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Abstract Deep transfer learning (DTL) allows for the
efficient building of intelligent fault diagnosis systems
(IFDS). On the other hand, DTL methods still heavily
rely on large amounts of labelled data. Obtaining such
an amount of data can be challenging when dealing
with machines or structures faults. This document pro-
poses a novel approach to the design of vibration-based
IFDS using DTL in condition of strong data scarcity.
A periodic multi-excitation level procedure leveraging
intrinsic non-linearities of real-world systems is used
to produce images that can be conveniently analysed
by pre-trained Convolutional Neural Networks to diag-
nose faults. A new data visualization method and its
augmentation technique are proposed in this paper to
tackle the typical lack of data encountered during the
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design of IFDS. Experimental validation on a railway
pantograph structure provides effective support for the
proposed method.
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1 Introduction

Deep transfer learning (DTL) is enabling the rise of the
next-generationmachine and structural healthmonitor-
ing systems [3]. The advantage of Deep Learning (DL)
in feature representation combined with the ability to
reuse the knowledge extracted from large datasets, typ-
ical of Transfer Learning, allows for the efficient build-
ing of intelligent fault diagnosis systems (IFDS).On the
other hand,DTLmethods heavily rely on large amounts
of labeled data. Nevertheless, few works propose tech-
niques to tackle the typical data scarcity encountered
when designing IFDS in real-world scenarios. Hence,
addressing the data lack is still an open issue [21].

The present document proposes a novel data aug-
mentation andvisualization technique leveraging struc-
tures’ nonlinearity to tackle strong data scarcity.

The proposed approach belongs to the so-called non-
parametric techniques, meaning that it only relies on
features that are extracted directly from raw data with
no need for physical models. In particular, this tech-
nique is suitable for structural dynamic tests where the
excitation level can be controlled externally.
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In particular, the input–output response of the struc-
ture is conveyed through the Frequency Response
Function (FRF) acquired at different excitation levels
and collected in a single color map, thus producing a
spectrogram-like image where the axis of time is sub-
stituted by the axis of the excitation level. Such a rep-
resentation enables a novel custom procedure of data
augmentation, where different acquisitions of the same
fault are mixed to create a multitude of new realistic
color maps, thus leveraging the excitation level multi-
plicity.

The performance of the proposed technique is inves-
tigated experimentally through dedicated structural
dynamics tests performed on a railway pantograph
mechanism, as an example of an inherently nonlinear
system owing to dry-frictional nonlinearity [34]. Two
damage scenarios, namely the loss of member connec-
tivity at a bolted connection and tampering of the arti-
ficial damping, have been tested while the excitation
varied on seven levels, ranging over one order of mag-
nitude and stimulating stuck and stick–slip regimes.
The collected data is visualized and augmented using
the proposed technique and then used to train a bi-
dimensional Convolutional Neural Network (CNN) for
performing intelligent fault diagnosis. Therefore we
show how the resulting IFDS can correctly classify the
undamaged condition and the fault scenarios with a
relatively low-size data set. Ablation studies are con-
ducted to demonstrate the importance of the proposed
data augmentation technique while designing the pro-
posed IFDS.

The paper is structured as follows: a survey of the
literature delving with non-parametric fault diagnosis
is reviewed from classical approaches to AI methods
in Sect. 2. The context of the research, arising from an
industrial project is introduced in Sect. 3. The proposed
approach is presented in Sect. 4 as long as the assumed
hypotheses and assumptions. Section5 is devoted to
describing the experimental tests performed on a rail-
way pantograph and discussing the fault diagnosis per-
formance achieved through our IFDS. Three ablation
studies are presented in Sect6. Section7 synthesizes
the work and highlights future developments.

2 Related work

Vibration-based IFDSs are often found in the scien-
tific literature [3]. Classical approaches often utilized

the experimental estimate of the Frequency Response
Function (FRF) as a numerical series [18]. In the
Waveform Chain Code (WCC) approaches, the dam-
age index is obtained by summing up the contribu-
tions of the absolute difference between the first and/or
second derivatives of the FRFs series in the dam-
aged and undamaged conditions [4]. The FRF-based
curvature method was proved to successfully iden-
tify and locate multiple damage sites in a steel beam
[30]. The WCC can also be performed on Principal
Component Analysis (PCA)-reduced FRFs. In [7,8]
k-means unsupervised clustering with unlabeled data
allowed to separate with high-accuracy damage condi-
tions such as screws removed or loosened. The Inter-
polation Damage Detection Method (IDDM) was uti-
lized on bridges and frame structures to detect early
damages and location, in the presence of noise and envi-
ronmental changes [26,27]. The FRF SimilarityMetric
(FRFSM) was proposed in [20] as a statistical method
to compare the dB-scale magnitude of two FRFs, based
on the probability density function of normal distribu-
tion in the frequency domain.

Nevertheless,manyengineering structures are inher-
ently nonlinear due to complex joints and interfaces,
such as the presence of dry-friction at the connec-
tions. Consequently, the characteristics of the struc-
ture not only in the undamaged but also in the dam-
aged condition can be found dependent on the exci-
tation amplitude, based on whether the external exci-
tation breaks the joints friction. However, few exist-
ing algorithms consider nonlinear structural behavior
in the reference and damaged states [15]. In this regard,
[37] demonstrated numerically and experimentally that
the damage signature is dependent on the friction-over-
excitation ratio also in a statistical sense. The relevance
of the input excitation levelwas supported by numerous
experimental tests, performed on a railway pantograph
structure, and discussed for several kinds of defects
[34] through the analysis of the FRF through classical
statistical analysis based on a p-value formulation.

Big data techniques like Support Vector Machines
[1,56], decision trees [25], Random Forests (RF) [45],
k-nearest neighbors (KNN) [42] and dictionary-based
learning [44,55], as well as deep learning ones like
Auto Encoders (AEs) [39], Deep Belief Networks
(DBN) [40], Recurrent Neural Networks (RNNs) [11,
54], Spiking Neural Networks (SNNs) [58], General
Adversial Networks (GANs) [57] [23], Swin Trans-
formers [53], one-dimensional CNNs [24] and bi-
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Fig. 1 A figure of the proposed visualization method. The Fre-
quency Response Functions (FRF) acquired at each excitation
level are on the rows of the color map. The excitation levels are
reported on the y-axis, while the frequencies on the x-axis. The

corresponding magnitude is reported in the color map legend.
Yellowish colors indicate peaks of the FRF, while blueish colors
indicate minima

dimensional CNNs [2] are also used to diagnose faults,
often in combination with classical techniques.

In the case of IFDS based on bi-dimensional CNNs,
like the proposed method, acquired time series are
transformed into images. Techniques like short-time
Fourier transform (STFT) [29,43,47,52] and Wavelet
Transform (WT) [12–14,16] are widely applied to pro-
duce spectrogram images. Time series are also visu-
alized as images in polar coordinates applying the
principle of symmetrized dot pattern [41], or as bi-
dimensional Kurtograms [31]. Sometimes the samples
directly become the pixel of a grayscale image [51], or
time series coming from different sensors compose a
bi-dimensional matrix [49]. Moreover, a visualization
technique based on the PE has been proposed [19].
It uses non-uniform embedding of the vibration sig-
nal into a delay coordinate space with variable time
lags to produce images. Another approach that does
not require visualization techniques consists of cap-
turing vibration images using event-based cameras, as
proposed in [9,22].

The visualization method on which the proposed
augmentation technique is based does not use any of the
previously cited visualization techniques. It visualizes
the FRFs obtained at different excitation levels in the
same 2D image as a color map. The resulting images,
as shown in Fig. 1, resemble a spectrogram with the
main difference of representing the variations of the
frequency response function with respect to different
excitation levels, instead of the time.

3 Background: case study

The present research arises from the Trenitalia project,
during which we developed portable testing equipment
and advanced methodologies for railway pantograph
inspection and maintenance.

A railway pantograph, shown in Fig. 3, is a deploy-
able linkage mechanism installed on electric trains to
collect power from thehigh-voltage line.Consequently,
in-depth inspection is essential to enhance the service
continuity and safety of railway traffic.

In this regard, the standard approach to damage
detection is using a vibration-based technique [5,6],
in which external devices are used to induce a con-
trolled vibration pattern on the structure to collect and
process the output response. Conventional routines at
the State-of-the-Art [50] reconstruct the FRF which is
then processed and compared with the corresponding
labeled FRF of the undamaged pantograph structure.

Nevertheless, recent research [34] proved that rail-
way pantographs, as the majority of linkage structures
are inherently nonlinear, i.e. exhibit nonlinear behav-
ior also in the undamaged state. Consequently, classical
FRF-based approaches are inadequate.

What is more, the presence of dry-friction at joints
implies a dependence of the response also on the exper-
imental test boundary conditions, such as the starting
reference position of the structure, the exact value of the
pre-stress in the suspension, and even slight variation
in the linkage positions induced by play.
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In view of this, traditional statistical approaches do
not guarantee high levels of confidence in the detec-
tion and identification exercises while DTL techniques
may represent an interesting alternative approach. On
the other side, the development of detection algorithms
requires the availability of substantial labeled data,
associated with the undamaged and the possible dam-
aged conditions. Nevertheless, adequate dataset collec-
tion is challenging due

• To the scarcity of pantograph samples that could be
available for deep experimental tests;

• The long time needed to set up the characterization
campaign which also needs adequate facilities and
personnel;

• The large number of fault cases that should be sim-
ulated for testing.

Consequently, solutions to tackle the scarcity of data
are crucial to exploit the potential of Deep Learning in
the damage detection process. The development of a
data augmentation technique, exploiting the inherent
nonlinearity of linkage structures is the main concern
of the present research paper.

4 The proposed approach to Intelligent Fault
Diagnosis

The proposed approach uses a vibration-based multi-
level excitation procedure to produce images repre-
senting the FRF of the structure under test, which is
stimulated with an external excitation q(t), artificially
generated by dedicated equipment, and which can be
eventually combined with environmental sources.

4.1 Hypotheses and assumptions

The application of our methodology relies on a funda-
mental assumption, that is inherent nonlinearity, which
implies that the structural response is dependent on the
vibration amplitude both in the undamaged and dam-
aged condition. Despite the assumption of nonlinear
behavior, the eligibility of the FRF still holds for the
purpose of intelligent fault diagnosis.

When nonlinearity is present, the spectral content
of the response x(t) under a harmonic excitation at a
frequency ρd is in general spread over a multitude of
frequency bins other than the excitation frequency ρd .

Nonetheless, inmany cases, like Coulomb friction non-
linearity, the magnitude of these spurious harmonics is
found negligible compared to the excitation frequency.
Consequently, the response can be expressed in the fre-
quency domain as follows:

X (ρd) = F [x(t)]ρ=ρd (1)

where F stands for the Fourier transform. In other
words, only the principal harmonic ρd can be retained
from the entire transform signal.

Such a linearization procedure still holds when the
input takes the form of a white-noise signal, i.e. ran-
dom sequence or chirp waveform, which represent the
most common types of excitation in the experimental
routines. Hence, a frequency response function can be
estimated in the classical non-parametric form, as the
ratio of the Fourier transform of the input and output
data record [38]:

FRF = F [x (t)]

F [q(t)]
(2)

Yet, information about nonlinearity can be retained
by carrying out several tests at different levels of the
input excitation Q0 (root-mean-squares, instantaneous
amplitude, etc.) [10,28,48]. A further assumption is
that the input excitation Q0 can be tuned at least on
two levels.

4.2 The methodology

Let us consider the structure under test to be excited at
a given level Q01. In experimental dynamics routines,
structural excitation is repeated K times for the sake of
statistics, due to the presence of uncertainties.

Consequently, for the given level Q01, we have K
estimates of the frequency response function FRF j

1
with j = 1, ..., K , that can be stored in the first row of
the matrix shown in Fig. 2. Traditional noise mitigation
techniques, like the p-Welch algorithm [46], exploit
these repetitions to derive an averaged FRF, meaning
that K subsequent repetitions contribute to obtain one
estimate of the frequency response.

The same procedure is repeated with several exci-
tation levels Q01, ...Q0N , where N is the number of
chosen excitation levels, with N ≥ 2. In the end, we
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Fig. 2 A graphical representation of the concept behind the pro-
posed data augmentation technique. Two matrices, Mi and M j

are extracted from the whole matrix of FRFs estimated in a given
health condition. The permutation of two frequency response
FRFi

3 and FRFi
3 , at the same excitation level Q03, creates two

additional matrices Mi j and M ji that will be plotted as a color
map

will have a whole matrix M collecting all the FRF-
estimates, with K -columns (number of repetitions),
and N -rows (number of excitation levels).

Each column of the matrix M contains the samples
of the FRF and it can be plotted in the form of a color
map, as shown in Fig. 1, where the excitation levels
are on the y-axis, while the frequencies on the x-axis.
Lastly, the dB-magnitude of the frequency responses is
shown in the color map legend.

At this point, let us consider extracting two generic
columns, Mi and M j from the whole matrix M , and to
permute one row, as shown in Fig. 2. Such a swapping
operation generates two additional columns Mi j , and
M ji that can be converted into new images, and hence
augmenting the available data. Doing all the swaps
allowed with N excitation levels and K repetitions we
obtain K N images, thus augmenting the dataset of a
factor K N/K .

The proposedmethod has been tested and performed
on each condition of the structure under test, including
undamaged condition and each damage scenario, as it
will be discussed in Sect. 5. Besides, the introduction
of the excitation level axis exploits the intrinsic non-
linearities of real-world systems. Moreover, the power
of pre-trained CNNs on Imagenet [32] is used to ana-
lyze such non-linearities in order to diagnose faults,

enabling the usage of DTL in the design of IFDS, even
in strong data scarcity conditions.

5 Experimental investigation

With the purpose of validating the proposed method-
ology, we arranged an experimental setup devoted to
fault diagnosis tests on a real structure.

5.1 Experimental setup and damage scenarios

The experimental setup, shown in Fig. 3a, consists of:

• A real-scale railway pantograph, as an example of
a structure with several dry-friction joints (base
encumbrance: 1800 x 1350 mm2; height of the pan
head: 1500mm, driven point mass: 35kg);

• A custom exciter, endowed with a stinger actua-
tor, able to set the level of the input excitation at a
desired value within the range 1–13 N [36];

• An analog force sensor at the driven-point, embed-
ded with a bending parallelogram amplifier, pro-
viding a resolution of 5 · 10−3 N;

• A digital encoder with a resolution of 5 ·10−2 mm;
• A 16-bit DAC board and a communication module
based on the EtherCAT protocol.

As shown in Fig. 3a, the exciter applies a dynamic
force q(t) along the vertical direction, measured by the
force sensor, while the measured displacement x of the
actuation is admitted as the structural response.

The desired excitation signal is generated by the con-
troller commanding the actuation to generate a linear
chirp waveform qd(t) whose instantaneous amplitude
Q0 is controlled by a closed-feedback loop. The objec-
tive of the control is to keep the instantaneous ampli-
tude of the applied force close to Q0 and constant at
each frequency bin even in the presence of disturbances
(actuator friction and inertia).

For this work, seven distinct values of the excitation
amplitude Q0 have been considered, ranging from 1 N
to13N, i.e. N =7.The lowest levelwas chosenbasedon
the force resolution of the actuation. Indeed, below 1N,
some excitation is still possible but the measurements
are affected by a high signal-to-noise ratio. Besides,
also the input–output coherence at the resonances drops
at about 0.5, meaning poor correlation. On the other
side, the highest excitation level is set at the power
limit of the actuation.
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Fig. 3 Experimental setup. (a) The structure under test - a rail-
way pantograph - in the test configuration. (b) Detail of the bolted
connection that has been removed to simulate the loss of mem-

ber connectivity. (c) Detail of the hydraulic dashpot that has been
removed to simulate the reduction of artificial damping

All signals are measured with 1000 Hz as the sam-
pling rate. Six repetitions of the dynamic tests have
been performed in each scenario (K = 6).

European standard [5] and [6] prescribe that valida-
tion of pantographs before operational installation, i.e.
after overhaul, is executed in the frequency interval 0–
20 Hz. In this regard, hydraulic test benches are used
during the overhaul to excite the pantograph structure.
Nevertheless, we conceived the portable exciter equip-
ment shown in Fig. 3 to perform intermittent inspec-
tion of the pantographs outside the overhaul. The band-
width of such a portable device is considerably lower
than rigid test benches, implying that the excitation fre-
quency needs to be restricted to 0–10 Hz to obtain ade-
quate input–output coherence. In this regard, it should
be remarked that the substantial signatures of the simu-
lated damages occur below 10 Hz, as demonstrated by
the modal analysis in Sect. 5.2 and also by the experi-
mental results shown in Fig. 5.

The pantograph structure endorses several pinned
joints with no-lubrication. Consequently, under exter-
nal excitation, each joints can experience a stuck or
a stick–slip regime, based on the local equilibrium
forces. Previous studies already demonstrated the non-
linear behavior of the pantograph [34], through the

analysis of the FRF estimated for different values of the
input excitation. In particular, the overall dry-friction
level has been estimated at the driven-point through
hysteresis tests, showing a value of hysteretic force
equal to 15 N in the absence of other dissipation contri-
butions. It comes that the friction-over-excitation ratio
investigated in this study ranges from 1.15 to 15.

In the first explored scenario, we assume the panto-
graph to be undamaged, and stimulated with the rou-
tine described in Sect. 4. Afterward, tests were repeated
with the same routine for two simulated damaged sce-
narios. In particular, we removed the bolted connec-
tion of Fig. 3b with the aim of reproducing the loss of
member connectivity. It should be considered that bolt
removal at this location has no crucial impact on the
global integrity due to structural redundancy. Indeed,
a twin connection is present on the opposite side of
the pantograph. Hence the main effect of this fault is
introducing in the explored spectrum the degrees-of-
freedom of the diagonal, which can be considered as
a local and subtle alteration to structural integrity. In
the second damage scenario, we removed the artifi-
cial damper, shown in Fig. 3c, by unscrewing one of its
pinned connections. In this faulty condition, the overall
damping capability of the structure is reduced by 50%
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([34],[35]) and the only damping source is due to joints
friction.

5.2 Preliminary modal analysis

Before experiments, the effects of the aforemen-
tioned damageswere theoretically investigated through
numerical simulations supported by a finite element
model of the pantograph structure, including the sus-
pension organs and the artificial damper. According
to the linearity assumption of modal analysis, a fric-
tionless contact condition was assumed for all pinned
joints. The loss of member connectivity was simulated
by suppressing all the mutual constraints between the
diagonal bar and the pantograph frame. For the sec-
ond damage type, the analysis was repeated setting the
damping coefficient equal to zero.

The modal properties within the frequency interval
0–10 Hz are reported in Table 1 in the form of natu-
ral frequency � in Hz, and percentage modal damping
factor ξ . These modes correspond to 99% of the total
effective mass and hence provide a complete descrip-
tion of the global mode dynamics of the structure.

Based on the modal results, transient analysis was
also performed to estimate numerically the FRF of the
pantograph in the three scenarios, as shown in Fig. 4a–
c. Therefore, a force load was applied at the driven-
point location to simulate the excitation during the test
and the response time histories were used to derive the
FRF using the same procedure as in the experimental
case. To enhance convergence, a numerical damping
factor of 0.01% was introduced at all frequencies. This
was particularly crucial for the fault-damper scenario
for the tampering of the damper implies that in the
model no physical damping exists.

The first three modes of the undamaged structure
fall within the frequency interval of interest 0–10 Hz,
and they involve rigid body motions of the pantograph
in the vertical directions while a global bending mode
appears in the fourth mode.

The loss of member connectivity introduces two
additional resonance peaks at around 4 Hz, while slight
frequency shifts are produced on other modes. Such
additional modes are reflected in Fig. 4a by the occur-
rence of two resonance peaks at 3.8 Hz and 4.3 Hz,
respectively, while the FRF almost collides with the
undamaged case in the other spectrum regions. As
shown by the modal shape (normalized to 1) in Fig. 4b,

Fig. 4 FEM model of the linkage mechanism (railway panto-
graph) under test and effects of the simulated damages on the
numerical estimate of theFRF. (a)Damage in a bolted connection
introduces new resonances whose modal shapes have the bend-
ing contour shown in (b). (c) The main effect of the reduction of
the artificial damping is a substantial increase of the first reso-
nance peak associated with the vertical oscillation mode shown
in (d)

when the bolted connection is damaged, the diagonal
bar behaves like a cantilever. A first bending oscilla-
tion happens with a substantially vertical component
of the diagonal tip, at 3.8 Hz, while a mainly lateral
oscillation is shown in the second mode.

Instead, the reduction of the artificial damping nul-
lifies the damping factor of the first modes but has no
effect on the frequencies. What is more, the damp-
ing factor of local modes located at higher frequen-
cies is also unchanged, since the corresponding mode
shapes are not related to the artificial damper. As a
consequence, the effect of damage in Fig. 4c is con-
centrated around the first resonance peak of the FRF,
corresponding to a large displacement oscillation of the
pantograph, as shown in Fig. 4d.

It should be observed that the proposed modal anal-
ysis provides useful but indicative information about
the dynamic behavior of the structure in undamaged
and damaged conditions. The main limitation is indeed
related to the assumption of linearity, which neglects
the dissipative nonlinear contribution of dry-friction.
Besides, such a modal model cannot include the effects
of the input excitation on the FRF, such as the variation
in the position and magnitude of the resonance peaks
as the load-over-friction amplitude increases.
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Table 1 Numerical estimate of the modal properties of the railway pantograph under test in the frequency interval of interest (0–10
Hz) in the undamaged, and simulated damaged scenarios

Mode 1 Mode 2 Mode 3 Mode 4

Scenario � [Hz] ξ [%] � [Hz] ξ [%] � [Hz] ξ [%] � [Hz] ξ [%]

Undamaged 2.30 0.31 3.81 0.08 5.02 0.08 8.72 0.02

Loss of member connectivity 2.30 0.31 3.60 0.01 3.79 0.07 4.28 0.02

Reduction of artificial damping 2.30 0.00 3.81 0.00 5.02 0.00 8.72 0.02

5.3 Analysis of the FRFs for multiple levels of the
input excitation

For the present study, the experimental FRF was esti-
mated for seven distinct levels of the input excitation:
[1, 3, 5, 7, 9, 11, 13] N. The classical periodogram
method [46] was applied for the estimate in Eq.2.

In the undamaged condition, Fig. 5a, the FRF is char-
acterized by a dominant resonance peak and one zero,
as confirmed by the theoretical analysis. At the fre-
quencyof the dominant peak, the response ismagnified,
as shown by the yellowish values of the contour map
scale. On the contrary, at the frequency of the zero, the
structure exhibits no displacement under the effect of
the external excitation and the response on the spectro-
gram is blueish. By increasing the excitation level, both
peaks are progressively shifted towards lower frequen-
cies while their amplitude gets more damped. This typ-
ical response function is better emphasized in Fig. 5d
showing the FRF for an excitation level of 7 N which
is collocated at the mean of the explored interval. From
such a detail, it also emerges the presence of a further
residual peak, at around 4 Hz, very close to the third
theoretical mode in Table 1.

As in the theoretical model, the loss of member con-
nectivity, Fig. 5b, introduces two additional resonance
peaks which are reflected in the spectrogram by two
vertical lines at 3.6 Hz, and 4.6 Hz, respectively. These
damage-induce peaks are clearly visible in the detail
of Fig. 5e. The interesting point - that cannot be cap-
tured by linear modal analysis - is that by increasing the
excitation level, the sharpness of the damage-induced
resonances is sensibly reduced. As a consequence, the
difference between the damaged and the undamaged
FRF decreases with the excitation level by a factor of
10.

The reduction of artificial damping, Fig. 5c, implies
a shift of the dominant peak with the frequency and

an increase of the amplitude. Besides, increasing the
excitation level, the FRF exhibits a shifting peak (from
2.6 to 0.5 Hz) and an increase of the amplitude of about
16 dB. Consequently, the difference between the dam-
aged and the undamaged FRF is enhanced by a factor
of 10, increasing the excitation level ratio. The differ-
ent profile of the FRF in this damage scenario is clearly
visible in the detail of Fig. 5f, where the dominant peak
achieves a value near 0 dB, at a frequency of 1 Hz.

5.4 Design and test of the intelligent fault diagnosis
system

5.4.1 Design of the IFDS

To gather the data needed to design the IFDS, an acqui-
sition campaign consisting of three acquisitions for
each damage scenario at the seven excitation levels has
been performed. The resulting FRFs have been plotted
as in Fig. 1, obtaining three images per scenario. The
resulting images have been augmented according to the
technique proposed in Sect. 4. In this way, 37 = 2187
images were obtained per each scenario, for a total of
6561 images available for the training of the IFDS, of
which 20% has been reserved for validation purposes.

Having inmind the long-termobjective of deploying
the IFDS inside an embedded system to be integrated
into the portable testing equipment, we decided to use
a pre-trained MobileNetV2 [33] on ImageNet [32] as
a feature extractor. The extracted features are reduced
by a Global Average Pooling layer which feeds the
classifier composed of one dense layer with one neuron
per scenario having softmax activation. The classifier
is trained for 20 epochs using Adam [17] as optimizer
with a learning rate of 10−2. Finally, the whole network
is fine-tuned for 10 epochs with a learning rate of 10−5

using validation-based early stopping.
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Fig. 5 Color maps of the FRFs in the three explored scenarios: undamaged a, loss of bolt connection b, and reduction of damper c.
For each scenario, the FRF are reported below for a value of the external exctiation Q0 equal to 7 N

5.4.2 Data collection for testing

The same previous modalities were applied to the
data collection for testing: a second acquisition cam-
paign consisting of three acquisitions for each damage
scenario at the seven excitation levels has been per-
formed. The resulting FRFs have been plotted as in
Fig. 1, obtaining three images per scenario. The result-
ing images have been augmented according to the tech-
nique proposed in Sect. 4. In this way, 37 = 2187 test-
ing images were obtained per each scenario, for a total
of 6561 images available for the test set. Therefore, we
have two sets: set 0, the one used for training, and set
1, used for testing.

To include experimental data variability, tests have
been performed with the same modalities but on differ-
ent days. Such an additional response variationwas cru-
cial to preliminary assess the robustness of the IFDS.
Indeed, due to the combined effects of friction and
play within the pinned joints, the acquisition sets esti-
mated on different days, after restarting the equipment,
brought out a cluster effect. As an example, in Fig. 6,
we plot the confidence band at 95% (±2σ ) of the FRF
estimated (Q0 = 1 N) in the scenario of loss of member
connectivity along, set 0 and set 1, acquired on different
days. Especially in the low-frequency region, it is clear
how the variability induced by resetting the experiment

is higher than the variance along consecutive measure-
ments.

The cluster effect in Fig. 6 is also confirmed by quan-
titative evaluations based on ap-value test. In particular,
twometricswere considered as the statistical test: z that
is related to the difference between the average FRF:
H0 for set 0 and H1 for set 1, and z

′
that is related to

the difference between the average FRF slopes H
′
0 and

H
′
1.
Given the confidence level α, the true hypothesis

holds when:

z = |H1 − H0|√
2 σ 2

0

≤ τ1−α/2

z
′ = |H ′

1 − H
′
0|√

2 σ
′2
0

≤ τ1−α/2

(3)

where: σ0 and σ
′
0 stand for the standard deviation of H0

and its slope H
′
0, respectively. In Eq.3, τ1−α/2 repre-

sents the threshold corresponding to the α confidence
level.

If the hypothesis test does not hold, then there is
statistical evidence that the two data sets are different.
At this point, the scores p and p

′
can be computed as

follows:
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Fig. 6 The FRFs of two different acquisition sets of the loss of
member connectivity scenario at Q0 = 1 N. A clear cluster effect
is shown due to changes in frictional conditions and joints play

Table 2 Average scores computed on the error on the FRF and
FRF-derivative at 95%of confidence between set 0 and set 1, rep-
resenting the difference between the testing set and the training
set

Scenario p p
′

Undamaged 6.68 2.54

Loss of member connectivity 9.11 3.12

Reduction of artificial damping 7.36 4.33

p =

∫ (
z − τ1−α/2

)
d f

� f
, for z > τ1−α/2

p
′ =

∫ (
z

′ − τ1−α/2

)
d f

� f ′ , for z
′
> τ1−α/2

(4)

In otherwords, such scores are the average computed
over the frequency spectrum (0–10 Hz in this case) of
the statistical test values that fall beyond the threshold
τ1−α/2. In Eq.4, � f and � f

′
represent the amplitude

of the frequency spectrum in which the statistical test
z and z

′
exceed the threshold.

Such p-value tests were performed for each level of
the excitation and each scenario (undamaged, loss of
member connectivity, and reduction of artificial damp-
ing). Average results are listed in Table 2. According to
the statistical band shown in Fig. 6, a confidence value
of 95% was considered, i.e. τ1−α/2 = 2.

Results show that the two sets can be considered
different based on both metrics. In particular, the null

Fig. 7 Confusion matrix of the designed IFDS computed on the
test set

hypothesis for the z test was refuted for all scenarios
over all the excitation levels. Instead, for the undam-
aged and loss of member connectivity scenarios, three
levels of the excitation showed similarity between the
data sets. Lastly, for the reduction of damping data, the
null hypothesis on z′ was rejected for all the excitation
levels.

5.4.3 Testing results

The resulting images were fed to the IFDS, obtaining
a test accuracy of 97.6%. Figure7, shows the corre-
sponding confusion matrix. As can be seen, the IFDS
struggles in correctly classifying some bolt damages
that are actually classified as undamaged.Nevertheless,
the designed IFDS has been able to overcome the clus-
ter effect shown in Fig. 6, providing empirical support
for the real-world application of the proposed method.

6 Ablation studies

To investigate the role of the key parameters of the
proposed method, we propose the following ablation
studies.

6.1 Excluding main faults features

To investigate the role of the main faults features in
the design of the IFDS, we developed another IFDS,
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Table 3 Test-accuracy of the IFDS trained using one excitation level and tested on the others

Test 1 N 3 N 5 N 7 N 9 N 11 N 13 N

Train

1 N 66.6 11.1 22.2 11.1 22.2 33.3 33.3

3 N 44.4 88.8 77.8 44.4 44.4 22.2 11.1

5 N 66.6 66.6 55.6 55.6 66.6 33.3 55.6

7 N 33.3 33.3 33.3 55.6 55.6 44.4 44.4

9 N 22.2 66.6 44.4 88.8 66.6 55.6 66.6

11 N 55.6 33.3 33.3 44.4 55.6 55.6 77.8

13 N 33.3 22.2 11.1 55.6 66.6 66.6 44.4

The excitation level used for training is indicated on the rows of the table, while the excitation level used for testing is shown on the
columns of the table

using the same architecture proposed in 5.4, but train-
ing it without using the frequency region containing
main faults features. In this regard, we reduced the FRF
data to a frequency interval located above 5 Hz. Such
a choice is first motivated by the results of the the-
oretical modal analysis presented in Sec, 5.2. Indeed,
the simulated damage scenarios are expected tomodify
the modal parameters of the undamaged structure only
below 5 Hz, i.e. where the response is governed by the
global mode shapes. Conversely, in the interval of 5–10
Hz, the effect of damages on the FRF is less evident,
because the response is dominated by a structural mode
at 8.7 Hz which is not altered by the simulated faults.

Such considerations are also reflected by the experi-
mental estimates of the FRFs in Fig. 5, showing that the
most significant damage signatures are located below
5 Hz. What is more, according to the p-value method-
ology discussed in Sect. 5.4, no significant difference
emerged between the faults-datasets and the undam-
aged scenario above 7 Hz. Accordingly, the IFDS was
executed on FRF-data limited to the interval 7–10 Hz.
The outcome is that the accuracy of the IFDS drops to
34.5%, meaning that in this limited portion of the spec-
trum poor performance can be guaranteed in damage
detection, compared when taking the entire frequency
interval. The latter result confirms the importance of
the damage signatures evidence in the design of the
IFDS.

6.2 Removing data augmentation

To investigate the role of the data augmentation tech-
nique proposed in the design of the IFDS, we devel-

oped another IFDS, using the same architecture pro-
posed in 5.4, but training it without augmenting the col-
lected data in the first campaign, i.e. using the 9 images
obtained, 3 per scenario. As done before, the final clas-
sifier fed with the features extracted by MobileNetV2
[33] and pre-trained on ImageNet [32] is trained for 20
epochs using Adam [17] as optimizer with a learning
rate of 10−2 and then, the whole network is fine-tuned
for 10 epochs with a learning rate of 10−5.

The so-obtained IFDS scores 44.4% test accuracy,
on the 9 images obtained during the second data col-
lection campaign, the one done for testing purposes.
For comparison, we report the test score obtained by
the IFDS proposed in Sect. 5.4 on the same 9 images,
which is 100%.

The conducted ablation study shows the importance
of the proposed data augmentation technique in devel-
oping the IFDS: without its usage, the data available
is not enough to provide the generalization capability
needed by the IFDS to properly work in the real-world.

6.3 Using a single excitation level

To investigate the role of using multiple excitation lev-
els in the technique proposed, we designed another
IFDS, using the same architecture proposed in 5.4, but
training without using both the visualization and aug-
mentation technique proposed, i.e. using just the data
collected at one excitation level, and testing on the other
levels. As in the previous cases, training data belongs to
the first data collection campaign (set 0), while testing
data to the second (set 1).
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Table 3 shows the test accuracies obtained by train-
ing the IFDS on the data collected at the excitation
level indicated on the rows of the table and testing
on the data collected at the excitation level listed on
the columns of the table. The highest test accuracies
appear on the diagonal of the table or in the immedi-
ately nearby. Such a phenomenon can be justified by
the adjacency of the excitation levels used for training
and testing. In general, the average accuracy obtained is
significantly lower if compared to the one obtained by
the proposed technique, thus, confirming the key role of
nonlinearity in the proposed method, which overcomes
the scarcity of data.

7 Conclusions

This document proposed a novel approach to tackle the
problem of data scarcity often met during the design
of IFDS. A multi-excitation level procedure leverag-
ing intrinsic non-linearities of real-world systems is
used to acquire and augment the available data, pro-
ducing images that can be conveniently analysed by
pre-trained Convolutional Neural Networks (CNNs)
to diagnose faults. The proposed approach has been
applied to designing an IFDS for the structural health
monitoring of a real-scale railway pantograph. Three
scenarios were studied: undamaged structure, a faulty
bolted connection, and a faulty damper.

The designed IFDS was able to correctly classify
97.6% of the testing conditions, looking at the FRFs
obtained at different excitation levels, showing a slight
trend in misclassifying bolt damages as undamage
condition. Nevertheless, the designed IFDS has been
able to overcome the cluster effect shown by the pan-
tograph’s data acquired at different times, providing
empirical support for the real-world application of the
proposed method.
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