0k = 0; c) limt!1 [�T (t) =T (t)] = 0. Then

� (t)
L2! q (1) :

Proof. It is equivalent to show that

(3.3) E
h
(� (t)� q (1))2

i
= 0:

Since the dimension of the vectors is �nite it is equivalent to show that

(3.4) E
h
(�j (t)� qj (1))2

i
= 0 for every j = 1; 2; :::; k:
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We have that

E
h
(�j (t)� qj (1))2

i
= E

24 tX
n=1

uj (n)

t
� qj (1)

!235 (3.5)

=
1

t2
E

24 tX
n=1

(uj (n)� qj (1))
!235

=
1

t2
E

" 
tX

n=1

(uj (n)� qj (1))
! 

tX
l=1

(uj (l)� qj (1))
!#

:

Hence we have that

(3.6) E
h
(�j (t)� qj (1))2

i
=
1

t2

tX
n=1

tX
l=1

E [uj (n)uj (l)]

(3.7) � 1
t2

tX
n=1

tX
l=1

qj (1)E [uj (n)]

(3.8) � 1
t2

tX
n=1

tX
l=1

qj (1)E [uj (l)]

(3.9) +
1

t2

tX
n=1

tX
l=1

q2j (1) :

Now we have that

lim
t!1

(
� 1
t2

tX
n=1

tX
l=1

qj (1)E [uj (n)]
)

= lim
t!1

(
� 1
t2

tX
n=1

tX
l=1

qj (1)E [E [uj (n) j q (0)]]
)

= lim
t!1

(
�1
t
qj (1)

tX
n=1

E [P (Xn = j j q (0))]
)

= lim
t!1

(
�qj (1)

1

t

tX
n=1

E [qj (0; n)]

)
= (by Theorem 1) = �q2j (1) : (3.10)

Similarly we get that

(3.11) lim
t!1

(
� 1
t2

tX
n=1

tX
l=1

qj (1)E [uj (l)]
)
= �q2j (1) :

It is easy to see that

(3.12)
1

t2

tX
n=1

tX
l=1

q2j (1) = q2j (1) :
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Finally it remains to �nd

lim
t!1

(
1

t2

tX
n=1

tX
l=1

E [uj (n)uj (l)]

)
= lim

t!1

(
1

t2

tX
n=1

tX
l=1

E [E [uj (n)uj (l)] j q (0)]
)

= lim
t!1

(
1

t2

tX
n=1

tX
l=1

E [P (Xn = j;Xl = j j q (0))]
)

= A: (3.13)

De�ne by n ^ l = max fn; lg and n _ l = min fn; lg then we have that
P (Xn^l = j;Xn_l = j j q (0)) = P (Xn^l = j j Xn_l = j;q (0))P (Xn_l = j j q (0))

(3.14) = P (Xn^l = j j qj(0; n _ l) = 1)P (Xn_l = j j q (0)) :
Hence from (3:13) and (3:14) we get that

A = lim
t!1

(
1

t2

tX
n=1

tX
l=1

E [P (Xn = j;Xl = j j q (0))]
)

= lim
t!1

(
1

t2

tX
n=1

tX
l=1

E [P (Xn^l = j j qj(0; n _ l) = 1)]E [P (Xn_l = j j q (0))]
)

= lim
t!1

(
1

t2

tX
n=1

tX
l=1

E
h
q
(j)
j (n _ l; n ^ l)

i
E [qj (0; n _ l)]

)
=

�
since q(j)j (s; t) = 0 for s > t

�
= lim

t!1

(
1

t2

tX
n=1

tX
l=n

E
h
q
(j)
j (n; l)

i
E [qj (0; n)]

)

= lim
t!1

(
1

t

tX
n=1

E [qj (0; n)]
1

t

tX
l=n

E
h
q
(j)
j (n; l)

i)
= (by Theorems 1,2 and 3)

= q2j (1) : (3.15)

Hence from (3:6) ; (3; 7) ; :::; (3:15) we get (3:4) which completes the proof. �

Hence, we have actually proved, that under certain conditions the fraction of
time the membership of an NHMS stays in a state after a large number of steps,
converges in mean square to the limit of the relative population structure in that
state. This result constitutes the Weak Law of Large Numbers for a NHMS. We are
now going to proceed and prove under which conditions the mode of convergence
is almost surely.

Theorem 12. Let a probability space (
;F ;P) and an NHMS as de�ned in section
2. Assume that a) limt!1 kQ (t)�Qk = 0 geometrically fast and Q a regular sto-
chastic matrix; b) limt!1 kp0 (t)� p0k = 0 geometrically fast c) limt!1 [�T (t) =T (t)] =
0 geometrically fast. Then

� (t)
a:s:! q (1) :

Proof. In Theorem 11 we have actually proved that

(3.16) �j (t)
L2! qj (1) as t!1 for ever j 2 S;
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or equivalently

(3.17)
1

t

tX
s=1

uj (s)
L2! qj (1) as t!1 for ever j 2 S;

from Theorem 5 (a) and (3:17) we get that

(3.18)
1

t

tX
s=1

uj (s)
L1! qj (1) as t!1 for ever j 2 S;

from Theorem 5 (b) and (3:18) we get that

(3.19)
1

t

tX
s=1

uj (s)
P! qj (1) as t!1 for ever j 2 S:

By Theorem 6 there exists a non-random increasing sequence of integers t1; t2; :::
such that

(3.20)
1

ti

tiX
s=1

uj (s)
a:s! qj (1) as i!1 for ever j 2 S:

We will now prove that such a choice of subsequence is ti = i2 for i = 1; 2; :::: In
order to do so it is su¢ cient by Theorem 7 to show that

(3.21) For every � > 0
X
i

P

0@������ 1i2
i2X
s=1

uj (s)� qj (1)

������ > �
1A <1:

By Theorem 8 , that is, Chebychov inequality we get that

(3.22) P

0@������ 1i2
i2X
s=1

uj (s)� qj (1)

������ > �
1A �

E

264
0@ 1
i2

i2X
s=1

uj (s)� qj (1)

1A2
375

�2
:

Therefore, we should prove that

(3.23) For every � > 0 B =
1

22
X
i

E

264
0@ 1

i2

i2X
s=1

uj (s)� qj (1)

1A2
375 <1:

From (3:10) ; (3:11) ; (3:12) and (3:15) we get that

B =
1

22
X
i

1

i4
f

i2X
n=1

i2X
l=1

[� qj (1)E [qj (0; n)] + q2j (1)� qj (1)E [qj (0; l)]

+E
h
q
(j)
j (n _ l; n ^ l)

i
E [qj (0; n _ l)] ]g

� 1

22
X
i

1

i4

i2X
n=1

i2X
l=1

f jqj (1)� E [qj (0; n)]j+ jqj (1)� E [qj (0; l)]j

+ jE [qj (0; n _ l)]� qj (1)j+
���E hq(j)j (n _ l; n ^ l)

i
� qj (1)

��� g: (3.24)
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From Theorem 10 we get that there exists constants c > 0 and 0 < b < 1 such that

jqj (1)� E [qj (0; n)]j � cbn ; jqj (1)� E [qj (0; l)]j � cbl and (3.25)
jE [qj (0; n _ l)]� qj (1)j � cbn_l:

From Theorem 9 we get that there exists constants c1 > 0 and 0 < b1 < 1 such
that

(3.26)
���E hq(j)j (n _ l; n ^ l)

i
� qj (1)

��� � c1bn^l�n_l1 :

From (3:24) ; (3:25) and (3:26) we get that

B � 1

22
X
i

1

i4

i2X
n=1

i2X
l=1

�
cbn + cbl + cbn_l + c1b

n^l�n_l
1

�
<1:

Hence, we have proved that

(3.27)
1

i2

i2X
s=1

uj (s)
a:s:! qj (1) :

We have that

(3.28)
i2X
s=1

uj (s) is monotonic non-decreasing,

therefore

(3.29)
i2X
s=1

uj (s) �
tX

s=1

uj (s) �
(i+1)2X
s=1

uj (s) if i2 � t � (i+ 1)2 ;

from which we get

(3.30)
1

(i+ 1)
2

i2X
s=1

uj (s) �
1

t

tX
s=1

uj (s) �
1

i2

(i+1)2X
s=1

uj (s) if i2 � t � (i+ 1)2 :

In (3:30) let t ! 1, use the fact that limi!1

�
i2= (i+ 1)

2
�
! 1, and relation

(3:27) to get

1

t

tX
s=1

uj (s)
a:s:! qj (1) :

�

4. Convergence in the Cesaro sense for Cyclic NHMS

In the present section we study convergence of the relative population structure
in the Cesaro sense for an NHMS which undergoes a cyclic behavior. This is a
founding step in order to study Laws of Large Numbers in Cyc-NHMS in the next
section. The importance of cyclic behavior was �rstly stressed in Bartholomew
(1982) p.71. The motive was Gani�s (1963) study of student enrolment at Michi-
gan state University. A general theorem for the limiting behavior of the expected
population structure for a Cyc-NHMS was in given in Vassiliou (1984). Also, the
asymptotic variability of nonhomogeneous Markov systems under cyclic behavior
was studied in Vassiliou (1986). Georgiou and Tsantas (1996) studied asymptotic
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attainability of nonstationary cyclic Markov systems as a natural extension of Cyc-
NHMS.
We now provide the de�nition of a Cyc-NHMS

De�nition 4. Let a probability space (
;F ;P) and an NHMS as de�ned in section
2. We say that the NHMS undergoes a cyclic behavior with period d if and only if
for all m = 1; 2; ::: and s = 0; 1; :::; d� 1
(4.1) P (md+ s) = P (s) ; p>k+1 (md+ s) = p

>
k+1; p0 (md+ s) = p0:

It is apparent that for a Cyc-NHMS with period d we have that for allm = 1; 2; :::
and s = 0; 1; :::; d� 1
(4.2) Q (md+ s) = Q (s) :

We now de�ne the following stochastic matrices

Q0 = Q (0)Q (1) :::Q (d� 1) ; Q1 = Q (1)Q (2) :::Q (d� 1)Q (0) ; :::;
Qd�1 = Q (d� 1)Q (0) :::Q (d� 2) : (4.3)

It is well known that if Q0 is a regular stochastic matrix then limt!1Q
t
0 = Q

1
0 a

stable matrix or equivalently

(4.4) lim
t!1

Qt
0 �Q1

0

 = 0:
We will now provide the following Proposition:

Proposition 1. Let a probability space (
;F ;P) and a Cyc-NHMS. If Q0 is a
regular stochastic matrix then

(4.5) lim
t!1

Qt
i �Q1

i

 = 0; for i = 1; 2; :::; d� 1:

where

(4.6) Q1
i = Q1

0

0@i�1Y
j=0

Q (j)

1A ; for i = 1; 2; :::; d� 1:

Proof. Since Q1
0 is a stable stochastic matrix we have that

(4.7) Q1
i =

0@d�1Y
j=i

Q (j)

1AQ1
0

0@i�1Y
j=0

Q (j)

1A ;
therefore we have that

Qt
i = QiQi:::Qi| {z }

t-times

= (4.8)

= Q (i)Q (i+ 1) :::Q (d� 1)Q (0)Q (1) :::Q (i� 1)
= Q (i)Q (i+ 1) :::Q (d� 1)Q (0)Q (1) :::Q (i� 1)
= :::::::::::::::::::::::::::::::::::::::::::::::::

= Q (i)Q (i+ 1) :::Q (d� 1)Q (0)Q (1) :::Q (i� 1)

=

0@d�1Y
j=i

Q (j)

1AQt�1
0

0@i�1Y
j=0

Q (j)

1A ;
hence, for every � > 0 there is a t0 such that for t � t0Qt

i �Q1
i

 =
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0@d�1Y
j=i

Q (j)

1AQt�1
0

0@i�1Y
j=0

Q (j)

1A�
0@d�1Y
j=i

Q (j)

1AQ1
0

0@i�1Y
j=0

Q (j)

1A
�

Qt
0 �Q1

0

 < �:
�

From Vassiliou and Georgiou (1990) p.541 we get the following Lemma

Lemma 1. Let a probability space (
;F ;P) and an NHMS as de�ned in section 2.
Suppose that the sequence �

�T (t)

T (t)

�1
t=0

converges to zero geometrically fast with T (t) � T (t� 1). Then fT (t)g1t=0 con-
verges geometrically fast.

Remark 1. The assumption limt!1
�T (t)
T (t) = 0 allows for limt!1T (t) =1:

We will now prove the following theorem

Theorem 13. Let a probability space (
;F ;P) and a Cyc-NHMS. If (a) Q0 =

Q (0)Q (1) :::Q (d� 1) is a regular stochastic matrix; limt!1
�T (t)
T (t) = 0 with limt!1 T (t) =

1 then the sequence E [q (0; t)] splits into d subsequences with limits

qs (1) =
s�1X
r=0

p0 (r) srQ
(1)
r

0@s�1Y
j=r

Q (j)

1A
+
d�1X
r=s

p0 (r) srQ
(1)
r

0@d�1Y
j=r

Q (j)

1A0@s�1Y
j=0

Q (j)

1A
for s = 0; 1; :::; d� 1:

(b)Q0 = Q (0)Q (1) :::Q (d� 1) is a regular stochastic matrix; limt!1
�T (t)
T (t) = 0

geometrically fast then the sequence E [q (0; t)] splits into d subsequences with limits

qs (1) =
T (0)

T
q (0)Q

(1)
s�1 +

s�1X
r=0

p0 (r) srQ
(1)
r

0@s�1Y
j=r

Q (j)

1A
+
d�1X
r=s

p0 (r) srQ
(1)
r

0@d�1Y
j=r

Q (j)

1A0@s�1Y
j=0

Q (j)

1A
for s = 0; 1; :::; d� 1:

Proof. Without loss of generality assume that t = md+ s. Due to the fact that we
have a Cyc-NHMS we get that

Q (0;md+ s� 1) = Qm
0

0@s�1Y
j=0

Q (j)

1A :
Since Q0is a regular stochastic matrix it is easy using (4:6) to see that

(4.9) lim
m!1

Q (0;md+ s� 1)�Q1
s�1
 = 0:
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Denote by

U (md+ s) =
1

T (md+ s)

md+sX
�=1

�T (� � 1)p0 (� � 1)Q (� ;md+ s� 1)

=
m�1X
�=0

d�1X
r=0

�T (�d+ r)

T (md+ s)
p0 (�d+ r)Q (�d+ r;md+ s� 1) (4.10)

+
s�1X
r=0

�T (md+ r)

T (md+ s)
p0 (md+ r)Q (md+ r;md+ s� 1) :(4.11)

From (4:11) we get that

lim
m!1


s�1X
r=0

�T (md+ r)

T (md+ s)
p0 (md+ r)Q (md+ r;md+ s� 1)


� lim

m!1

s�1X
r=0

�T (md+ r)

T (md+ s)
kp0 (md+ r)k kQ (md+ r;md+ s� 1)k

� lim
m!1

s�1X
r=0

�T (md+ r)

T (md+ s)
= 0: (4.12)

Let r � s� 1 then it is not di¢ cult to see that

(4.13) Q (�d+ r;md+ s� 1) = Q(m��)
r

0@s�1Y
j=r

Q (j)

1A :
On the other hand when r > s� 1 then

(4.14) Q (�d+ r;md+ s� 1) = Q(m���1)

0@d�1Y
j=r

Q (j)

1A0@s�1Y
j=0

Q (j)

1A :
The expression in (4:10) could be written as

m�1X
�=0

d�1X
r=0

�T (�d+ r)

T (md+ s)
p0 (�d+ r)Q (�d+ r;md+ s� 1)

=

m�1X
�=0

s�1X
r=0

�T (�d+ r)

T (md+ s)
p0 (�d+ r)Q (�d+ r;md+ s� 1)

+
m�1X
�=0

d�1X
r=s

�T (�d+ r)

T (md+ s)
p0 (�d+ r)Q (�d+ r;md+ s� 1)

= U1 (md+ s) + U2 (md+ s) : (4.15)

We now have that

lim
m!1

m�1X
�=0

s�1X
r=0

�T (�d+ r)

T (md+ s)
p0 (�d+ r)Q (�d+ r;md+ s� 1)

= (from the fact that we have a Cyc-NHMS and (4:13) )

=
s�1X
r=0

p0 (r) lim
m!1

m�1X
�=0

�T (�d+ r)

T (md+ s)
Q(m��)
r

0@s�1Y
j=r

Q (j)

1A : (4.16)
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Now the series

(4.17)
m�1X
�=0

�T (�d+ r)

T (md+ s)
for r = 0; 1; :::; d� 1;

is bounded by the series
tX

�=0

�T (�)

T (t)
� 1;

hence

(4.18) lim
m!1

m�1X
�=0

�T (�d+ r)

T (md+ s)
� 1;

since fT (t)g1t=0 is a monotonically increasing function of t, we have
�T (�d+r)
T (md+s) � 0

and consequently the series in (4:18) is converging and denote by

(4.19) sr = lim
m!1

m�1X
�=0

�T (�d+ r)

T (md+ s)
for r = 0; 1; :::; d� 1:

We now have that
m�1X
�=0

�T (�d+ r)

T (md+ s)
Q(m��)
r

0@s�1Y
j=r

Q (j)

1A� m�1X
�=0

�T (�d+ r)

T (md+ s)
Q(1)
r

0@s�1Y
j=r

Q (j)

1A
�

m�1X
�=0

�T (�d+ r)

T (md+ s)

Q(m��)
r �Q(1)

r

 : (4.20)

From Proposition 1, (4:16) ; (4:18) and (4:20) we get that

(4.21) lim
m!1

U1 (md+ s) =
s�1X
r=0

p0 (r) srQ
(1)
r

0@s�1Y
j=r

Q (j)

1A for r � s� 1:

In a similar way we arrive at

(4.22) lim
m!1

U2 (md+ s) =
d�1X
r=s

p0 (r) srQ
(1)
r

0@d�1Y
j=r

Q (j)

1A0@s�1Y
j=0

Q (j)

1A :
Hence, from (4:10) ; (4:11) and (4:15) we get that

lim
m!1

U (md+ s) =
s�1X
r=0

p0 (r) srQ
(1)
r

0@s�1Y
j=r

Q (j)

1A (4.23)

+

d�1X
r=s

p0 (r) srQ
(1)
r

0@d�1Y
j=r

Q (j)

1A0@s�1Y
j=0

Q (j)

1A :
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Now from (2:6) and (4:23) we get that for limt!1
�T (t)
T (t) = 0 and limt!1 T (t) =1

the sequence E [q (0; t)] splits into d subsequences with limits

qs (1) =
s�1X
r=0

p0 (r) srQ
(1)
r

0@s�1Y
j=r

Q (j)

1A (4.24)

+
d�1X
r=s

p0 (r) srQ
(1)
r

0@d�1Y
j=r

Q (j)

1A0@s�1Y
j=0

Q (j)

1A
for s = 0; 1; :::; d� 1:

If limt!1
�T (t)
T (t) = 0 in a geometrical rate then by Lemma 1 limt!1 T (t) = T and

the sequence E [q (0; t)] splits into d subsequences with limits

qs (1) =
T (0)

T
q (0)Q

(1)
s�1 +

s�1X
r=0

p0 (r) srQ
(1)
r

0@s�1Y
j=r

Q (j)

1A (4.25)

+
d�1X
r=s

p0 (r) srQ
(1)
r

0@d�1Y
j=r

Q (j)

1A0@s�1Y
j=0

Q (j)

1A
for s = 0; 1; :::; d� 1:

�

We will now introduce the concept of Cesaro strongly ergodic for a Cycl-NHMS:

De�nition 5. A Cycl-NHMS is called Cesaro strongly ergodic if there exists a
vector q (1) such that

lim
t!1

1t
tX

n=0

E [q (0; n)]� q (1)
 = 0:

We call the q (1) the Cyclic strong run distribution for the NHMS.

We will now provide a basic theorem on the Cesaro convergence for a Cycl-
NHMS.

Theorem 14. Let a Cycl-NHMS and let that: (a) Q0 = Q (0)Q (1) :::Q (d� 1) is
a regular stochastic matrix; (b) limt!1

�T (t)
T (t) = 0 then the Cycl-NHMS is Cesaro

strongly ergodic in the sense that

lim
t!1

1t
tX

n=0

E [q (0; n)]� 1

d

d�1X
s=0

qs (1)
 = 0;

where

qs (1) =
s�1X
r=0

p0 (r) srQ
(1)
r

0@s�1Y
j=r

Q (j)

1A
+
d�1X
r=s

p0 (r) srQ
(1)
r

0@d�1Y
j=r

Q (j)

1A0@s�1Y
j=0

Q (j)

1A :
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If (a)Q0 = Q (0)Q (1) :::Q (d� 1) is a regular stochastic matrix;
�
b̂
�
limt!1

�T (t)
T (t) =

0 geometrically fast then the Cycl-NHMS is Cesaro strongly ergodic in the sense that

lim
t!1

1t
tX

n=0

E [q (0; n)]� 1

d

d�1X
s=0

qs (1)
 = 0;

where

qs (1) =
T (0)

T
q (0)Q

(1)
s�1 +

s�1X
r=0

p0 (r) srQ
(1)
r

0@s�1Y
j=r

Q (j)

1A
+
d�1X
r=s

p0 (r) srQ
(1)
r

0@d�1Y
j=r

Q (j)

1A0@s�1Y
j=0

Q (j)

1A :
Proof. We start with the �rst part, that is (a) and (b) hold. Since the Cycl-NHMS
is of �nite size it is su¢ cient to show that

(4.26) lim
t!1

1

t

tX
n=0

E [q (0; n)] =
1

d

d�1X
s=0

qs (1) :

Let
�
a
b

�
the integer part of the division then we have that

(4.27)
1

t

tX
n=0

E [q (0; n)] =
1

t

d[t=d]�1X
n=0

E [q (0; n)] +
1

t

tX
n=d[t=d]

E [q (0; n)] :

Now we have that

lim
t!1

1

t

d[t=d]�1X
n=0

E [q (0; n)] = lim
t!1

1

t

d�1X
s=0

[t=d]�1X
n=0

E [q (0; nd+ s)] (4.28)

=
d�1X
s=0

lim
t!1

[t=d]

t

1

[t=d]

[t=d]�1X
n=0

E [q (0; nd+ s)] :

From (a), (b), Theorem 13 and the fact that the series is an arithmetic mean we
get that

lim
t!1

1

[t=d]

[t=d]�1X
n=0

E [q (0; nd+ s)] =
s�1X
r=0

p0 (r) srQ
(1)
r

0@s�1Y
j=r

Q (j)

1A (4.29)

+
d�1X
r=s

p0 (r) srQ
(1)
r

0@d�1Y
j=r

Q (j)

1A0@s�1Y
j=0

Q (j)

1A
Also limt!1 [t=d] =t = 1=d therefore from (4:28) and (4:29) we get that

lim
t!1

1

t

d[t=d]�1X
n=0

E [q (0; n)] =
1

d

d�1X
s=0

s�1X
r=0

p0 (r) srQ
(1)
r

0@s�1Y
j=r

Q (j)

1A (4.30)

+
1

d

d�1X
s=0

d�1X
r=s

p0 (r) srQ
(1)
r

0@d�1Y
j=r

Q (j)

1A0@s�1Y
j=0

Q (j)

1A :
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Now it is easy to see that

(4.31) lim
t!1

1

t

tX
n=d[t=d]

E [q (0; n)] = 0:

The second part of the Theorem is proved in a similar way. �

5. Laws of Large numbers for a Cycl-NHMS

We are now in a position to study the �rst Law of Large Numbers for a Cycl-
NHMS.We will start with the mode of mean square convergence. LetXt; uj (t) ; yj (t)
and �j (t) be de�ned as in section 3. We will now provide and prove the following
theorem of the Law of Large Numbers

Theorem 15. Let a probability space (
;F ;P) and a Cyc-NHMS. If (a) Q0 =

Q (0)Q (1) :::Q (d� 1) is a regular stochastic matrix and limt!1
�T (t)
T (t) = 0 then

� (t)
L2! 1

d

d�1X
s=0

qs (1) ;

where qs (1) is given by (4:24) if in addition T (t)!t!1 1; and where qs (1) is
given by (4:25) if limt!1

�T (t)
T (t) = 0 geometrically fast.

Proof. It is equivalent to show that

(5.1) lim
t!1

E

24 � (t)� 1

d

d�1X
s=0

qs (1)
!235 = 0:

Since the dimensions of the vectors are �nite it is equivalent to show that

(5.2) lim
t!1

E

24 �j (t)� 1

d

d�1X
s=0

qsj (1)
!235 = 0 for j = 1; 2; :::; k:

We have that

E

24 �j (t)� 1

d

d�1X
s=0

qsj (1)
!235 = E

24 tX
n=1

uj (n)

t
� 1

d

d�1X
s=0

qsj (1)
!235 (5.3)

=
1

t2
E

24 tX
n=1

 
uj (n)�

1

d

d�1X
s=0

qsj (1)
!!235

=
1

t2
E

" 
tX

n=1

 
uj (n)�

1

d

d�1X
s=0

qsj (1)
!! 

tX
l=1

 
uj (l)�

1

d

d�1X
s=0

qsj (1)
!!#

:

Therefore we get that

(5.4) E

24 �j (t)� 1

d

d�1X
s=0

qsj (1)
!235 = 1

t2

tX
n=1

tX
l=1

E [uj (n)uj (l)]

(5.5) � 1

t2d

d�1X
s=0

tX
n=1

tX
l=1

qsj (1)E [uj (n)]
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(5.6) � 1

t2d

d�1X
s=0

tX
n=1

tX
l=1

qsj (1)E [uj (l)]

(5.7) +
1

t2

tX
n=1

tX
l=1

 
1

d

d�1X
s=0

qsj (1)
!2
:

We start with relation (5:5)

lim
t!1

(
� 1

t2d

d�1X
s=0

tX
n=1

tX
l=1

qsj (1)E [uj (n)]
)

= lim
t!1

(
�1
d

d�1X
s=0

qsj (1)
1

t

tX
n=1

E [uj (n)]

)

= lim
t!1

(
�1
d

d�1X
s=0

qsj (1)
1

t

tX
n=1

E [E [uj (n) j q (0)]]
)

= lim
t!1

(
�1
d

d�1X
s=0

qsj (1)
1

t

tX
n=1

E [P (Xn = j) j q (0)]
)

= lim
t!1

(
�1
d

d�1X
s=0

qsj (1)
1

t

tX
n=1

E [qj (0; n)]

)

= (by Theorem 14) = �
 
1

d

d�1X
s=0

qsj (1)
!2
: (5.8)

Similarly we get that

(5.9) � 1

t2d

d�1X
s=0

tX
n=1

tX
l=1

qsj (1)E [uj (l)] = �
 
1

d

d�1X
s=0

qsj (1)
!2
:

It is easy to see that

(5.10)
1

t2

tX
n=1

tX
l=1

 
1

d

d�1X
s=0

qsj (1)
!2

=

 
1

d

d�1X
s=0

qsj (1)
!2
:

The term (5:4) could be written as

lim
t!1

(
1

t2

tX
n=1

tX
l=1

E [uj (n)uj (l)]

)
= lim

t!1

(
1

t2

tX
n=1

tX
l=1

E [E [uj (n)uj (l) j q (0)]]
)

= B (5.11)
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Now from (5:11) and (3:14) we get that

B = lim
t!1

(
1

t2

tX
n=1

tX
l=1

E [P [uj (n)uj (l) j q (0)]]
)

= (from (3:14))

= lim
t!1

(
1

t2

tX
n=1

tX
l=1

E [P (Xn^l = j j qj (0; n _ l) = 1)]E [P [Xn_l = j j q (0)]]
)

= lim
t!1

(
1

t2

tX
n=1

tX
l=1

E
h
q
(j)
j (n _ l; n ^ l)

i
E [qj (0; n _ l)]

)
=

�
since q(j)j (s; t) = 0 for s > t

�
= lim

t!1

(
1

t2

tX
n=1

tX
l=n

E
h
q
(j)
j (n; l)

i
E [qj (0; n)]

)

= lim
t!1

(
1

t

tX
n=1

E [qj (0; n)]
1

t

tX
l=n

E
h
q
(j)
j (n; l)

i)
= (by Theorem 14 and 13)

=

 
1

d

d�1X
s=0

qsj (1)
! 

1

d

d�1X
s=0

qsj (1)
!
=

=

 
1

d

d�1X
s=0

qsj (1)
!2
: (5.12)

From (5:3) ; (5:4) ; :::; (5:12) we get (5:1) and that completes the proof. �

We will now establish under what conditions the L2 convergence of the Law of
Large numbers we proved in Theorem 15 holds for almost sure convergence also.
In order to do so we need the following founding Theorem which provides the
conditions under which the Cesaro convergence in Theorem 14 is with geometrical
rate.

Theorem 16. Let a probability space (
;F ;P) and a Cyc-NHMS. If (a) Q0 =

Q (0)Q (1) :::Q (d� 1) is a regular stochastic matrix and limt!1
�T (t)
T (t) = 0 geo-

metrically fast then

lim
t!1

1t
tX

n=0

E [q (0; n)]� 1

d

d�1X
s=0

qs (1)
 = 0;

in a geometrical rate.

Proof. From the fact that Q0 is a regular stochastic matrix we know that

(5.13) There exists c0 > 0 and 0 < b0 < 1 such that
Qt

0 �Q
(1)
0

 � c0bt0:
From the end of the proof of Proposition 1 we get that

(5.14)
Qt

i �Q
(1)
i

 � c0bt�10 ;
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hence the convergence is geometric. Now we haveQ (0;md+ s� 1)�Q(1)
0

0@s�1Y
j=0

Q (j)

1A (5.15)

=

Qm
0

0@s�1Y
j=0

Q (j)

1A�Q(1)
0

0@s�1Y
j=0

Q (j)

1A �
Qm

0 �Q
(1)
0

 � c0bm0 :
From Vassiliou and Georgiou (1990) we know that since limt!1�T (t) =T (t) = 0
geometrically fast, then the sequence fT (t)g1t=0 converges geometrically fast to a
positive scalar T and so there exists c1 > 0 and 0 < b1 < 1 such that

(5.16)

���� 1

T (t)
� 1

T

���� < c1bt1 .
We start with the �rst part of the right hand side of equation (2:6) for the case of
Cycl-NHMS: T (0)

T (md+ s)
q (0)Q (0;md+ s� 1)� T (0)

T
q (0)Q

(1)
s�1

 (5.17)

� T (0) kq (0)k
 1

T (md+ s)
Q (0;md+ s� 1)� 1

T
Q
(1)
s�1


�

���� 1

T (md+ s)
� 1

T

���� kQ (0;md+ s� 1)k+ ���� 1T
���� Q (0;md+ s� 1)�Q(1)

s�1


= (from (5:15) and (5:16)) � c2bm2 with c2 > 0 and 0 < b2 < 1:

Now we have that

k 1

T (ms+ s)

m�1X
�=0

s�1X
r=0

�T (�d+ r)p0 (�d+ r)Q (�d+ r;md+ s� 1)

(5.18) � 1
T

m�1X
�=0

s�1X
r=0

�T (�d+ r)p0 (r)Q
(1)
r

0@s�1Y
j=r

Q (j)

1A k
� k 1

T (ms+ s)

m�1X
�=0

s�1X
r=0

�T (�d+ r)p0 (�d+ r)Q (�d+ r;md+ s� 1)

(5.19) � 1
T

m�1X
�=0

s�1X
r=0

�T (�d+ r)p0 (�d+ r)Q (�d+ r;md+ s� 1) k

+k 1
T

m�1X
�=0

s�1X
r=0

�T (�d+ r)p0 (�d+ r)Q (�d+ r;md+ s� 1)

(5.20) � 1
T

m�1X
�=0

s�1X
r=0

�T (�d+ r)p0 (r)Q
(1)
r

0@s�1Y
j=r

Q (j)

1A k=I1 + I2
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From relation (5:19) we get that

I1 �
���� 1

T (md+ s)
� 1

T

����m�1X
�=0

s�1X
r=0

k �T (�d+ r)p0 (�d+ r)Q (�d+ r;md+ s� 1) k

�
���� 1

T (md+ s)
� 1

T

����m�1X
�=0

s�1X
r=0

�T (�d+ r) k p0 (�d+ r) kk Q (�d+ r;md+ s� 1) k

(5.21) �
���� 1

T (md+ s)
� 1

T

���� [T � T (0)] � c2bmd+s2 :

Also

I2 � 1

T

m�1X
�=0

s�1X
r=0

�T (�d+ r) kp0 (r)k

Q (�d+ r;md+ s� 1)�Q(1)
r

0@s�1Y
j=r

Q (j)

1A
� 1

T

m�1X
�=0

s�1X
r=0

�T (�d+ r)
Q(m��)

r �Q(1)
r

 : (5.22)

Assume that for m � t0 :
Q(m��)

r �Q(1)
r

 � c3bm�t03 then

(5.23)

I2 �
1

T

m�t0X
�=0

s�1X
r=0

�T (�d+ r)
Q(m��)

r �Q(1)
r

+ 1
T

m�1X
�=m�t0+1

s�1X
r=0

�T (�d+ r)
Q(m��)

r �Q(1)
r

 ;
from which we get that I2 goes geometrically fast to zero. Therefore relation (5:18)
converges geometrically fast to zero. In a similar way one could prove, that the
convergence in (4:22) is geometrically fast. Hence, we get that

(5.24) E [0;q (md+ s)]!m!1 qs (1) geometrically fast.

Now following the steps of Theorem 14 it is easy to show that

lim
t!1

1t
tX

n=0

E [q (0; n)]� 1

d

d�1X
s=0

qs (1)
 = 0;

in a geometrical rate. �

Having proved this basic result, we are now in a position following the steps of
the proof of Theorem 12 where the role of Theorems 9 and 10 is now played by
Theorem16 to arrive at the following theorem.

Theorem 17. Let a probability space (
;F ;P) and a Cyc-NHMS. If (a) Q0 =

Q (0)Q (1) :::Q (d� 1) is a regular stochastic matrix and limt!1
�T (t)
T (t) = 0 geo-

metrically fast then

� (t)
a:s! 1

d

d�1X
s=0

qs (1) as t!1:
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6. Applications

6.1. Geriatric and Stroke Patients. In the present section we present two types
of applications. The �rst one in the present subsection is a general Coxian phase
type model, special forms of which has been used as stochastic models for geriatric
patients and stroke patients by McClean and her co-authors (McClean et.al. (1998a,
1998b, 2007, 2009), Taylor et.al. (2000),Marshall and McClean (2002,2003,2004),
Lalit et.al. (2010), McClean et.al. (2014, 2014b ). In these applications in the basic
model, we distinguish three states which are called hospital pathways. In the case of
geriatric patients the states are the "Acute Care", the "Rehabilative" and the "Long
Stay". From each state we have movements outside the hospital due to discharge
or death. Also, geriatric patiens may be thought of as progressing through stages
of acute care, rehabilitation and long-stay care, where most patients are eventually
rehabilitated and discharged. Geriatric medical services are an important asset in
the care of the elderly, while at the same time they can be easy victims of the
political pressure on savings in health care expenditure. Note that the number of
pathways could be increased and the criterion is what best �ts the data. However,
there is no reason to consider a larger number of states in here due to the restriction
of space. It is of importance in the best management of hospital resources and
certainly to the bene�t of geriatric patients to know the tendencies of the system
in the long run. That is, what proportion of the total population is going to be in
each state. In the case of stroke patients there are more types of transitions due to
the nature of stroke, which allows for relapses and hence more transitions among
the hospital pathways. The model we will illustrate in what follows could be easily
adjusted for both cases.
Consider a hospital which starts with T (0) = 400 patients and in a very short

time reaches its full capacity of 435 patients. That is T (1) = 420, T (2) = 430,
T (3) = 435. Assume three hospital pathways and let that the initial relative
population structure is

q (0) =
�
0:5 0:25 0:25

�
:

The vast majority of new patients enter the system in hospital pathway one, either
by taking an empty place or as a virtual replacement of a discharged patient, that
is q11 (t) = p11 (t)+p14 (t) p01 (t) : In here state 4 expresses the external enviroment.
The entrance probabilities are

p0 (0) =
�
0:6 0:3 0:1

�
; p0 (1) =

�
0:5 0:3 0:2

�
;

p0 (2) =
�
0:75 0:25 0:1

�
and p0 = p0 (t) =

�
0:7 0:2 0:1

�
;

for t = 3; 4; :::. The form of the transition probability matrices according to the
stochastic model for movements in the hospital is the following

P (t) =

0@p11 (t) p12 (t) p13 (t)
0 p22 (t) p23 (t)
0 0 p33 (t)

1A ;
also the inherent non-homogeneous Markov chain will evolve with the sequence of
stochastic matrices Q (t) = fqij (t)gi;j2S where qij (t) = pij (t) + pi4 (t) p0j (t) : We
get the following typical set of Q (t)�s which are easily estimated from the data by
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its maximum likelihood estimates:

Q (0) =

0@0:7 0:2 0:1
0:2 0:6 0:2
0:6 0:1 0:3

1A ; Q (1) =

0@0:65 0:25 0:1
0:1 0:7 0:2
0:5 0:1 0:4

1A ;

Q (2) =

0@0:5 0:3 0:2
0:2 0:5 0:3
0:4 0:2 0:4

1A ; Q (t) = Q =

0@ 0:6 0:3 0:1
0:14 0:6 0:26
0:49 0:14 0:37

1A ;
for t = 2; 3; :::. The row of the stable matrix limt!1Q

t = Q (1) =
�
q (1) q (1) q (1)

�>
is

q (1) =
�
0:41 0:37 0:22

�
;

where the convergence is geometrically fast, that is for t = 5 it already converges.
Now simulating Theorem 11 we �nd that

===== ================

Time E
h
(�1 (t)� q1 (1))2

i
===== ================
t = 5 0:01380
t = 6 0:0007
===== ================

From the above table it is apparent that

�1 (t)
L2! 0:41

Analogous results are found also for the remaining of the hodpital pathways. That
is

� (t)
L2!
�
0:41 0:37 0:22

�
:

Now, since as we have seen �T (t) =T (t)! 0 geometrically fast, that is, for t = 3,
and since as we have seen limt!1Q

t conveges to Q (1) geometrically fast, that is,
for t = 5, then according to Theorem 12 we have

� (t)
a:s!
�
0:41 0:37 0:22

�
:

One of the useful for hospital planning physical meanings of the above result is,
that a membesrship of a patient remains in hospital pathway 1, in the long run,
almost surely the 0.41 of the time the hospital is in operation. Another useful
physical meaning for hospital planning, is that the relative population structure
of the memberships in the various hospital pathways tends asymptotically almost
surely to

�
0:41 0:37 0:22

�
:

6.2. A University System. In this subsection we illustrate an application of a
cyclic non-homogeneous Markov system in a University system. The importance
of cyclic behavior was �rstly stressed in Bartholomew (1982), p.71, where he also
provided an interesting application of this concept which arose in Gani�s (1963)
study of student enrolment at Michigan State University. We consider the university
system in Vassiliou and Tsantas (1984) with 3 years of study where the students
that fail their year repeat it in the following year. The estimates of the transition
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probability matrices taken from Tsantas and Vassiliou (1984) assuming a cyclic
repetition are

P (3t) =

0@0:17188 0:81875 0
0 0:29873 0:68644
0 0 0:32303

1A ;
P (3t+ 1) =

0@0:19379 0:7726 0
0 0:33503 0:65482
0 0 0:53563

1A ;
P (3t+ 2) =

0@0:16631 0:81641 0
0 0:34318 0:64557
0 0 0:50860

1A :
Also

p4 (3t) =
�
0:00937 0:01483 0:67697

�
;

p4 (3t+ 1) =
�
0:03361 0:01015 0:46437

�
;

and
p4 (3t+ 2) =

�
0:01728 0:01125 0:49140

�
;

and p0 (t) =
�
1 0 0

�
for every t = 0; 1; 2; :::. The total population of students

is T (0) = 8970, T (1) = 9000, T (2) = 9050 and T (t) = 9050 for t = 3; 4; :::. Then
we have

Q (3t) =

0@0:181 0:819 0
0:015 0:299 0:686
0:677 0 0:323

1A ; Q (3t+ 1) =
0@0:227 0:773 0
0:010 0:335 0:655
0:464 0 0:536

1A ,

Q (3t+ 2) =

0@0:184 0:816 0
0:011 0:343 0:646
0:491 0 0:509

1A ; for t = 0; 1; 2; :::.
Then

Q0 =

0@0:277 0:182 0:541
0:388 0:303 0:359
0:147 0:427 0:426

1A , Q1 =

0@0:354 0:176 0:470
0:433 0:305 0:262
0:253 0:399 0:348

1A ,

Q2 =

0@0:274 0:167 0:559
0:308 0:381 0:311
0:179 0:470 0:351

1A :
Applying equation (2:3) recurssivelly using the above data we get

q (0) =
�
0:32 0:30 0:38

�
; E [q (0; 3)] =

�
0:242 0:315 0:443

�
;

E [q (0; 6)] =
�
0:238 0:329 0:433

�
; E [q (0; 9)] =

�
0:241 0:328 0:431

�
;

E [q (0; 12)] =
�
0:241 0:328 0:431

�
:

We observe that E [q (0; 3t)] converges. Since, �T (t) = 0 for t = 3; 4; ::: and Q0 is a
regular stochastic matrix then the conditions of Theorem 13b are satis�ed and hence
q0 (1) as given by Theorem 13b should coincide with E [q (0; 3t)] : This was found
to be true. The same was found with E [q (0; 3t+ 1)]!t!1

�
0:340 0:295 0:365

�
,

E [q (0; 3t+ 1)]!t!1
�
0:340 0:295 0:365

�
, which were found equal with q1 (1)

and q2 (1) given by Theorem 13b.
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The Cezaro sum
1

t

t�1X
n=0

E [0; n]

was found to converge as early as t = 12 to
�
0:278 0:331 0:391

�
: The two condi-

tions of Theorem 14 are valid in this case since for the model usedQ0 is regular and
�T (t) = 0 for t = 3; 4; :::. According to Theorem 14 the strong run distribution
was found to be equal with the limit of the Cezaro sum.
The conditions of Theorem 15 are satis�ed for the present problem again since

Q0 is regular and �T (t) = 0 for t = 3; 4; :::. In order to �nd � (t) and verify that

� (t)
L2! 1

d

d�1X
s=0

qs (1) ;

it is equivalent according to relation (5:1) in the proof of Theorem 15 to verify that

lim
t!1

E

24 � (t)� 1

d

d�1X
s=0

qs (1)
!235 = 0:

For the present University System it was found that

lim
t!1

E
h�
� (t)�

�
0:278 0:331 0:391

��2i
= 0:

Hence,

� (t)
L2!
�
0:278 0:331 0:391

�
as t!1:

Now, since Q0 is regular and �T (t) = 0 for t = 3; 4; :::, that is, the convergence is
in geometric rate, the conditions of Theorem 17 are satis�ed and thus

� (t)
a:s:!
�
0:278 0:331 0:391

�
as t!1:

One of the useful for University planning physical meanings of the above result
is, that a membesrship of a student remains in the �rst year of study, in the long
run, almost surely the 0.41 of the time the University is working. Another useful
physical meaning for University planning, is that the relative population structure
of the memberships in the various years of study tends asymptotically almost surely
to
�
0:41 0:37 0:22

�
:
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S-weighted instrumental variables

Jan Ámos Vı́̌sek1
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Abstract. The paper deals with two problems - with the situation when the orthog-
onality condition is broken and with the problem when an atypical data sets contains
a significant amount of information in a group of good leverage points but includes
also a “troublesome” group of outliers.

Several robust methods were recently modified in order to overcome problem with
the broken orthogonality condition, employing typically the idea of instrumental vari-
ables. In an analogous way modified S-weighted estimator is able to cope with broken
orthogonality condition, too. We prove its consistency and we offer a small pattern
of results of simulations.

It is believed that the bad leverage points are a more challenging problem in identifi-
cation of underlying regression model than outliers. We show that sometimes outliers
can represent also an intricate task.
Keywords: Regression model, broken orthogonality condition, contamination of
data .

1 Summarizing the previous relevant results

The median is the only classical statistics which is able to cope with high con-
tamination, even 50%, and to give reasonable information about the location
parameter of data set. When Peter Bickel [1] opened the problem of possibility
to construct an analogy of median in the framework of regression model, i. e.
an estimator of regression coefficients with 50% breakdown point, nobody had
an idea how long and painful way to the solution we would have to go.

It seemed several times that we had achieved solution but finally always a bitter
disappointment arrived. For instance, as the median is in fact the 50% quantile,
we hoped that Koenker and Bassett’s regression quantiles [15] are the solution.
However, result by Richard Maronna and Victor Yohai [16], establishing the
maximal value of breakdown point of M -estimators, ruined our dreams.

By proposing the repeated median Andrew Siegel [21] has broken this long-
years-lasting nightmare. But only proposals of the least median of squares
(LMS) and the least trimmed squares (LTS) by Peter Rousseeuw [18], [19] and
[10] brought feasible methods. In fact he “rediscovered” the power of such
statistical notion as the order statistics of (squared) residuals, see [9]. Un-
fortunately, at those days we have not at hand a proper tool for studying
the asymptotic properties of these estimators (the proof of consistency of LTS
arrived after the twenty years from its proposal, see [27]) and this technical
problem was (except of others) an impuls for proposing S-estimator [20] with
an immediately available proof of consistency and the simultaneous preserva-
tion of high breakdown point.
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The algorithms for all these estimators were also successfully found. For LTS
it was based on repeated application of algorithm for the ordinary least squares
and it was so simple that it was not never published (as such, see [22]) until
the moment when an improvement for large data set became inevitable ([6],
[12], [13]). The algorithm for the S-estimator was a bit more complicated but
feasible, see [4].

Nevertheless, results by Thomas Hettmansperger and Simon Sheater [14], al-
though they were wrong (due to the bad algorithm they used for LMS - for
efficient algorithm see [2]), they warned us that the situation need not be so
simple as we had assumed. It led to a return to the order statistics of squared
residuals and to the proposal of the least weighted squares (LWS) in [24]. It
profited from extremely simple algorithm, basically the same as the algorithm
for LTS (see [29]), however the study of its properties was tiresome and clumsy,
see [25]. A significant simplification came with generalization of Kolmogorov-
Smirnov result for the regression scheme, see [31], together with the fact that
the rank of given order statistic is given by the value of empirical distribution
function of these order statistics at given order statistic, see [32]. It opened
a way for defining an estimator covering all above mentioned estimators as
special cases - S-weighted estimator - and to describe its asymptotics, see [33]
and [34].

Due to the character of data in the social sciences we can expect that the
orthogonality condition is frequently broken. That was the reason why there
are several attempts to modify the robust methods to be able to cope with
the broken orthogonality condition, similarly as the ordinary least squares were
“transformed” into the instrumental variables, see e. g. [5], [7], [8], [11], [23],
[26], [28], [29], [35] or [36]. The present paper offers a similar modification of
the S-weighted estimator which is able to cope with the broken orthogonality
condition - S-weighted instrumental variables.

At the end of papers we answer to the problem whether the leverage points
represent always more complicated problem than outliers. And the answer is
a bit surprising.

2 The notations, framework, conditions and main tool
Let N denote the set of all positive integers, R the real line and Rp the p-
dimensional Euclidean space. All random variables are assumed to be defined
on a basic probability space (Ω,A, P ). (We will not write - as the mathematical
rigor would ask it - the random variable as X(ω) (say) but sometimes by
including (ω) we emphasize the exact state of things.) For a sequence of (p+1)-
dimensional random variables (r. v.’s) {(X ′i, ei)′}

∞
i=1, for any n ∈ N and a fixed

β0 ∈ Rp the linear regression model given as

Yi = X ′iβ
0 + ei =

p∑
j=1

Xijβ
0
j + ei, i = 1, 2, ..., n (1)

will be considered. (It is clear that the results of paper can be applied for the
panel data - the model (1) will be used to keep the explanation as simple as
possible.) We will need some conditions on the explanatory variables and the
disturbances.
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Conditions C1. The sequence
{

(X ′i, ei)
′}∞
i=1

is sequence of independent p +
1-dimensional random variables (r.v.’s) distributed according to distribution
functions (d. f.) FX,ei(x, r) = FX,e(x, rσ

−1
i ) where FX,e(x, r) is a parent d. f.

and σ2
i = var (ei). Further, IEei = 0 and

0 < lim inf
i→∞

σi ≤ lim sup
i→∞

σi <∞.

Denote Fe|X(r|X1 = x) the conditional d.f. corresponding to the parent d.f.
FX,e(x, r). Then, for all x ∈ Rp Fe|X(r|X1 = x) is absolutely continuous with
density fe|X(r|X1 = x) bounded by Ue (which does not depend on x).

In what follows FX(x) and Fe(r) will denote the corresponding marginal d. f.’s
of the parent d. f. FX,e(x, r). Then, assuming that e is a “parent” r. v. dis-
tributed according to parent d. f. Fe(r), we have, e. g., Fei(r) = P (ei < r) =
P (σi · e < r) = P (e < σ−1i · r) = Fe(σ

−1
i · r), etc. . Conditions C1 imply that

the marginal d. f. FX(x) does not depend on i, i. e. the sequence {Xi}∞i=1 is
sequence of independent and identically distributed (i.i.d.) r.v.’s.

Let for any β ∈ Rp ai = |Yi −X ′iβ| be absolute values of the i-th residual and
Fi,β(v) its d. f., i. e. Fi,β(v) = P (ai(β) < v). Then put

F
(n)

β (v) =
1

n

n∑
i=1

Fi,β(v). (2)

Further, let F
(n)
β (v) be the empirical distribution function (e. d. f.) of the ab-

solute values of residuals, i. e.

F
(n)
β (v) =

1

n

n∑
i=1

I {ai(β) < v} . (3)

It seems strange to consider the e. d. f. of ai’s, as they are heteroscedastic, but

the Lemma 1 shows that it makes a sense. Finally, let a(1) ≤ a(2) ≤ ... ≤ a(n)

denote the order statistics of absolute values of residuals and F̃
(n)
β (v) be a con-

tinuous and strictly increasing modification of F
(n)
β (v) defined as follows: Let

F̃
(n)
β (v) coincide with F

(n)
β (v) at ai(β), i = 1, 2, ..., n and let it be continuous

and strictly monotone between any pair of a(i)(β) and a(i+1)(β). Then it holds:

Lemma 1. Let Condition C1 hold. Then for any ε > 0 there is a constant Kε

and nε ∈ N so that for all n > nε

P

({
ω ∈ Ω : sup

r∈R+

sup
β∈IRp

√
n
∣∣∣F̃ (n)
β (v)− F (n)

β (v)
∣∣∣ < Kε

})
> 1− ε. (4)

The proof which employs Skorohod’s embedding into Wiener process, see [3],
is a slight generalization of Lemma 1 of [31] and it is based on the fact that

Rp ×R+ is separable space and that F̃
(n)
β (v) is monotone.

The Conditions C2 specifies the character of objective and weight functions.

Conditions C2
• w : [0, 1] → [0, 1] is a continuous, non-increasing weight function with
w(0) = 1. Moreover, w is Lipschitz in absolute value, i. e. there is L
such that for any pair u1, u2 ∈ [0, 1] we have |w(u1)− w(u2)| ≤ L×
× |u1 − u2| .
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• ρ : (0,∞) → (0,∞), ρ(0) = 0, non-decreasing on (0,∞) and diffe-
rentiable (denote the derivative of ρ by ψ).

• ψ(v)/v is non-increasing for v ≥ 0 with limv→0+
ψ(v)
v = 1.

3 S-weighted estimator and its consistency

Definition 1. Let w : [0, 1] → [0, 1] and ρ : [0,∞] → [0,∞] be a weight
function and an objective function, respectively. Then

β̂(SW,n,w,ρ) = arg min
β∈Rp

{
σ(β) ∈ R+ :

1

n

n∑
i=1

w

(
i− 1

n

)
ρ

(
a(i)(β)

σ

)
= b

}
(5)

where b = IEFe

{
w(Fβ0(|e|))ρ(e)

}
, is called the S-weighted estimator, see [33].

Remark 1. Notice please that we cannot write in (5) simply ρ
(
ai(β)
σ

)
because

then we would assign the weight w
(
i−1
n

)
to other residual. (Let’s recall that

varFe
(e) = 1, so that the scale of e need not appear in the definition of b.)

Employing a bit modified argument of Peter Rousseeuw and Victor Yohai [20],

we can show that β̂(SW,n,w,ρ) has to be solution of
n∑
i=1

w

(
i− 1

n

)
Xjiψ

( |Yji −X ′jiβ|
σ̂n

)
· sign(Yji −X ′jiβ) = 0

where ji is the index of observation corresponding to a(i) and σ̂n fulfills the
constraint

1

n

n∑
i=1

w

(
i− 1

n

)
ρ

(
a(i)(β)

σ̂n

)
= b. (6)

Then having followed Hájek and Šidák [9] and putting

π(β, j) = i ∈ {1, 2, ..., n} ⇔ aj(β) = a(i)(β), (7)

we arrive at
n∑
i=1

w

(
π(β, i)− 1

n

)
Xiψ

(
|Yi −X ′iβ|

σ̂n

)
· sign(Yi −X ′iβ) = 0 (8)

and utilizing the equality n−1 (π(β, i)− 1) = F
(n)
β (ai(β)) (see [32]), we finally

obtain
n∑
i=1

w
(
F

(n)
β (ai(β))

)
Xiψ

(
|Yi −X ′iβ|

σ̂n

)
· sign(Yi −X ′iβ) = 0. (9)

Then the fact that ψ(0) = 0 allows to write the normal equations (8) as∑
{i : ri(β)6=0}

w
(
F

(n)
β (ai(β))

)[
ψ

(
ai(β)

σ̂n

)
· σ̂n
ai(β)

]
Xi (Yi −X ′iβ)

=
n∑
i=1

w̃
(
F̃

(n)
β (ai(β)), σ̂n

)
Xi (Yi −X ′iβ) = 0. (10)

Notice please, that if w and ρ fulfill Conditions C2 then w̃ is well defined and
it also fulfill C2 for any fixed σ > 0. Notice also that (10) coincides with the
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normal equations of the least weighted squares only if ρ(v) = v2 - compare
with [32]. Otherwise, firstly, w̃(v) is implicitly modified by ψ(v) and secondly,
w̃(v) depends also on σ̂n. As the S-weighted estimator controls the influence
of residuals by the weight and objective functions, the Euclidean metrics is
substituted by a riemannian one and the consequence is that - contrary to the
ordinary least squares - we need an identification condition.

Conditions C3 There is the only solution of the equation

β′IE

[
n∑
i=1

w

(
F

(n)

β (|ei|)
)
·Xi · ψ(ei −X ′iβ)

]
= 0, (11)

(for w̃ see (9)) at β = β0.

Remark 2. Notice that (11) is for the classical ordinary least squares fulfilled
because w̃ ≡ 1. Similarly, it can be shown that when w is zero-one function
and ρ is quadratic function (as for the least trimmed squares) that (11) also
holds but in that case it is technically rather complicated, see [27].

Theorem 1. Let Conditions C1, C2 and C3 be fulfilled and σ̂n be a weakly
consistent estimator of varFe

(e) fulfilling the constraint (6). Then any sequence{
β̂(SW,w,ρ,σ̂n,n)

}∞
n=1

of the solutions of sequence of normal equations (9) for

n = 1, 2, ..., is weakly consistent.

The proof is a slight generalization of the proof of Theorem 1 from [33].

4 S-weighted instrumental variables and their consistency

Due to Euclidean geometry the solution of the extremal problem which defines
the ordinary least squares, namely

β̂(OLS,n) = arg min
β∈Rp

n∑
i=1

(Yi −X ′iβ)
2
, (12)

is given as the solution of normal equations
n∑
i=1

Xi (Yi −X ′iβ) = 0. (13)

Having performed a straightforward algebra and the substitution from (1), we
arrive at

β̂(OLS,n) = β0 +

(
1

n

n∑
i=1

[Xi ·X ′i]

)−1
· 1

n

n∑
i=1

[Xiei] (14)

which indicates that if the orthogonality condition is broken, i. e. IE [X1 · e] 6=
0 (for e see Conditions C1), β̂(OLS,n) is biased and inconsistent. Then we
look for some instrumental variables {Zi}∞i=1, usually i. i. d. r. v.’s, such that
IEZ1 = 0, IE [Z1 · Z ′1] positive definite matrix, IE [Z1 · e] = 0 and define the
estimator by means of the instrumental variables (IV) as the solution of the
normal equations n∑

i=1

Zi (Yi −X ′iβ) = 0. (15)

(An alternative way how to cope with the broken orthogonality condition is to
utilize the orthogonal regression - sometimes called the total least squares, see
e. g. [17].) There are several alternative way how to define the instrumental
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variables - see [35] and references given there - but all of them are practically
equivalent to (15) - for the discussion which summarizes also geometric back-
ground of the instrumental variables, see again [35]. What can be of interest
- to prove the unbiasedness and consistency of classical instrumental variables
we don’t need (nearly) any additional assumptions except of those which are
given several lines above (15).

Definition 2. Let {Zi}∞i=1 be a sequence of i. i. d. r. v.’s, such that IEZ1 = 0,
IE [Z1 · Z ′1] positive definite matrix, IE [Z1 · e] = 0. The solution of the normal
equation

INE
(w̃,ρ,σ̂n,n)
Y,X,Z (β) =

n∑
i=1

w̃
(
F̃

(n)
β (ai(β)), σ̂n

)
Zi (Yi −X ′iβ) = 0 (16)

will be called the estimator by means of the S-weighted instrumental variables
(briefly, the S-weighted instrumental variables) and denoted by β̂(SWIV,w,ρ,σ̂n,n).

To be able to prove the consistency of β̂(SWIV,w,ρ,σ̂n,n), we will need some ad-
ditional assumption and an identification condition, similar to Conditions C3.
We will start with an enlargement of notations.

Let for any β ∈ Rp and u ∈ R Fβ′ZX′β(u) = P (β′Z1X
′
1β < u) and

F
(n)
β′ZX′β(u) = 1

n

∑n
i=1 I {β′Zi(ω)X ′i(ω)β < u} be the d. f. of β′Z1X

′
1β and

e. d. f. of {β′Zi(ω)X ′i(ω)β}ni=1, respectively. Further, for any λ ∈ R+ and any
a ∈ R put

γλ,a = sup
‖β‖=λ

Fβ′ZX′β(a) and τλ = − inf
‖β‖≤λ

β′IE [Z1X
′
1 · I{β′Z1X

′
1β < 0}]β.

(17)
Conditions C4 The instrumental variables {Zi}∞i=1 are independent and iden-
tically distributed with distribution function FZ(z). Further, the joint distri-
bution function FX,Z(x, z) is absolutely continuous with a density fX,Z(x, z)
bounded by UZX <∞. Further for any n ∈ N we have IE

∑n
i=1

{
w(Fβ0(|ei|))×

×ψ(ei) · Zi} = 0 and the matrices IEZ1Z
′
1 as well as IE

∑n
i=1

{
w(Fβ0(|ei|))×

×ψ(ei) · ZiX ′i} are positive definite. Moreover, there is q > 1 so that IE {‖Z1‖×
×‖X1‖}q <∞. Finally, there is a > 0, b ∈ (0, 1) and λ > 0 so that

a · (b− γλ,a) · w̃(b) > τλ (18)

for γλ,a and τλ given by (17).

Lemma 2. Let Conditions C1 , C2, C4 be fulfilled and σ̂n be a weakly consistent
estimator of varFe

(e) fulfilling the constraint (6). Then for any ε > 0 there is
ζ > 0 and δ > 0 such that

P

({
ω ∈ Ω : inf

‖β‖≥ζ
− 1

n
β′INE

(w̃,ρ,σ̂n,n)
Y,X,Z (β) > δ

})
> 1− ε.

In other words, any sequence
{
β̂(SWIV,w̃,ρ,σ̂n,n)

}∞
n=1

of the solutions of the se-

quence of normal equations (16) INE
(w̃,ρ,σ̂n,n)
Y,X,Z (β) = 0 is bounded in probability.

The proof is formally nearly the same as the proof of Lemma 1 in [30]. The
allowance for the heteroscedasticity of disturbances requires some formally
straightforward modifications. The fact that the modifications are relatively
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simple and straightforward is due to the fact that the complicated steps were
made in [32] but the background of proof is different from the proof in [30]. The
approximation of empirical d. f. is not by the underlying d. f. as the limit of the
empirical d. f.’s but we employ the knowledge about convergence of the differ-
ence of the empirical d. f.’s and the arithmetic mean of the d. f.’s of individual
disturbances, see Lemma 1. �
Lemma 3. Let Conditions C1, C2 and C4 be fulfilled and σ̂n be a weakly
consistent estimator of varFe

(e) fulfilling the constraint (6). Then for any ε >
0, δ ∈ (0, 1) and ζ > 0 there is nε,δ,ζ ∈ N so that for any n > nε,δ,ζ we have

P

({
ω ∈ Ω : sup

‖β‖≤ζ

∣∣∣∣∣ 1

n

n∑
i=1

{
w̃(F̃

(n)
β (ai(β)), σ̂n)β′Zi (ei −X ′iβ)

−β′IE
[
w̃(F

(n)

β (ai(β)), σ̂n)Zi (ei −X ′iβ)

]} ∣∣∣∣∣ < δ

})
> 1−ε

(for ai(β) see a line above (2) and for F
(n)

β (v) see (2) ).

The proof has formally similar structure as the proof of Lemma 2 in [30]. It is
a bit more complicated because again instead of employing a limiting distribu-
tion we need to estimate differences of empirical d. f. of ai(β)’s from a sequence

of the arithmetic means of underlying d. f.’s

{
F

(n)

β (v)

}∞
n=1

, see (2). �

Lemma 4. Let Conditions C1, C2 and C3 hold and σ̂n be a weakly consistent
estimator of varFe

(e) fulfilling the constraint (6). Then for any positive ζ

β′IE [w̃ (Fβ(ai(β)), σ̂n)Zi (ei −X ′iβ)] (19)

(for w̃ see (10) ) is uniformly in i ∈ N , uniformly continuous in β on B =
{β ∈ Rp : ‖β‖ ≤ ζ}, i. e. for any ε > 0 there is δ > 0 so that for any pair of
vectors β(1), β(2) ∈ Rp,

∥∥β(1) − β(2)
∥∥ < δ we have

sup
i∈N

∣∣∣∣[β(1)
]′
IE
[
w̃
(
Fβ(1)(ai(β

(1))), σ̂n

)
Zi

(
ei −X ′iβ(1)

)]
−
[
β(2)

]′
IE
[
w̃
(
Fβ(2)(ai(β

(2))), σ̂n

)
Zi

(
ei −X ′iβ(2)

)]∣∣∣∣ < ε.

Proof is a chain of approximations utilizing simple estimates of upper bounds
of differences of the values of (19) for close pair of points in Rp. �

Similarly as for the S-weighted estimator we need for the S-weighted instrume-
nal variables the identification condition.
Conditions C4. For any n ∈ N the equation

β′
n∑
i=1

IE

[
w

(
F

(n)

β (|ei|)
)
· Zi · ψ(ei −X ′iβ)

]
= 0 (20)

in the variable β ∈ Rp has a unique solution at β = β0.

Theorem 2. Let Conditions C1, C2, C3 and C4 be fulfilled and σ̂n be a weakly
consistent estimator of varFe(e) fulfilling the constraint (6). Then any sequence{
β̂(SWIV,w,ρ,σ̂n,n)

}∞
n=1

of the solutions of normal equations (16) INE
(w̃,ρ,σ̂n,n)
Y,X,Z (β)

= 0 is weakly consistent.

1051



Proof: Without loss of generality assume that β0 = 0 (as σ̂(SWIV,w,ρ,σ̂n,n) is
scale- and regression equivariant). To prove the consistency, we have to show
that for any ε > 0 and δ > 0 there is nε,δ ∈ N such that for all n > nε,δ

P
({
ω ∈ Ω :

∥∥∥β̂(SWIV,w̃,ρ,σ̂n,n) − β0
∥∥∥ < δ

})
> 1− ε. (21)

So fix ε1 > 0 and δ1 > 0. According to Lemma 2 there are δ1 > 0 and θ1 > 0
so that for ε1 there is nδ1,ε1 ∈ N so that for any n > nδ1,ε1

P

({
ω ∈ Ω : inf

‖β‖≥θ1
− 1

n
β′INE

(w̃,ρ,σ̂n,n)
Y,X,Z (β) > δ1

})
> 1− ε1

2

(denote the corresponding set by Bn). It means that for all n > nδ1,ε1 all

solutions of the normal equations (16) INE
(w̃,ρ,σ̂n,n)
Y,X,Z (β) = 0 are inside the ball

B(0, θ1) with probability at least 1− ε1
2 . If θ1 ≤ δ, we have finished the proof.

Generally of course we can have θ1 > δ.
Then, utilizing Lemma 3 we may find for ε1, δ = min{ δ12 , δ1} and θ1 such
nε1,δ,θ1 ∈ N , nε1,δ,θ1 ≥ nδ1,ε1 so that for any n > nε1,δ,θ1 there is a set Cn (with
P (Cn) > 1− ε

2 ) such that for any ω ∈ Cn

sup
‖β‖≤θ1

∣∣∣∣∣ 1n
n∑
i=1

{
w̃
(
F̃

(n)
β (ai(β)), σ̂n

)
β′Zi (ei −X ′iβ)

−β′IE
[
w̃
(
F̃β(ai(β)), σ̂n

)
Zi (ei −X ′iβ)

]} ∣∣∣∣∣ < δ.

But it means that

inf
‖β‖=θ1

{
−β′ 1

n

n∑
i=1

IE
[
w̃
(
F̃β(ai(β)), σ̂n

)
Zi (ei −X ′iβ)

]}
>
δ1
2
> 0. (22)

Further consider the compact set C = {β ∈ Rp : δ1 ≤ ‖β‖ ≤ θ1} and find

τC = inf
β∈C

{
−β′ 1

n

n∑
i=1

IE
[
w̃
(
F̃β(ai(β)), σ̂n

)
Zi (ei −X ′iβ)

]}
. (23)

Then there is a {βk}∞k=1 such that

lim
k→∞

β′k
1

n

n∑
i=1

IE
[
w̃
(
F̃βk

(ai(βk)), σ̂n

)
Zi (ei −X ′iβk)

]
= −τC .

On the other hand, due to compactness of C there is a β∗ and a subsequence{
βkj
}∞
j=1

such that
lim
j→∞

βkj = β∗

and due to the uniform continuity (uniform in i ∈ N as well as in β ∈ C) of

β′IE
[
w̃
(
F̃β(ai(β)), σ̂n

)
Zi (ei −X ′iβ)

]
(see Lemma 4) we have

− [β∗]
′ 1

n

n∑
i=1

IE
[
w̃
(
F̃β∗(ai(β

∗)), σ̂n

)
Zi (ei −X ′iβ∗)

]
= τC . (24)
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Employing once again the uniform continuity (uniform in i ∈ N and β ∈ C)
of β′IE [w̃ (Fβ(ai(β)), σ̂n)Zi (ei −X ′1β)] together with Condition C4 and (22)
we find that τC > 0, otherwise there has to be a solution of (20) inside the
compact C which does not contain β = 0.
Now, utilizing Lemma 3 once again we may find for ε1, δ1, θ1 and τC nε1,δ1,θ1,τC ∈
N , nε1,δ1,θ1,τC ≥ nε1,δ,θ1 so that for any n > nε1,δ1,θ1,τC there is a set Dn (with
P (Dn) > 1− ε

2 ) such that for any ω ∈ Dn

sup
‖β‖≤θ1

∣∣∣∣∣ 1n
n∑
i=1

{
w̃
(
F̃

(n)
β (ai(β)), σ̂n

)
β′Zi (ei −X ′iβ)

−β′IE
[
w̃
(
F̃β(ai(β)), σ̂n

)
Zi (ei −X ′iβ)

]} ∣∣∣∣∣ < τC
2
. (25)

But (23) and (25) imply that for any n > nε1,δ1,θ1,τC and any ω ∈ Bn ∩Dn we
have

inf
‖β‖>δ1

− 1

n
β′INE

(w̃,ρ,σ̂n,n)
Y,X,Z (β) >

τC
2
. (26)

Of course, P (Bn ∩Dn) > 1 − ε1. But it means that all solutions of normal
equations (16) are inside the ball of radius δ1 with probability at least 1− ε1,

i. e. in other words, β̂(SWIV,w,ρ,σ̂n,n) is weakly consistent. �

5 Patterns of results of simulations
In the simulations we compared S-weighted instrumental variables with clas-
sical instrumental variables (which is not robust) and with three other robust
versions of instrumental variables, namely instrumental weighted variables - see
[35], S-instrumental variables and W-instrumental variables - see [7] and [8] (un-
fortunately the description of these estimators would require rather large space,
so we only refer to original papers). The best results from these three alter-
native estimators were achieved by S-instrumental variables and by the instru-
mental weighted variables, we decided to report in tables below S-instrumental
variables (the lack of space has not allow to present more).

5.1 Generating the data
The data were generated for i = 1, 2, .., n, t = 1, 2, ..., T according to the model

Yit = 1− 2 ·Xit1 + 3 ·Xit2 − 4 ·Xit3 + 5 ·Xit4 + σit · eit,
with Xit+1 = 0.9 · Xit + 0.1 · vit + 0.5 · eit where the initial value {Xi1}ni=1,

the innovations {vit}n,Ti=1,t=1 and the disturbances {eit}n,Ti=1,t=1 were i. i d. four
dimensional normal vectors with the zero means and the unit covariance matrix.
Sequence {σit}n,Ti=1,t=1 is i. i. d., distributed uniformly over [0.5, 5.5]. In the role
of the objective function we have employed Tukey’s ρ given for some c > 0 as

ρc(x) =
x2

2 −
x4

2·c2 +
x6

6·c4 for abs(x) ≤ c,

=
c2

6 otherwise.

For 0 < h < g < 1 the weight function w(r) : [0, 1] → [0, 1] is equal to 1 for
0 ≤ r ≤ h, it is equal to 0 for g ≤ r ≤ 1 and it decreases from 1 to 0 for
h ≤ r ≤ g, i. e. putting c = g − h and y = g − r we compute

w(r) = 3
y2

c2
− 3

y4

c4
+
y6

c6
, (27)

i. e. between h and g the weight function borrowed the shape from Tukey’s ρ.
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The examples of possible shapes of weight function.

The data were contaminated so that we selected randomly one block (i. e. one
t ∈ {1, 2, ..., T}) and either the bad leverage points were created as X(new) =
5 · X(original) and Y (wrong) = −Y (correct) or the outliers were created as
Y (wrong) = −3 ·Y (correct). The data contained the same number of good lever-
age points X(new) = 20 ·X(original) (with the response Y calculated correctly)
as of the bad leverage points.

5.2 Reporting the results

We have generated 500 sets, each containing n · T observations (it is specified
in heads of tables) and the we calculated the estimates{

β̂(index,k) = (β̂
(index,k)
1 , β̂

(index,k)
2 , β̂

(index,k)
3 , β̂

(index,k)
4 , β̂

(index,k)
5 )′

}500

k=1
(28)

where the abbreviations IV, SIV and SWIV at the position of “index” indicate
the method employed for the computation, namely IV - for the instrumental
variables, SIV - for S-instrumental variables estimator and finally SWIV -
for S-weighted instrumental variables estimator. The empirical means and the
empirical mean squared errors (MSE) of estimates of coefficients (over these
500 repetitions) were computed, i. e. we report values (for j = 1, 2, 3, 4 and 5)

β̂
(index)
j =

1

500

500∑
k=1

β̂
(index,k)
j and M̂SE

(
β̂
(index)
j

)
=

1

500

500∑
k=1

[
β̂
(index,k)
j − β0

j

]2
(29)

where β0 = [1,−2, 3,−4, 5]′ and the index have the same role as above. The
results are given in tables in the form: The first cell of each row indicates the

method, e. g. β̂(IV ), the next 5 cells contain then just β̂
(IV )(

M̂SE(β̂(IV ))
) for the

first, the second up to the fifth coordinate.

TABLE 1
The contamination by leverage points on the level of 1%, n = 100.

The values of variance of the disturbances randomly selected from [0.5, 5.5].

T = 1, n · T = 100, h = 0.98, g = 0.99

β̂
(IV )
(MSE) 0.970(0.372) −1.924(0.375) 2.835(0.419) −3.781(0.429) 4.706(0.479)

β̂
(SIV )
(MSE) 0.993(0.105) −1.986(0.133) 2.979(0.141) −4.021(0.151) 4.987(0.142)

β̂
(SWIV )
(MSE) 0.992(0.106) −1.990(0.105) 3.002(0.122) −4.000(0.120) 4.992(0.105)
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T = 2, n · T = 200, h = 0.98, g = 0.99

β̂
(IV )
(MSE) 0.966(0.319) −1.873(0.404) 2.814(0.378) −3.808(0.369) 4.690(0.605)

β̂
(SIV )
(MSE) 0.993(0.056) −2.004(0.082) 3.007(0.077) −4.017(0.071) 4.984(0.084)

β̂
(SWIV )
(MSE) 0.993(0.059) −1.997(0.069) 3.009(0.061) −4.002(0.058) 4.992(0.068)

T = 3, n · T = 300, h = 0.98, g = 0.99

β̂
(IV )
(MSE) 0.982(0.259) −1.879(0.323) 2.795(0.363) −3.734(0.453) 4.678(0.532)

β̂
(SIV )
(MSE) 1.002(0.037) −2.017(0.050) 2.995(0.057) −4.009(0.057) 4.989(0.058)

β̂
(SWIV )
(MSE) 0.999(0.039) −2.006(0.041) 2.990(0.050) −3.989(0.046) 4.995(0.047)

T = 4, n · T = 400, h = 0.98, g = 0.99

β̂
(IV )
(MSE) 0.961(0.213) −1.887(0.280) 2.863(0.290) −3.764(0.403) 4.743(0.380)

β̂
(SIV )
(MSE) 0.995(0.027) −2.022(0.046) 2.986(0.052) −4.017(0.047) 4.981(0.049)

β̂
(SWIV )
(MSE) 0.994(0.029) −2.013(0.038) 2.992(0.042) −4.014(0.038) 4.986(0.036)

T = 5, n · T = 500, h = 0.98, g = 0.99

β̂
(IV )
(MSE) 0.964(0.194) −1.859(0.360) 2.806(0.393) −3.781(0.334) 4.717(0.407)

β̂
(SIV )
(MSE) 1.003(0.025) −2.007(0.042) 2.995(0.041) −4.006(0.042) 4.997(0.045)

β̂
(SWIV )
(MSE) 1.002(0.025) −2.006(0.032) 2.991(0.033) −4.000(0.033) 5.004(0.036)

TABLE 2
The contamination by leverage points on the level of 5%, n = 100.

The values of variance of the disturbances randomly selected from [0.5, 5.5].

T = 5, n · T = 100, h = 0.940, g = 0.948

β̂
(IV )
(MSE) 0.879(4.420) −1.505(6.863) 2.335(6.609) −3.096(7.212) 3.730(7.995)

β̂
(SIV )
(MSE) 0.992(0.662) −1.953(0.946) 2.824(1.243) −3.920(1.017) 4.672(2.158)

β̂
(SWIV )
(MSE) 0.982(0.178) −1.982(0.336) 2.981(0.349) −4.018(0.296) 4.954(0.362)

T = 10, n · T = 200, h = 0.940, g = 0.948

β̂
(IV )
(MSE) 0.862(2.967) −1.604(3.871) 2.548(3.839) −3.227(4.665) 4.011(5.258)

β̂
(SIV )
(MSE) 0.990(0.138) −2.001(0.349) 2.971(0.350) −3.997(0.273) 4.933(0.389)

β̂
(SWIV )
(MSE) 0.990(0.082) −1.993(0.140) 3.010(0.138) −3.992(0.133) 5.010(0.154)

T = 15, n · T = 300, h = 0.940, g = 0.948

β̂
(IV )
(MSE) 0.755(1.912) −1.479(3.644) 2.431(3.242) −3.324(4.295) 3.980(4.988)

β̂
(SIV )
(MSE) 0.984(0.053) −2.020(0.219) 2.934(0.233) −4.020(0.236) 4.897(0.218)

β̂
(SWIV )
(MSE) 0.985(0.048) −2.008(0.107) 2.995(0.121) −4.017(0.104) 4.975(0.112)

1055



T = 20, n · T = 400, h = 0.940, g = 0.948

β̂
(IV )
(MSE) 0.774(1.463) −1.562(2.618) 2.577(2.490) −3.374(2.845) 4.220(2.826)

β̂
(SIV )
(MSE) 0.992(0.036) −1.988(0.199) 2.934(0.191) −3.974(0.176) 4.948(0.169)

β̂
(SWIV )
(MSE) 0.994(0.033) −1.986(0.076) 3.006(0.078) −3.981(0.077) 5.017(0.072)

T = 25, n · T = 500, h = 0.940, g = 0.948

β̂
(IV )
(MSE) 0.794(1.074) −1.629(1.644) 2.494(1.923) −3.551(1.722) 4.314(2.187)

β̂
(SIV )
(MSE) 0.990(0.034) −1.983(0.168) 2.930(0.172) −3.991(0.151) 4.944(0.209)

β̂
(SWIV )
(MSE) 0.993(0.028) −1.985(0.062) 2.984(0.069) −3.995(0.060) 4.996(0.065)

As we already said at the abstract, it is believed that the leverage points are
more complicated problem than outliers. The next table offers results indi-
cating that the “classical” estimators as the least median of squares, the least
trimmed squares or the S-estimator can exhibit a problem when data contain
a group of good leverage points (far away from the main bulk of data) and some
outliers (not very far from the bulk of data). As the mean squared errors of the
S-estimates below indicate, the S-estimator have used the information in data
less efficiently than S-weighted estimator (see (5)). (Due to the lack of space
we present only the results for the S-estimator - which were the best among
the “classical” estimators (LMS, LTS, LWS and S-estimator). The reason for
large MSE of the S-estimates is the depression of the information brought by
good leverage points. It happened due to the implicit estimation of variance of
disturbances.

Generally, the implicit estimation of variance of the disturbances (e. g. by
LMS, LTS or LWS) is the significant advantage (from the computational point
of view) because the estimators do not need any studentization - contrary to
M -estimators - see [1]. Sometimes it can betray us.

TABLE 3
Contamination by outliers: For randomly selected observations we put

Yi = 5 ∗ Y originali and data contained also good leverage points

Xi = 10 ∗Xoriginal
i and responses Yi’s were computed correctly.

Number of observations in each dataset = 500

Contamination level = 1%, h = 0.973, g = 0.989

β̂
(S)
(MSE) 1.010(0.024) 2.003(0.031) −3.021(0.032) 3.975(0.035) −4.974(0.023)

β̂
(SW )
(MSE) 1.002(0.022) 2.001(0.013) −3.012(0.011) 3.986(0.010) −4.990(0.011)

Contamination level = 2%, h = 0.963, g = 0.978

β̂
(S)
(MSE) 0.993(0.027) 2.014(0.032) −2.973(0.027) 3.985(0.028) −4.996(0.023)

β̂
(SW )
(MSE) 0.992(0.030) 2.008(0.005) −3.000(0.004) 4.000(0.005) −5.003(0.004)
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Contamination level = 5%, h = 0.921, g = 0.942

β̂
(S)
(MSE) 0.985(0.028) 1.948(0.040) −2.967(0.034) 3.919(0.038) −4.955(0.030)

β̂
(SW )
(MSE) 1.014(0.027) 2.002(0.002) −3.006(0.002) 3.998(0.002) −5.003(0.001)
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Abstract. The quantification of the relative importance of predictors on a response
variable has been an active subject of research for many years. Regression analysis
may be used for that purpose but estimating importance of predictors via (standard-
ized) regression coefficients is not adequate in the presence of correlations between
these variables. Therefore, alternative methods have been considered. Grouping prop-
erty is respected when estimators of importance tend to equate for highly correlated
predictors. We will analyze the respect of grouping property for several methods used
to quantify the relative importance of predictors through decomposition of the ex-
plained variance in linear regression. After being criticized by several authors, CAR
scores have been recommended again as estimators of importance of predictors and
been presented as respecting the grouping property. We will show that CAR scores
actually do not respect this property. We will explain in return why some other
variance decomposition methods do respect grouping property and we will formulate
recommendations for quantifying the relative importance of predictors.
Keywords: Variance decomposition, linear regression, CAR scores, random forests.

1 Introduction

The quantification of relative importance of predictors on a response variable
has been a subject of research in biostatistics, psychology, economics or market
research. Many methods have been investigated, sometimes reinvented by re-
searchers across different fields, see Gromping [9], [10] and [11] for an overview.
Some approaches relate to game theory (lmg, pmvd, owen). Others are based
on regularization techniques (lasso, elasticnet). Random forests have also been
proposed both for estimation of relative importance and for variable selection,
see Gromping [10] and Genuer et al. [4] and [5]. Some methods consist in
decomposing the variance explained by the linear regression among the differ-
ent predictors. When the predictors are mutually de-correlated, the R2 can be
naturally decomposed by allocating to each predictor the square of the corre-
lation coefficient between this predictor and the variable to predict, but with
collinearity between predictors there is no longer a unique and natural way to
decompose the explained variance. Multicollinearity designates situations in
which two or more explanatory variables in a multiple regression model are
highly correlated.

Several methods used to decompose the explained variance in linear regres-
sion can be presented in a unified perspective using the singular value decom-
position of the matrix of (standardized) observations. One of these methods
was proposed in 1962 and designated as the Gibson method [6], but has later
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been criticized see [13] and [11]. These criticisms lead several authors to rec-
ommend other approaches, for instance Genizi [3] in 1993 and Johnson [13] in
2000. However in 2011 Zuber and Strimmer [16] have applied again the Gib-
son method under the name of CAR scores for regression analysis and variable
selection and suggested that CAR scores would benefit from the grouping prop-
erty as introduced by Zou and Hastie [15], in the sense that if two predictors
tend to correlate their CAR scores or the square of their CAR scores would tend
to equate. As a consequence this method would have interesting properties for
the quantification of the importance of predictors and their selection. We will
demonstrate that actually CAR scores do not respect the grouping property as
defined by Zou and Hastie [15] but in return that Genizi and Johnson method
do respect such grouping property. Our analysis leads to recommend against
the usage of Gibson-CAR scores.

2 CAR scores.

2.1 Definition and estimators.

Presentation of CAR scores. Let Y be a random variable andX=(X1,...,Xp)
T

be a random vector of dimension p. (of finite variance). The covariance ma-
trix is var(X)=ΣXX . Let us note also PXX the correlation matrix. We can
decompose the covariance matrix as:

ΣXY = V 1/2PXXV
1/2 (1)

where V is the diagonal matrix containing the variances of the Xi. If we note
PXY =(ρX1y,...,ρXpy)T the vector or marginal correlations between Y and X
the vector of CAR scores is noted as ω=(ω1,...,ωp)

T and given by:

ω = P
−1/2
XX PXY (2)

CAR stands for ”Correlation-Adjusted marginal coRrelation”.
As in [16] we will also introduce the best linear predictor of Y , the linear

combination of the explanatory variables as follows :

Y ∗ = a+ bTX

that minimizes the mean squared prediction error E[(Y -Y ∗)2]. In the approach
used by Zuber and Strimmer [16] the coefficients a and b=(b1,...,bd)

T are con-
sidered as constant for the interpretation of the grouping property, but this
restriction leads to erroneous conclusions regarding the interest of the method,
as shown later.

It results from the definition of CAR scores above that the sum of the square
of the CAR scores adds up to the R2 of the linear regression (see for instance
[13] or [16]). This is shown in equation 3 below:

ωTω = P ′XY P
−1
XXPXY = R2 (3)

It is possible to use the squared CAR scores to quantify the relative impor-
tance of each predictor as follows. Formally:

ΦCAR(Xj) = ω2
j (4)
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CAR scores with two predictors. In the case with two predictors X1 and
X2 and if we note (βstd)1 and (βstd)2 the standardized regression coefficients
of Y on X1 and X2 and note cor(X1,X2)=ρ12, we can write the following result:

ω2
1 − ω2

2 = ((βstd1)2 − (βstd2)2)
√

1− ρ212 (5)

This equation is used by Zuber and Strimmer [16] with the restriction that
the coefficients βstdi are kept constant when ρ12 tends towards 1 so both side
of the equation 5 tend towards 0. The consequences of this restriction are
discussed later in this paper.

Estimators of CAR scores using SVD. When applied to linear regression
on a set of observations, CAR scores as well as some other explained variance
decomposition methods can be presented using matrix calculus.

Let us consider a linear model of the form below with p predictors:

Yi = β0 +Xi1β1 + ...+Xipβp + εi

with independent errors terms εi of expectation 0 and constant positive variance
σ2.

Let us note as X the matrix of n observations of the p predictors (i=1,...,n
and j=1,...,p), X is a (n, p) matrix deemed to be of rank p, and let us note Y
the column vector of the n observations of Y .

X = (xij)

Y = (yi)

We will note as Y ∗ the values predicted by the linear model:

Y ∗ = X β∗ = (X′X)−1X′Y

We will assume in the rest of this article that Y and the p columns of X,
designated as Xj , are standardized: mean of all variables equal 0 and variance
equal to 1.

We will refer to the singular value decomposition (SVD) of the matrix of
observations using the notations from Johnson [13] as reminded below. The
singular value decomposition of X is:

X = P∆Q′ (6)

We will define a particular matrix Z as :

Z = PQ′ (7)

Z is of rank p and is the Mahalanobis transform of X. Zj is the jth column
of Z. Johnson [13] pointed out that the columns of Z are also characterized
as the best-fitting approximations to the columns of X in the sense that they
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minimize the sum of squares of the differences between the original variables
and the orthogonal variables.

Estimators of the CAR scores can be calculated using the singular value
decomposition of the matrix X. The vector of the estimators of the CAR
scores is:

Ω̂ =
1

n− 1
(X′X)−1/2X′Y =

1

n− 1
Q∆−1Q′Q∆P ′Y =

1

n− 1
QP ′Y

(8)
We have :

Ω̂ =
1

n− 1
QP ′Y =

1

n− 1
Z′Y (9)

The estimator of the CAR score for predictor j is equal to cor(Y ,Zj).
As Z is a unitary matrix as a consequence of the properties of singular value

decomposition, the column vectors of Z are all of norm 1 and are all orthogonal
and the sum of the squares of the CAR scores adds up to the R2 of the model.
We will refer to the squares of the CAR scores, called squared CAR scores,
which represent the proportion of R2 allocated to a given predictor with the
CAR scores method.

2.2 Historical criticism of the CAR scores.

In 2011, Zuber and Strimmer [16] proposed the CAR scores as a way to de-
compose the explained variance. This method was initially proposed in 1962
by Gibson as explained by Gromping in [9] and [11]. The CAR scores were at
that time called Gibson scores. Zuber and Strimmer point out that the CAR
scores are computed in regressing the variable to predict on the Mahalanobis-
derecorrelated predictors and that these decorrelated predictors are the ”near-
est” to the original standardized predictors. This proximity had been identified
and demonstrated by Johnson in 1966 as reminded in [13] and had actually been
viewed by several authors as a reason not to use the CAR scores. For instance
Johnson [13] explained that these decorrelated variables Z are only approxi-
mation of the original variables and may not be close representations of the
original variables if two or more of the predictor variables are highy correlated.
Similarly Gromping [11] underlined that in case of relevant correlations among
the X variables, the Z variables can be far from being good representatives
for the corresponding X variables. Gromping reminds that in 1978 Green et
al. [7] therefore proposed to modify the values from Gibson by relating the Z
variables back to the X variables leading to the Green method. In 1993 Ge-
nizi [3] and in 2000 Johnson [13] proposed also another way to decompose the
explained variance. So the literature on variance decomposition methods had
been criticizing Gibson-CAR scores, and this is precisely why other methods
like Green [7], Fabbris [2] or Genizi-Johnson [3] and [13] were proposed, see [11]
and [12]. The usage of Singular Value Decomposition will enable to analyze
the respective properties of these various methods.
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3 Variance decomposition methods and SVD.

We can formalize several methods used to decompose the explained variance
in linear regression as a succession of two steps, first to allocate the explained
variance in p positive terms and then further reallocate these p terms back
to the original predictors. We can formalize this considering a vector A of p
positive terms adding up to the R2 and a matrix of weights Π with all positive
terms, the only additional condition required being that each column of Π
adds up to 1:

A = (aj)

Π = (πij)

The relative importance estimators for the predictors can then be computed as
the column vector Rw:

Rw = ΠA

Table 1 summarizes the empirical estimators of relative importance for the
methods proposed by Fabbris, Genizi-Johnson (these two being identical) and
Gibson-CAR scores. We are using the notation M .2 for the Hadamard squared
matrix obtained when each term of the matrix M is elevated to its square.

Methods Matrix Π Vector A

Fabbris Q.2 ( 1
n−1

)2(P ′Y ).2

Genizi-Johnson ( 1
n−1

)2(Z′X).2 ( 1
n−1

)2(Z′Y ).2

CAR scores I ( 1
n−1

)2(Z′Y ).2

Table 1. Allocation of explained variance.

Looking at line 2 of Table 1 we can also see that any orthogonal matrix O
can be used instead of Z to generate an allocation of the explained variance,
as πij is the square of cor(Oi,Xj), so the columns of Π all add up to 1. The
relative importance measures computed with the Genizi-Johnson method are
designated as Relative Weights as in [13], RWi for predictor i.

4 Grouping Property of variance decomposition
methods.

In the perspective of regularization and variable selection via the elastic net,
Zou and Hastie [15] introduced the general concept of grouping property for any
given type of regression method. Qualitatively speaking a regression method
will be said to exhibit the grouping property if the coefficients of a group of
highly correlated variables tend to be equal (up to a change of sign if negatively
correlated) and also that in the extreme situation when variables would be
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identical the regression-based method should assign to each of them identical
coefficients. The grouping property appears useful for a consistent estimation
of variable importance in case of multicollinearity.

Zuber and Strimmer [16] claimed that variable importance derived from
CAR scores respect the grouping property. We will demonstrate that this
method actually does not respect the grouping property as originally defined
by Zou and Hastie [15].

The grouping property as presented by Zou and Hastie [15] applies to the
usual linear regression model: given p predictors x1,...,xp, the response y is
predicted by:

ŷ = β̂0 + x1β̂1 + ...+ xpβ̂p

and where a model fitting procedure produces the vector of coefficients
β̂=(β̂1,...,β̂p).

By comparison Zuber and Strimmer consider situations where the coeffi-
cients in b=(b1,...,bd)

T are kept constants. That particular way to analyze the
respect of the grouping property when using CAR scores does not align with
the full generality of the original definition proposed by Zou and Hastie [15]. In
reality, keeping the vector b as constant when the correlation of the predictor
variables vary results in modifying also Y ∗. With this approach it is impossible
to analyze the performance of models with variable selection to model a given
and fixed variable Y against various subsets of predictors.

If we follow the original approach of Zou and Hastie [15], we can in return
analyze models where several predictors will be increasingly correlated while
the response Y is kept constant, and the vector of estimated coefficients β̂ will
vary when we use various subsets of predictors or when we change the structure
of the correlations between predictors.
This will lead to different conclusions from Zuber and Strimmer [16], and this
is extremely important in practice when real data are analysed.

4.1 Analysis of grouping property for CAR scores.

Based on the formula 5 for the case with two predictors, Zuber and Strimmer
[16] state that when ρ12 tends towards 1 the product of the two terms on the
right side of the equation 5 above tends towards zero and conclude that the
two squared CAR scores for X1 and X2 become identical with growing absolute
value of the correlation between the two predictors.

But quite contrary when the variable to predict Y is fixed (and not collinear
to X1+ X2 which is a particular case) while the correlation between X1 and
X2 tends towards 1, the quantity ((βstd1)2 − (βstd2)2) is not capped and the
product of the two quantities on the right side of equation 5 does not tend
towards zero. This will be illustrated in the case with two predictors.

4.2 Demonstration with two predictors.

Let us now consider two standardized and decorrelated variables E1 and E2.
Let us also chose two real values φ and ψ.
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X1 = cos(φ)E1 − sin(φ)E2

X2 = cos(φ)E1 + sin(φ)E2

Y = cos(ψ)E1 + sin(ψ)E2

We have (with φ6=0):

βstd1 =
sin(φ− ψ)

sin(2φ)

βstd2 =
sin(φ+ ψ)

sin(2φ)

Let us note:

X =

(
cos(φ) cos(φ)
−sin(φ) sin(φ)

)
The matrix composing the SVD of the matrix X are(cf. formulas 6 and 7) :

P =

(
1 0
0 1

)
∆ =

(√
1 + ρ12 0

0
√

1− ρ12

)
Q =

(
cos(π4 ) −sin(π4 )
sin(π4 ) cos(π4 )

)
Z =

(
cos(π4 ) sin(π4 )
−sin(π4 ) cos(π4 )

)
We also have :

ρ = cos(φ)

If we come back on equation 5 we can now write:

((βstd1)2 − (βstd2)2) = −sin(2ψ)

sin(2φ)
(10)

This confirms the conclusion that the first term of the product on the right
of equation 10 is not capped and tends towards the infinite in the general case
(ψ 6=0) if φ tends towards 0.

Using again formula 5 we can also express the CAR scores using directly ψ
and φ.

ω = cos(ψ +
π


)

ω2 = cos(ψ − π

4
)

ω2
1 − ω2

2 = −sin(2ψ) (11)
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The difference of squared CAR scores for the two predictors depends only on
the correlation between Y and E1. However it does not depend of ρ12 which is
also cos(2φ), correlation between X1 and X2. In the case of two predictors Z is
actually strictly constant, see also Thomas [14]. If we look at the representation
of the variables in a plane Z1 and Z2 are symmetric around E1 and form with

E1 and angle of ± π

4
.

4.3 Analysis of grouping property using SVD.

An important property of the CAR scores is that they do not depend on the
matrix ∆ but just on PQ′ as shown in equations 7 and 9. The matrix P
and Q′ are known to include the eigenvectors of X′X and XX′, but they
do not depend on the eigenvalues of X′X that are the terms of the diagonal
matrix ∆2. The repartition of the eigenvalues of ∆2 describes collinearity
between predictors. The fact that the CAR scores do not depend on ∆ is
the underlying reason why the CAR scores will not tend to equate when the
correlation between predictors increases: high or low eigenvalues of X′X can
be achieved with identical matrix P and Q′.
In return if we look in table 1 at the matrix Z′X involved in the variance
decomposition for Genizi-Johnson this property will be respected as we will
demonstrate below. We can express as follows the matrix Z′X, which when
elevated to the Hadamard squarer is the matrix Π for Genizi-Johnson as per
table 1 :

Z′X = QP ′P∆Q′ = Q∆Q′ (12)

Equation 12 shows that the matrix Z′X is symmetric: Z′X = X′Z, so
we can write the matrix Π as X′Z, and each Relative Weight as follows :

RWi =

p∑
k=1

cor2(Xi,Zk)cor2(Y ,Zk) (13)

The difference of Relative Weights between two predictors is:

RWi −RWj =

p∑
k=1

((cor2(Xi,Zk))− cor2(Xj ,Zk))cor2(Y ,Zk) (14)

We have :

cor2(Xi,Zk)−cor2(Xj ,Zk) = (cor(Xi,Zk)−cor(Xj ,Zk))(cor(Xi,Zk)+cor(Xj ,Zk))

As a consequence :

cor2(Xi,Zk)− cor2(Xj ,Zk) ≤ 2 |cor(Xi,Zk)− cor(Xj ,Zk)| (15)

As all variables are standardized the correlations equate to the covariance
and we can use the additive property of covariance to write :

cor2(Xi,Zk)− cor2(Xj ,Zk) ≤ 2 |cov(Xi,Zk)− cov(Xj ,Zk)| (16)
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cor2(Xi,Zk)− cor2(Xj ,Zk) ≤ 2 |(cov(Xi −Xj ,Zk)| (17)

We also have :

|(cov(Xi −Xj, Zk)| ≤ ‖Xi −Xj‖ (18)

If we note that :

‖Xi −Xj‖ =
√

2(1− ρij) (19)

As the sum of the cor2(Y ,Zk) adds up to the R2 in the end :

|RWi −RWj | ≤ 2
√

2(1− ρij)R2 (20)

This proves that Relative Weights (Johnson-Genizi measures) respect the
grouping property in the general sense as defined by Zou and Hastie [15], but
in return as shown before CAR scores do not respect that grouping property.
In addition we can see that starting from equation 13 using Y = Xb with b
fixed does not change the rest of the subsequent demonstration. This means
that like the CAR scores the Relative Weights from Genizi-Johnson will also
tend to equate if the coefficients b are kept constant as considered by Zuber
and Strimmer [16] for highly correlated predictors. So the restricted property
as used by Zuber and Strimmer is equally respected by Relative Weights and
CAR scores. But only Relative Weights do respect the full original grouping
property as defined by Zou and Hastie [15]. These results show why Relative
Weights are to be preferred to CAR scores.

There is also an interesting result regarding the variance decomposition via
an orthogonal matrix in the case of two predictors. Using X as defined above
let us consider an orthonormal matrix O as defined below :

O =

(
cos(ω) −sin(ω)
sin(ω) cos(ω)

)
and Y similarly as in the case above with two predictors Y =(cos(ψ), sin(ψ))T .
If we substitute the matrix O to the matrix Z in the computation of the

relative weights (Genizi-Johnson) we can easily compute the difference between
the two relative weights for variables 1 and 2 noted RWO

1 and RWO
2 when using

the matrix O for decomposition :

RWO
1 −RWO

2 = cos(2(φ+ ω)cos2(ψ − ω) + cos(2(φ− ω)sin2(ψ − ω) (21)

When φ tends towards 0, RWO
1 −RWO

2 tends towards cos(2ω) as per equa-
tion 21. So the two relative weights will tend to equate in case the correla-
tion between the two predictors tends towards 1 if and only if ω = ±π/4 or
ω = ±3π/4, which means if O=±Z or O=±Z′. This result shows that in the
case of two predictors the only variance decomposition via orthogonalization
that respect grouping property is Genizi-Johnson or associated decomposition
related to Z.

In conclusion we have identified an important difference between CAR
scores decomposition and Genizi-Johnson decomposition. Given a variable to
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predict Y , kept constant, if the correlation between two of the predictors tends
towards 1, or if in the dataset there are highly correlated predictors, their
Genizi-Johnson importance (called Relative Weights by Johnson) will always
tend to equate while this is not the case with CAR scores. This has important
consequences as we show below on numeric examples.

4.4 Application to the Diabetes dataset.

In the documentation associated to the R package care, Strimmer and Zuber
[16] use the diabetes data from Efron et al. (2004). The diabetes data has
10 variables (”age”,”sex”,”bmi”,”bp”,”s1”,”s2”,”s3”,”s4”,”s5”,”s6”) and 442
measurements. The data is standardized. We will add a new predictor variable
using a parameter to adjust the correlation of this new variable with one of
the original predictors. We considered one of the original variables, bp and
generated a random set of 442 observations called ε, with a mean of 0 and a
standard deviation of 0.2. We then generated a variable bp′ using another of
the original variable from the diabetes data, the variable bmi and adding a
terms as follows:

bp′ = bpcos(φ) + (bmi + ε)sin(φ) (22)

By adjusting the value of φ we can vary the correlation between bp and
bp′. The results of the squared CAR scores as a function of the correlation
between bp and bp′ are shown in figure 1. There is no convergence between
the squared CAR scores of bp and bp′ when the correlation between these two
variables tends towards 1.

We made another analysis this time introducing a variable bp∗ now com-
puted as:

bp∗ = bp + ε (23)

In that case the correlation between bp and bp∗ is 0.981. We compared the
ranking of the predictors by decreasing order of their importance measure ac-
cording to three different methods: Random Forest,”lmg” ( cf [9]) and CAR
scores. The ranks are presented in table 2. We can observe that the two highly
correlated predictors bp and bp∗ remain close in the ranking, and even ranked
one after the other when random forest or lmg-Shapley is used, but that this
is not the case with squared CAR scores.
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Fig. 1. Squared CAR scores. Diabetes data. Predictor bp’ added correlated to bp.

Method Random Forest lmg-Shapley Genizi-Johnson CAR sores

s5 1 2 2 2
bmi 2 1 1 1
bp* 3 4 4 6
bp 4 3 3 3
s4 5 6 6 5
s3 6 5 5 4
s2 7 10 10 10
s1 8 8 8 11
s6 9 7 7 7
sex 10 9 11 8
age 11 11 9 9

Table 2. Ranking predictors by decreasing importance: random forest, lmg-Shapley,
CAR scores and Genizi-Johnson.
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5 Conclusions.

CAR scores have been considered since many years but were criticized by sev-
eral authors because of the fact that the decorrelated predictors used to de-
compose the explained variance of the variable to predict can be poor represen-
tatives of the original predictors. CAR scores have been recommended again
recently for the quantification of relative importance of predictors and been
credited with the respect of grouping property. Using theoretical demonstra-
tions and simulations based on datasets, we have proven that actually CAR
scores do not respect the grouping property. Even when the correlation be-
tween predictors is very high and tends towards 1, the CAR scores do not
tend to equate. Highly correlated predictors can be allocated very different
squared CAR scores and the quantification of their importance will differ. As a
consequence with CAR scores highly correlated predictor can suffer from erro-
neous interpretation of their relative importance and inconsistent selection in
a model. In return the Relative Weights introduced by Genizi [3] and Johnson
[13] do fully respect the definition of grouping property.

In the absence of proper new justification of the CAR scores, we do not see
any reason to overcome the past criticisms this method had faced over a long
period nor to recommend again their usage. Alternative methods should be
preferred to estimate the relative importance of predictors.

For classical variance decomposition, Relative Weights can be easily imple-
mented, see Genizi [3], Johnson [13] and Gromping [11].

Regularization and variable selection can also be implemented with elastic
net including in the case of high dimensional data knowing than elastic net
unlike lasso respect grouping property, see [15].

Random forests take into account non-linearities and interactions without
needing to model them, see Gromping [10]. This method can be recommended
to quantify the relative importance of predictors and also for variable selection
including in the case of high dimensional data, see Genuer et al. [4] and [5].
Gregorutti [8] has also shown that they tend to respect grouping property.

Lastly, it is important to note that variance decomposition should not be
seen as a substitute for linear regression models, path analytical models and
models based on theory-driven explanations. However when a model based on
theory is not available variance decomposition, elastic net or random forests
can help identify and select important variables.
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Abstract. When an economic shock like the Lehman crash occurred, it is expected
to investigate its influence based on economic time series. The intervention analysis by
Box and Tiao is a method for such a purpose. Most of intervention analyses are based
on ARIMA models, but some are on GARCH models. The GARCH models have
been developed for analyzing time series of stock returns. Usually the expected value
function of a GARCH model is assumed to be constant. However, this assumption is
not appropriate when a time series includes a varying trend. Our first purpose is to
propose a trend model, which can be easily taken in intervention analysis. Based on
this trend model we generalize a GARCH model for an intervention analysis on both
of trend and volatility. An identification method is also provided and evaluated by
simulation studies. Usability of the proposed model is demonstrated by applying to
real stock returns.
Keywords: intervention analysis, stock return, trend.

1 Introduction

An event such as the Lehman crash or a large modification of monetary policy
causes a strong influence on economics and its effect is reflected in economic
time series. It is important to analyze the influence of such an event by using
time series. The intervention analysis by Box and Tiao [1] is a method for such
a purpose. Most of intervention analyses are based on ARIMA models. In
recent years some intervention analyses related to GARCH models have been
studied. The GARCH model is used to analyze the volatility of the return of
average stock prices or stock price indices. Ho and Wan [3] proposed a model
which has a special GARCH structure for intervention analysis. Watanabe and
Nagashima [2] proposed a GARCH model with an intervention term on volatil-
ity. These models are considered for intervention on volatility and are based
on the assumption that expected values of series are not varying. However, we
can find trends in some time series. For such time series we can not assume
the constant expected values and we have to consider trends in models.

There two typical methods for considering trend. The first is the polynomial
regression and the second is the moving average method. The former is not
appropriate for stock returns, since the trend will diverge. The later is not a
parametric model. The fuzzy trend model by Kuwabara and Watanabe [4] can
be applied to stock returns. However, it is not easy to apply the fuzzy trend
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model for intervention analysis. Though stochastic trend models are available
also, it is not easy to extend them for intervention analysis. Therefore we
consider the deterministic trend.

The first purpose of this paper is to propose a parametric trend model which
can be applied for intervention analysis on stock returns. The second is to pro-
pose an intervention analysis on both of the mean value function and volatility
in a GARCH model based on our trend model. We propose an identification
method of the model and show its suitability by simulation studies. Usability
of the proposed model is demonstrated by applying to practical stock returns.

2 Model

2.1 Trend model

We assume that the expected value function of stock returns can be expressed
by a smoothed step function. Let {Xt : t = 1, 2, ..., T} be a series of stock
returns and µt be the expected value function of Xt. We divide an interval
[0, T ] = {t|0 ≤ t ≤ T} into small segments. Let ak be the middle point of k-th
small interval. We assume that

a1 = 0 (1)

ak = ak−1 + L1 (2 ≤ k ≤ K), (2)

where L1 is a positive integer. The number of segments K is given by

K = bT + L1

L1
c+ 1. (3)

where bxc means the smallest integer not exceeding x.
The expected value function µt is defined as follows:

a) if ak − L1/2 ≤ t ≤ ak − d/2

µt =
mk−1 −mk

2

(
− cos

( t− (ak − d/2)

L1 − d
)
π + 1

)
+mk, (4)

b) if ak − d/2 ≤ t ≤ ak + d/2

µt = mk, (5)

c) if ak + d/2 ≤ t ≤ ak + L1/2

µt =
mk+1 −mk

2

(
− cos

( t− (ak + d/2)

L1 − d
)
π + 1

)
+mk, (6)

except for the cases:

µt = m1 if a1 < t ≤ a1 + d/2, (7)

µt = mK if aK − d/2 ≤ t ≤ T. (8)

We call the series {mk|k = 1, ...,K} the latent process, since this is an un-
observed process which determines the trend. We assume that d is a positive
integer. The case d = L1 corresponds to the step function. See Fig. 1 as an
example.
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Fig. 1. An example of the trend

2.2 Intervention GARCH model

Now we introduce a GARCH(1,1) model for an intervention analysis on both
of trend and volatility. Our model is defined as follows:

Xt = µt + εt (9)

εt = htzt zt ∼ NID(0, 1) (10)

h2t = α0 + α1ε
2
t−1 + β1h

2
t−1 + It (11)

It =

{
γ(v) (if t = Tv )

0 (otherwise),
(12)

under the condition:

0 < α0 , 0 ≤ α0 + γ(v) , 0 ≤ α1 , 0 ≤ β1 , α1 + β1 < 1. (13)

The intervention term It represents a direct effect of the event on the volatility
and is the simplest case among the types proposed by Watanabe and Nagashima
[2]. The conditional standard deviation ht is called volatility usually.

An intervention trend model for µt is a modified version of the trend model
proposed in the previous section. In this paper we consider the intervention
type illustrated in Fig. 2.

Let Tm(1 ≤ Tm ≤ T ) be the time when an effect begins to appear on the
expected values, and L2 be the length of the period when an effect continues
to appear. We assume that L2 is a positive integer. For the interval [0, Tm]
we consider the similar segmentation given in Section 2.1. But the direction is
backward and the starting point is Tµ. The number of segments K1 before Tm
is given by

K1 = bTm + L1 − 1

L1
c+ 1. (14)

The middle point ak of the small interval is determined recursively as follows:

a−1 = Tm (15)

ak = ak+1 − L1 (−2 ≥ k ≥ −K1). (16)
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Fig. 2. An example of trend with intervention

The expected value function µt can be defined similarly to Section 2.1. Note
that µt = m−1 when a−1 − d/2 ≤ t < a−1, and µt = m−K1 when 1 ≤ t ≤
a−K1

+ d/2.
We assume that an effect continues to appear constantly in the period

[Tµ, Tµ + L2]. That is,

µt = m1. (17)

After Tm + L2 we also consider the segmentation whose starting point is
Tm + L2. The number of segments K2 is given by

K2 = bT − (Tm + L2) + L1

L1
c+ 1. (18)

The middle point ak is given by the recursion:

a1 = Tm + L2 (19)

ak = ak−1 + L1 (2 ≤ k ≤ K2). (20)

In this study the length of the segment after Tµ + L2 is the same as the one
before Tµ. This assumption can be loosened easily. The expected value function
µt is defined in the same way as Section 2.1. Note that µt = m1 when a1 <
t ≤ a1 + d/2, and µt = mK2 when aK2 − d/2 ≤ t ≤ T .

3 Identification

The parameters in the model can be estimated by the maximum likelihood
method, if structural parameters Tv, Tµ, L1, L2 and d are given. The log
likelihood function can be written as

lnL = −T
2

ln(2π)− 1

2

T∑
t=1

ln(h2t )−
1

2

T∑
t=1

(Xt − µt)2

h2t
(21)

under the condition that the initial value h0 is given.
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In this paper we adopt Akaike’s Information Criterion (AIC) for selection of
structural parameters. In this study we assume that Tv and Tµ are known. In
many cases this assumption is natural, since the effect of event is not small in
intervention analysis usually. When these are unknown, these can be estimated
similarly to other parameters. For applying AIC we have to prepare sets of
candidate values of L1, L2 and d.

When the length of the last segment is too short for trend estimation, the
estimate of the last latent variable becomes unstable. In such a case the last
segment should be combined with the previous segment and the definition of
µt should be slightly modified.

In numerical calculation it is required to maximize the likelihood function
under the constraints. Note that we have to pay much attention to numerical
calculation, since iteration has a strong dependency on initial values of param-
eters. In this study we use the software MATLAB R2016a in simulation studies
and applications.

4 Simulation

Simulation studies are achieved for showing suitability of AIC for our model.
In this section we focus on estimation of the trend in our model.

For evaluating performance of a method we define two indices. The first is
given by

P =
maxk (mk)−mink (mk)

σ
(22)

where mk is the latent variable of the trend model and σ2 is the stationary
variance of xt − µt. The index P is a quantity on the model and shows how
fluctuation of trend is large. The second is the index on the estimated result
defined as follows:

D = Σ(µt − x̄t)2 −Σ(µt − µ̂t)2, (23)

where x̄t is the sample mean of the series and is an estimate of the trend when
the expected value function is assumed to be constant. The estimate µ̂t is the
trend derived from the selected model. When the trend is varying and P is
large, D becomes large if a selected model can estimate the trend well.

4.1 Simulation on trend without intervention

Trends are generated by the model in Section 2.1 by assuming latent pro-
cesses follow to AR(1) processes and additive noises εt’s follow to zero mean
GARCH(1,1) processes. Several values of L1 are given as true values.

The parameters in GARCH models are controlled so as to lead σ2 = 0.5.
Series following to models with different P are generated artificially by giving
several coefficients of AR(1) models. For generated series we fit three models:
1) constant expected values plus Gaussian white noise, 2) constant expected
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values plus GARCH(1,1) noise, and 3) trend plus GARCH(1,1) noise. The best
model is selected by minimizing AIC. Fitting are done for 100 series for each
case.

In the following we show a result for the case T = 300, L1 = 50, and d = 1.
Table 1 summarizes results for 30 cases. The index D̄ is the mean value of 100
D’s selected by AIC. The ”Rate” means the rate of trend models within all
selected models. The scatter plot of P and D̄ is shown in Fig. 3.

Table 1. Simulation result (T = 300, L1 = 50)

No. P Rate D̄ No. P Rate D̄ No. P Rate D̄

1 0.837 1.00 0.0080 11 0.671 0.96 0.0058 21 0.500 0.94 -0.0024

2 0.807 1.00 0.0615 12 0.658 1.00 0.0258 22 0.488 0.86 -0.0075

3 0.794 1.00 0.0478 13 0.636 1.00 0.0317 23 0.475 0.77 -0.0098

4 0.781 1.00 0.0415 14 0.623 0.98 0.0131 24 0.457 0.91 0.0016

5 0.763 1.00 0.0324 15 0.610 0.98 0.0117 25 0.439 0.97 0.0045

6 0.750 0.98 0.0114 16 0.592 0.99 0.0137 26 0.421 0.99 0.0154

7 0.746 0.97 0.0137 17 0.579 1.00 0.0228 27 0.409 0.88 -0.0076

8 0.728 1.00 0.0211 18 0.567 0.95 0.0143 28 0.396 0.77 -0.0120

9 0.715 0.98 0.0156 19 0.544 0.99 0.0188 29 0.365 0.77 -0.0115

10 0.702 1.00 0.0207 20 0.531 0.99 0.0154 30 0.352 0.97 0.0068

Fig. 3. Scatter plot of P and D̄

From Table 1 and Fig. 3 we can say that trends model can be selected well
by AIC, if P is not so small.

4.2 Simulation on intervention trend model

In this section we consider intervention on a trend only. Let γ(m) be the
magnitude of a direct effect on trend. Then we have the equation:

m1 = γ(m) +m−1. (24)
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Model setting is similar to Section 4.1. In addition several values of γ(m)

are given for the intervention trend model in Section 2.2. The four models are
fitted to each artificially generated series. Three are the same as Section 4.1.
The fourth model is 4) intervention trend plus GARCH(1,1) noise.

Table 2 shows a result for the case T = 400, Tm = 200, L1 = 30, L2 = 60
and d = 1. The ”Rate” is the rate of intervention trend models within all
selected models.

Table 2. Simulation result (T = 400, Tm = 200, L1 = 30,L2 = 60)

No. γ(m) P D̄ Rate No. γ(m) P D̄ Rate

1 1.00 0.803 0.1162 0.96 7 0.50 0.596 0.0508 0.84

2 0.75 0.791 0.1083 0.88 8 0.25 0.614 0.0299 0.69

3 0.50 0.812 0.0517 0.82 9 1.00 0.410 0.1029 0.96

4 0.25 0.809 0.0468 0.61 10 0.75 0.391 0.1028 0.88

5 1.00 0.609 0.1357 0.98 11 0.50 0.413 0.0149 0.85

6 0.75 0.624 0.1039 0.95 12 0.25 0.405 0.0020 0.65

Table 2 shows that an intervention trend model is properly selected by AIC,
if γ(m) is not so small.

In intervention analysis it is important to know the value of γ(m). Fig. 4
shows the histogram of the estimated values of γ(m) for the cases when the
intervention trend models are selected in No. 1 of Table 2. The vertical line
in Fig 4 is the true γ(m). Our results show that γ(m) can be estimated well by
the maximum likelihood method, when γ(m) is not so small.

Fig. 4. Histogram of estimated value of γ(m)

From simulation studies the identification method in Section 3 works well,
if effect of an event is not so small.
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5 Application

In this section we consider time series of TOPIX (Tokyo Stock Price Index)
plotted in Fig. 5. The period is from 27 January 2012 to 20 November 2013.
We apply the proposed model to the series of returns of TOPIX, which is shown
in Fig. 6. The length T is 450.

Fig. 5. TOPIX Fig. 6. Returns of TOPIX

The left vertical line in Fig. 5 or 6 indicates the day when the Japanese
House of Representatives dissolved. Before this time point it seems that returns
include a varying trend. Thus the trend model should be considered. After
this day the level of expected values of the returns becomes higher than before.
This change is an effect of the dissolution. In this case the dissolution increase
the expectation on economics. Therefore we set Tµ = 200 in Fig. 6 for the
intervention trend model. Furthermore, after a while an effect on volatility
begins to appear. We put Tv to 325, which is the time point indicated by the
right vertical line in Fig. 6.

We apply three models to this data: 1) constant expected values plus
GARCH(1,1), 2) the trend model in Section 2.1 plus GARCH(1,1), and 3)
the intervention GARCH model in Section 2.2. In all models the intervention
on volatility is commonly assumed. The results are summarized in Tables 3 –
5.

From AIC’s in Table 3 it is found that model with constant expected values
is not appropriate. Moreover, Table 3 implies that the intervention trend model
is more suitable. Selected structural parameters of the trend and intervention
trend models are shown in Table 4. In this paper, we set d = 1. Table 5 shows
other estimated parameters of the intervention trend model.

µt AIC

constant −2688.81

trend −2695.26

Intervention trend −2700.46

Table 3. AIC of models
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µt Segment length Segmentation size

Trend model L1 = 77 K = 6

Intervention trend model L1 = 66, L2 = 119 K1 = 4,K2 = 2

Table 4. Selected structural parameters

m−4 0.004786 m−1 -0.001372 α0 0.000009 γ(v) 0.0016311

m−3 −0.003408 m1 0.004501 α1 0.052395

m−2 0.000752 m2 0.000920 β1 0.873430

Table 5. Parameter estimates

Figs. 7 and 8 are the plots of estimated trends. Figs. 7 and 8 are for
{t|1 ≤ t ≤ T} and {t|1 ≤ t ≤ 250} respectively. The solid line is the estimated
trend by the intervention trend model and the dotted line is by the trend model.
The gray line is the sample mean of the series.

Fig. 7. Estimated trend (all) Fig. 8. Estimated trend (t = 1, ..., 250)

The estimated volatility are shown in Figs. 9 and 10. The meanings of lines
are the same as Figs. 7 and 8.

Fig. 9. Estimated volatility (all) Fig. 10. Estimated volatility (t ≤ 250)
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Figs. 9 and 10 show that the model without trend overestimates volatility.
Moreover, the trend model without intervention slightly overestimates volatility
compared with the intervention trend model. In particular overestimation near
the time point Tµ = 200 is large. The main reason of overestimation is that
the expected values are not estimated properly.

These results show that an appropriate estimation requires an adequate
model which can represent characteristics of data well.

6 Concluding remark

In this paper we have proposed a trend model and an intervention GARCH
model based on it. Our application shows that the trend should be considered
properly, if expect values are not constant. In such a case usual GARCH
models without intervention term tend to overestimate volatility. Our model
is an intervention model on both trend and intervention, and can be applied in
such a case.

The pattern of intervention in this paper is limited. Other patterns should
be considered for applying our model to other kind of time series.
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Abstract. The European Union Labour Force Survey (EU-LFS) measurement of the 

employment status is based on a synthesized economic construct computed according to 

the ILO conventional definitions of the employed, unemployed and inactive. Since the 

late 2000s, a variable measuring people’s perceptions of their employment status has 

been included in the EU-LFS questionnaire as it is used in all large-scale sample surveys, 

i.e. one of the occupational background variables. These measurements are not 

comparable and their results will differ since a composite economic construct would 

normally deviate from people’s perceptions. The purpose of this paper is, by obtaining a 

social “profile” of agreement and disagreement between Southern Europeans’ declared 

self-perceptions of their employment status and the ILO conventional definitions, to 

investigate whether or not conflicting and coinciding perceptions differ overtime within-

nations and cross-nationally. The analysis is based on the 2008-2014 annual datasets for 

Greece, Italy, Portugal and Spain. The results are reported for the age group 15-74 so as 

to allow for comparability with the ILO conventional definition of unemployment. 

Keywords: Employment status, ILO, EU-LFS, Southern Europe. 
 

 

1 Introduction 
 

In all large-scale sample surveys, demographic and socio-economic variables 

are included as background variables which “in addition to providing general 

contextual/collateral information, they are used as independent variables, as 

socio-economic covariates of attitudes, behavior, or test scores, etc. and in all 

sorts of statistical models, in particular, as exogenous factors in causal analysis” 

(Braun and Mohler [2: 101]). Furthermore, background variables have been and 

will continue to be used in order to assess the quality of the realized sample by 

carrying out detailed comparisons of their distributions to the more recent 

available respective census data (Braun and Mohler [2]), since “it is only sound 

practice to test a theoretical result empirically” (Stephan and McCarthy [13: 

134]). In the case of the employment status, i.e. one of the occupational 

1083



background variables, because of its great overtime variability, the census data 

available for such comparisons is most of the time outdated. Recognition of this 

fact “leads us to consider alternatives, especially the possibility of comparing 

the results obtained by one sample survey on such … [a variable] with the 

results obtained by other sample surveys” (Stephan and McCarthy [13]: 156). In 

this respect, the more appropriate “other [such] sample survey” that provides 

updated information is the Labour Force Survey (LFS) and, in this instance, the 

European Union Labour Force Survey (EU-LFS). However, the measurement of 

the employment status as a background variable included in all large-scale 

sample survey and the census is defined on the basis of  how people perceive it,  

whereas the EU-LFS measurement of the employment status is based on a 

synthesized economic construct computed using a number of variables 

according to the ILO conventional definitions that classify the population of 

working age (15 years or more) into three mutually exclusive and exhaustive 

categories: employed, unemployed and inactive. These two measurements are 

not comparable and their results will differ since a composite economic 

construct would normally deviate from people’s perceptions.  

In the literature, the debate on the definition or concept especially of 

unemployment is of long standing (see for a review Yfanti et al. [14]). As 

Gauckler and Körner [7: 186] pointed out, “measuring the ILO employment 

status in household surveys and censuses is challenging in several 

respects…The ILO defines employment in the broadest term, whereby one hour 

per work counts as being employed. A small job of one hour per week is 

enough. Such a definition will sometimes be in conflict with the respondent’s 

everyday life perception.” Eurostat [4: 58], presenting an extensive analysis on 

whether the ILO definitions capture all unemployment and meet current and 

potential user needs, concluded that “there is no need for a revision of the ILO 

labour force concept when it is looked at from an economic perspective or when 

it is considered for international comparability… However, there is a point to 

make concerning the ILO definition of unemployment. It intends to capture only 

a restricted part of the whole labour reserve, i.e. the one showing a strong 

attachment to the labour market. It is not meant to measure the entire labour 

reserve. Jones and Riddell [9], based on their results that indicated a substantial 

heterogeneity within the non-employed and a distribution of degrees of labour 

force attachment to be separated into distinct groups that displayed different 

behaviour, proposed that additional information appears necessary to identify 

activities such as “wait unemployment.” Furthermore, Brandolini et al. [1], 

discussing the heterogeneity of the labour market groups and the difficulty of a 

single definition of unemployment, pointed out the existence of large 

differences not only among countries, but also among socio-demographic 

groups within the same country. 

All these “grey areas” of labour force attachment make the analysis difficult 

as the ILO conventional definitions do not reflect individuals’ situation in the 

labour market as they perceive it. It is in this respect that Eurostat decided in 

2006 to include the self-perceived employment status as a supplementary 

indicator to the ILO concepts intended to capture all these complexities. In 
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2011, de la Fuente [6] briefly discussed the coverage problems of self-perceived 

unemployment and the three new Eurostat indicators that were introduced as 

supplementary to the unemployment rate based on the results of EU-LFS for 

2010. Gauckler and Körner [7] investigated the comparability of the 

employment status measurement in the German LFS and Census of 2011. The 

purpose of this paper is, by obtaining a demographic and social “profile” of 

agreement and disagreement between Southern Europeans’ declared self-

perceptions of their employment status and the ILO conventional definitions, to 

investigate whether or not conflicting and coinciding perceptions differ overtime 

within-nations and cross-nationally.  

 

 

2 Method 
 

2.1 Prerequisites for comparability  
 

The EU-LFS is a set of independent national multipurpose large-scale sample 

surveys conducted by the respective statistical offices of the member countries, 

providing quarterly and annual results on labour participation and those outside 

the labour force. The survey population is defined centrally as all persons aged 

15 years or more living in private households, excluding persons in compulsory 

military or community service and those residing in collective dwellings. 

Therefore, the survey population overtime within-nations and cross-national 

comparability is ensured (Kish [10]). 

The self-perceived employment status included in the EU-LFS is an optional 

variable for the participating countries, provided only in the annual datasets. It is 

available for most countries with the exception of Germany, UK and Norway. 

Although this variable was first introduced in 2006, Eurostat [3] changed the 

reference period in 2008 and consequently there is an issue of comparability. In 

this respect, it was decided to base the analysis on the 2008-2014 datasets for 

the following Southern European countries: Greece, Italy, Portugal and Spain. 

Also, the Eurostat [3] instruction that, “this question shouldn’t in any case 

precede the questions on the labour status according to the ILO definition or the 

questions on the registration at the public employment office” has to be 

considered for comparability. Because this is a perception question, i.e. sensitive 

to its placement in the questionnaire (Stephan and McCarthy [13]), the 

questionnaires of the four countries under investigation complied with this 

instruction allowing for overtime within-nations and cross-national 

comparability. Furthermore, it was decided to report the results for the age 

group 15-74 so as to allow for comparability with the ILO conventional 

definition of unemployment (Figure 1; see also de la Fuente[6]. 

 

2.2 The ILO conventional definitions of the employment status  

 

Figure 1 presents the detailed EU-LFS measurement of the employment status 

based on a number of variables according to the ILO conventional definitions. 
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Figure 1. The ILO conventional definitions of the employment status used in 

the EU-LFS. Reproduced from “EU Labour Force Survey database user guide,” 

by Eurostat, 2016: 55. 
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The variable WSTATOR measures the labour status during the reference 

week for all respondents aged 15 years or more according to the conventional 

definitions that were adopted by the ILO as agreed at the 13
th

 and 14
th

 

International Conference of Labour Statisticians (Hussmanns et al. [8]). This 

variable takes the value one (1) when respondents did any work for pay or profit 

for one hour or more, including family work during the reference week. The 

second value (2) refers to respondents who despite of having a job or business 

did not work during the reference week because they were temporarily absent. 

The third value (3) is assigned to respondents who were not working because of 

lay-off. The fourth value (4) indicates the respondent who was a conscript on 

compulsory military service or community service. Value five (5) designates 

respondents who did not work nor had a job or business during the reference 

week.  As shown in Figure 1, the definition of the unemployed applies only to 

respondents aged 15-74 years. Also, a number of variables is used that define 

whether respondents were seeking employment, the methods for doing so and 

their availability to start work immediately within two weeks (see for a detailed 

description, Eurostat [5]).  

 

2.3 The EU-LFS self-perceived employment status definition 

 

In Table 1, the question measuring the self-perceived employment status is 

presented as is the case in all large-scale sample surveys and the census which 

differs from the ILO multivariate definition.  

 
Table 1. The EU-LFS self-perceived employment status definition (all 
respondents aged 15 years or more) 
Carries out a job or profession, including unpaid work for a family   
business or holding, including an apprenticeship or paid traineeship, etc. 1 
Unemployed 2 
Pupil, student, further training, unpaid work experience 3 
In retirement or early retirement or has given up business 4 
Permanently disabled 5 
In compulsory military service 6 
Fulfilling domestic tasks 7 
Other inactive person 8 
Not applicable (child less than 15 years) 9 
No answer ^ 

 

As shown, this is a perception question that gives the respondents the chance 

to identify they own employment status. The implementation rules for this 

variable (MAINSTAT) as defined by Eurostat [3] specify that the main activity 

status  represents self-perception regarding the respondents’ activity status. For 

instance, students with small jobs will in general present themselves as students. 

The eighth response category (value 8) includes also respondents who cannot 

say whether they were “carrying out a job or profession” and those who do not 

fit into other categories or were on an extended leave from work (Eurostat [3: 

109]). The instruction for the deliverance of this question according to the 
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Eurostat good practices rules is that the interviewers have to read out the 

question and all the response categories.  

 

2.4 Statistical analyses 
 

In order to ensure measurement overtime within-nations and cross-national 

comparability, all measures-variables have to be standardized (Kish [10]). In 

this respect, the variable measuring self-perceived employment status is first 

recoded into the three categories of the employed, unemployed and inactive 

according to the ILO conventional definitions. Then, the recoded variable is 

cross-tabulated with the ILO variable that is computed as presented in Figure 1. 

The diagonal defines the “agreement” group, i.e. people’s perceptions 

coinciding with the ILO conventional definitions. The off diagonal cases define 

the “disagreement” group, i.e., people’s perceptions in conflict with the ILO 

conventional definitions. Then a demographic and social “profile” of both 

groups is obtained based on their demographic and social characteristics: gender 

(male, female), age (15-24, 25-34, 35-44, 45-54, 55-64 and 65-74), marital 

status (single, married, and other, i.e. widowed, divorced or legally separated) 

and highest level of educational attainment (primary, secondary and tertiary). 

Note that, initially, extensive checks were carried out for each category and 

based on these results it was decided to combine coinciding and conflicting 

perceptions into the before mentioned two groups.  

 

 

3 Results 
 

In Table 2, Southern Europeans’ overall perceptions of their employment status 

as they compare to the ILO conventional definitions are presented.  

 
Table 2. Southern Europeans’ overall perceptions of their employment status as 
they agree or disagree to the ILO conventional definitions (15-74; N in 000s) 
Country   2008 2009 2010 2011 2012 2013 2014 
Greece   
 Agree % 97.6 97.3 97.3 96.7 96.2 96.1 96.1 
 Disagree  2.4 2.7 2.7 3.3 3.8 3.9 3.9 
 N 8,328 8,303 8,305 8,308 8,313 8,184 8,135 
Italy   
 Agree % 93.9 93.7 93.4 93.2 93.1 92.5 92.3 
 Disagree  6.1 6.3 6.6 6.8 6.9 7.5 7.7 
 N 45,337 45,563 45,685 45,800 45,866 45,556 45,626 
Portugal    
 Agree % 95.0 94.7 94.8 91.7 90.6 90.0 90.9 
 Disagree  5.0 5.3 5.2 8.3 9.4 10.0 9.1 
 N 8,140 8,141 8,123 8,116 8,060 7,907 7,860 
Spain    
 Agree % 97.8 97.6 97.6 97.1 97.6 97.5 97.7 
 Disagree 2.2 2.4 2.4 2.9 2.4 2.5 2.3 
 N 34,650 34,809 34,673 34,683 34,494 34,602 34,477 
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As shown, more than 90% of Southern Europeans perceptions coincide 

overall with the ILO conventional definitions: 96.1 -97.6% (Greece); 92.3-

93.7% (Italy); 90.0-95.0% (Portugal); 97.1- 97.8 % (Spain). However, the 

number of people with conflicting perceptions amounts to a considerable total 

ranging from 4,143,000 to 5,543,000: 202,000-319,000 (Greece); 2,759,000-

3,499,000 (Italy); 407,000-791,000 (Portugal); 775,000-934,000 (Spain).  

In Table 3, Southern Europeans’ perceptions of their employment status 

coinciding with the ILO conventional definitions of the employed, unemployed 

and inactive are presented. 

 
Table 3. Southern Europeans’ (aged 15-74) perceptions coinciding with the ILO 
conventional definitions of the employed, unemployed and inactive (%) 
Country   2008 2009 2010 2011 2012 2013 2014 
Greece   
 Employed  99.4 99.3 99.2 99.0 98.9 99.1 99.2 
 Unemployed  81.5 82.7 85.7 85.4 87.1 87.5 86.6 
 Inactive  97.3 96.9 97.4 97.4 96.9 96.8 97.0 
Italy   
 Employed  99.8 99.8 99.7 99.8 99.8 99.8 99.8 
 Unemployed  40.8 43.2 43.7 42.6 49.0 49.4 49.8 
 Inactive  96.9 97.2 97.4 97.7 97.4 97.7 97.7 
Portugal    
 Employed  99.9 100.0 99.9 99.7 99.7 99.7 99.8 
 Unemployed  67.0 70.6 74.1 66.0 67.3 65.4 62.5 
 Inactive  92.1 91.8 91.8 88.0 86.5 86.6 88.3 
Spain    
 Employed  99.3 99.2 99.2 98.9 98.9 98.8 99.0 
 Unemployed  87.6 90.6 91.8 91.3 93.8 93.6 93.8 
 Inactive  97.5 97.7 97.6 97.5 97.7 97.7 97.8 

 

As shown, more than 98.8% of Southern Europeans agree with the ILO 

conventional definition in perceiving themselves as employed: 98.9-99.4% 

(Greece); 99.7-99.8% (Italy); 99.7-100.0% (Portugal); 98.8-99.3% (Spain). 

Also, more than 88% agree in perceiving themselves as inactive: 96.9-97.4% 

(Greece); 96.9-97.7% (Italy); 88.0-92.1% (Portugal); 97.5-97.8% (Spain). 

However, they do disagree with the ILO conventional definition in perceiving 

themselves as unemployed: 81.5-87.5% (Greece); 40.8-49.8% (Italy); 66.0-

74.1% (Portugal); 87.6-93.8% (Spain). Italians disagree more remarked in 

perceiving themselves as unemployed than the Portuguese people, Greeks and 

Spaniards.  

These findings indicate that a thorough investigation of the demographic and 

social characteristics of the “agreement” and “disagreement” groups is 

necessary in order to assess whether or not their distributions differ. In Tables 4 

to 7, the demographic and social “profile” of Southern Europeans’ coinciding 

and conflicting perceptions with the ILO conventional definitions is presented 

for Greece, Italy, Portugal and Spain, respectively. 
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Table 4. The demographic and social “profile” of coinciding and conflicting 
perceptions with the ILO conventional definitions: Greece (%) 
Variable    2008 2009 2010 2011 2012 2013 2014 
Gender  
 Agree  
 Male 49.6 49.6 49.6 49.6 49.7 49.2 49.3 

 Female 50.4 50.4 50.4 50.4 50.3 50.8 50.7 
 Disagree   
 Male 41.6 42.9 43.2 46.9 45.9 43.9 43.8 

 Female 58.4 57.1 56.8 53.1 54.1 56.1 56.2 
Age*  

Agree  
 15-24 13.6 13.2 13.1 13.0 12.8 13.5 13.4 

 25-34 19.3 18.8 18.5 18.2 17.7 17.6 17.1 

 35-44 20.2 20.4 20.6 20.7 20.6 20.1 20.1 

 45-54 18.1 18.4 18.5 18.7 19.0 18.9 19.2 

 55-64 15.6 16.0 16.2 16.3 16.4 16.3 16.4 

 65-74 13.3 13.2 13.1 13.2 13.4 13.7 13.8 
 Disagree   
 15-24 22.1 22.3 19.4 16.9 15.5 16.3 14.3 

 25-34 25.0 28.1 26.6 25.4 23.1 23.4 24.2 

 35-44 19.1 17.9 19.4 21.3 23.1 23.4 22.6 

 45-54 14.7 14.3 16.7 17.6 19.0 18.8 18.8 

 55-64 11.3 10.7 11.3 12.5 13.6 13.4 15.0 

 65-74 7.8 6.7 6.8 6.3 5.7 4.7 5.1 
Marital status  

Agree  
 Single  31.5 30.8 30.7 31.3 31.8 32.9 33.2 

 Married  60.9 61.3 61.2 60.5 59.8 58.7 58.5 

 Other  7.6 7.9 8.1 8.3 8.3 8.4 8.3 
Disagree   

 Single  43.1 45.5 41.0 39.3 38.0 39.4 38.1 

 Married  51.0 48.2 51.4 53.7 56.6 54.4 54.9 

 Other  5.9 6.3 7.7 7.0 5.4 6.3 7.0 
Education  

Agree  
 Primary  28.8 28.4 27.6 26.0 24.6 23.6 22.4 

 Secondary  52.9 53.1 52.9 53.2 54.0 54.1 54.4 

 Tertiary  18.3 18.4 19.5 20.8 21.3 22.3 23.1 
Disagree   

 Primary  27.2 24.1 25.7 26.6 22.4 21.0 21.0 

 Secondary  55.9 57.6 58.6 57.2 59.9 59.6 59.7 

 Tertiary  16.8 18.3 15.8 16.2 17.7 19.4 19.4 
*All the results are at significant at p<.001. 
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Table 5. The demographic and social “profile” of coinciding and conflicting 
perceptions with the ILO conventional definitions: Italy (%) 
Variable    2008 2009 2010 2011 2012 2013 2014 
Gender  
 Agree  
 Male 49.7 49.5 49.4 49.3 49.4 49.2 49.2 

 Female 50.3 50.5 50.6 50.7 50.6 50.8 50.8 
 Disagree   
 Male 46.4 48.2 49.5 50.3 49.4 50.2 50.5 

 Female 53.6 51.8 50.5 49.7 50.6 49.8 49.5 
Age*  

Agree  
 15-24 12.8 12.8 12,8 12.7 12.7 12.7 12.7 

 25-34 17.0 16.4 16.0 15.5 15.3 14.5 14.3 

 35-44 21.2 21.2 21.1 21.0 20.7 20.2 19.9 

 45-54 18.3 18.7 19.2 19.6 20.0 20.4 20.8 

 55-64 16.3 16.5 16.7 16.9 16.8 17.0 17.0 

 65-74 14.4 14.4 14.3 14.3 14.6 15.1 15.3 
 Disagree   
 15-24 21.7 21.0 20.5 20.2 19.5 18.3 17.3 

 25-34 28.6 29.6 28.1 27.6 25.4 25.4 24.9 

 35-44 24.2 24.3 24.7 23.9 24.4 24.2 23.9 

 45-54 15.4 16.0 17.0 17.6 19.1 20.0 20.9 

 55-64 8.4 7.9 8.7 9.4 10.5 11.0 11.8 

 65-74 1.7 1.2 1.1 1.2 1.1 1.1 1.1 
Marital status*  

Agree  
 Single  31.0 31.2 31.3 31.6 32.3 32.5 32.9 

 Married  59.4 59.1 58.8 58.4 57.3 56.6 57.0 

 Other  9.6 9.7 9.8 10.0 10.4 10.8 10.1 
Disagree   

 Single  48.5 49.2 49.0 49.7 48.2 48.9 48.4 

 Married  45.1 44.8 44.3 43.5 44.1 43.0 44.1 

 Other  6.5 6.1 6.7 6.9 7.7 8.1 7.5 
Education*  

Agree  
 Primary  18.9 17.9 16.9 15.8 14.9 14.2 13.0 

 Secondary  69.3 70.2 71.0 71.8 72.0 72.1 72.8 

 Tertiary  11.7 11.9 12.2 12.4 13.1 13.7 14.2 
Disagree   

 Primary  13.1 11.8 11.6 11.1 10.6 9.8 8.9 

 Secondary  76.8 78.7 78.4 79.3 79.2 80.0 80.6 

 Tertiary  10.2 9.6 10.1 9.6 10.2 10.2 10.4 
*All the results are at significant at p<.001. 
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Table 6. The demographic and social “profile” of coinciding and conflicting 
perceptions with the ILO conventional definitions: Portugal (%) 
Variable  2008 2009 2010 2011 2012 2013 2014 
Gender  
 Agree  
 Male 49.9 49.3 49.3 49.1 49.1 48.1 47.9 

 Female 50.6 50.7 50.7 50.9 50.9 51.9 52.1 
 Disagree   
 Male 40.0 42.7 42.1 47.3 48.4 48.2 48.3 

 Female 60.0 57.3 57.9 52.7 51.6 51.8 51.7 
Age*  

Agree  
 15-24 15.2 14.9 14.5 14.2 14.1 14.2 14.1 

 25-34 20.3 20.0 19.7 19.4 18.6 16.8 16.2 

 35-44 19.7 19.9 20.0 20.6 21.0 20.9 20.9 

 45-54 18.0 18.2 18.5 18.7 19.0 19.4 19.4 

 55-64 15.1 15.3 15.4 15.3 15.4 16.1 16.4 

 65-74 11.7 11.6 11.9 11.9 12.0 12.7 13.1 
 Disagree   
 15-24 11.0 10.0 10.2 12.6 13.0 13.1 13.2 

 25-34 15.0 15.0 14.0 13.7 13.3 12.8 12.2 

 35-44 13.7 14.6 14.9 13.1 14.0 14.8 14.0 

 45-54 15.9 15.7 16.8 17.7 17.2 17.4 18.2 

 55-64 21.3 21.3 21.3 22.6 23.1 23.5 23.8 

 65-74 23.0 23.4 22.7 20.2 19.4 18.3 18.5 
Marital status  

Agree  
 Single  27.3 27.4 27.4 32.7 33.8 34.1 33.6 

 Married  65.0 64.6 64.5 57.0 55.5 55.1 55.7 

 Other  7.7 8.0 8.1 10.3 10.7 10.8 10.7 
Disagree   

 Single  21.4 20.1 19.4 28.4 30.5 31.5 32.0 

 Married  69.0 69.3 69.7 59.8 57.7 56.6 56.0 

 Other  9.6 10.6 10.9 11.8 11.8 11.9 12.0 
Education*   

Agree  
 Primary  52.0 49.6 47.7 42.9 40.7 39.0 36.7 

 Secondary  36.0 38.0 39.2 42.0 42.8 43.9 44.4 

 Tertiary  11.9 12.4 13.2 15.1 16.7 17.2 18.9 
Disagree   

 Primary  71.5 70.4 70.9 63.2 59.8 56.6 53.8 

 Secondary  22.9 24.9 23.9 29.3 32.4 35.1 36.6 

 Tertiary  5.7 4.6 5.2 7.6 7.7 8.2 9.6 
*All the results are at significant at p<.001. 
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Table 7. The demographic and social “profile” of coinciding and conflicting 
perceptions with the ILO conventional definitions: Spain (%) 
Variable  2008 2009 2010 2011 2012 2013 2014 
Gender  
 Agree  
 Male 50.2 50.1 50.0 49.9 49.7 49.9 49.8 

 Female 49.8 49.9 50.0 50.1 50.3 50.1 50.2 
 Disagree   
 Male 43.2 45.3 45.2 45.8 46.2 45.5 44.2 

 Female 56.8 54.7 54.8 54.2 53.8 54.5 55.8 
Age*  

Agree  
 15-24 13.0 12.8 12.4 12.1 11.9 11.7 11.5 

 25-34 22.0 21.5 20.9 20.0 19.2 18.3 17.4 

 35-44 21.6 21.8 22.1 22.3 22.5 22.7 22.7 

 45-54 17.9 18.3 18.7 19.2 19.6 20.1 20.4 

 55-64 14.5 14.5 14.7 14.9 15.3 15.2 15.5 

 65-74 11.0 11.2 11.2 11.4 11.6 11.9 12.4 
 Disagree   
 15-24 22.7 17.9 20.0 18.7 18.7 19.2 19.6 

 25-34 25.7 25.7 23.5 25.2 21.9 20.6 19.3 

 35-44 21.4 23.3 22.5 22.6 22.5 22.8 20.8 

 45-54 15.7 17.5 18.3 17.0 18.5 18.8 20.5 

 55-64 12.8 13.7 13.6 14.6 16.5 16.5 17.2 

 65-74 1.7 2.0 2.1 1.9 1.8 2.2 2.6 
Marital status*  

Agree  
 Single  33.7 33.9 33.9 34.0 34.4 35.7 36.1 

 Married  57.9 57.6 57.4 57.2 56.5 54.1 53.7 

 Other  8.4 8.5 8.7 8.8 9.0 10.1 10.3 
Disagree   

 Single  46.5 41.6 43.1 43.1 43.6 45.1 46.0 

 Married  47.5 49.3 49.3 48.8 49.9 47.6 44.4 

 Other  6.1 9.1 7.6 8.0 6.5 7.3 9.6 
Education*  

Agree  
 Primary  25.2 24.7 23.8 22.3 20.7 19.7 16.4 

 Secondary  49.0 49.1 49.9 49.9 50.8 50.9 53.1 

 Tertiary  25.8 26.2 26.3 27.8 28.5 29.3 30.5 
Disagree   

 Primary  20.0 23.6 21.6 21.6 20.2 18.3 15.3 

 Secondary  57.9 54.7 57.4 56.1 56.3 57.4 60.3 

 Tertiary  22.1 21.7 21.0 22.3 23.5 24.3 24.5 
*All the results are at significant at p<.001. 

 

The investigation of the “agreement” and “disagreement” groups for 2008-

2014 (Tables 4 to 7) shows that they do differ in terms of their demographic and 
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social “profile”: Greeks with conflicting perceptions are mainly women (53.1-

58.4%), aged 25-34 years (23.1-28.1%), married (48.2-56.6%) with secondary 

education (55.9-59.9%); Italians with conflicting perceptions are mainly men 

and women aged 25-34 years (25.4-29.6%), single (48.2-49.7%) with secondary 

education (76.8-80.6%); Portuguese people with conflicting perceptions are 

mainly women (51.6-60.0%), aged 65-74 (20.2-23.4%) in 2008-2010 and 55-64 

(22.6-23.8%) in 2011-2014, married (56.0-69.7%) with primary education 

(53.8-71.5%); Spaniards with conflicting perceptions are mainly women (54.2-

56.8%) aged 25-34 (23.5-25.7%) in 2008-2011 and 35-44 (20.8-22.8%) in 2012-

2014, married (44.4-49.9%) with secondary education (54.7-60.3%).  

 

 

4 Conclusions 
 

The surprisingly high percentages of Southern Europeans’ perceptions of their 

employment status in agreement with the ILO conventional definitions indicate 

that this question should precede and not follow the questions on the labour 

status according to the ILO conventional definitions or the questions on the 

registration at the public employment office as is the Eurostat instruction to 

participating countries. It is common practice in social sample survey research 

to place perception questions before concepts are made quite clear or as 

Oppenheim [11] pointed out: “We try, as much as possible, to avoid putting 

ideas into respondents’ minds”. This result is in line with Gauckler and Körner 

[7] who proposed that the self-perceived employment status question should be 

asked first in their belief that this might provide radically different results. These 

findings have to be taken into account, since as Schwarz [12] argued, cognitive 

issues raised from the questionnaire may have important implications on 

questionnaire design and survey operations.  

The demographic and social “profile” of conflicting perceptions in Greece 

and Spain is quite similar (young married women with secondary education). In 

the cases of Italy and Portugal, it differs as it is young single men and women 

with secondary education and older married women with primary education, 

respectively. However, within each country the pattern is in the main systematic 

overtime. These results imply that there is some kind of “bias” introduced by the 

ILO conventional definitions of the employed, unemployed and inactive and 

further research is required as Gauckler and Körner [7] carried out on the “main 

status effect”.  
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Abstract 

In this study, neural networks were used to estimate the key of a Shift 

Cipher process which is a classical public key cryptography method. For 

this reason, a passage from Hamlet with 386 English letters was taken 

as the plaintext, it was encrypted with Shift Cipher algorithm with various 

keys and a backpropagation neural network model was applied by using 

both plaintext and ciphertext. It was seen that the success of neural 

networks is acceptable and it can be used for estimating encryption 

keys. 

Keywords: Neural Networks, Public Key Cryptography, Shift Cipher. 

 

1 Introduction 

Security is an extensive concern in information and data systems of all 

types. One of the most important ways for keeping information secure is 

cryptology. Cryptology provides various algorithms to perform 

substitutions and transformation on the original text to produce 

unintelligible cipher text. This masking prevents security evasion. 

Cryptology can be defined as encryption science and contains two main 

parts: cryptography which means constituting cryptos and cryptanalysis 

which means breaking cryptos. There are many algorithms in cryptology 

field. The public and private key pair comprise of two uniquely related 

cryptographic keys. In private key cryptography, the key is private and it 

uses the same cryptographic keys for both encryption of plaintext and 

decryption of ciphertext. In public key cryptography, encryption and 

decryption parts use different keys and one of them is private while the 

other is public. Any person can encrypt a message using the public key 
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of the receiver, but such a message can be decrypted only with the 

receiver's private key.  

 

 

1.1 Shift Cipher 

When a cipher method is applied to a plaintext, first of all the letters must 

be transformed to numbers. In the English alphabet, every letter matches 

to a number between 0 and 25: 

 

Here, the letters’ being upper or lower case does not differ. A and a both 

correspond to 0; B and b both correspond to 1 and so on.  

The shift cipher is a substitution cipher that involves the shifted letters of 

all the letters in plaintext by a specific step number which is key of the 

algorithm and constitutes ciphertext.  So, a message that initially was 

quite readable, ends up in a form that can not be understood. This 

method is one of the methods of five classic methods which are 

substitution cipher, vigenere cipher, affine chipher and hill cipher.  Some 

samples of plaintext and ciphertext in terms of English alphabet can be 

seen below: 

Key = 0  
Plaintext :  A B C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z 
Ciphertext:A B C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z 
 
Key = 3 (Caesar Cipher) 
Plaintext :  A B C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z 
Ciphertext: D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z A B C 
 
Key = 10 
Plaintext :  A B C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z 
Ciphertext: K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z A B C  D  E  F  G  H  I  J 
 
The number of possible keys differs according to the character set used 
for plaintext. If we use English alphabet, Turkish alphabet or ASCII 
characters for the domain set, then the numbers of possible keys will be 
26, 29, and 256 respectively. If we use upper cases and lower cases 
together in alphabet, it becomes twice. Thus, it is an important subject to 
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find the right key of the algorithm. Neural networks is a modelling and 
estimating method which is used in many fields. In this study we use 
neural networks to find the private key of Shift Cipher methodology in a 
specific case study. The results show that neural networks is an 
appropriate method for Shift Cipher cryptanalysis and in future work we 
will observe if the cryptanalysis of other cryptosystems can be done by 
neural networks or not. 
 
1.2 Literature Review 

There are many methods in the literature which uses neural networks 
and cryptography together. But in this study, we examined only the 
studies which are about classical encryption algorithms which were 
expressed above.  
 
Volna et. al (2012) tried to encrypt a plaintext by dividing it into 6-bit 
blocks. They used a multi perceptron neural network structure. They 
designed the input and hidden layer of the neural network structure as 6 
neurons. They transform the plaintexts in each training set to ASCII 
codes and these ASCII codes to binary texts. After all these operations, 
they encrypted the text with the neural network. In some other studies, 
Lonkar and Charniya (2014), Komal et. al (2015), Gujral and Pradhan 
(2009) used similar structures to implement encryption algorithms. 
 
 
Sivagurunathan et. al (2010) encrypted files with Playfair, Vigenere and 
Hill Cipher Methods were used as input data. They trained the network 
with these files. In this training process, they implement the tests in three 
different manner. In the first one, they encrypted the same plaintexts with 
different keys; in second one, the encrypted different plaintexts with the 
same key and in the last one, they used both different plaintexts and 
different keys. The main goal of this study is to classify the texts which 
are encrypted with different methods by neural networks. 
 
Tanriverdi (1993) investigated neural network structure’s powerfull and 
poor properties by using some classical encryption methods.  Tas (2002) 
tried to train a neural network structure with plaintexts and ciphertexts. 
Yayık (2013) designed a random number generator and showed that a 
neural network based system can make cryptanalysis independent to the 
algorithm. 
 
Jagtap et. al (2015) used a neural network based sequential machine 
and chaotic neural networks in their study. In this study 3 bit encryption 
has been implemented by using sequential machine.  
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Kinzel and Kantel (2002) is one of the oldest general studies about 
neural cryptology concept. In this study, how a neural network can be 
trained for this type of a process and how the key can be generated were 
handled. Godhavari et. al (2005) is a general study which explains neural 
network usage in cryptology. In this study, neural cryptology concept was 
explained, the role of a neural network in private key generation was 
analyzed and cryptanalysis of this process was investigated. In another 
general study, Rosen-Zvi et. al presented analytical results about neural 
network based cryptology Rosen et. al (2002).  Pointcheval presented 
another study about general applications of neural network in cryptology 
Pointcheval (1994). In this study, many applications about neural 
cryptology were examined.  
 
Shibab (2006) analyzed the security of computer networks by using a 
back-propagation neural network model Lian (2009) offered a block 
encryption method over chaotic neural networks. Guo et. al (1999) also 
presented a novel symmetric encryption standart about chaotic neural 
networks too. 
  
Crounse et. al (1996) used Cellular Neural Networks Universal Machine 
(CNN-UM) and generated pseudo random numbers. In Wang and Wang 
(2008), it was explained how Hopfield typed neural network can be used 
in key validation process. In another similar study Li et. al (2001), a 
validation process is implemented by using neural network.   
 
In Isac and Santhi (2011), applications about images’ encryption and 
stamping by neural network were examined. A study in which a 
symmetric key was designed was presented in Arvandi et. al (2006).  
In Dalkıran and Danisman (2010), a neural network based chaotic 
generator for using in cryptology applications was presented. In Laskari 
et. al (2006), neural network was applied to cryptology problems 
(Discrete Logarithm Problem, Diffie-Helman Key Exchange Problem and 
ElGamal Digital Signature Problem) and the performance was 
measured.  In Al-Shakarchy (2012) and Alallayah et. al (2012), Data 
Encryption Standart (DES) and Simplified Data Encryption Standart 
(SDES) were examined respectively.  
 
2. Material and Methods 
 
Neural Networks are simplified models of the central nervous system. 
They are based on the basic model of the human brain with capability of 
generalization and learning.  Neural networks are structured as a series 
of layers, each composed of one or more neurons. Each neuron 
produces an output, or activation, based on the outputs of the previous 
layer and a set of weights. 
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The backpropagation algorithm is a supervised learning method for 
multilayer feed-forward networks. Feed-forward neural networks are 
inspired by the information processing of one or more neural cells. This 
neural cells are called “neuron”. A neuron accepts input signals via its 
dendrites, which pass the electrical signal down to the cell body. The 
axon carries the signal out to synapses, which are the connections 
between the cells. The purpose of the backpropagation approach is to 
model a given function by modifying internal weightings of input signals 
to produce an expected output signal. The system is trained where the 
error between the system’s output and a known expected output is 
presented to the system and used to modify its internal state. Figure 1 
depicts the general backpropagation neural network structure. 
 

 
 

Figure 1. Backpropagation Neural Network 
 

3. Results 

We applied shift cipher to the passage of Hamlet Original Text: Act 4, 

Scene 1 which is given below. 

O heavy deed! 
It had been so with us, had we been there: 
His liberty is full of threats to all; 
To you yourself, to us, to every one. 
Alas, how shall this bloody deed be answer’d? 
It will be laid to us, whose providence 
Should have kept short, restrain’d and out of haunt, 
This mad young man: but so much was our love, 
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We would not understand what was most fit; 
But, like the owner of a foul disease, 
To keep it from divulging, let it feed 
Even on the pith of Life. Where is he gone? 

When this text was transformed to numbers, it becomes like Table 1. 

Table 1. Number Transformation of the Plaintext 

O H E A V Y D E E D I T H 
14 7 4 0 21 24 3 4 4 3 8 19 7 
A D B E E N S O W I T H U 
0 3 1 4 4 13 18 14 22 8 19 7 20 
S H A D W E B E E N T H E 
18 7 0 3 22 4 1 4 4 13 19 7 4 
R E H I S L I B E R T Y I 
17 4 7 8 18 11 8 1 4 17 19 24 8 
S F U L L O F T H R E A T 
18 5 20 11 11 14 5 19 7 17 4 0 19 
S T O A L L T O Y O U Y O 
18 19 14 0 1 11 19 14 24 14 20 24 14 
U Y O U R S E L F T O U S 
20 24 14 20 17 18 4 11 5 19 14 20 18 
T O E V E R Y O N E A L A 
19 14 4 21 4 17 24 14 13 4 0 11 0 
S H O W S H A L L B L O O 
18 7 14 22 18 7 0 11 11 1 11 14 14 
D Y D E E D B E A N S W E 
3 24 3 4 4 3 1 4 0 13 18 22 4 
R D I T W I L L B E L A I 
17 3 8 19 22 8 11 11 1 4 11 0 8 
D T O U S W H O S E P R O 
3 19 14 20 18 22 7 14 18 4 15 17 14 
V I D E N C E S H O U L D 
21 8 3 4 13 2 4 18 7 14 20 11 3 
H A V E K E P T S H O R T 
7 0 21 4 10 4 15 19 18 7 14 17 19 
R E S T R A I N D A N D O 
17 4 18 19 17 0 8 13 3 0 13 3 14 
U T O H A U N T T H I S M 
20 19 14 7 0 20 13 19 19 7 8 18 12 
A D Y O U N G M A N B U T 
0 3 24 14 20 13 6 12 0 13 1 20 19 
S O M U C H W A S O U R L 
18 14 12 20 2 7 22 0 18 14 20 17 11 
O V E W E W O U L D N O T 
14 21 4 22 4 22 14 20 11 3 13 14 19 
U N D E R S T A N D W H A 
20 13 3 4 17 18 19 0 13 3 22 7 0 
T W A S M O S T F I T B U 
19 22 0 18 12 14 18 19 5 8 19 1 20 
T L I K E T H E O W N E R 
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19 11 8 10 4 19 7 4 14 22 13 4 17 
O F A F O U L D I S E A S 
14 5 0 5 14 20 11 3 8 18 4 0 18 
E T O K E E P I T F R O M 
4 19 14 10 4 4 15 8 19 5 17 14 12 
D I V U L G I N G L E T I 
3 8 21 20 11 6 8 13 6 11 4 19 8 
T F E E D E V E N O N T H 
19 5 4 4 3 4 21 4 13 14 13 19 7 
E P I T H O F L I F E W H 
4 15 8 19 7 14 5 11 8 5 4 22 7 
E R E I S H E G O N E   
4 17 4 8 18 7 4 6 14 13 4   

 
According to this table, inputs become as Table 2.  

Table 2: Input Table 

14 7 4 0 21 24 3 4 4 3 8 19 7 
0 3 1 4 4 13 18 14 22 8 19 7 20 
18 7 0 3 22 4 1 4 4 13 19 7 4 
17 4 7 8 18 11 8 1 4 17 19 24 8 
18 5 20 11 11 14 5 19 7 17 4 0 19 
18 19 14 0 1 11 19 14 24 14 20 24 14 
20 24 14 20 17 18 4 11 5 19 14 20 18 
19 14 4 21 4 17 24 14 13 4 0 11 0 
18 7 14 22 18 7 0 11 11 1 11 14 14 
3 24 3 4 4 3 1 4 0 13 18 22 4 
17 3 8 19 22 8 11 11 1 4 11 0 8 
3 19 14 20 18 22 7 14 18 4 15 17 14 
21 8 3 4 13 2 4 18 7 14 20 11 3 
7 0 21 4 10 4 15 19 18 7 14 17 19 
17 4 18 19 17 0 8 13 3 0 13 3 14 
20 19 14 7 0 20 13 19 19 7 8 18 12 
0 3 24 14 20 13 6 12 0 13 1 20 19 
18 14 12 20 2 7 22 0 18 14 20 17 11 
14 21 4 22 4 22 14 20 11 3 13 14 19 
20 13 3 4 17 18 19 0 13 3 22 7 0 
19 22 0 18 12 14 18 19 5 8 19 1 20 
19 11 8 10 4 19 7 4 14 22 13 4 17 
14 5 0 5 14 20 11 3 8 18 4 0 18 
4 19 14 10 4 4 15 8 19 5 17 14 12 
3 8 21 20 11 6 8 13 6 11 4 19 8 
19 5 4 4 3 4 21 4 13 14 13 19 7 
4 15 8 19 7 14 5 11 8 5 4 22 7 
4 17 4 8 18 7 4 6 14 13 4   

 

There are 28 rows in total. The key numbers are 17, 4, 9, 11, 2, 22, 9, 

14, 6, 5, 20, 18, 11, 15, 20, 8, 10, 4, 15, 9, 2, 8, 3, 25, 20, 11, 7 and 6 for 

the 28 rows respectively. These numbers were chosen randomly. So, the 

ciphertext is calculated as given below (Table 3). 
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Table 3: Ciphertext 

 

1104



Input vector is given in Table 4: 

Table 4: Input Vector 

31 24 21 17 38 41 20 21 21 20 25 36 24 
4 7 5 8 8 17 22 18 26 12 23 11 24 
27 16 9 12 31 13 10 13 13 22 28 16 13 
28 15 18 19 29 22 19 12 15 28 30 35 19 
20 7 22 13 13 16 7 21 9 19 6 2 21 
40 41 36 22 23 33 41 36 46 36 42 46 36 
29 33 23 29 26 27 13 20 14 28 23 29 27 
33 28 28 35 18 31 38 28 27 18 14 25 14 
24 13 20 28 24 13 6 17 17 7 17 20 20 
8 29 8 9 9 8 6 9 5 18 23 27 9 
37 23 28 390 42 28 31 31 21 24 31 20 28 
21 37 32 38 36 40 25 32 36 22 33 35 32 
32 19 14 15 24 13 15 29 18 25 31 22 14 
22 15 36 19 25 19 30 34 33 22 29 32 34 
37 24 38 39 37 20 28 33 23 20 33 23 34 
28 27 22 15 8 28 21 27 27 15 16 26 20 
10 13 34 24 30 23 16 22 10 23 11 30 29 
22 18 16 24 6 11 26 4 22 18 24 21 15 
29 36 19 37 19 37 29 35 26 18 28 29 34 
29 22 12 13 26 27 28 9 22 12 31 16 9 
21 24 2 20 14 26 20 21 7 10 21 3 22 
27 19 16 18 12 27 15 12 22 30 21 12 25 
17 8 3 8 17 23 14 6 11 21 7 3 21 
29 44 39 35 29 29 40 33 44 30 42 39 37 
23 28 41 40 31 26 28 23 26 31 24 39 28 
30 16 15 15 14 15 32 15 24 25 24 30 18 
11 22 15 26 14 21 12 18 15 12 11 29 14 
10 23 10 14 24 13 10 12 20 19 10   

 
Real and estimated values are given in Table 5: 

Table 5: Real and Estimated Values 
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The neural network toolbox which is used in this study was given in 

Figure 2. 

 
 

Figure 2: MATLAB Neural Network Toolbox  

 
The neural network structure used in the study is given in Figure 3. 
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Figure 3: Neural network structure 
 

 
The regression coefficients of the neural network structure is given in 
Figure 4. As it can be easily seen from the figure, the coefficients are 
very close to 1 that means the estimation process is successful. 
 

 
Figure 4:  Regression Coefficients of Neural Network 

 
 
 
 

 
4. Conclusion 
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In this study, a passage from Hamlet Original Text: Act 4, Scene 1 is 

encrypted by using the Shift Cipher algorithm with various keys and the 

keys are estimated with neural networks with the help plaintext and 

ciphertext. With the simulation results, it’s seen that neural networks can 

be used for estimating encryption keys. 
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Abstract. This is a twofold paper, firstly aiming to apply a method for the calculation of 

healthy life expectancy to the well-known BRIICS countries. This method is based on the 

μx distribution of a full life table. However, for many countries of the world such data is 
virtually absent or problematic, and in reality, only available in the form of an abridged 
life table. Thus, a method for expanding these life tables into full ones was presented. 
This method is used by the MORTPAK software of the United Nations. It was found that 
the use of this application was quite problematic for our purposes. On the other hand, 
the μx based approach seems to be very efficient in calculating the temporal trends and 
levels of healthy life expectancy, given that the quality of data is good. 
Keywords: life expectancy at birth, healthy life expectancy, MORTPAK, BRIICS. 

 

 

1  Introduction 
 

It was a long ago when scientists from different scientific fields tried to study 

the health of a population. Among the first was Chiang [1], who introduced an 

“Index of health”, based on data from the Canadian Sickness Survey, 1950-

1951. Others used life table techniques, like Sanders [10] who tried to construct 

tables of “effective life years”, as a measure of the current health of the 

population based on mortality and morbidity rates. Sullivan [19] [20] calculated 

the expectation of life free of disability and the expectation of disability. 

Torrance [21] developed a health status index model for the determination of the 

amount of health improvement created by a health care program. In these 

methods, the combined use of mortality and survey data in order for the health 

status of a population to be estimated was very common.  

 

Today, one of the most important recent contributions to the problem of 

calculating the health status of a population is the one developed by the World 

Health Organization (WHO), which is based on the aforementioned Sullivan’s 

[20] approach. In this method population data on health and disability are 
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combined in a life table (WHO, [25]). For that the Global Burden of Disease 

Survey (GBD; [2] [6] [7]) is conducted aiming to quantify health loss from a 

high number of diseases, injuries and risk factors. However, as WHO notes, 

several limitations exist in this method, because of the lack of reliable data on 

mortality and morbidity and of the comparability of self-reported data from 

health interviews and the measurement of health-state preferences for such self-

reporting. 

 

In another, however very efficient, approach the stochastic theory is applied. 

Such a process is always described by a parent stochastic process and a 

boundary or barrier indicating a stopping condition for the process under 

consideration (see Lee and Whitmore [5]). In this case, human health is the 

stochastic and thus totally unpredictable process but a person dies when their 

health falls below a barrier. The problem then is how to model this process in 

order for the health status of a population to be calculated. Skiadas and Skiadas 

[13] [14] [15] [16] and Skiadas [11] have developed the relevant theory based 

only on life table data. In a series of publications Skiadas [11], Skiadas and 

Zafeiris [17] and Zafeiris and Skiadas [26] [27] have tested this theory and 

showed its validity in calculating the health status of a population or in 

providing accurate measurements for inter-population comparisons.  

 

Recently, another method was developed and is based on the force of mortality 

μx (see Skiadas and Zafeiris [18] Zafeiris and Skiadas [28] . 

 
Fig. 1. The mortality diagram 

 

 

This approach is based on a two parameters Gompertz-like model:  
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where (x) is the age and μ(x) the relevant mortality rate. T represents the age at 

which μ(x)=1 and b is a parameter expressing the curvature of μ(x). Then, the 

main idea is to divide the areas in the parallelogram OBAD, into two segments - 

one being the mortality effect and the other the healthy part of the population, an 

idea which has emerged from the First Exit Time Theory approach that was 

described above. Thus, the area Ex under the curve OCABO in the mortality 

diagram of Figure 1 is a measure of the mortality effect and can be estimated as 

follows:  
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Based on the equation above, it is proven that the loss of healthy life years 

LHLY can be estimated as LHLY=λ(b+1), where λ is a correction multiplier 

which can be set to 1 in order for different countries to be compared. 

Accordingly, healthy life expectancy (HLE) is LEB-LHLY, where LEB is life 

expectancy at birth.   

 

Then the problem of calculating healthy life expectancy with this method deals 

with the accuracy and precision of life table data. However, until now all the 

analyses done for such estimations are based on full life table data and in that 

way in cases in which such data are either problematic or absent, a usual 

phenomenon for many countries, this is not possible. The aim of this paper is to 

provide a method for estimating healthy life expectancy for such countries based 

on abridged life table data.  

 

2  Methods and Data 
 

Data come from the World’s Health Organization database (WHO, 

http://apps.who.int/gho/data) in the form of abridged life tables. These tables 

contain information for the age groups <1, 1-4 and for 5-years age intervals up 

to the age 100 which corresponds to the open-ended one. The analysis was done 

for the so-called BRIICS countries: Brazil, Russia, India, Indonesia, China and 

South Africa. They are rapid growth economies and their population represent 

almost 3 billion people, nearly half the world’s population (see 

http://www.oecd.org/tad/tradedev/globalisationandemergingeconomies.htm)/ 

 

In the analyses carried out in this paper two aspects need to be clarified further. 

First the method used for the estimation of healthy life expectancy and second 

how to expand the abridged life table into a full one.  

 

The first aspect was confronted with the μx based method which was described 

in the introductory section of this paper. Thus, the parameter b must be 
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estimated. It was found that an excellent estimation was made according to the 

following estimation:  

b=xmx/Σxmx 

where x is the age. 

 

 

The second aspect was confronted with the aid of the UNABR application of the 

MORTPAK (vers. 4.3) application for Windows, of the software created by the 

United Nations (UN Population division) for the needs of mortality analysis. 

This application is based on the Heligman-Pollard [3] formula as follows: 

 

1                          
   

      

 

where x is the age and B, C, D, E, F, G and H parameters that should be 

estimated. However, it must be noted that the Heligman-Pollard model has 

proven to be quite problematic in the fitting process of mortality data (see 

Kostaki [4] and Zafeiris and Kostaki [29]), however it was used here as it is a 

widely accepted software. 

 

3  Results 

 
The results of the analysis are seen in the diagrams 2-7. These results are also 

compared with several publications from the World Health Organization’s point 

of view, namely the World’s Health reports of 2000, 2001, 2002 and 2004 [22] 

[23] [24] and Salomon et al.[9] and Murray et al. [8] publications. The acronym 

used in that case is HALE, which also corresponds to healthy life expectancy as 

estimated by the method applied in the time of these publications.  

 

Such effort bears many complications. One springs from the fact that data used 

in this analysis are in their current and most revised form in comparison with 

data used for the previous publications. Thus, deviations are expected to be 

found because of that and also because of the differences in the methodologies 

used and have been revised several times in the past. Thus, the results of the 

analysis should be interpreted thoroughly. Also, the use of MORTPAK was 

quite problematic in many cases. For example, for the year 2005 in Russian 

males the expansion procedure of the abridged life table gave a life expectancy 

at birth of 81.68 years compared with 58.6 according to the estimations of the 

World Health Organization. But it is worth noting that the life expectancy at 

birth published by WHO never coincided with the estimations of MORTPAK 

software. 

 

A glimpse of such problems is given by the examination of data from Brazil, 

where significant deviances are found in the data used by WHO in the original 

publications of 2000 and 2004 and the data published currently in the web page 

of the organization. A general trend that describes these differences, as can be 
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judged by life expectancy at birth, is that they become larger for the first years 

of the study in both genders. Thus, the estimations of WHO and related 

scientists are based on old data. Instead in this paper, because we have used the 

most recent data for the calculations, healthy life expectancy is very close to the 

upper confidence interval of the published estimations (Figure 2).  

 

 

 

 

 
 

Fig. 2. HLE and HALE estimations, Brazil 
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Fig. 3. HLE and HALE estimations, Russia 

 
Population health seems to have increased almost linearly in Russia (Figure 3) 

in both genders and the methods compared seem to be in accordance, especially 

in males. It must also be noted that in Russia data revision is literally absent and 

the expansion software worked pretty well.  
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Fig. 4. HLE and HALE estimations, India 

 
In India (Figure 4), the revision of data led to about +2 years increase in life 

expectancy for the majority of the calendar years studied, while in females it 

was almost +2 years for the older calendar years and less than 0.6 for the rest. 

The expanding procedure, concerning life expectancy at birth worked 

excellently, as the differences between the published by WHO results and those 

calculated by MORTPAK were less than 0.1 years for the majority of the 

calendar years studied. Healthy life expectancy, as calculated in this paper, were 

very close to the upper limit of the estimations of the World Health 

Organization, fact that can be attributed to the revised data used in this paper. 
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Fig. 5. HLE and HALE estimations, Indonesia 
 

For Indonesia (Figure 5), data were revised mostly for the most recent years 

(almost -2 years in life expectancy). However, the expanding process led to an 

underestimation of life expectancy at birth from 0.4 to 2.1 years. In that scheme, 

the estimation of healthy life expectancy does not differ much among the 

methods. 
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Fig. 6. HLE and HALE estimations, China 

 

 
For the males from China (Figure 6) the revised life table data gave a life 

expectancy at birth which was 0.6-1.7 years lower than that calculated from the 

original data. On the contrary, life expectancy at birth from the expanding 

process was exactly the opposite. As a result, the healthy life expectancy 

calculated in this paper is almost the same estimated with the other methods. 

The same happened with females, though, healthy life expectancy in them is 

somewhat lower in the most recent years studied. 
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Finally, for South Africa (Figure 7) the published results by WHO and the other 

connected scientists have the peculiarity that HALE is increasing constantly 

during the 21
st
 century even though life expectancy at birth is low and remains 

almost unchanged in females and decreasing in males until 2005. Instead 

according to the methodology used in this paper, healthy life expectancy 

decreases up to 2005 and increases later following the temporal trends of life 

expectancy at birth.  

 

 

Conclusions 
 

A method of calculating healthy life expectancy was applied in the BRIICS 

countries, based on abridged life table data from the World Health Organization. 

However, because the μx based approach described in this paper can be applied 

only to full life table data, the original tables were expanded to full ones with 
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the aid of the UNABR application of the MORTPAK software, created by the 

Population Division of the United Nations. 

 

The analysis revealed that the software mentioned above is not very suitable for 

this purpose, as significant deviations were observed in life expectancy at birth 

as it was calculated by it in comparison with the published results of the World 

Health Organization. A further shortcoming was that the already published 

estimations of the World Health Organization and related agencies were made in 

old data, thus the ability of comparing the results of this analysis with the 

previous ones was problematic,  

 

It is seen then that the μx based approach is quite efficient in estimating the 

healthy life expectancy and its temporal trends, as it is based solely on life table 

data. In that way, it is totally costless and its only limitation springs from the 

quality of data. In any case, it seems that a more sensitive application is needed 

in order for abridged life table data to be expanded and used by this method.  
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Abstract. We consider a few classes of strong limit theorems for compound renewal
processes (random sums, randomly stopped sums) D(t) =

∑N(t)
i=1 Xi under various

assumptions on the renewal counting process N(t) and random variables {Xi, i ≥ 1}.
First of all we present sufficient conditions for strong (a.s.) approximation of D(t) by
a Wiener or α-stable Lévy process under various dependent and moment conditions
on summands, mainly focused on the cases of independent, φ-mixing and associated
r.v. On the next step the investigation of the rate of growth of the process D(t) and
it’s increments D(t+a(t))−D(t), when a(t) grows, is carried out. Useful applications
in risk theory are investigated; particularly, non-random bounds for the rate of growth
and fluctuations of the risk processes in classical Cramer-Lundberg and renewal Sparre
Andersen risk models are discussed as well as the case of risk models with stochastic
premiums.

Keywords: Compound Renewal Process, Random Sum, Limit Theorem, Strong
Approximation, Integral Tests, Queuing Theory, Risk Process.

1 Introduction

Let {Xi, i ≥ 1} be random variables (r.v.), S(t) =
∑[t]

i=1 Xi, t > 0, S(0) = 0. Also
suppose that {Zi, i ≥ 1} is a sequence of non-negative i.i.d.r.v., independent of {Xi},
with common distribution function (d.f.) F1(x), characteristic function (ch.f.) f1(u)
and EZ1 = 1/λ > 0,

Z(x) =

[x]∑
i=1

Zi, x > 0, Z(0) = 0

and define the renewal (counting) process

N(t) = inf{x ≥ 0 : Z(x) > t}.

Compound renewal processes (random sums, randomly stopped sums,
compound sums) are defined as

D(t) = S(N(t)) =

N(t)∑
i=1

Xi,

where r.v. {Xi, i ≥ 1} and renewal process N(t) are given above.

Limit theorems for D(t) =
∑N(t)

i=1 Xi became rather popular during last 20 years
or so ( mainly they deal with weak convergence). This topic is interesting not only
from theoretical point of view, but also due to numerous practical applications, since
mentioned processes often appear in useful applications in queuing theory (accumu-
lated workload input into queuing system in time interval (0,t)), in risk theory (total
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claim amount to insurance company up to time t), in financial mathematics (total
market price change up to time t) and in certain statistical procedures. The most
popular example is compound Poisson process, when N(t) is a a homogeneous Poisson
process.

This paper presents a few classes of strong limit theorems for compound renewal
processes (random sums) which summarize authors previous results obtained during
last five years. The first class is a strong invariance principle (SIP), other terms are
strong approximation or almost sure approximation.

Definition. We say that a random process {D(t), t ≥ 0} admits strong appro-
ximation by the random process {η(t), t ≥ 0} if D(t) (or stochastically equivalent
D∗(t)) can be constructed on the rich enough probability space together with η(t) in
such a way that a.s.

|D(t)− η(t)| = o(r(t)) or O(r(t)) as t → ∞, (1)

where approximating error (error term ) r(.) is a non-random function.
While week invariance principle provides the convergence of distributions, the

strong invariance principle describes how “small” can be the difference between
trajectories of D(t) and approximating process η(t).

Concrete assumptions on {Xi, i ≥ 1} and {Zi, i ≥ 1} clear up the type of approx-
imating process and the form of error term. Below we mainly focused on the case of
i.i.d.r.v. {Xi} , as well as on φ-mixing and associated summands and present some
general results concerning sufficient conditions for strong approximation of D(t) by a
Wiener or α-stable Lévy process. Corresponding proofs are based on the rather gen-
eral theorems about the strong approximation of superposition of càd-làg processes,
not obligatory connected with partial sums, Zinchenko ([13], [14]).

SIP-type theorems themselves can serve as a source of a number of interesting
strong limit results for compound renewal processes: really, using (1) with appropriate
error term one can easily transfer the results about the asymptotic behavior of the
Wiener or α-stable Lévy process on the asymptotic behavior of random sums. Thus,
the second class of limit theorems deal with the rate of growth of D(T ) and it’s
increments. For instance, a number of integral tests for investigation the rate of
growth of the process D(t) and it’s increments D(t+ a(t))−D(t), when a(t) grows,
are proposed. As a consequence various modifications of the LIL and Erdös-Rényi-
Csörgő-Révész -type strong law of large numbers (SLLN) are obtained.

2 SIP for compound renewal processes (random sums)

1. Independent summands. Next three theorems (Zinchenko[13], [14]) present
sufficient conditions on independent summands {Xi} and inter-occurrence intervals
{Zi}, which provide a.s. approximation of the random sums of i.i.d.r.v. with finite
or infinite variance and clear up the type of approximating process and the form of
error term in this case.

More precise, suppose that {Xi, i ≥ 1} are i.i.d.r.v., with common distribution
function (d.f.) F (x), characteristic function (ch.f.) f(u), EX1 = m, V arX1 = σ2 if
E|X1|2 < ∞.

Theorem 1. (i) Let E|X1|p1 < ∞, E|Z1|p2 < ∞, p = min{p1, p2} > 2, then {Xi}
and N(t) can be constructed on the same probability space together with a standard
Wiener process {W (t), t ≥ 0} in such a way that a.s.

sup
0≤t≤T

|S(N(t))− λmt− νW (t)| = o(T 1/p), ν2 = σ2λ+m2τ2λ3; (2)
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(ii) if p = 2 then right side of (12) is o(T ln lnT )1/2;
(iii) if E exp(uX1) < ∞, E exp(uZ1) < ∞ for all u ∈ (0, uo), then right-hand side of
(2) is O(lnT ).

Next suppose that {Xi} are attracted to α-stable law with 1 < α < 2, |β| ≤ 1,
then approximating process for S(t) is a stable process Yα(t) (condition α > 1 is
needed to have a finite mean). Below we use following

Assumption (C) : there are a1 > 0, a2 > 0 and l > α such that for |u| < a1

|f(u)− gα,β(u)| < a2|u|l, (3)

where f(u) is a ch.f. of (X1 − EX1) if 1 < α < 2 and ch.f. of X1 if 0 < α ≤ 1,
gα,β(u) is a ch.f. of the stable law.

Assumption (C) not only provides normal attraction of {Xi, i ≥ 1} to the stable
law Gα,β(x), but also leads to the rather “good” error term q(t) = t1/α−ϱ, ϱ > 0, in
SIP for usual partial sums S(t).

Theorem 2. Let {Xi} satisfy (C) with 1 < α < 2, |β| ≤ 1, EZ2
1 < ∞. Then {Xi},

{Zi}, N(t) can be defined together with α-stable process Yα(t) = Yα,β(t), t ≥ 0, so
that a.s.

sup
0≤t≤T

∣∣S(N(t))−mλt− Yα,β(λt)
∣∣ = o(T 1/α−ϱ1), ϱ1 ∈ (0, ρ0), (4)

for some ϱ0 = ϱ0(α, l) > 0 .

Corollary 1 (SIP for compound Poisson process). Theorems 1, 2 hold if N(t)
is a homogeneous Poisson process with intensity λ > 0, in this case ν2 = λEX2

1 .

Theorem 3. Let {Xi} satisfy (C) with 1 < α1 < 2 and {Zi} satisfy (C) with 1 <
α2 < 2, α1 < α2, then

sup
0≤t≤T

∣∣S(N(t))−mλt− Yα1,β1(λt)
∣∣ = o(T 1/α1−ϱ2) a.s. (5)

for some ϱ2 = ϱ2(α1, l) > 0.

2. SIP for random sums of dependent r.v. Further development is con-
nected with dependent summands: martingales, weakly dependent r.v., mixing and
associated sequences. Below we present only few result in this area, connected with φ-
mixing and associated summands; more results on this topic as well as detail rigorous
proofs and wide bibliography can be find in the author’s previous work [15].

Throughout this Section, unless otherwise stated, we suppose that inter-occurrence
time intervals {Zi} for renewal process N(t) have finite moments E|Z1|p < ∞ of order
p > 2.

2.1. φ-mixing sequences. Given r.v. {Xi, i ≥ 1}, let F b
a denote the σ-field

generated by Xa, Xa+1, . . . , Xb, a < b < ∞, and F∞
b – the σ-field generated by

Xb, Xb+1, . . . .
Definition. Sequence {Xi, i ≥ 1} is said to be φ-mixing if there exist a sequence

{φ(n)} of real numbers, φ(n) ↓ 0 as n → ∞, such that for each t ≥ 1, n > 0, A ∈ F t
1 ,

B ∈ F∞
t+n

|P (AB)− P (A)P (B)| ≤ φ(n)P (A) (6)
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Theorem 4. Let {Xi, i ≥ 1} be strictly stationary φ-mixing sequence with EX1 = m,
E|X1|2+δ < ∞. Suppose

∞∑
n=1

ϕ1/2(n) < ∞ (7)

and

0 < lim
n→∞

n−1E

(
n∑

i=1

(Xi −m)

)2

= σ2
1 < ∞. (8)

Then {Xi} and N(t) can be constructed on the same probability space together with
a Wiener process {W (t), t ≥ 0} in such a way that a.s.

sup
0≤t≤T

|S(N(t))−mtλ− νW (t)| = O(T 1/2−ϑ1), ν2 = σ2
1λ+m2τ2λ3 (9)

for some ϑ1 = ϑ1(δ, p)

2.2. Associated summands.

Definition. R.v. X1, . . . , Xn are associated, if for any two coordinate-wise
nondecreasing functions f, g : Rn → R1,

Cov
(
f(X1, . . . , Xn), g(X1, . . . , Xn)

)
≥ 0

whenever the covariance is defined. A sequence {Xi, i ≥ 1} is associated, if every
finite sub-collection is associated.

A lot of interesting limit theorems for partial sums of associated summands are
presented by Bulinski and Shashkin [1], Yu [17]

Theorem 5. Let {Xi, i ≥ 1} be a strictly stationary associated sequence, EX1 = m.
Suppose that E|X1|2+δ < ∞ for some δ > 0 and Cox-Grimmett coefficient

u(n) = sup
k≥1

∑
j:|j−k|≥n

Cov(XjXk) = O(e−θn) (10)

for some θ > 0, inter-occurrence intervals {Zi, i ≥ 1} are i.i.d.r.v. with 0 < EZ1 =
1/λ < ∞, τ2 = V arZ1 < ∞. Denote

E(X1 −m)2 + 2
∑
i≥1

E(X1 −m)(Xi −m) = σ2
2 > 0. (11)

Then {Xi} and N(t) can be constructed on the same probability space together with
a Wiener process {W (t), t ≥ 0} in such a way that a.s.

sup
0≤t≤T

|S(N(t))−mtλ− νW (t)| = O(ϱ(T )), ν2 = σ2
2λ+m2τ2λ3 (12)

where error term is O(ϱ(T )) = O(T 1/2−ϑ2) for some ϑ2 = ϑ2(δ, p), when E|Z1|p < ∞
for p > 2, and error term is o((T ln lnT )1/2), if Z1 has only second moment.

Corollary 2 (SIP for Poisson random sums). Theorems 4, 5 hold if N(t) is a
homogeneous Poisson process with intensity λ > 0.

1128



3 SIP and rate of growth of compound renewal
processes (random sums)

As it was already mentioned, SIP is a nice background for further investigation of
the asymptotic behavior of compound renewal processes. Using SIP with appropriate
error term one can easily extend the results about the asymptotic behavior of ap-
proximating Wiener or stable Levy process on the rate of growth of D(t), when D(t)
admits a.s. approximation by one of the mentioned above processes. Formalizing this
idea and extending the approach due to Philipp and Stout[9], we formulate rather
general theorems (not obligatory connected with random sums). We start with the
case, when D(t) admits a.s. approximation by a standard Wiener process.

Definition. Function f(t) is an upper function for the process X(t), t → ∞,
if P {lim supt→∞ X(t)/f(t) ≤ 1} = 1 and f(t) is a lower function for X(t), if
P {lim supt→∞ X(t)/f(t) ≥ 1} = 1.

Theorem 6. Suppose that random process D(t) admits a.s. approximation by a stan-
dard Wiener process W (t) with an error term O(t1/p), p > 2, i.e.

sup
0≤t≤T

|D(t)−Mt− νW (t)| = O(T 1/p) a.s. , M ∈ R1, ν > 0, (13)

then function f(t) = νt1/2h(t), h(t) ↑ ∞, ν > 0, will be an upper function for centered
process (D(t)−Mt), if

I1(h) =

∫ ∞

1

t−1h(t) exp{−h2(t)/2t}dt < ∞,

and it will be a lower one, if I1(h) = ∞.

Theorem 7. If random process D(t) admits a.s. approximation by a standard Wiener
process W (t) with an error term O(t1/p), p > 2, then a.s.

lim sup
t→∞

|D(t)−Mt|√
2t ln ln t

= ν. (14)

The proofs of these theorems easily follows from the famous Kolmogorov-Petrovski
test and classical LIL for a Wiener process and form of error term in (13). For details
see Zinchenko ([13] - [16]). Similarly, Chung’s LIL for Wiener process obviously
provides

Theorem 8. Let D(t) be as in previous Theorem, then a.s.

lim inf
T→∞

(
8 ln lnT

π2T

)1/2

sup
0≤t≤T

|D(t)−MT | = ν. (15)

Now consider the case of i.i.d. summands. Obviously Theorems 6 – 8 immedi-
ately yield following statements:

Corollary 3. Let E|X1|p1 < ∞, E|Z1|p2 < ∞ for some p1 > 2, p2 > 2, then
f(t) = νt1/2h(t), h(t) ↑ ∞ will be an upper function for D(t) , if

I2(h) =

∫ ∞

1

t−1h(t) exp{−h2(t)/2}dt < ∞

and lower function. if I2(h) = ∞.
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Corollary 4. (Classical LIL for random sums of i.i.d.r.v.). Let {Xi, i ≥ 1} and
{Zi, i ≥ 1} be independent sequences of i.i.d.r.v., EX1 = m, 0 < EZ1 = 1/λ < ∞,
σ2 = V arX1 < ∞, τ2 = V arZ1 < ∞. Then a.s.

lim sup
t→∞

|S(N(t))−mλt|√
2t ln ln t

= ν, ν2 = λσ2 + λ3m2τ2. (16)

Corollary 5. (Chung’s LIL for random sums). Let {Xi} and {Zi} be as in
Corollary 4, then a.s.

lim inf
t→∞

(
8 ln lnT

π2T

)1/2

sup
0≤t≤T

|S(N(t))−mλt| = ν, ν2 = λσ2 + λ3m2τ2. (17)

Since random sums S(N(t)) of dependent r.v., introduced in sub-sections 2.1
and 2.2 also satisfy (13) with M = λm, ν2 = σ2

i λ+m2τ2λ3, i = 1, 2, 1/p = (1/2)−ϑ
for some ϑ > 0, Theorems 6– 8 yield following Corollaries:

Corollary 6 (Classical LIL for random sums, associated summands). Let
{Zi} be i.i.d.r.v. with 0 < EZ1 = 1/λ < ∞, τ2 = V arZ1 < ∞, {Xi} constitute the
strictly stationary associated sequence with mean EX1 = m and covariance, satisfying
sufficient conditions for SIP (Theorem 5), then a.s.

lim sup
t→∞

|S(N(t))−mλt|√
2t ln ln t

= ν, ν2 = λσ2
2 + λ3m2τ2. (18)

Corollary 7 (Classical LIL for random sums, ϕ-mixing summands). State-
ment analogous to (18) holds with corresponding σ and ν for strictly stationary ϕ-
mixing summands satisfying all conditions of Theorem 4.

On the other hand, when independent summands are attracted to the stable
distribution Gα,β , which is not concentrated on the half of the axe, from Theorem 2
and results for a stable processes (due to Donsker and Varadhan) follows

Corollary 8. Let {Xi, i ≥ 1} satisfy (C) with 1 < α < 2 and {Zi, i ≥ 1} be as in
Corollary 4, then a.s.

lim inf
T→∞

(
ln lnT

T

)1/α

sup
0≤t≤T

|D(t)−mλt| = Cα,βλ
1/α. (19)

When summands {Xi, i ≥ 1} are attracted to the asymmetric stable law Gα,−1,
then the approximating process for D(t) = S(N(t)) is a stable process Yα,−1(t) with-
out positive jumps, whose rate of growth can be successfully investigated with the
help of certain integral test. Combining this fact with the SIP-type Theorem 2 or
Theorem 3, we get

Theorem 9. Let {Xi, i ≥ 1} satisfy (C) with 1 < α1 < 2, β = −1 and EZ2
1 < ∞

or {Zi, i ≥ 1} satisfy (C) with 1 < α2 < 2, α1 < α2, |β| ≤ 1. Then f(t) = t1/αh(t),
where regular h(t) ↑ ∞, will be an upper function for D(t), if

I3(h) =

∫ ∞

1

t−1h−θ1/2(t) exp{−B1h
θ(t)}dt < ∞,

where

B1 = B(α1) = (α1 − 1)α−θ1
1 | cos(πα1/2)|1/(α1−1), θ1 = α1/(α1 − 1), (20)

and f(t) will be a lower function if I3(h) = ∞.
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As a consequence we easily obtain following modification of the LIL.

Corollary 9. Let {Xi, i ≥ 1} satisfy (C) with 1 < α < 2, β = −1. Assume that
EZ2

1 < ∞. Then a.s.

lim sup
t→∞

S(N(t))−mλt

t1/α(B−1 ln ln t)1/θ
= λ1/α, (21)

B = B(α) = (α− 1)α−θ| cos(πα/2)|1/(α−1), θ = α/(α− 1). (22)

Corollary 10. Corollaries 3 – 9 are true when N(t) is a homogeneous Poisson pro-
cess with intensity λ > 0.

4 How big are increments of the random sums?

Partial answer on this question also can be obtained with the help of the SIP-type
results for compound renewal processes (as it will be demonstrated below). More
precisely, we consider increments D(T + aT ) − D(T ) = S(N(T + aT )) − S(N(T ))
and study its’ asymptotics, when aT grows as T → ∞, but not faster then T . A
number of results in this area (but only for independent summands) were obtained
by Zinchenko and Safonova[10], who proved various modifications of Erdös-Rényi-
Csörgő-Révész law [3] for increments of random sums using appropriate SIP-type
results. Remarkable progress in studying the magnitude of increments of compound
renewal processes was achieved by Frolov[6], Martikainen and Frolov[8] with the help
of other methods. The case of dependent summands was studied in [16], where the
detail proofs of the following theorems are presented. Notice that assumptions on
{Xi, i ≥ 1} and {Zi, i ≥ 1}, which determine the form of approximating process and
error term, have impact on the possible length of intervals aT under consideration.

4.1. Summands with finite variance. We start with the case of i.i.d. r.v.
with ”light tails” , when {Xi} and {Zi} satisfy Cramer’s condition. In this case the
approximating process is a standard Wiener process and error is the smallest, i.e.
O(lnT ), so aT may increase in a slowest rate.

Theorem 10. Let {Xi, i ≥ 1} and {Zi, i ≥ 1} be independent sequences of i.i.d.r.v.,
EX1 = m, varX1 = σ2, EZ1 = 1/λ > 0, varZ1 = τ2,

E exp(uX1) < ∞, E exp(uZ1) < ∞, as |u| < u0, u0 > 0, (23)

function aT , T ≥ 0 satisfies following conditions: 0 < aT < T and T/aT does not
decrease in T . Also assume that

aT / lnT → ∞ as T → ∞. (24)

Then a.s.

lim sup
T→∞

|D(T + aT )−D(T )−mλaT |
γ(T )

= ν, (25)

where ν2 = λσ2 + λ3m2τ2, γ(T ) = {2aT (ln lnT + lnT/aT )}1/2.

For concrete aT = T ρ, 0 < ρ < 1 or aT = lnT ρ, ρ > 1 we have:
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Corollary 11. Let {Xi, i ≥ 1} and {Zi, i ≥ 1} be the same as in Theorem 10. Then
a.s.

lim supT→∞
|D(T + T ρ)−D(T )−mλT ρ|

(2(1− ρ)T ρ lnT )1/2
= ν, ρ < 1,

lim supT→∞
|D(T + (lnT )ρ)−D(T )−mλ(lnT )ρ|(

2 ln(ρ+1) T )
)1/2 = ν, ρ > 1.

The weaker moment conditions lead to more restrictive conditions on the rate of
growth of aT .

Theorem 11. Let {Xi, i ≥ 1}, {Zi, i ≥ 1} and aT satisfy all conditions of previous
theorem with following assumptions used instead of (26)

EXp1
1 < ∞, p1 > 2, EZp2

1 < ∞, p2 > 2.

Then (28) is true if aT > c1T
2/p/ lnT for some c1 > 0, p = min{p1, p2}.

Auxiliary SIP-type theorems are also useful in the case of dependent summands
(discussed in Section 2). For example, Theorem 5 or Corollary 2 yield

Theorem 12. Let N(T ) be homogeneous Poisson process with intensity λ > 0 and
let {Xi} be the strictly stationary associated sequence with mean EX1 = m and co-
variance, satisfying sufficient conditions for SIP (Theorem 5). Suppose that function
aT , T ≥ 0 satisfies all conditions of Theorem 10 and aT > c1T

2/p/ lnT for some
c1 > 0, 1/p = (1/2)− ϑ, ϑ > 0. Then a.s.

lim sup
T→∞

|S(N(T + aT ))− S(N(T ))−mλaT |
γ(T )

= ν, (26)

where ν2 = λ(σ2
2 +m2), γ(T ) = {2aT (ln lnT + lnT/aT )}1/2.

4.2. Summands attracted to the stable law. When i.i.d.r.v. {Xi, i ≥ 1} are
attracted to an asymmetric stable we have

Theorem 13. Suppose that {Xi, i ≥ 1} satisfy (C) with 1 < α < 2, β = −1, EZ2
1 <

∞, EX1 = m, EZ1 = 1/λ > 0. Function aT is non-decreasing, 0 < aT < T , T/aT is
also non-decreasing and provides dT

−1T 1/α−ϱ2 → 0 for certain ϱ2 > 0 determined by
the error term in SIP-type Theorem 2. Then a.s.

lim sup
T→∞

D(T + aT )−D(T )−mλaT

dT
= λ1/α, (27)

where normalizing function dT = a
1/α
T {B−1(ln lnT+lnT/aT )}1/θ, constants B, θ are

defined in (20).

5 How small are increments of the random sums?

SIP-type results can help in solution of this problem too. For instance, combining
conclusions of Theorem 1 and corresponding facts for a Wiener process (Csörgő and
Révész[3]), we have following statement, which holds when summands {Xi} as well
as inter-occurrence times {Zi} satisfy the Cramer’s condition:

Corollary 12. Assume that i.i.d.r.v. {Xi, i ≥ 1} and {Zi, i ≥ 1} satisfy all condi-
tions of the Theorem 10, ν2 = λσ2 + λ3m2τ2and aT (lnT )

−3 → ∞ as t → ∞, then
a.s.

lim
T→∞

γ(T, aT ) inf
0≤t≤T−aT

sup
0≤s≤aT

|D(t+ s)−D(t)−mλaT | = ν. (28)
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6 Applications in risk theory

6.1. Sparre-Anderssen collective risk model. Within this model (rather popular
in the actuarial mathematics) the risk process, which describes the evolution of reserve
capital, is defined as

U(t) = u+ ct−
N(t)∑
i=1

Xi = u+ ct− S(N(t)), (29)

where: u ≥ 0 denotes an initial capital; c > 0 stands for the gross premium rate;
renewal (counting) process N(t) = inf{n ≥ 1 :

∑n
i=1 Zi > t} counts the number of

claims to insurance company in time interval [0,t]; positive i.i.d.r.v. {Zi, i ≥ 1} are
time intervals between claim arrivals; positive i.i.d.r.v.{Xi} with d.f. F (x) denote
claim sizes; the sequences {Xi, i ≥ 1} and {Zi, i ≥ 1} are independent; EX1 = m,
EZ1 = 1/λ > 0.

Classical Cramér-Lundberg risk model is model (29), where N(t) is a homogeneous
Poisson process with intensity λ > 0.

In the framework of collective risk model random sumD(t) =
∑N(t)

i=1 Xi = S(N(t))
can be interpreted as a total claim amount arising during time interval [0, t], and
increments

D(T + aT )−D(T ) =

N(T+aT )∑
i=N(T )+1

Xi

as claim amounts during the time interval [T, T + aT ].
Since process D(t) is a typical example of the compound renewal process ( com-

pound Poisson process in Cramér-Lundberg model), main results of the Sections 2 –
5 can be applied to investigation of the risk process U(t). Fist of all, Theorems 1 – 3
yield the SIP-type results for D(t) and U(t) under various assumptions on the claim
sizes {Xi, i ≥ 1} and inter-arrival times {Zi, i ≥ 1}.

For small claims and {Zi} satisfying Cramér’s condition, processes D(t) and U(t)
admit strong approximation by a Wiener process with the error term O(ln t); for
large claims with finite moments of order p > 2 the error term is o(t1/p), if p = 2
then error term is o((t ln ln t)1/2). For catastrophic events claims can be so large that
their variance is infinite. In this case we assume that {Xi} are in domain of normal
attraction of asymmetric stable law Gα,1 with 1 < α < 2, β = 1, and additionally
satisfy condition (C). Then by Theorems 2,3 an approximating process for D(t) is
α-stable process Yα,1 with 1 < α < 2, β = 1, and risk (reserve) process U(t) admits
a.s. approximation by α-stable process Yα,−1, 1 < α < 2, β = −1, which has only
negative jumps; the error term is presented in mentioned theorems.

The form of error term in SIP is “good” enough for investigation the rate of
growth of total claims and asymptotic behavior of the reserve process. Due to results
of Section 3 various modifications of the LIL for D(T ) can be obtained almost without
a proof. So, in the case of small claims (satisfying Cramér’s condition) or large
claims ( but with finite moments of order p ≥ 2) for large t we can a.s. indicate
upper/lower bounds for growth of total claim amounts D(t) as mλt±ν

√
2t ln ln t and

for reserve capital U(t) as u+ tρmλ± ν
√
2t ln ln t, where σ2 = V arX1, τ

2 = V arZ1,
ν2 = λσ2 + λ3m2τ2, ρ = (c− λm)/λm > 0 is a safety loading.

For large claims in domain of normal attraction of asymmetric stable law Gα,1

with 1 < α < 2, β = 1 (for instance, Pareto type r.v. with 1 < α < 2) Corollary 9 for
large t provides a.s. upper bound for the risk process

U(t) ≤ u+ ρmλt+ λ1/αt1/α(B−1 ln ln t)1/θ.

1133



SIP-type results also help to answer on the question: how large can be fluctuations
of the total claims/payments on the intervals whose length aT increases as T → ∞.
Indeed, under appropriate conditions on claim size distributions and for rather “large”
intervals aT (but growing not faster then T ) increments D(T + aT ) − D(T ) satisfy
variants of Erdös-Rényi-Csörgő-Révész LLN similarly to (25) or (27). More results
in this direction are presented in [12], [14].

Until recently, main known results concerning U(t) and D(t) were focused on the
case of independent claim sizes {Xi, i ≥ 1}. Our approach allows to study the case
of dependent claims too. Thus, certain results about strong approximation of the
risk process and approximation of ruin probabilities, bounds for rates of growth and
fluctuations of total claim amounts in the case of weakly φ-mixing and associated
r.v. (studied in Section 2) can be obtained similar to how it was done for indepen-
dent summands. Our general approach also gives a possibility to study also more
complicated risk models with stochastic premiums.

6.2. Risk process with stochastic premiums. Within the risk model with
stochastic premiums the risk process U(t), t ≥ 0, is defined as

U(t) = u+Q(t) = u+Π(t)− S(t) = u+

N1(t)∑
i=1

yi −
N(t)∑
i=1

xi, (30)

where: u ≥ 0 is an initial capital; point process N(t) models the number of claims
in the time interval [0, t]; positive r.v. {xi : i ≥ 1} are claim sizes; Ex1 = µ1;
point process N1(t) is interpreted as a number of polices bought during [0, t]; r.v.
{yi : i ≥ 1} stand for sizes of premiums paid for corresponding polices, Ey1 = m1.

We call U(t) (or Q(t)) the Cramér-Lundberg risk process with stochastic
premiums(CLSP) if N(t) and N1(t) are two independent Poisson processes with
intensities λ > 0 and λ1 > 0; {xi} and {yi} are two sequences of positive i.i.d.r.v.
independent of the Poisson processes and of each other with d.f. F (x) and G(x),
respectively, λ1Ey1 > λEx1.

This model, being a natural generalization of the classical Cramér -Lundberg
risk model, was studied by Zinchenko and Andrusiv [11]. Korolev et al. [7] present
an interesting example of using (30) for modeling the speculative activity of money
exchange point and optimization of its profit.

Notice that process Q(t) = Π(t)−S(t) is again a compound Poisson process with
intensity λ∗ = λ+λ1 and d.f. of the jumps G∗(x) = λ1

λ∗G(x)+ λ
λ∗F

∗(x), where F ∗(x)
is a d.f. of the random variable −x1. In the other words

Q(t) =

N∗(t)∑
i=1

ξi, (31)

where N∗(t) is homogeneous Poisson process with intensity λ∗ = λ+ λ1 and i.i.d.r.v.
ξi have d.f. G∗(x).

Thus, all results for compound Poisson process, obtained in Sections 2 – 5, are
applicable to Q(t). For instance, we have following SIP-type results:

Theorem 14 (SIP for CLSP, finite variance case). (I)If in model (30) both
premiums {yi} and claims {xi} have moments of order p > 2, then there is a standard
Wiener process {W (t), t ≥ 0} such that a.s.

sup
0≤t≤T

|Q(t)− (λ1m1 − λµ1)t− σ̃W (t)| = o(T 1/p), σ̃2 = λ1m2 + λµ2. (32)
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(II) If premiums {yi} and claims {xi} are light-tailed with finite moment generating
function in some positive neighborhood of zero, then a.s.

sup
0≤t≤T

|Q(t)− (λ1m1 − λµ1)t− σ̃W (t)| = O(log T ), (33)

Proof immediately follows from Corollary 1 since Q(t) is a compound Poisson
process (see (31)) with intensity λ∗ = λ+ λ1, whose jumps have mean ã

λ∗ = λ1
λ∗m1 −

λ
λ∗ µ1, and second moment σ̃2

λ∗ = λ1
λ∗m2 +

λ
λ∗ µ2.

For catastrophic accidents claims can be so large that they have infinite variance,
i.e. belong to the domain of attraction of a certain stable law. Thus, due to Theorem
2, for Cramér-Lundberg risk process with stochastic premiums we have:

Theorem 15 (SIP for CLSP, large claims attracted to α-stable law). Suppose
that claim sizes {xi} satisfy (C) with 1 < α < 2, β ∈ [−1, 1], premiums {yi} are
i.i.d.r.v. with finite variance, then a.s.∣∣Q(t)− (λ1m1 − λµ1)t− (λ+ λ1)

1/αYα,β(t)
∣∣ = o(t1/α−ϱ2), ρ2 ∈ (0, ρ0), (34)

for some ϱ0 = ϱ0(α, l) > 0.

On the next step we focus on investigation the rate of growth of risk process Q(t)
as t → ∞ and its incrementsQ(t+at)−Q(t) on intervals whose length at grows but not
faster than t. Again the key moments are representation of Q(t) as compound Poisson
process (31), Theorems 14, 15 and application of the results obtained in Sections 3–
5, namely, various modifications of the LIL and Erdös-Rényi-Csörgő-Révész law for
compound Poisson processes.

Corollary 13 ( LIL for CLSP). If in model (30) both premiums {yi} and claims
{xi} have moments of order p ≥ 2, then

lim sup
t→∞

|Q(t)− ãt|√
2t ln ln t

= σ̃, where ã = λ1m1 − λµ1, σ̃2 = λ1m2 + λµ2.

Next we shall consider the case when r.v. {xi, i ≥ 1} in CLSP-model (30) are
attracted to an asymmetric stable law Gα,1, but premiums have Ey2

1 < ∞. Theorem
9 and Corollary 9 yield following statement:

Corollary 14. Let {xi, i ≥ 1} satisfy condition (C) with 1 < α < 2, β = 1 and
Ey2

1 < ∞. Then a.s.

lim sup
t→∞

Q(t)− (λ1m1 − λµ1)t

t1/α(B−1 ln ln t)1/θ
= (λ+ λ1)

1/α,

where B = B(α) = (α− 1)α−θ| cos(πα/2)|1/(α−1), θ = α/(α− 1).

Corollary 15 ( Erdös-Rényi-Csörgő-Révész law for CLSP-model). Let in
CLSP-model claims {xi, i ≥ 1} and premiums {yi, i ≥ 1} be independent sequences
of i.i.d.r.v. with Ex1 = m, V arx1 = σ2, Ey1 = 1/λ > 0, V ary1 = τ2, and finite
moment generating functions

E exp(ux1) < ∞, E exp(uy1) < ∞ as |u| < u0, u0 > 0.

Assume that non-decreasing function aT , T ≥ 0, satisfies all conditions of Theorem
13, then a.s.

lim sup
T→∞

|Q(T + aT )−Q(T )− aT (λ1m1 − λµ1)|
γ(T )

= σ̃,

where γ(T ) = {2aT (ln lnT + lnT/aT )}1/2, σ̃2 = λ1m2 + λµ2.
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Remark. General Sip-type theorems give also the possibility to investigate more
general cases when {yi} and {xi} are sequences of dependent r.v., for example, asso-
ciated or weakly dependent, N(t) and N1(t) can be renewal processes, Cox processes,
ets. Partly, such problems were solved in [12].
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