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Abstract

Inter-subject variability in accelerometer-based activity recognition may significantly affect 

classification accuracy, limiting a reliable extension of methods to new users. In this work we 

propose an approach for personalizing classification rules to a single person. We demonstrate that 

the method improves activity detection from wrist-worn accelerometer data on a four-class 

recognition problem of interest to the exercise science community, where classes are ambulation, 

cycling, sedentary, and other. We extend a previously published activity classification method 

based on support vector machines so that it estimates classification uncertainty. Uncertainty is 

used to drive data label requests from the user, and the resulting label information is used to update 

the classifier. Two different datasets – one from 33 adults with 26 activity types, and another from 

20 youth with 23 activity types – were used to evaluate the method using leave-one-subject-out 

and leave-one-group-out cross validation. The new method improved overall recognition accuracy 

up to 11% on average, with some large person-specific improvements (ranging from −2% to 

+36%). The proposed method is suitable for online implementation supporting real-time 

recognition systems.
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I. INTRODUCTION

ACTIVITY recognition using wearable sensors can support scientific measurement of 

physical activity and sedentary behavior for research in health and medicine [1]. Many 

scientific studies using “objective,” accelerometer-based sensors in lieu of self-report have 

participants in experiments wear a single sensor on the hip, above their clothing. In this 

location, a sensor measures overall body motion, such as ambulation. Unfortunately, the 

sensors have to be removed at night and when changing clothes, and some participants find 
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attaching them to the hip to be inconvenient or aesthetically undesirable [2]. As a result, 

missing data are common. With the introduction of sensors capable of saving accelerometer 

data at 60+ Hz, and the promise of development of activity recognition algorithms aimed at 

interpreting those data to differentiate gesturing from true ambulation (e.g., [3, 4]), 

researchers began collecting data with a single sensor placed at the wrist. Even large, 

influential studies such as the UK Biobank and the U.S. National Health and Nutrition 

Examination Survey (NHANES) changed data collection from the hip to the wrist locations 

[5, 6]. The introduction of smartwatch devices, nearly all of which include accelerometers, 

has further intensified interest in recognizing activity from wrist data.

Differentiation of behavior from wrist data is challenging due to gesturing and differences in 

how individuals perform activities. In our prior work, we observed that wrist-based 

classifiers trained using leave-one-subject-out (LOSO) cross validation performed well 

overall, but generalized inconsistently across different people [7, 8]. The problem is that in 

LOSO training, models are (appropriately) trained without any data from the left-out 

individuals; but this restricts generalization to people who may perform activities in an 

uncommon way. The aim of this work is to use a small amount of personal data to infuse a 

general model with enough subject-specific information to improve performance, but 

without leading to overfitting or unrealistic expectations about the amount of subject-

specific training data that must be obtained.

II. PRIOR WORK

The need for machine learning classification personalization has been widely discussed in 

domains such as automatic handwriting recognition [9–14], speech recognition [15], and 

hand gesture recognition [16]. In all these cases, personalizing the classifier – that is, 

adapting a generalized classifier using some person-specific training data – improves 

classification accuracies while limiting the need to acquire a large, person-specific dataset 

from every individual. In the field of human activity recognition from accelerometer data, 

the automatic personalization of classifiers is still under investigation [17].

The impact of person-specific data was observed in one study that considered a 59-

participant dataset, where each participant performed six classes of activities (sit, stand, lie, 

cycle, walk and run) [18]. Acceleration data were acquired using a smartphone, and three 

validation conditions were compared: individual (cross-validation training using data from a 

single subject), leave-one-subject-out (LOSO) (cross-validation training using data from 

participants different from the participant being tested), and hybrid (cross-validation training 

using all available data). The best performance was obtained using cross-validation and data 

from single subjects [19]. This is not surprising, because the training examples are likely to 

closely mirror the test examples; the downside is that a large amount of training data must be 

gathered from every individual to make robust person-specific classifiers that do not over fit 

the data [9], and gathering training data is a burdensome task. An alternative approach is to 

limit the variability of expected data, clustering available data for specific groups of subjects 

according to their age, gender, weight or health conditions, and training group-specific 

classifiers [20]; many different classifiers are created. The assumption is that similar people 
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perform activities in similar ways, but that assumption may not hold true, especially when 

activities must be inferred from highly-variable, wrist-worn sensor data.

Alternatively, with personalization, a classifier trained on a general population is adapted to 

the particular person it is designed for [21], providing improved classification. By starting 

the customization from a general classifier, far fewer datasets can be used to train a person-

specific classifier than if the classifier is trained anew, which is important given the burden 

and complexity of obtaining person-specific training data. One proposed personalization 

method uses a decision tree classifier in which classification thresholds are tuned to the 

specific person using 3–10 min of new user-annotated data [21]. The algorithm was 

evaluated on a dataset of accelerometer data (wrist and ankle) collected as seven volunteers 

performed six activities (sit, stand, lie, cycle, walk and run). The personalization improved 

accuracy by 7.4% with respect to the LOSO result.

Generally, two personalization strategies have been tested in prior work: using semi-

supervised learning (SSL) or using active learning (AL). SSL algorithms use unlabeled data 

to refine classification rules, by associating unlabeled clusters of data with known 

classification labels [22]; classification accuracy is improved by increasing the size of the 

training dataset with unlabeled data [23]. AL algorithms, alternatively, request additional 

labeled training examples when certainty about classification decisions is low, attempting to 

maximize acquisition of informative samples while minimizing annotator intervention/

burden [24]. In AL, but not SSL, user intervention is required to extract labels.

AL and SSL are widely used for improving human activity recognition from accelerometer 

data [23–26], but typically without adapting the classification rules to the specific user. For 

instance, AL can reduce the amount of labeled data needed for training a sparsely-annotated 

dataset; an algorithm can automatically choose a meaningful subset of data to label and 

request those labels, instead of asking for the full dataset to be labeled [24, 27]. AL can also 

improve algorithm reliability with respect to changes in time evolution of data streams, i.e. 

giving the algorithm the capability to detect changes in the observed data over time, and then 

enabling an adaption of its classification rules to accommodate those changes [25, 26].

In more recent work, AL vs. SSL strategies have been compared when using a smartphone 

as a data logging platform to collect accelerometer data for a three-class activity 

discrimination task (standing still, walking and running, 30 min each by 32 participants) 

[28]. As expected, the information acquired from user intervention (i.e., labeling) in AL 

allowed the AL strategies to significantly outperform SSL strategies on this task. However, 

the studies by Longstaff et al. can be extended by considering that a limitation of the C4.5 

decision tree algorithm used, is that the entire training dataset must be stored in the memory 

of the system for retraining to achieve personalization. In addition, the study was based on a 

dataset including only the three visually distinct activities of walking, running and standing 

still. Moreover, the effect of using different values for the classification uncertainty 

threshold, which impacts the volume of user requests needed to execute AL (and therefore 

user burden), was not evaluated.
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In this work we explore whether a personalization method improves an existing solution for 

human activity recognition by testing how personalization impacts performance of a four-

class activity recognition solution presented in previous work [8]. Because others have 

shown AL outperforming SSL [28], we employed the same AL-based personalization 

approach used in prior work and left testing SSL algorithms for future work. Our goal was to 

develop a practical implementation of a personalization strategy that can be implemented 

online, with low computational and memory requirements.

Unlike previous studies, we evaluated the approach using two datasets acquired from two 

different age groups of users: 33 adults (adult dataset) and 20 youth (youth dataset); these 

participants performed 26 and 23 different types of activities, respectively, which were 

grouped into four classes for a total of ~4800 min of data (~ 90 min/person). The 

personalization algorithm was evaluated using two different cross-validation approaches: 

leave-one-subject-out (LOSO) and leave-one-group-out (LOGO). In LOSO, the generalized 

classifier was obtained by training on all participants’ data except the one participant being 

tested. In LOGO, the generalized classifier was obtained by training the classifier using data 

from the alternative group (i.e., a classifier was trained on the adult dataset and tested on 

youth participants or trained on the youth dataset and tested on adult participants). 

Differences between training and testing data are most significant in the LOGO condition 

due to the differences in the age of the participants and the activities they performed.

Our classifier personalization approach is suitable for online, incremental learning (IL) [29]. 

In IL, the learning mechanism is adjusted every time new information is available; this 

differs from batch learning, in which the training occurs only once, using all available data. 

To our knowledge, the application of IL in the personalization of accelerometer-based 

activity recognition methods has not been extensively tested yet; an exception is a recent 

study by Siirtola et al. in which IL-capable algorithms for personalizing the recognition of 

seven activities (walking, sitting, standing, jogging, biking, up/down stair walking) were 

tested using a dataset acquired on 10 adults [30]. Other studies use IL to incrementally refine 

activity classification rules jointly with AL-based strategies, but its application is not on 

personalizing classification rules; it is aimed at the selection of a subset of the dataset to be 

labeled to speed up the training phase instead [25, 26].

III. MATERIALS AND METHODS

A. Study organization

Our prior work demonstrated activity recognition using SVM classifiers and wrist-worn 

accelerometer data from adult [7] and youth [8] data. Four activity classes were recognized 

(ambulation, cycling, sedentary, and other) based on windowed accelerometer of data, using 

nine frequency- and time-based features. Results showed variability of classification 

accuracy across different subjects, with recognition rates on single subjects varying from 

80.8% to 96.5% in youth and from 70.7% to 95.0% in adults. To limit that variability, in this 

work a personalized activity recognition algorithm was developed and evaluated.

Both of our previous studies followed the typical LOSO and LOGO approaches (the steps 

outside the shaded box in Fig. 1) [7, 8]. In LOSO, a generalized classifier was trained using 
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all available labeled data except the data from one participant. The classifier broke the data 

into 12.8s labeled windows of time, computed features using the raw accelerometer data, 

and then used the batch of labeled feature vectors to train a non-personalized classifier. That 

fixed classifier was evaluated against the data from the one left-out participant. This process 

was repeated for all participants, averaging the results. In LOGO, a generalized classifier 

was trained using the batch of available data from one group (adults or youth), fixed, and 

then tested on all available people in the other group, averaging the results.

Unlike that prior work, the classification validation step here proceeded in an online, 

incremental learning fashion. The algorithms were initially trained as before, using all 

available data (depending upon the LOSO or LOGO case). Then, windows of test set data 

were presented to two different versions of the algorithm — the fixed non-personalized 

version, and the adapting personalized version — one window at a time. Windows were 

classified using both versions, and then results were compared. The new personalization 

algorithm uses distance to the SVM decision boundaries as a proxy for classification 

certainty, to be described in more detail in Section III.C. Classification results deemed 

“uncertain” (i.e., close to a decision boundary, >Thi) were selected and then included in a 

new training set along with support vectors retained from the general classifier, thereby 

leading to a refinement of classification rules of the personalized classifier before the next 

window was evaluated (details in Section III.D). Data that entered in the training was never 

used for testing: both cross-validation approaches exclude data from the subject (or group) 

being tested. Then, as reported in Fig. 1, the personalization occurs on data from the subject 

being tested only after the classification step.

All the processing steps described were implemented in Mathworks Matlab (version 2017a), 

and the software and datasets used here are available online (http://mhealthgroup.org/

datasets).

B. Datasets and features

The datasets used in this paper are described in prior work [7, 8]. Adults and youth, 

respectively, performed a set of daily activities in a lab environment while wearing a custom 

triaxial accelerometer [31] attached to the wrist. The wrist sensor was placed on the dorsal 

side of the dominant wrist midway between the radial and the ulnar processes. The custom 

accelerometers [31] were used because they are small, thin, and lightweight devices (43 × 30 

× 7 mm, 13 g). These features make them particularly suitable for long-term physical 

activity monitoring studies, where mobile phones are used for data collection. Raw 

acceleration data (range ±4 g) were acquired at 90 Hz and sent using the Bluetooth wireless 

protocol to a smartphone

Participants performed a guided sequence of laboratory-based physical activities and 

common daily activities. Activities were annotated during the execution of tasks using a 

voice recorder, and then timestamps on the voice recording were used to annotate start/stop 

times for specific activities being observed. Data and annotation were synchronized using 

custom software [31]. The list of available activities in the youth dataset compared with 

activities annotated in the adult dataset is summarized in Table I. To remain consistent with 

our previous work, activities were grouped into four broad classes: sedentary, cycling, 
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ambulation and other activities The other class included activities that were not sedentary 

and that were done in the upright position [7, 8].- These classes were originally selected 

because they broadly cluster the main activities of daily living, and knowledge of which 

activity category is active could improve energy expenditure estimation, a topic of great 

interest to researchers in exercise science [7, 8, 32]. The data collection procedure captured 

natural variability in how activities are performed within each broad class. Some errors in 

annotation at activity transitions may have occurred due to reaction time when labeling; 

these times were accounted for by discarding one window of data across transitions. We also 

followed prior work and discarded unreliable walking labels identified using ankle data 

acceleration, which was also available to us [7, 8].

Raw acceleration signals (x, y, z) at each time point were combined into a single value by 

computing a signal magnitude vector (SM), where SM = accx
2 + accy

2 + accz
22  The SM was 

used to limit impact of sensor orientation. Data were broken into 12.8 s non-overlapping 

windows. This window size was proposed by Zhang et al. [4] and also applied in our 

previous studies [7, 8]. Although prior work has shown that other window sizes (e.g., 4s) can 

be used with only modest degradation of performance [7], here use of the same window 

length value as in the prior studies allows a direct comparison of results. Features were 

computed using SM data from each window, again following prior work [8]. Temporal and 

frequency features consisted of mean value, standard deviation, maximum value, range, first 

dominant frequency, ratio between the power at the dominant frequency and the total power, 

ratio between the power at frequencies higher than 3.5 Hz and the total power, and two 

signal fragmentation features (i.e., the number of high activity samples in the window, and 

the number of activations episodes in the window, see [8]). Signal fragmentation features 

that capture the level and duration of activity bursts within the window were also computed 

using the SM, as in previous work [8].

C. Classification and uncertainty estimation

SVM classifiers were used for the supervised learning classification tasks (using a radial 

basis function kernel) [33]. We used the SVM implementation from the LibSVM toolbox 

[34]. SVM classifiers are desirable because the optimization criteria are convex, which 

implies that a global optimal solution exists. Another advantage of SVM classifiers is that 

they can provide an estimate of class-conditional probability in addition to the classification 

outcome. To do this, the LibSVM posterior probability estimate routine was used, [34]. In 

this method a logistic regressor is cascaded to the SVM’s output to estimate posterior 

probability, [35]. Such soft-assignment permits evaluation of classification uncertainty by 

estimating the probability of having a particular classification for each data window, where

p sedentary  + p other  + p cycling  + p walking  = 1

[34]

This probability estimate allows us to mark a classification outcome as uncertain if none of 

the probabilities exceed a fixed threshold, defined as:
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Th = 1
N + ALth = 0.25 + ALth

where N is the number of considered classes (so 1/N indicates the random guess) and ALth 

is the active learning threshold considered. The behavior of the algorithm varying ALth value 

from 0 (Th = 0.25, corresponding to a random guess) to 0.7 (Th = 0.95) was evaluated. As 

ALth is increased, the number of labeled example requests from the algorithm will also 

increase.

The parameters C = 128 and γ = 0.0625 of the classifiers were retained from previous work; 

the parameters were not tuned to the datasets [7, 8].

D. Classifier adaptation

A classifier is adapted to a specific person when the classification uncertainty for a window 

of time is deemed too high (i.e., above a fixed threshold); to adapt, the algorithm requests an 

activity label from the person for that window of time and then updates the model. As 

previously stated, we prefer to adapt the existing classifier to the new data, instead of 

training a classifier anew, in order to avoid saving all prior training data in a real-time 

system. Several well-tested incremental learning algorithms exist for SVM classifiers 

amenable for use in a personalized activity recognition system [10, 36–41]. Our 

implementation is based on one of those algorithms that was originally proposed for 

handwriting recognition [10] and that have limited memory requirements (i.e., does not 

require storing the full training set). Personalization can be performed by considering newly 

available windows (actively labeled when their classification was too uncertain) jointly with 

a subset of the training set that is the support vectors of the previously trained classifier. The 

classifier can be modified using new examples without keeping all prior examples in 

memory, as is required with other methods (e.g., the Longstaff et al. method [28]). By 

setting the active learning threshold at different levels, different levels of uncertainty are 

tolerated, changing the degree of personalization and the degree of burden.

E. Validation approaches

Given that two different groups of users were considered in this work (i.e., adults and 

youth), we tested using both the LOSO and LOGO training approaches. In LOGO, which is 

a significantly more challenging recognition task than LOSO, a classifier is trained on one 

group (e.g., adults) and then tested on a different group (e.g., youth). This approach allowed 

us to test not only how a general classifier adapted to a similar population with the same 

activity set (LOSO), but also how a general classifier adapted to a different population with a 

somewhat different activity set (see Table I, adapted from prior work [8]).

F. Output evaluation

To evaluate uncertainty rejection and personalization, both accuracy and the average F1 

score were evaluated. The F1 score is the harmonic mean of precision and recall and it is a 

measure of the quality of binary (two-class) classifications. Personalized and non-

personalized classifiers were compared on a given window using the same test data. 
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Personalization of classification rules was done after the classification step, to make sure 

that no data ended up in both training and test datasets in either tested condition.

IV. RESULTS

The results obtained by varying ALth from 0 (no personalization) to 0.7 (uncertainty 

threshold Th = 0.95) are summarized in Table II and Fig. 2. As ALth increases, so does the 

percentage of the incoming new data that generate label requests. On the whole, LOSO 

overall accuracy modestly improved from 88.6% without personalization to 89.5% with 

personalization, whereas LOGO accuracy improved more substantially from 71.7% to 

84.6%, significantly reducing the variability of results across different participants. The 

achieved person-specific improvement in the LOSO test is modest, only 1% on average 

when ALth = 0.7. In the LOGO test, however, it ranges from 1.3 to 11.1 percentage points on 

average, depending upon ALth. Labeling 22.6% of data leads to improvements for some 

individuals of up to 24.8 percentage points.

Both accuracies and F1 scores (Fig. 2) increase when personalization is introduced, growing 

with the fraction of uncertain data windows for which a label is requested to refine 

classification rules. Such requests provide information but at the cost of introducing burden 

in an online system.

Table III reports the classification confusion matrices without personalization, with ALth = 

0.4 (Th of 0.65) for LOSO and ALth = 0.3 (Th of 0.55) for the LOGO case. Those values of 

ALth have been chosen because they may balance performance and number of requests. 

They result in requests for labels for 9.6% of LOSO data and 22.6% of LOGO data.

Fig. 3 details accuracy results for the four classes. In particular, Fig. 4 (part b) shows a 

detailed view of the distribution of the accuracy improvement for the four different activity 

classes at different threshold levels for each of the two cross-validation approaches. Finally, 

Fig. 4 shows the results of a test using LOGO with ALth = 0.3 in terms of accuracy 

improvement due to personalization and amount of label requests in time, on a window-by-

window basis. This figure allows us to evaluate the time evolution of the personalization 

procedure by showing how fast the accuracy improves (part a) and how many label requests 

are necessary in time during the procedure (part b). The two upper plots show the time 

evolution of the accuracy improvement obtained by the LOGO-personalized classifiers with 

respect to the LOGO-general classifiers. The two lower plots show the ratio of the requested 

labels with respect to the available labels so far. In addition to median results (solid-lines) 

data from all participants are reported (dashed lines) and allow the assessment of the 

variability of personalization effects across subjects.

V. DISCUSSION

The personalization approach improves classification performance of the LOSO and LOGO 

conditions, albeit modestly in LOSO. Not surprisingly, as more requests for person-specific 

labeled data are made and the amount of labeled data provided increases, results improve. 

The downside to making such requests in a real system is that more effort from users to label 

their own data is required. In this regard, the obtained improvements may not always justify 
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the labelling effort requested of the user; minimizing the burden of that effort will be the 

object of future research. In fact, as reported in Table II and in Fig. 2 (b), the personalization 

did not affect all participants in the same way. Depending upon the threshold, it positively 

impacted between 2% and 76% of participants in the LOSO test, and between 32% and 98% 

of participants in the LOGO test, with peaks of improvements that reached +35.6% for a 

participant in the LOGO test. The participants who benefited most may have had a slightly 

different way of moving than the training pool; thus, personalization training might have 

been more beneficial. Moreover, the ratio of participants showing a degrading effect of 

personalization is low (1% to 22% in LOSO, 2% to 8% in LOGO), with the worst results 

degrading classification accuracy by −1.9%. Consider a fixed value of ALth such as 0.4 in 

the LOSO validation test. Whereas the average change in accuracy due to AL 

personalization was only +0.6%, one of the participants showed a change of +2.9% and 

another had a decrease of 0.7%. The same threshold value in the LOGO case resulted in an 

average improvement of +8.9%, but performance for one person improved +31.3% while 

decreasing for another by 0.4%. If most people perform activities similarly, personalization 

will only improve results for the outliers, but for those outliers, improvement could be 

substantial. Recognition in the LOGO validation test is more challenging, especially for 

youth data, because the activities differ somewhat in the two datasets (see Table I). For 

example, the youth dataset includes sport activities; classifiers trained on adult data without 

these activities perform poorly on the youth dataset, and this is notable in Fig. 3, which 

shows that other and cycling classes are those that benefit most from the personalization. 

Such differences between activities in datasets will be common when applying algorithms in 

real systems, where individuals will sometimes perform new activities that were not 

included in training data. Therefore, rather than relying on “black box” algorithms that are 

trained ahead-of-deployment but then do not adapt, systems will likely need to provide users 

with a way to label data that cannot be properly processed by the classifier, i.e. recognized 

with low uncertainty, and adapt classification rules to include the new, labeled examples.

In LOSO, the number of windows selected at each threshold level was similar between adult 

and youth data. In LOGO, however, a higher percentage of youth label requests, versus 

adult, were made at the same threshold levels. This change results from the need to gather 

training data on the new activities not already represented in the training set.

In general, results confirm that the more different the information of the current data window 

is from the examples used to train the classifier originally, the higher the accuracy gain after 

personalization. Fig. 4 demonstrates that the classification accuracy is significantly improved 

in the personalized version of the classifier and that the improvement grows in time, 

especially for youth data that included additional activities such as sports that were not 

included in adults data. A limitation of the study made apparent from this figure is that the 

personalization requires a significant amount of data. This is evident in Fig. 4b because the 

available amount of data is not sufficient to show an observable reduction of the 

classification uncertainty in time for all participants (i.e., the number of label requests do not 

always decrease in time). Ideally, assuming that windows of different activities reach the 

classifier in random order, as happens in this test, an incremental adaptation of classification 

rules should require larger efforts at the beginning of the procedure and quickly reduce the 

number of requests later in time. In the data shown in Fig. 4, however, only a small number 
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of participants would experience this (see that only some of the dashed lines in Fig. 4b 

decrease over time). Even though a significant improvement in accuracy can be obtained 

with respect to the non-personalized classifier, the gain is achieved with a significant 

participant-labeling effort that adapts relatively slowly, not in one more condensed bust of 

labeling. Future research could target this limitation and explore mechanism that might 

allow users to more efficiently provide feedback for personalization. Such work might 

require the user to better understand what the model is actually doing; the model may need 

to provide an explanation of a decision. The user may need to use that explanatory 

information to quickly adapt the model by explaining why a provided activity label is what it 

is. In short, rather than developing algorithms that must learn all relationships from data, 

some algorithms may be provided with common sense knowledge from users, and only use 

data to refine and tailor user-specific models.

Working with IL strategies always leads to the plasticity/stability dilemma that establishes 

the tradeoff between catastrophic interference (aka “forgetting”) and the ability to 

incrementally and continually accommodate new knowledge in the future whenever new 

data becomes available [42]. In our particular context, the plasticity should be associated to 

the fast adaptation capability of the classifier to describe the data of a new user. Reducing 

plasticity freezes the classifier performance, limiting the number of requests in time. In this 

work, the online simulation tests did not change the plasticity of the classifier. Such variation 

could be considered in future work by keeping in memory old support vectors that are now 

discarded, and then using them during the incremental training process. Further, using 

variable, instead of fixed, SVM parameters, or choosing subsets of the support vectors to be 

used in the personalization instead of retaining all of them from the initial training could also 

play a role in improving plasticity. Such tests are left to future work. However it has to be 

noticed that the choice of using support vectors instead of the full dataset to run incremental 

learning allowed us to reduce both computational time for training and memory requirement 

to store the training data, in fact the number of support vectors in the LOSO case was ~3000 

windows instead of the ~12800 elements of the training set whereas in the LOGO case, it 

was ~1500, with a training set of ~4500 windows for youths and ~8500 windows for adults.

Previous studies in classifier personalization for activity recognition cannot be directly 

compared to this work, mainly because the datasets used are different (different user groups, 

number of participants, sensor locations). This work represents the first attempt at running 

AL-based personalization using data from two different age groups of users performing 

somewhat different sets of activities, running LOSO and LOGO validation tests, and 

including ~1.5 hours of labeled activity monitoring data per person. Our results are 

consistent with results from some prior work showing that when initial accuracy was not 

high (e.g., <80%), personalization is more effective [28]. In that work an overall 

improvement of ~12% was obtained when starting from a non-personalized classifier with 

76% accuracy, whereas the personalization effect was negligible when starting from a 90% 

accurate classifier. In the work by Parrka et al., a 7.4% improvement in accuracy after 

personalization was obtained, cross-validating data (2 youth and 5 adults) using a LOSO 

approach, without including AL strategies [21].
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VI. CONCLUSION AND FUTURE DIRECTIONS

In conclusion, a previously proposed method for activity recognition using wrist worn 

accelerometers was extended by validating a methodology to personalize classification rules. 

Existing classifiers trained on people different from the person being tested can be adapted 

to the new user, obtaining an improvement in classification performance. Moreover, as it was 

confirmed in the LOGO tests, more variations on ways of performing activities can be 

associated with, and then recognized by, the existing class models through this procedure.

The viability of an online implementation of the proposed method is confirmed by 

simulations. The proposed personalization approach does not require the memory to store 

the full training set because only support vectors computed from prior training data must be 

retained during online use. Future work should explore ways to tune the plasticity of the 

incremental learning solution. Future work might also explore the use of SSL approaches to 

refine trained classification rules without user intervention and to speed up the 

personalization procedure. Moreover a temporal filtering strategy could be included to 

permit the user to label fewer numbers of incoming windows of data, thereby easing user 

burden, [43].

The proposed method could find application in several fields, not limiting to activity 

recognition: the suggested methodology can be applied to all SVM-based classification 

problems that are affected by a lack of generalization capabilities across different groups of 

users.
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Figure 1. 
Personalization of the classifier. Block scheme of the proposed strategy for classifier 

personalization testing.
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Figure 2. 
Personalization results when varying ALth in the LOSO validation (left column) and LOGO 

validation (right column) tests: (a) boxplot of the accuracy results across the 53 participants 

(the line is the median, the box indicates upper and lower quartiles, the + marks are outliers); 

(b) boxplot of the accuracy change for each participant; (c) F1 scores (F1S); (d) percentage 

of label requests (windows with uncertainty higher than the threshold).
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Figure 3. 
Personalization results across the 4 classified activity groups when varying ALth in LOSO 

validation (left column) and LOGO validation (right column) tests: (a) boxplot of the 

accuracy results across the 53 participants (the central line is the median, the box indicates 

upper and lower quartiles, the + marks are outliers); (b) boxplot of the accuracy change with 

respect to the condition with no personalization (ALth = 0).
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Figure 4. 
Results for a LOGO test with ALth = 0.3 showing: (a) the accuracy improvement over time, 

as compared with the non-personalized LOGO classifier using equivalent amounts of 

training data and the same test data. (b) The ratio of the requested labels in the same test 

with respect to the total available labels so far. In all plots, the dashed lines are the results for 

each person in time. The solid-colored lines are the median results across all subjects, and 

the colored area highlights the interval between the 0.25 and 0.75 quantiles.
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TABLE II

RESULTS SUMMARY

ALth Label Request (%) Change due to personalization (%) Effects on classification accuracy (number of 
participants, %) Acc(%)

Best Worst Mean Improved No effect Reduced

LOSO

0 - - - - - - - 88.6

0.1 0.1 +0.3 −0.4 −0.0 1 (2%) 51 (96%) 1 (2%) 88.6

0.2 1.2 +1.0 −0.8 +0.0 9 (17%) 35 (66%) 9 (17%) 88.6

0.3 4.8 +1.6 −1.0 +0.2 19 (36%) 22 (42%) 12 (22%) 88.7

0.4 9.6 +2.9 −0.7 +0.6 34 (64%) 11 (21%) 8 (15%) 89.2

0.5 15.9 +2.7 −1.2 +0.7 36 (68%) 9 (17%) 8 (15%) 89.2

0.6 25.3 +2.8 −1.0 +0.9 38 (72%) 11 (20%) 4 (8%) 89.4

0.7 49.7 +6.5 −1.0 + 1.0 40 (76%) 7 (13%) 6 (11%) 89.5

LOGO

0 - - - - - - - 71.7

0.1 1.0 +9.4 −0.7 +1.3 17 (32%) 34 (64%) 2 (4%) 73.3

0.2 8.4 +17.0 −0.9 +4.3 35 (66%) 14 (26%) 4 (8%) 76.8

0.3 22.6 +24.8 −0.4 +6.3 46 (89%) 4 (8%) 3 (6%) 79.0

0.4 45.4 +31.3 −0.4 +8.9 50 (94%) 1 (2%) 2 (4%) 81.9

0.5 68.1 +33.2 −0.9 +10.8 51 (96%) 1 (2%) 1 (2%) 84.3

0.6 82.5 +35.3 −1.9 +11.0 52 (98%) 0 (0%) 1 (2%) 84.5

0.7 93.1 +35.6 −0.4 + 11.1 49 (93%) 3 (6%) 1 (2%) 84.6
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TABLE III

AGGREGATED CONFUSION MATRICES AFTER LOSO AND LOGO VALIDATION

Ambulation Cycling Other Sedentary

Part 1: LOSO without personalization, ALth = 0

Actual label

Amb. 2861 (87%) 155 (4.7%) 157 (4.8%) 115 (3.5%)

Cyc. 96 (4.3%) 1766 (78.4%) 30 (1.3%) 360 (16%)

Oth. 99 (4.5%) 43 (1.9%) 1925 (86.6%) 157 (7.1%)

Sed. 18 (0.3%) 168 (3.1%) 116 (2.1%) 5187 (94.5%)

Overall accuracy 88.6 %

Part 2: LOSO with personalization, ALth = 0.4

Actual label

Amb. 2887 (87.8%) 151 (4.6%) 145 (4.4%) 105 (3.2%)

Cyc. 88 (3.9%) 1799 (79.9%) 31 (1.4%) 334 (14.8%)

Oth. 93 (4.2%) 42 (1.9%) 1937 (87.1%) 152 (6.8%)

Sed. 19 (0.3%) 165 (3%) 110 (2%) 5195 (94.6%)

Overall accuracy 89.2 %

Part 3: LOGO without personalization, ALth = O

Actual label

Amb. 2558 (77.8%) 135 (4.1%) 213 (6.5%) 382 (11.6%)

Cyc. 490 (21.8%) 799 (35.5%) 307 (13.6%) 656 (29.1%)

Oth. 291 (13.1%) 30 (1.3%) 1075 (48.3%) 828 (37.2%)

Sed. 138 (2.5%) 195 (3.6%) 90 (1.6%) 5066 (92.3%)

Overall accuracy 71.7%

Part 4: LOGO with personalization, ALth = 0.3

Actual label

Amb. 2656 (80.8%) 139 (4.2%) 171 (5.2%) 322 (9.8%)

Cyc. 205 (9.1%) 1414 (62.8%) 162 (7.2%) 471 (20.9%)

Oth. 177 (8%) 31 (1.4%) 1269 (57.1%) 747 (33.6%)

Sed. 96 (1.7%) 175 (3.2%) 89 (1.6%) 5129 (93.4%)

Overall accuracy 79.0 %
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