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Abstract
Crocus sativus L. is a crop grown for spice production, and large amounts of residues from the flowers are produced during 
the process. The underutilized by-product from saffron spice production, the C. sativus tepals, was investigated as a promis-
ing raw material of natural bioactive compounds using light spectrum manipulation in controlled environments. The plants 
were grown under either light-emitting diodes (LEDs) or natural light (NL, greenhouse). LED experiments were performed 
in controlled-environment chambers (120 µmol m–2 s–1of photosynthetically active radiation, 18 °C, 16-h photoperiod). The 
LED treatments used were as follows: (i) red ʎ = 660 nm (62%) and blue ʎ = 450 nm (38%) (RB); and (ii) red ʎ = 660 nm 
(50%), green ʎ = 500–600 nm (12%), and blue ʎ = 4 50 nm (38%) (RGB). Flower growth parameters, total phenols, total 
flavonoids, flavonols, flavonol glycosides, and antioxidant properties were measured in harvested tepals. Floral by-products 
from plants grown under the two LED treatments accumulated higher amounts of antioxidant compounds compared to those 
of plants grown under NL. The total flavonoids content was significantly enhanced in the RGB LED treatment, while the 
corolla fresh weight significantly declined in the same treatments. The higher content of bioactive secondary metabolites 
in plants grown under both RB and RGB light environments resulted in increased antioxidant capacity measured by DPPH 
free-radical scavenging capacity and the ferric reducing antioxidant power method. These results indicate that manipulation 
of LED spectra could boost secondary metabolites and antioxidant capacity to obtain phytochemically enriched floral by-
products with superior functional quality.
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1  Introduction

Agriculture and agro-industrial processing are responsible 
for producing massive amounts of agri-food wastes and by-
products. Disposal of agricultural wastes causes significant 
economic and environmental problems by contributing to 
greenhouse gas emissions (Girotto et al. 2015). However, 

many of these residues are generally considered sources of 
valuable bioactive compounds (such as micro- and macronu-
trients, dietary fibers, lipids, starch, proteins, vitamins, and 
secondary metabolites with antioxidant biological functions) 
that could find applications in the food, cosmetics, and phar-
maceutical industries due to their antioxidant, antimicrobial, 
and health-promoting properties (Varzakas et al. 2016).

Therefore, the recovery and valorization of plant residues 
(waste) is a promising strategy to minimize the ecological 
impact through circular economy models and to create sus-
tainable products.

C. sativus L. flowers are grown worldwide to produce the 
valuable saffron spice. Commercial saffron is made from 
the dried stigmas of these flowers, and it is considered to 
be the most expensive food spice in the world due to the 
meticulous manual operations needed for its production and 
the high labor cost (Giupponi et al. 2019). The flowers of C. 
sativus are collected early in the morning to avoid color and 
quality loss of stigmas, and then stigmas are separated from 
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the rest of the flowers (Giupponi et al. 2019). Moreover, this 
work is conducted only a few days a year and for only a few 
hours a day, and all of the other activities (field prepara-
tion, corms planting, weeding, etc.) are performed manually 
(Husaini et al. 2010). The principal producers and export-
ing countries (Iran, Afghanistan, and India) are located in 
Asia (Jouki et al. 2013a; OEC 2019). In recent years demand 
for this spice has increased due to Asian population growth 
(Arslanalp et al. 2019) and to the popularity of Asian cook-
ing worldwide (Giupponi et al. 2019).

The phytochemical composition of saffron spice gives 
aroma, color, and flavor to food. Crocetin esters are responsi-
ble for saffron coloring, generating a range of yellowish-red 
hues (Moratalla-Lopez et al. 2019). Picrocrocin is the fore-
most compound responsible for the bitter taste, and safra-
nal is the most important component of the volatile fraction 
contributing to saffron’s distinctive aroma (Carmona et al. 
2006). To avoid microbial growth in saffron stigmas, some 
studies used γ-irradiation and modified atmosphere packag-
ing to prolong the shelf life without any significant quality 
deterioration (Jouki et al. 2011, Jouki and Khazaei, 2013b).

Saffron is not only a culinary condiment, but its flow-
ers are also a rich source of health-promoting phytochemi-
cals, including phenols, anthocyanins, flavonoids, and 
carotenoids. The stigmas have been reported to have high 
levels of carotenoids, and the petals are a rich source of 
flavonoids and anthocyanins (Hosseini et al. 2018, Jadouali 
et al. 2017). The positive effects on human health of these 
phytochemicals have been widely documented, including 
the antioxidant, anti-inflammatory, anti-depressant, and 
anti-carcinogenic benefits (Ahmad et al. 2005; Hossein-
zadeh et al. 2007; Talaei et al. 2015; Bathaie et al. 2013; 
Kyriakoudi et al. 2015). The antioxidant activity is mainly 
linked to polyphenol compounds, such as kaempferol and 
quercetin (flavonoids) (Colombo et al. 2019; Riahi-Chebbi 
et al. 2019). Serrano-Díaz et al. (2014) demonstrated the 
absence of cytotoxicity in an aqueous extract, showing that 
this extract can be safely added to foods. Moreover, tepal 
extract has been reported to be a natural source of antioxi-
dants and used as an ingredient to develop high-quality cos-
metic products, since it plays a role in delaying the skin 
aging process (Acero de Mesa et al. 2018).

The traditional method of saffron production employs 
manual flower harvesting and stigma separation. After 
separating stigmas from flowers, the other flower compo-
nents, including tepals, stamens, and styles, are dismantled. 
To produce 1 kg of saffron, dried pistils of approximately 
200,000 flowers are needed with 63 kg of floral bio-residues 
(Serrano-Diaz 2013). The tepals account for a majority of 
the total weight of the whole saffron flower at 78.4%, fol-
lowed by stamens at 13.4%, stigmas at 7.4%, and styles 
at 0.7% (Moratalla-Lopez et al. 2019). Previous studies 
reported that large quantities of saffron floral residues are 

not used and thrown away after harvesting, and these by-
products account for about 86 to 93% of the mass of saffron 
flowers (Moratalla-Lopez et al. 2019). In this context, the 
range of beneficial properties of C. sativus tepals make this 
by-product a sustainable source of promising phytochemi-
cals (mainly polyphenols) to be used in food, nutraceutical, 
and cosmetic industries (Trivellini et al. 2016).

The content of polyphenols, in particular flavonoids, may 
be related to the response of plants to environmental con-
ditions, such as light conditions (Tattini et al. 2005; Agati 
et al. 2011). The spectrum and direction of light-emitting 
diodes (LEDs) can be modulated to control light intensity 
and decouple lighting from heating (Singh et al. 2015). This 
allows not only control of the growth, development, and 
yield of plants, but also improvement of overall quality and 
energy use. The phytochemical content can be effectively 
modulated by controlling the spectral composition of LEDs 
to promote the most suitable composition of plant tissue 
for nutraceuticals. Several studies, recently reported and 
reviewed by Paradiso and Proietti (2021), investigated the 
influence of light-quality treatments, using red (R), blue (B), 
green (G) LEDs and their ratios, on secondary metabolism 
to regulate the amount of functional metabolites of several 
horticultural crops. In general, in response to select spec-
tral bandwidths (R, B, G, RB, and RGB), functional quality 
was improved by promoting the accumulation of antioxidant 
compounds (i.e., phenolic acids, flavonoids, carotenoids, and 
antioxidant capacity).

In this study, the underutilized by-product from saffron 
spice production, the C. sativus tepals, was investigated as a 
promising raw material of natural bioactive compounds with 
possible applications in the food and cosmeceutical indus-
tries. C. sativus plants were grown in a growth chamber to 
control flower organ development and secondary metabolite 
accumulation using light spectrum manipulation to obtain 
a standard production of high-value bioactive compounds 
from floral residues (Fig. 1).

2 � Materials and methods

2.1 � Plant materials

Saffron (Crocus sativus L.) bulbs were purchased from Flori-
ana Bulbose (Monte Porzio Catone, Roma, Italy). The bulbs 
had a diameter of 3 cm and before transplanting were stored 
in a refrigerator at 4 °C with 80% humidity for 50 days to 
promote a good vegetative-flowering restart.

2.2 � Plant growth conditions

Saffron bulbs were transplanted in plastic perforated 
boxes (50  cm × 30  cm × 25  cm) covered by non-woven 
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polypropylene fabric to control irrigation runoff. The growth 
medium used was peat-perlite (70:30 v/v) with a bed of 
pumice (5 cm high) to improve water drainage as saffron pre-
fers soils with a high stone-skeleton. For each box, 20 bulbs 
were planted in five rows with four bulbs in each row. The 
transplanting took place on October 31, 2019 at the Depart-
ment of Agriculture, Food and Environment of the Univer-
sity of Pisa, Italy (43°70′ N 10°43′ E). The plants were culti-
vated in a growth chamber at constant temperature of 18 °C 
and photoperiod of 16:8 h. Two different LED lamps were 
tested: (i) red ʎ = 660 nm (62%) and blue ʎ = 450 nm (38%) 
(RB); and (ii) red ʎ = 660 nm (50%), -green ʎ = 500–600 nm 
(12%), and blue ʎ = 450 nm (38%) (RGB). The lighting 
area was 0.5 m2 (1.0 m × 0.5 m). The plant photosynthetic 
quantum flux density, measured 10 cm above the plants, 
was 120 µmol m−2 s−1. The control plants were placed in 
plastic perforated boxes (50 cm × 30 cm × 25 cm) covered 
by non-woven polypropylene fabric and grown in a glass 
greenhouse under natural light (NL). The growing condi-
tions were as follows: 18 °C average temperature, 70–80% 
humidity, approximately 15:9 (light/dark)–h photoperiod, 
and 70–120 µmol m−2 s−1 light intensity. In both growing 
conditions, surface irrigation was employed by applying 
3000 g of water per box.

2.3 � Saffron flower growth parameters

C. sativus flowers were collected the day after anthesis 
(to evaluate the metabolic response to the corolla's LED 

radiation), and the corolla was frozen in liquid nitrogen 
and stored at − 80 °C until biochemical analysis. The influ-
ence of the different combinations of light treatments were 
monitored on C. sativus harvested flowers by measuring the 
length (cm) and weight (g) of the (i) whole flower, (ii) pistil, 
and (iii) corolla.

2.4 � Bioactive molecule extraction from tepals

Acidified 80% methanol (containing 1% hydrochloric acid) 
was used for the extraction of flavonolglycosides and total 
anthocyanins; pure methanol solution was used for the 
extraction of all the other bioactive components. The extrac-
tion protocol reported by Maggini et al. (2013, 2018) was 
used with modifications. The saffron corolla samples (0.2 g) 
were soaked with 2.5 mL extraction solvent in 10-mL test 
tubes. The samples were sonicated in an ice bath for 30 min. 
The sonication was repeated four times, and the tubes were 
stored overnight at −20 °C. Then, the supernatant liquid was 
separated by centrifugation for 4 min at 2500 rpm. The pellet 
of each sample was extracted again with 2.5 mL of extrac-
tion solvent. The supernatants were pooled together before 
subsequent analysis. The results were calculated on a fresh 
weight (FW) basis.

2.5 � Total flavonoids

Total flavonoids were determined spectrophotometrically as 
described by Kim et al. (2003): 240 µL of NaNO2 (5%) was 

Fig. 1   Schematic representation of overall experimental design for Crocus sativum plant growth, LED treatments, and corolla by-product bio-
chemical analysis
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added to 400 µL of methanolic extract, and after 5 min and 
stirring, 160 µL of AlCl3 (10%) was added. The samples 
were shaken again and let stand for 5 min. Finally, 1.6 mL 
of NaOH (1 M) and 800 µL of water were added. The spec-
trophotometer reading was at ʎ 510 nm. The results obtained 
were expressed as milligrams of quercetin equivalents per 
gram of sample.

2.6 � Flavonol glycosides and total anthocyanins

Flavonol glycosides and total anthocyanins were meas-
ured as reported by Hrazdina et al. (1982). The amount 
of total flavonol glycosides was measured spectrophoto-
metrically on the acidic methanol extracts. Absorbance was 
read at 360 nm. Total flavonol glycoside concentration was 
expressed as quercetin equivalent in milligrams per gram 
of sample. For the quantification of total anthocyanins, the 
absorbance of the same extract was read at 530 nm, and the 
results were expressed as milligrams of cyanidin-3-glucoside 
equivalent per gram of fresh weight (g−1 FW), using the 
value 38,000 M−1 cm−1 for the molar absorptivity.

2.7 � Flavonols

Flavonols were determined according to Radovanovićet al. 
(2010). The sample extracted in methanol was diluted 1:10 
with ethanol (10% in water). Subsequently, 500 µL of this 
dilution was added to 500 µL of HCl (0.1% in ethanol) and to 
2 mL of HCl (2% in water). The spectrophotometric reading 
was at ʎ 360 nm, and the results obtained were expressed 
as milligram equivalents of quercetin per gram of sample.

2.8 � Total phenols

The amount of total phenols was determined by the Folin-
Ciocalteu phenol reagent, according to the method reported 
by Kang and Saltveit (2002) with minor modifications (Mag-
gini et al. 2018). An aliquot of 100 µl methanol extract was 
mixed with 2.0 mL of distilled water and 300 μL of Folin-
Ciocalteu phenol reagent. The mixture was incubated for 
4 min at room temperature (20–24 °C) and then 7.5% sodium 
carbonate (1.6 mL) was added. Then, the mixture was stored 
in the dark at room temperature for 2 h. Absorbance was 
then measured at 765 nm. For calibration, standard solutions 
of gallic acid (0–500 mg L−1) were prepared. The concentra-
tion of total phenols was expressed in terms of gallic acid 
equivalent as milligrams of gallic acid per gram of fresh 
weight (g−1 FW).

2.9 � Antioxidant capacity

The ferric reducing antioxidant power (FRAP) assay was 
performed following the method described by Benzie and 

Strain (1996). For this assay, 2.0  mL of acetate buffer 
(0.25 M, pH 3.6), 900 μL of freshly prepared FRAP reagent 
(2 mM ferric chloride and 1 mM 2,4,6-tris(2-pyridyl)-s-tri-
azine in acetate buffer), and 100 μL plant methanolic extract 
were used. Calibration was performed using a standard curve 
prepared with ammonium ferrous sulfate standard solu-
tions, containing 0–1000 µM ferrous ion. The absorbance 
at 593 nm was determined, and the results were expressed 
as micromole (µmol) of Fe2+ equivalents per gram of fresh 
weight (µmol Fe2+ (g−1 FW).

The DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scav-
enging activity assay was conducted according to Dudonné 
et al. (2009) with slight modifications as reported by Mag-
gini et al. (2018). A 100-μL aliquot of methanol extract was 
mixed with 2.97 mL of methanol DPPH solution (20 mg 
L−1). A blank solution was also prepared by replacing the 
plant extract with methanol. The mixture was incubated 
at room temperature in the dark for 45 min; then, absorb-
ance was measured at 515 nm. The percentage inhibition 
of the DPPH radical per gram tissue was calculated from 
the absorbance values of the blank (Ablank) and from the 
sample (Asample) as follows:

where Ablank is the absorbance of the blank solution 
(absorbance of DPPH solution), and Asample is the absorb-
ance of the testing sample solution.

2.9.1 � Statistical analysis

Statistical analysis was performed using PRISM 9 soft-
ware (GraphPad Software, San Diego, CA, USA). One-way 
ANOVA was used to analyze the effects of two multispec-
tral LEDs, as the only light sources, and a natural green-
house light condition, on flower organ development and 
secondary metabolite accumulation. Significant differences 
among means values were determined by Tukey’s post-test 
at p < 0.05. Values are means of at least 10 independent bio-
logical samples. The whole experiment was independently 
repeated twice.

3 � Results

3.1 � Effects of light spectrum manipulation 
on flower growth

The plants grown under the RB-LED treatment showed 
the highest whole flower and corolla fresh weights (FWs), 
greater than those of the control (natural light, NL) and 
RGB-LED groups (Table 1). Plants grown under RB-LED 
and RGB-LED conditions showed a significant increase in 

% Inhibition g−1FW = 100 ⋅
[

(Ablank − Asample)∕Ablank
]

∕g FW
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both pistil FW and dry weight (DW) compared to the NL 
group (Table 1). There were no significant differences in 
these parameters (pistil FW and DW) between the RB-LED 
and RGB-LED groups. Both flower and pistil lengths of 
plants grown under RB-LED and RGB-LED conditions were 
greater than that of the NL plant, which showed the lowest 
level of all groups (Table 1). There were no significant dif-
ferences in flower and pistil lengths between the RB-LED 
and RGB-LED groups.

3.2 � Effects of light spectrum manipulation on total 
flavonoid, flavonol glycoside, and flavonol 
accumulation

The combination of red, green, and blue light in RGB sig-
nificantly increased the content of total flavonoids in C. 
sativus corolla, about 14.92 mg/g compared to 11.72 and 
9.24 mg/g in the RB-LED and NL groups, respectively 
(Fig. 2a). The corolla of plants grown under RB-LED and 
RGB-LED conditions had significantly increased flavonol 
glycosides (7.64 and 8.23 mg/g) compared to the control 
(5.01 mg/g) (Fig. 2b). Similarly, the content of flavonols in 
both LED treatments (2.89 mg/g under RB and 2.54 mg/g 
under RGB) was significantly enhanced compared to the NL 
group (0.93 mg/g) (Fig. 2c). No significant differences in fla-
vonol glycosides and flavonol concentrations were observed 
between LED treatments. Overall, these results showed that 
the LEDs positively and significantly influenced the total 
flavonoid, flavonol glycoside, and flavonol contents in tepals 
compared to the NL treatment.

3.3 � Effects of light spectrum manipulation on total 
phenols

The concentration of total phenols in the corolla of 
plants grown under RB-LED (8.81 mg/g) and RGB-LED 
(9.46 mg/g) conditions was significantly higher than that of 
the NL plants, which showed the lowest level (6.77 mg/g) of 
all groups (Fig. 3). There were no significant differences in 
total phenols content between the RB-LED and RGB-LED 
groups.

Table 1   Effect of different light environments on flower growth parameters

Analysis of variance was used for comparisons (one-way ANOVA). Means within each column followed by different letters are significantly dif-
ferent (p < 0.05; Tukey’s multiple range test, n > 5). NL, natural light; RB, red-blue LED combination; RGB, red–green–blue light combination; 
FW, fresh weight; DW, dry weight

Treatment Pistils (g FW) Pistils (g DW) Flower Lenght (cm) Pistil Lenght (cm) Whole Flower (g FW) Tepals (g FW)

NL 0.035 ± 0.007y 0.004 ± 0.0008y 6.41 ± 0.44y 4.06 ± 0.28y 0.35 ± 0.08y 0.28 ± 0.06y

RGB 0.040 ± 0.006z 0.005 ± 0.0009z 6.98 ± 0.51z 4.36 ± 0.28z 0.39 ± 0.08zy 0.30 ± 0.06y

RB 0.041 ± 0.007z 0.005 ± 0.0010z 7.22 ± 0.37z 4.42 ± 0.32z 0.43 ± 0.06z 0.34 ± 0.05z

Fig. 2   The concentration of total flavonoids (a), flavonol glycosides 
(b), and flavonols (c) in the tepals of Crocus sativus affected by dif-
ferent light environments. Data are shown as means with at least 10 
independent biological replicates, and error bars indicate standard 
error (SE). Data were subjected to one-way analysis of variance, 
and differences were analyzed by Tukey’s post-test. Different letters 
denote significant differences at p < 0.05. NL, natural light; RB, red-
blue LED combination; RGB, red–green–blue light combination
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3.4 � Effects of light spectrum manipulation on total 
anthocyanins

The concentration of total anthocyanins tended to be higher 
(but not statistically significant) in the tepals of plants grown 
under the RGB light environment than in the other light 
treatments (Fig. 4).

3.5 � Light spectrum manipulation affects 
antioxidant capacity

The antioxidant power of C. sativus corolla from plants 
grown under RB-LED and RGB-LED conditions was 
determined using both FRAP and DPPH assays (Fig. 5), 
and the results obtained with the two independent methods 
were significantly correlated (p value < 0.05). In both LED 
treatments, the ferric-reducing capacity of the antioxidants 
(Fig. 5a) and the ability of antioxidants to scavenge the 
DPPH radical (Fig. 5b) were significantly higher compared 
to those observed in NL group.

4 � Discussion

Light quality, which refers to the spectral composition of 
light, is a key regulator of plant growth through various pho-
toreceptors, which are involved in light sensing and down-
stream signal transduction (Ward et al. 2005; Weller and 
Kendrick 2008). Different wavelengths of light are perceived 
by a complex network of photosensory pathways that enable 
plants to selectively activate individual pathways by induc-
ing the expression of genes related to several physiological 
and metabolic functions (Whitelam and Halliday 2007; Li 
et al. 2012a, b).

In this study, C. sativus, a high-value culinary and 
medicinal plant, was selected to investigate the potential 

Fig. 3   Total phenol content in the tepals of Crocus sativus affected by 
different light environments. Data are shown as means with at least 
10 independent biological replicates, and error bars indicate stand-
ard error (SE). Data were subjected to one-way analysis of variance, 
and differences were analyzed by Tukey’s post-test. Different letters 
denote significant differences at p < 0.05. NL, natural light; RB, red-
blue LED combination; RGB, red–green–blue light combination

Fig. 4   Total anthocyanin content in the tepals of Crocus sativus 
affected by different light environments. Data are shown as means 
with at least 10 independent biological replicates, and error bars indi-
cate standard error (SE). Data were subjected to one-way analysis of 
variance, and differences were analyzed by Tukey’s post-test. Differ-
ent letters denote significant differences at p < 0.05. ns, not signifi-
cant. NL, natural light; RB, red-blue LED combination; RGB, red–
green–blue light combination

Fig. 5   Antioxidant capacity of Crocus sativus tepals affected by dif-
ferent light environments. (a) Reducing capacity of extracts from 
tepals of Crocus sativus affected by different light environments 
as determined by a FRAP test. (b) Radical-scavenging activity of 
extracts from tepals of Crocus sativus affected by different light envi-
ronments determined by a DPPH test. Data are shown as means with 

at least 10 independent biological replicates, and error bars indicate 
standard error (SE). Data were subjected to one-way analysis of vari-
ance, and differences were analyzed by Tukey’s post-test. Different 
letters denote significant differences at p < 0.05. NL, natural light; 
RB, red-blue LED combination; RGB, red–green–blue light combina-
tion
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of two different LED treatments for targeted plant physi-
ological responses on its by-product, the corolla, propos-
ing this residue as a novel source of enriched functional 
ingredients or raw material for the food and cosmeceutical 
industries. The combined LED treatments were accurately 
designed to uniformly provide the following light environ-
ment: (i) 50% red (660 nm)/12% green (500–600 nm)/38% 
blue (450 nm) at 120 µmolm−2 s−1 (RGB); and (ii) 62% red 
(660 nm)/38% blue (450 nm) at 120 µmolm−2 s−1 (RB). 
Plants grown under natural light (NL) were used as the 
control. Blue and red wavelengths are important for pho-
tosynthesis and have the greatest impact on plant growth 
due to the absorption peaks of chlorophyll molecules by 
increasing stomatal opening, electron transport, Rubisco 
activity, polyphenol concentration, and pigment produc-
tion (Ouzounis et al. 2016; Olle and Virsile 2013; Taula-
vuori et al. 2013). Whole-plant studies suggest that sup-
plemental G light (ranging from 24 to 10%) may improve 
plant growth in combination with R and B by increas-
ing total photosynthesis in the individual leaves, as well 
as by transmitting to lower leaf layers (Broadersen and 
Vogelmann 2010; Johkan et al. 2012). In this study, the 
whole flower and corolla of C. sativus had the highest 
fresh weight when grown under RB than under RGB or 
NL light environment conditions. R and B wavelengths 
correspond to the absorption spectra of chlorophyll a and 
b, and in general, a combination of these wavelengths with 
a high R:B ratio have been shown to promote plant growth 
by achieving greater biomass production compared with 
R or B wavelengths alone (Amoozgar et al. 2017; Wol-
laeger and Runkle 2014; Fan et al. 2013; Li and Kubota 
2009). Compared with R and B wavelengths, G light has 
not been considered to be effective for plant treatments 
due to its low capacity for chlorophyll absorption (Kop-
sell et al. 2014; Paradiso and Proietti 2021). However, 
G wavelengths have high transmittance and reflectance, 
and penetrate deeper in the plant canopy, which could 
potentially increase plant photosynthesis (plant yield) 
and regulate secondary metabolism, when appropriately 
combined with R and B wavelengths (Dou et al. 2019a; 
Dou et al. 2017; Wang and Folta 2013).The inclusion or 
not of G wavelengths in combination with RB resulted in 
greater pistil and flower length and FW compared to plants 
grown under NL conditions. However, G light reversed the 
effects of RB wavelengths on corolla biomass accumula-
tion. Similar to that observed in basil and brassica (Dou 
et al. 2020), in C. sativus the inclusion of G wavelengths 
decreased corolla biomass (on FW basis) compared with 
that of plants grown under R and B wavelength combina-
tions with a similar B percentage (38%). The addition of 
G light to a RB background has previously been shown 
to reverse B light–induced stomatal opening, resulting in 
lower plant photosynthesis and plant biomass, which can 

be used to make small adjustments in plant growth and 
secondary metabolism to best exploit prevailing condi-
tions (Dou et al. 2020; Folta and Maruhnich 2007; Talbott 
et al. 2006).

Previous research has demonstrated that light quality 
is not only involved in plant photomorphogenesis but also 
stimulates plant secondary metabolism via the photosensory 
network driven by photoreceptor pathways (Jones 2018; Dou 
et al. 2017; Zhang and Folta 2012). Specific wavelengths, 
such as R, B, and G, enhanced the concentration of certain 
phytochemicals in several horticultural plants compared 
with white light or sunlight, and the level of enhancement is 
dependent on species, compounds, and light treatments (Dou 
et al. 2020; Taulavuori et al. 2018, 2016; Lobiuc et al. 2017; 
Arena et al. 2016). Polyphenols are secondary metabolites 
found in plants with various structures including phenolic 
acids, flavonoids, anthocyanins, flavonols, and numerous 
derivates (Cheynier 2015). These compounds are generally 
synthesized to cope with environmental challenges (i.e., UV 
radiation) and biotic stress (Mosadegh et al. 2021; Sharma 
et al. 2019). Moreover, these metabolites have extremely 
diverse biological properties, which make them unique and 
promising natural ingredients to be used in the food, pesti-
cide, pharmaceutical, and cosmeceutical industries (Triv-
ellini et al. 2016). Polyphenols have been reported to be 
affected by specific spectral bandwidths in the light envi-
ronment in species-dependent and phytochemical-dependent 
manners, providing evidence that the effect of light can tar-
get the modulation of plant secondary metabolism to pro-
duce phytochemically enriched plants of high functional 
quality (Gam et al. 2020; Kyriacou et al. 2019; Mosadegh 
et al. 2018; Taulavuori et al. 2013; Stutte et al. 2009; Li 
and Kubota 2009). For example, phytochemicals such as 
phenolics, flavonoids, and anthocyanins were highest in a 
B light environment in Eruca sativa, Rehmannia glutinosa, 
and Perilla frutescens plants (Taulavuori et al. 2018; Lee 
et al. 2014; Manivannan et al. 2015), while rosmarinic acid 
(a phenolic acid) concentration in leaf tissues of Ocinum 
basilicum was enhanced under R light (Shiga et al. 2009). 
Most of the health benefits of saffron have been recognized 
since ancient times, and the corolla of C. sativus possesses 
high phenolic content and excellent antioxidant properties 
(Serrano-Diaz et al. 2012; Menghini et al. 2018; Caser et al. 
2020). In agreement with Caser et al. (2020), this study 
shows that C. sativus tepals are rich in total phenols. LED 
treatments of 50% R (660 nm)/12% G (500–600 nm)/38% B 
(450 nm) (RGB) and 62% R (660 nm)/38% B (450 nm) at 
120 µmol m−2 s−1 (RB) cause significantly higher total fla-
vonoid, flavonol, and flavonol glycoside content than saffron 
plants grown under natural light. Interestingly, the concen-
tration of total flavonoids in corolla increased significantly 
only by the addition of G light to a RB light environmental 
background. Also, the total anthocyanin content tended to 
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be higher under the RGB-LED treatment, although it was 
not significantly different among the different light environ-
ments. In parallel with a higher concentration of total phenol 
bioactive compounds, poor biomass accumulation occurred 
in the corolla, which is in agreement with growth–defense 
trade-offs in which defense activation against adverse con-
ditions through the activation of secondary metabolism 
generally comes at the expense of plant growth (Taulavuori 
et al. 2013; Huot et al. 2014). R and B light or combined 
spectra of these wavelengths are widely known to enhance 
the concentration of phenols, up-regulating the expression 
of genes or key enzymes involved in their biosynthetic path-
way (Cuong et al., 2019; Li et al. 2010; Meng et al. 2004). 
However, only a few studies were conducted on the interac-
tions between G and RB light combinations. In general, the 
inclusion of G wavelengths tends to reverse the B wave-
length–induced phytochemical accumulation in a range of 
plant species such as Arabidopsis, basil, and lettuce (Zhang 
and Folta 2012; Dou et al. 2019; Pennisi et al. 2019). In C. 
sativus corolla, the inclusion of G light had a positive effect 
on secondary metabolites. Moreover, like the concentrations 
of key secondary metabolites (total phenols, total flavonoids, 
flavonols, and flavonol glycosides), the antioxidant capacity 
of C. sativus tepals also was favored by both RGB and RB 
light environments compared to natural light. In agreement 
with our findings, Dou et al. (2020) reported an increase in 
concentration and total amounts of bioactive molecules, the 
anthocyanins, in green kale with the addition of G wave-
lengths to a RB background, suggesting a species-specific 
effect on phytochemical accumulation by G light, which is 
dependent on the RB ratio.

5 � Conclusion

Overall, the results reported here demonstrate the ability to 
influence the growth, development, and functional quality of 
C. sativus agricultural by-products through the manipulation 
of the light spectrum.

(i)Both LED treatments (RB and RGB) increased total 
flavonoids, flavonols, flavonol glycosides, and antioxidant 
capacity;

(ii)Plants grown under RB light obtained the highest 
tepals biomass while reducing total phenol concentration 
compared to the NL (control) light environment;

(iii)The inclusion of G wavelengths had positive effects 
on phenolics accumulation (i.e.; total flavonoids) and no 
effect on biomass accumulation compared to the NL (con-
trol) light environment.

Therefore, the use of LED treatments, specifically RGB, 
might lead to greater accumulation of bioactive components 
and represent a promising strategy for the valorization of 

floral residues as a functional-enriched ingredient for the 
food and cosmeceutical industries.
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