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1. Introduction

Improving energy efficiency is commonly viewed as one of the key ways to mitigate greenhouse gas

emissions (IPCC, 2019; IEA, 2016). In political discussions, energy efficiency is sometimes seen as

a panacea for reducing energy consumption while simultaneously reducing the costs of production

and thereby ensuring green growth (European Commission, 2019; Ocasio Cortez, 2019; OECD,5

2015). However, efficiency gains that reduce the cost of energy services result in some rebound in

energy use, so that energy use savings are reduced or even completely eaten up. The rebound effect

measures the percentage of potential energy use savings that are not realized due to the responses of

economic agents to the energy efficiency gain. In this study, we empirically estimate this rebound

effect for four European countries and the United States, finding rebound effects that approach10

almost 100 % after two years.

The direct rebound effect describes the response of consumers and producers who use more energy

services as their cost falls (Sorrell and Dimitropoulos, 2008). There are also many follow-on effects

across the economy known as indirect rebound effects. For example, a cost-saving energy efficiency

gain for consumers will redirect saved income to other goods and services that also require energy15

in their production (Sorrell and Dimitropoulos, 2008). Furthermore, reduced demand for energy

may lower the price of energy resulting in further incentives to expand the use of energy services

(Gillingham et al., 2016). The new energy-efficient technology might even require more energy to

produce than the old technology did (Lange et al., 2021).

While direct rebound effects are comparatively well studied and are estimated to mostly range be-20

tween 10 % and 30 % in developed countries (Maxwell et al., 2013),1 fewer empirical studies estimate

indirect rebound effects (e.g. Freire-González, 2017; Chitnis et al., 2014; Wang and Nie, 2018), and

it is particularly challenging to estimate the economy-wide rebound effect, which encompasses both

direct and indirect rebound effects. The quantitative literature on the economy-wide rebound effect

can be divided into computational, accounting, and fully empirical approaches (Stern, 2020).25

Computational approaches, including partial equilibrium methods (e.g. Saunders, 2008) and com-

putable general equilibrium (CGE) models (e.g. Turner, 2009; Koesler, 2013; Rausch and Schwerin,

1Some studies find much larger effects for some specific activities. For instance, Moshiri and Aliyev (2017) estimate
that the rebound effect of energy efficiency in passenger car transportation is between 63 % and 96 % in Canada.
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2018), are most common. These structural models are theoretically consistent and can capture

a wide range of mechanisms. The estimated rebound effects from CGE models range from neg-

ative effects – indicating that energy use is reduced by more than the efficiency improvement –30

to “backfire” where energy use increases (Turner, 2009; Colmenares et al., 2020). The accounting

approach (Lin and Liu, 2012; Shao et al., 2014; Lin and Du, 2015; Zhang and Lin Lawell, 2017)

measures changes in energy efficiency by changes in energy intensity and assumes that rebound is

proportional to total factor productivity growth, neither of which is appropriate (Stern, 2020).

Prior to Bruns et al. (2021), only a few studies tried to fully econometrically estimate the economy-35

wide rebound effect using observed data and statistical methods (Adetutu et al., 2016; Orea et al.,

2015; Yan et al., 2019). These earlier studies do not allow GDP and the price of energy to change

in response to changes in energy efficiency. Such changes in GDP and the price of energy (and

also other relevant time series) may result in further changes in energy use, and ignoring these

dependencies will bias estimates of the economy-wide rebound effect.40

Recently, Bruns et al. (2021) proposed using a Structural Vector Autoregressive (SVAR) model

to estimate the economy-wide rebound effect. SVAR models are the workhorse of macroeconomic

time series analysis and consist of a small system of regression equations that model the statistical

dependence among the relevant time series (Kilian and Lütkepohl, 2017). In this framework, we

can identify exogenous changes in energy efficiency and measure the reaction of energy use to these45

shocks, taking into account the possibility that this reaction may be mediated by other variables

such as the price of energy and GDP. Using this approach, Bruns et al. (2021) estimate that the

economy-wide rebound effect for the US is about 100 %.

In this study, we extend the work of Bruns et al. (2021) in two directions. First, while the SVAR

approach provides powerful tools for estimating the responses of an economic system to exogenous50

forces, the presence of unobserved confounders may bias these estimates (Bernanke et al., 2005;

Bai and Ng, 2013; Favero et al., 2005). Accounting for unobserved confounders in macroeconomic

time series analysis is non-trivial, as the number of potential confounders is very large, while

the number of available observations is small. We use a Structural Factor-Augmented Vector

Autoregressive (S-FAVAR) model that, like SVAR models, estimates the relationship among several55

variables over time, but also augments the core model with the principal components of a rich set of

potential confounders (Bernanke et al., 2005). Specifically, our core model includes three variables:

3
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energy use, the real price of energy, and GDP. We obtain the additional factors from a set of

41 to 56 (depending on the country considered) economic time series. This approach helps to

comprehensively mitigate the threat of omitted-variable biases and to reduce the potential bias due60

to economic agents anticipating energy efficiency improvements (nonfundamental shocks). Second,

while Bruns et al. (2021) estimate a rebound effect of roughly 100 % for the US, it is important

to investigate whether the economy-wide rebound effect is similarly large in other major polluting

countries, or whether the dynamics differ due to differences in industrial structure, reactions to

the financial crisis, or countries’ energy mixes, among other factors. Here, we use the S-FAVAR65

approach to estimate economy-wide rebound effects in France, Germany, Italy, the UK, in addtiion

to the US.

Our analysis relies on the notion that changes in the economic system can be traced back to in-

dependent impulses, commonly referred to as “shocks” in the econometrics literature (Kilian and

Lütkepohl, 2017). We identify an energy efficiency shock by applying Independent Component Anal-70

ysis (ICA) to the residuals of a reduced-form Factor-Augmented Vector Autoregressive (FAVAR)

model. ICA finds the least dependent linear combinations of the residuals, which correspond to an

estimate of the independent shocks that jointly affect the observed variables. Based on this, we can

estimate the response over time of economy-wide energy use to an energy efficiency shock.

We find that the economy-wide rebound effect narrowly ranges between 78 % and 101 % after two75

years in France, Germany, Italy, the UK, and the US despite differences in their industrial structure

and energy mix and despite considering a large set of time series to reduce the risk of bias due to

omitted variables and anticipated shocks. This implies that policies to encourage energy efficiency

improvements may not be effective in reducing energy use in the long run, which would be at odds

with common green growth strategies.80

The remainder of the paper is organized as follows. Section 2 presents our empirical strategy by

explaining the different components of the S-FAVAR model and introducing the dataset. Empirical

results are discussed in Section 3. Finally, Section 4 summarizes and concludes.

4
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2. Empirical Approach

2.1. The Economy-Wide Rebound Effect85

We estimate the economy-wide rebound effect by identifying an energy efficiency shock, that is, an

independent and exogenous shock to economy-wide energy use that cannot be explained by any

other variable considered in the S-FAVAR model outlined in the subsequent sections, and by tracing

the dynamic response of energy use to this shock. Using the subscript i to denote the number of

periods since the energy efficiency improvement, the economy-wide rebound effect is given by:90

Ri = 1− Actual

Potential
= 1− ∆êi

εe1
(1)

where εe1 is the contemporaneous response of energy use to the energy efficiency shock, which

represents the potential “engineering” change in energy use, and ∆êi is the actual change in energy

use (Bruns et al., 2021). Notice that εe1 is by construction a negative number, while ∆êi measures

the response of energy use to the energy efficiency shock after i periods and can be any real number.

2.2. Structural Factor-Augmented Vector Autoregressive (S-FAVAR) model95

It would be desirable to consider all variables that potentially influence economy-wide energy use

and, therefore, potentially confound the estimate of the economy-wide rebound effect. However, the

analysis of intertemporal dependencies in a “data-rich” environment is problematic using standard

multivariate autoregression models, as the number of parameters to be estimated may rapidly

exceed the available observations. Augmenting a classical SVAR model with a small number of100

factors obtained from a large set of time series provides a remedy.

To characterize the effect of an energy efficiency shock on energy use, we assume that the state of

the economy is represented by a vector Ct, whose entries are both observed and latent variables. As

we are interested in estimating the response of energy use to an energy efficiency shock, we include

the following three core observable series: energy use, Et, GDP, Yt, and the price of energy, Pt.105

Moreover, we incorporate several latent factors, Ft, in the vector Ct that summarize the information

in a large set of macroeconomic indicators (see Section 2.3 for the estimation of these factors). The

dynamics of the common components are modeled by the following reduced-form FAVAR model:

5
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where

Ct =




Et

Yt

Pt

Ft




(2)

and φ(L) is a conformable lag polynomial of finite order. The error term, ut, is assumed to be i.i.d.

with mean zero and covariance matrix Σu.110

2.3. Factor augmentation

The factor model reduces a large matrix of time series data into a few latent factors. The following

equation relates the unobserved common factors, collected in the r× 1 vector Ft, and the vector of

m observed core variables Wt (in our case time series data on the price of energy, energy use and

GDP, so that m = 3) to an N × 1 vector of (observed) “informational” variables Zt (in our case 41115

to 56 time series, depending on the country analyzed):

Zt = ΛfFt +DWt + ζt, (3)

where Λf is an N × r matrix of factor loadings, D is a N ×m diagonal matrix, and ζt is a N × 1

vector of idiosyncratic residuals. Hence, changes in Zt are driven by the latent factors, Ft, the

observable time series, Wt, and idiosyncratic noise. We can collect the individual vectors for each

time period into the T ×N data matrix, Z = (Z1, Z2, . . . , ZT )′, the T ×m matrix of observables,120

W = (W1,W2, . . . ,WT )′, and the T ×r matrix of latent factors, F = (F1, F2, . . . , FT )′. We estimate

D, Λf , and F in two steps (Hwang, 2009):

1. Regress Zt on Wt, and compute the least squares estimates, D̂, and the residuals, Ût =

Zt − D̂Wt;

2. Estimate the first K − r principal components of Ût which represent the estimated latent125

factors.

Hence, the factor estimates can be specified as F̂ = Û ′Λf , where Û = (Û1, . . . , ÛT )′ and the columns

6
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of Λf are the eigenvectors corresponding to the largest eigenvalues of Û ′Û . This ensures that the

loading matrix has orthonormal columns and can be identified.2 The resulting factors, Ft, are

included in the reduced-form FAVAR (2), which can be estimated using OLS, before identifying the130

structural representation.

2.4. Identification

After estimating the factors, the model in Equation (2) can be treated as a standard VAR. As

the residuals, ut, might be correlated across equations, we rewrite these innovations as a linear

combination of the underlying orthogonal structural disturbances, ηt. Rewriting Equation (2)135

results in the following structural model:


 Ft

Wt


 = φ(L)


 Ft−1

Wt−1


+Bηt (4)

where ηt has mean zero with covariance matrix Σ = I. The non-singular mixing matrix, B,

contemporaneously transmits the effects of the shocks to the dependent variables and specifies the

relations between the shocks and the reduced-form innovations, ut = Bηt with Σu = BB′.

We estimate the matrix B and so identify the shocks, using two different search methods. These use140

unsupervised statistical learning typical of machine learning research that fall within the class of

Independent Component Analysis (Comon, 1994). Both methods rely on two key assumptions about

the statistical properties of the vector of shocks: the shocks are assumed to be mutually statistically

independent and are distributed according to a (not necessarily specified) non-Gaussian distribution,

with at most one exception. The latter assumption can be easily checked indirectly by testing145

whether we can reject the Gaussianity of the reduced-form innovations, ut. The former assumption

cannot be tested but is in tune with the idea of finding the primitive exogenous forces that drive

the dynamics of the system, each of which is denoted by a particular economic characteristic not

shared with the other shocks.

The two ICA approaches we apply are distance covariance (dcov) (Matteson and Tsay, 2011)150

and non-Gaussian Maximum Likelihood (nGML) (Lanne et al., 2017), which have been recently

2See Kilian and Lütkepohl (2017) Table 16.1 or Bai and Ng (2013) for alternative sets of identification conditions
for factors and factor loadings.
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studied in the econometric literature in the context of SVAR models (Herwartz, 2018). Herwartz

et al. (2021) show that distance covariance is the most robust of various approaches to data-based

identification of SVARs, though nGML performs better if the shocks are actually t-distributed and

homoskedastic. To test the robustness of our results, we also compute the Choleski decomposition155

of the residual variance matrix, which gives similar results (see Table E.7 for a comparison of the

different rebound estimates).

ICA determines neither the sign nor the economic meaning of the shocks a priori. The columns

of the mixing matrix should be reordered and if necessary their sign changed to make them easier

to interpret economically (Gouriéroux et al., 2017; Moneta and Pallante, 2020).3 We solve this160

indeterminacy by assuming that, of the three empirically identified shocks, the energy efficiency

improvement should have the largest (in absolute value) contemporaneous effect on energy use.

This shock represents exogenous changes in energy use that are not explained by any of the other

variables considered in the model and, thus, we attribute them to changes in energy efficiency. The

effect of this shock on energy use is by definition negative, as we are interested in studying the165

effect of improvements in energy efficiency.

In our analysis, we extensively use the R package svars, which implements independence-based

identification (Lange et al., 2019).

2.5. Estimating the economy-wide rebound effect

The rebound effect is defined as the percentage of potential energy savings that are not realized (see170

Equation (1)). This can be estimated using the impulse-response function of energy with respect

to the energy efficiency shock.

Figure 1 shows an illustrative impulse-response function of energy use with respect to an energy-

specific shock. The initial or potential savings (εe1), indicated by the fall in energy use at time 0,

decrease over time and energy use even exceeds, in this particular illustration, the pre-shock level175

leading to negative actual savings (∆ε̂i) and, therefore, to backfire.

3In the language of matrix analysis, ICA identifies the impact matrix up to the right multiplication of a signed
permutation matrix, i.e. a matrix containing exactly one entry in each row and column equal to +1 or -1 and all
other entries equal to 0. ICA leaves undetermined also the scale of the shocks, but these are typically normalized to
have unit variance.

8
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Figure 1: Illustration of potential energy savings (PES) and actual energy savings (AES) depicting an
illustrative impulse-response function of energy use with respect to the energy efficiency shock (red curve) and its
confidence interval (gray area).

The estimation of the rebound effect based on an S-FAVAR model addresses the omitted variables

problem that is common in SVAR analysis by including the information from a large set of variables.

Furthermore, the S-FAVAR model allows us to tackle a related but subtler problem, which is typical

of standard (small scale) SVAR models and may bias the estimation of the rebound effect. In SVAR180

analysis, structural shocks are identified from a linear transformation of VAR prediction errors (i.e.

reduced-form residuals). But it is conceivable that these prediction errors do not accurately capture

the true prediction errors of the economic agents, because the latter rely on a larger information

set than that contained in the econometric model. This creates a mismatch between the (true)

data generating process shocks and the shocks of the SVAR model, which has been studied in the185

literature on so-called nonfundamental shocks (Kilian and Lütkepohl, 2017; Alessi et al., 2011).4 In

such a case, the shocks identified using an SVAR model may in fact be anticipated by the economic

agents. This would bias the estimates of the energy efficiency shock and the rebound effect. This

problem, and, more generally, the problem of nonfundamental shocks, can be ameliorated in S-

FAVAR analysis because the information set is much larger than in a standard SVAR analysis,190

and so it is more likely that it mirrors the information set that economic agents use to predict or

anticipate energy efficiency improvements.

However, there are two remaining caveats. First, the model does not capture rebound that may

4The name is due to the fact that the moving average representation of the VAR prediction errors is called the
fundamental representation. Nonfundamental shocks are shocks that cannot be recovered from this representation.
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happen contemporaneously with the efficiency improvement. 5 Bruns et al. (2021), however, explain

that the error due to this effect is smaller the closer the true rebound effect is to 100 %. Second, our195

rebound estimate describes only the response that can be attributed to energy-specific efficiency

improvements. The reason is that we assume that our energy efficiency shock is orthogonal to other

the shocks. Therefore, if labor- or capital-augmenting innovations are captured in the GDP shock

(or other shocks) and if these innovations are correlated with improvements in energy efficiency,

then these energy efficiency improvements will not be captured in the energy efficiency shock.200

2.6. Data

The main variables in our model are energy use, the price of energy, and economic output, mea-

sured by GDP. For the US, the data used in this article is the same as the data described in

Bruns et al. (2021) but captures a shorter time period. Compared to the US, monthly time series

data at the country level are still quite sparse for Europe. Therefore, we restrict our analysis to205

France, Germany, Italy, and the UK, as monthly data for these countries are available from Jan-

uary 2008 to September 2019, providing 141 observations. All data series were log-transformed and

deseasonalized using the seasonal package in R with the X-11 adjustment procedure.

Energy use: We measure energy use by gross inland consumption (GIC), which covers the amount

of energy that is needed to satisfy the total energy use of a country. Eurostat provides monthly210

energy data from January 2008 onwards for crude oil (without natural gas liquids), natural gas, and

solid fuels. 6 Monthly primary electricity data can only be constructed from 2010 onwards. We

derive the primary electricity time series using data on the electricity generation mix (IEA, 2021b)

and the energy conversion efficiency of fossil-fuel fired electricity generation. (IEA, 2021a). 7 All

series are converted from the original energy units to tonne(s) of oil equivalent (toe) and aggregated215

for each country. 8

Our main analysis uses only the fossil fuel series, as this allows for a longer time series and is the

variable of interest if we are concerned about the consequences of the rebound effect for climate

5This is discussed in the literature as the “embodied-energy” and “redesign” effects (Lange et al., 2021).
6Including data on hard, coke oven and brown coal, peat, oil shale, and oil sands, patent fuels and brown coal

briquettes.
7For details see AppendixG.
8We use conversion factors from the IEA energy unit converter: https://www.iea.org/classicstats/resources/unitconverter

10
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change. However, we also carry out a robustness check using the time series that include primary

electricity (see AppendixG).220

The energy mix is quite diverse: While Germany still obtains a large share of its primary energy

from solid fuels (42.6 %) followed by the US with 21 %, in France, Italy, and the UK that share is

below 10 %. 9 The share of energy contributed by primary electricity is lowest in Germany (12 %)

and the US (16 %) and highest in France (45.7 %), where nuclear energy is very important. Natural

gas is the most important energy carrier in Italy and the UK (46 % and 44 %, respectively), but is225

less important in the US (27 %), Germany (25 %) and France (23 %). Globally, oil is the greatest

source of energy. This is reflected here by shares varying from 23 % (Germany) to 37.5 % (Italy).

Energy prices: Monthly energy prices for European countries are not available for all energy

carriers. We derive the price of crude oil using the monthly mean of the weekly series provided in

the European Commission’s Oil Bulletin (European Commission, 2020). For the other three energy230

sources, prices are provided on a quarterly basis by the IEA (IEA, 2020). To approximate the

monthly evolution, we use Eurostat’s harmonized consumer prices indices (HICP) which measure

the changes over time in the prices of consumer goods and services acquired by households (Eurostat,

2020). The indices are available for the three different energy carriers (solid, liquid, gaseous fuels

and electricity). To obtain a monthly energy price series for the primary energy carriers, we multiply235

the monthly HICP for each energy carrier with the level of the quarterly end-use energy prices for

industry for the first quarter of 2010 and divide by the average HICP in that quarter. To compute

the mean price of energy, we multiply the price series for the different energy carriers with their

gross inland consumption and sum over energy carriers. Finally, we divide this cost series by the

total gross inland consumption of energy.240

Gross Domestic Product: As monthly GDP data is not available for European countries, we

construct monthly real GDP using the encompassing methods proposed by Mönch and Uhlig (2005)

and Bernanke et al. (1997). We create a monthly economic activity time series by combining the

available quarterly GDP series and appropriate historical monthly time series (the approach is

explained in detail in Appendix AppendixA).245

Figure 2 presents the data series for energy intensity and the price of energy. Note that the data for

9The percentage numbers here report shares of the energy use data in November 2019, see G.23

11
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Figure 2: Time series data for the countries included in the analysis.

energy consumption in the US also includes energy from renewables, biomass, and nuclear power

generation, which are not included in the European data.

Finally, we extract the latent factors from a large matrix of time series from the Main Economic

Indicator (MEI) database (OECD, 2020). This data set covers the labor market, national accounts,250

retail sales, production, construction, prices, finance, international trade, and the balance of pay-

ments. The latent factors are intended to summarize the main sources of variation in the data panel

and hence can be interpreted as the common driving forces behind the various economic variables.

AppendixA discusses the sources of the data in detail.

3. Results255

3.1. Reduced-form FAVAR

Using the Akaike information criterion and maximum lag lengths of 6 and 12, we select lag lengths

of p = 2 for France, the UK, and the US, p = 3 for Italy, and p = 4 for Germany (see Table E.6 in
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the Appendix for details).

We statistically evaluate the number of Gaussian components among the reduced-form residual260

series using component-wise normality tests (Shapiro-Wilk, Shapiro-Francia, Jarque-Bera). 10 The

test results indicate that we cannot reject the presence of more than one Gaussian component (see

Table D.5 in the Appendix). However, these tests perform poorly in small samples, especially if

the distributions of the samples are close to normality (Gouriéroux et al., 2017; Maxand, 2020).

Maxand (2020) shows that at least the unique identification of the non-Gaussian shocks can be265

guaranteed irrespective of the distributions of the remaining shocks. We are particularly interested

in the energy efficiency shock, and the normality of the reduced-form residuals of the energy use

equation can be rejected for all countries except France. Furthermore, in the case of multiple

Gaussian reduced-form residuals, the ICA methods will still deliver orthogonal shocks, since they

orthogonalize the residuals as in a standard principal component analysis. However, the residuals270

are only identified up to an orthogonal transformation, which may dramatically increase the variance

of the estimates (Hyvärinen and Oja, 2000). Additionally, we tested the robustness of the identified

shocks by comparing the result of the independence-based identification strategies with the results

of a Choleski decomposition. The results are similar for the energy efficiency shock (see Appendix

E.7).275

3.2. Factor augmentation to account for potential confounders

The first two factors explain from 45.78 % (UK) to 62.82 % (US) of the variance of the informational

variables in each country dataset (see Table 1). We include these two factors in the S-FAVAR model

to ensure a balance between the variance explained and degrees of freedom lost. Increasing the

number of included factors to three adds roughly 10 % to the explained variance (see Table 1). A280

robustness check of the estimated rebound effect with three factors included can be found in the

Appendix (Figure E.17).

The two estimated factors are presented in Figure 3. The identification of the estimated factors is

only possible up to a change of sign. 11 The factors fluctuate strongly during the financial crisis

10We also compared the component-wise tests with a boostrappping test, based on fourth order blind identification
(FOBI) as explained in the Appendix.

11This is demonstrated by Factor 1 peaking during the financial crisis in 2008/2009 for Germany, Italy, and the
UK and collapsing in France and the US.
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Table 1: Explained variance in the set of country-specific time series

Factor # 1 2 3 4 5 6 7 8 9 10

France 33.22 13.49 11.31 7.69 6.46 6.17 5.56 5.07 4.82 4.08

Germany 35.59 19.54 12.09 8.89 8.39 5.73 4.36 4.17 4.06 3.60

Italy 37.34 15.04 10.27 8.80 6.97 6.06 5.65 5.43 4.21 3.64

UK 23.78 22.00 11.70 9.88 7.23 6.11 5.81 5.32 4.55 4.11

USA 43.33 19.49 12.80 9.16 8.29 6.57 5.05 4.41 3.72 3.44

Notes: Each row shows the variance in the country-specific set of time series explained by the respective

factor (in %).

that started in 2008, which shows that they enlarge the information set by adding the impact of285

the financial crisis.

We present the factor loadings for Germany (Panel a) and the UK (Panel b) in Figure 4 to investigate

what the latent factors might represent. The higher the absolute value of a factor loading, the higher

the correlation between that factor and the respective time series. For both Germany and the UK,

one factor seems to load mainly on different producer price indices and the other on exchange rates,290

the unemployment level, exports, industrial production, and expectations. This means that one

factor mostly represents real changes in the economy while the other mostly represents changes in

prices. The factor loadings for the other countries are similar to the German example and can be

found in the Appendix (Figure E.15).
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Figure 3: Estimated latent factors. The factors with the highest explanatory power, factor 1 (in red) and factor
2 (in blue), are depicted for each country.
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3.3. Identifying energy efficiency shocks295

As described in the methods section, we identify the energy efficiency shock using the criterion

that this shock should have the largest contemporaneous effect on energy use. As our focus is on

estimating the economy-wide rebound effect, identification of the energy efficiency shock is sufficient.

The shocks associated with GDP and the price of energy, as well as the overall economic plausibility

of the estimated S-FAVAR model are discussed in AppendixC.300

The identified contemporaneous effects of the shocks (elements of the B matrix) are presented in

Table 2. For all countries, the energy efficiency shock has a large contemporaneous effect on energy

use compared to its effects on GDP and the price of energy, except for the US where its effect on

energy use is similar in magnitude to its effect on the price of energy. The effect of this shock on

energy use is negative by construction, and in all countries the confidence intervals do not overlap305

zero. By contrast, the confidence intervals of the contemporaneous effects of the energy efficiency

shock on GDP and the price of energy always overlap zero, except for the effect on GDP in France

where zero is marginally excluded.

We confirm the identification of the energy efficiency shock by inspecting the forecast error variance

decompositions (FEVD) shown in Figure 5. FEVDs are a measure of the impacts of the shocks310

on each of the modeled variables. FEVDs show how much of the variance of the forecast error of

each variable (the prediction mean squared error of the model variables) at various time horizons

is accounted for by the different shocks. If a shock accounts for most of the forecast error variance

of a specific variable, x, at most time horizons, this provides good evidence that the shock should

be labeled as the x-shock.315

The panels show for each country the percentage of the forecast error variance of energy use ex-

plained by the different shocks in the months following a shock of each type. If the forecast error

variance of energy use can be largely explained by the shock that we identified as the energy ef-

ficiency shock, then this would be a strong sign that the identification is correct. For all forecast

horizons in Germany, for example, about 75 % of the forecast error variance of energy use is ex-320

plained by the shock that we identified as the energy efficiency shock (top left plot in Figure 5).

For all countries and at all time steps considered, the forecast error variance of energy use is mostly

explained by the identified energy efficiency shock.

The FEVDs for the other variables, shown in Figure B.8 of the Appendix, and the discussion of the
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Table 2: Contemporaneous effects of the energy efficiency shock

Germany France Italy UK US

et -3.41 -5.25 -4.53 -4.02 -1.8

(-3.7, -1.32) (-6.05, -1.85) (-4.61, -3.51) (-4.51, -1.46) (-2.01, -0.68)

yt 0.03 -0.17 -0.03 0.03 -0.01

(-0.16, 0.14) (-0.23, -0.02) (-0.13, 0.08) (-0.11, 0.11) (-0.22, 0.17)

pt 1.47 3.88 -1.28 -0.23 1.76

(-0.92, 3.4) (-0.48, 5.88) (-3.08, 2.04) (-3.43, 3.58) (-0.91, 3.43)

Notes: Contemporaneous effects of the energy efficiency shock on energy use (et), GDP (yt), and the

price of energy (pt). 95 % confidence intervals in parentheses using a wild bootstrap.

economic plausibility of the estimated impulse response functions (provided in AppendixC) further325

strengthen our identification of the energy efficiency shock.
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Figure 5: Forecast error variance decomposition for energy use. The decomposition shows the percentage (y
axis) of the i-months (x axis) ahead forecast error variance which is explained by the five different shocks (indicated
by the five different colours).

3.4. Economy-wide rebound effect

The impulse response function of energy use with respect to an energy-efficiency shock shows

the same tendency in all countries: after an immediate reduction in energy use due to increased

efficiency, energy use rebounds towards its original level (Figure 6, left panel). The impulse-response330

curves of the US and France seem to rebound faster than those of the other countries. However,

the differences are subtle and the confidence intervals are overlapping. Figure 6 (right panel) shows

that after 24 months the estimated rebound effect ranges between 78 % and 101 % for all countries

with all confidence intervals overlapping 100 %. In general, estimates for the rebound effect are

consistent across countries and identification methods (compare Table E.7 in the Appendix).335

To analyze the influence and importance of confounders, we compare the FAVAR rebound estimates

with those of the SVAR model proposed by Bruns et al. (2021) (see Figure E.19 in the Appendix).

The analysis shows that controlling for these confounders does not fundamentally change the results.

This result suggests that simple models that do not include the latent factors could be sufficient

to estimate the rebound effect at the economy-wide level. However, this result does not necessarily340

generalize to other countries.
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Figure 6: Impulse response functions of energy use with respect to an energy efficiency shock (a) and
estimated rebound effects (b). Shaded areas represent 90 % confidence intervals in the left panel. Error bars
represent 90 % confidence intervals in the right panel. Confidence intervals based on wild bootstrapping.

As our data sample starts in 2008, the global financial crisis might influence our results. We repeat

our analysis using samples starting in 2009 and 2010 (instead of 2008) and find that the estimated

rebound for all countries but the UK is consistent across the different sample periods (see Figure

E.16 in the Appendix). For the UK, the sample starting in 2009 leads to a higher estimated rebound.345

4. Discussion and Conclusions

We use a Structural Factor Augmented Vector Autoregressive (S-FAVAR) model to quantify the

economy-wide effect of energy efficiency improvements on energy use. Our methodology improves

on past research by being able to separate the effect of energy efficiency improvements on energy

use from the effects of other factors that might influence energy use, such as economic growth,350

exogenous changes in the price of energy, and a multitude of other potentially confounding factors.

Our approach also allows GDP and the price of energy to evolve in response to the energy efficiency

impulse and, in turn, energy use to respond again to the evolution of GDP and the price of energy.

Our analysis extends in two main ways the work of Bruns et al. (2021) who use U.S. data to provide

the first SVAR-based quantification of the economy-wide rebound effect. First, we augment the355

SVAR with factors obtained from a rich panel of time series to address the potentially large number

of confounders. Addressing potential omitted-variable biases is crucial to improving and ensuring

the reliability of the estimated economy-wide rebound effect. Furthermore, augmenting the model

20



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

with factors from a rich macroeconomic data set better reflects the information available to economic

agents in the real world. This makes it less likely that the identified energy efficiency shocks are360

events that can be systematically anticipated by economic agents, which would bias the estimate

of the economy-wide rebound effect. Rather, the shocks can be interpreted as genuine innovations,

whose rebound effect can be reliably estimated. Second, we apply the improved estimation approach

to both the U.S. and four European countries – France, Italy, Germany and the UK – to explore

how similar the economy-wide rebound effect is across large, high-income countries.365

We find that the economy-wide rebound effect is between 78 and 101 % across our sample of coun-

tries, which differ in industrial structure and energy mix. This finding is fairly consistent with

Bruns et al. (2021), who find an economy-wide rebound effect of about 100 % for the US using an

SVAR despite considering here a large set of time series to mitigate the risk of bias due to omitted

variables and anticipated shocks (S-FAVAR). This implies that energy efficiency improvements that370

save energy by adopting more efficient cost-reducing technology will have limited long-run impact

on aggregate energy consumption. These results are congruent with the growing evidence in recent

studies that suggest that economy-wide rebound effects are large (Brockway et al., 2021; Saunders

et al., 2021; Stern, 2020).

Our analysis identifies exogenous changes in energy use as changes in energy efficiency, as they375

can be neither explained by the core variables nor by the additional factors. We interpret these

exogenous changes to largely represent cost-reducing improvements in energy efficiency. It should

be emphasized that Fullerton and Ta (2020) show in a theoretical model that energy efficiency

mandates that raise the cost of energy services can have a negative rebound effect resulting in more

energy being saved than mandated. On the other hand, they find that in the face of binding energy380

efficiency mandates cost-reducing innovations should have an especially large rebound effect.

We conclude by emphasizing that even though cost-reducing energy efficiency innovations might

enhance welfare, by providing more energy services to consumers and producers for a given cost, the

magnitude of the estimated rebound-effect means that they will not significantly reduce energy use

in the long run. However, a tightening cap on carbon emissions or an equivalent carbon tax policy385

would reduce fossil fuel use regardless of the rebound effect. In fact, improving energy efficiency

would help reduce the welfare cost of such a policy.
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Supplementary material

The supplementary material contains the Online Appendix as well as data and code to reproduce

all findings reported in this article. Additionally, all replication files can be found at: https:390

//gitlab.gwdg.de/berner7/rep_enecon.
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ighlights

 We estimate and compare the economy-wide rebound effect in 5 industrialized countries

 We use a structural FAVAR model to identify the energy efficiency shock

 The economy-wide rebound effect is between 78 and 101% after 2 years

 We consistently find large rebound effects despite differences between the countries
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