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Abstract: Recent years have witnessed relevant advancements in the quality of life of persons
with lower limb amputations thanks to the technological developments in prosthetics. However,
prostheses that provide information about the foot–ground interaction, and in particular about terrain
irregularities, are still missing on the market. The lack of tactile feedback from the foot sole might lead
subjects to step on uneven terrains, causing an increase in the risk of falling. To address this issue,
a biomimetic vibrotactile feedback system that conveys information about gait and terrain features
sensed by a dedicated insole has been assessed with intact subjects. After having shortly experienced
both even and uneven terrains, the recruited subjects discriminated them with an accuracy of 87.5%,
solely relying on the replay of the vibrotactile feedback. With the objective of exploring the human
decoding mechanism of the feedback startegy, a KNN classifier was trained to recognize the uneven
terrains. The outcome suggested that the subjects achieved such performance with a temporal
dynamics of 45 ms. This work is a leap forward to assist lower-limb amputees to appreciate the floor
conditions while walking, adapt their gait and promote a more confident use of their artificial limb.

Keywords: neuromorphic haptic feedback; FPGA neuron model; Izhikevich; terrain recognition;
PSTH-based classification; tactile augmentation; wearable assistive robotics; lower-limb impairments

1. Introduction

In intact subjects, the afferent information about the foot–ground interactions is con-
tinuously gathered by the plantar mechanoreceptors and conveyed to the Central Nervous
System (CNS), thus aiding balance regulation and posture maintenance during gait and
stance [1,2]. The absence of such sensorimotor information presents a major threat to the
quality of life and safety of lower-limb amputees, since it compromises their gait functions,
balance performance and locomotion confidence [3].

Although the recent advancements in the development of prosthetic devices are pro-
viding promising evidence for restoring natural locomotion behaviors [4–6], the lack of
plantar information increases both cognitive load and energy consumption [7,8]. Sensory
remapping and augmentation approaches can compensate for this loss by partially recov-
ering the afferent signals by means of artificial invasive [9,10] and non-invasive [11,12]
feedback systems. Non-invasive systems are inherently safer and more user-friendly, al-
though they do not evoke refined sensations [3]. Among them, the devices that deliver
visual cues are the most common [13]. Notwhitstanding that, when a person loses her/his
own limb, the undamaged sensory channels are usually overburdened, since she/he relies
more on them to enhance her/his own self-confidence in using the prosthesis. In addition,
stimuli that elicit natural-like sensations are more desirable and faster to learn [14,15].

Sensors 2023, 23, 4521. https://doi.org/10.3390/s23094521 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23094521
https://doi.org/10.3390/s23094521
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7339-5099
https://orcid.org/0000-0002-3365-7725
https://orcid.org/0000-0002-8274-2117
https://orcid.org/0000-0003-0732-8378
https://orcid.org/0000-0001-8636-7716
https://orcid.org/0000-0002-1489-5701
https://doi.org/10.3390/s23094521
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23094521?type=check_update&version=1


Sensors 2023, 23, 4521 2 of 17

In this scenario, non-invasive haptic systems fulfil these basic requirements, conveying
high-quality spatiotemporal and intuitive information [16]. Vibrotactile displays are usually
preferred to other touch-perception-based technologies [17]. In fact, they can be mapped
into the sensorymotor scheme of the user in a straightforward manner and provide rich
sensory contents through the tuning of multiple parameters, such as the amplitude, the
frequency and the duration of the activations. In addition, their small form factor and low
cost make them appealing for many commercial and daily-life applications [17,18].

So far, most of the relevant studies have been devoted to promoting postural and
balance control [19–22], improving gait symmetry [12,23–25] and enhancing walking per-
formance [26]. Less evidence has been reported about the perception of the floor conditions,
although the identification of the properties of a terrain to walk on is crucial for the dy-
namic stability of a person with amputation [27]. As a matter of fact, the uneveness of the
ground is one of the most significant environmental factors affecting the risk of falls [28–30].
Whilst several research works on terrain recognition to reliably control the prostethic device
are reported in the literature [4,31–35], fewer examples deal with sensory-feedback-based
approaches. In [15], the authors demonstrated that the combination of a virtual reality
environment and vibrotactile sensory feedback effectively gave paraplegic patients the
sensation of walking on different surfaces. Another study showed that a group of sub-
jects with unilateral amputations significantly improved the recognition of under-the-foot
objects when receiving vibratory cues [36]. However, to the best of our knowledge, over-
ground walking supported by sensory feedback to adjust the gait pattern in reponse to
path obstacles has not been tested yet. The subject’s awareness of the surroundings can
be enhanced through the artificial restoration of the plantar perception to elict prompt
reactions to different terrain conditions during autonomous exploration. This might foster
amputees’ closer-to-naturalistic locomotion, entailing less effort in the interaction with
varied ground textures [30].

In this perspective, the present study primarily attemps to evaluate whether a neu-
romorphic vibrotactile feedback strategy can assist users in the identification of even and
uneven (i.e., rocky) terrains. For this purpose, a waist haptic belt, featuring three vibro-
tactile units, was used to deliver stimuli synchronized with the foot–ground interactions
captured by a sensorized insole placed in the shoe. To achieve an intuitive perception
of the terrain structure, a novel neuromorphic feedback strategy that complies with a
biologically plausible neuronal model is herein proposed. Specifically, the behavior of
the foot mechanoreceptors was mimicked through the spatiotemporal encoding of the
plantar tactile information into vibrations (i.e., spike trains). This biomimetic approach
previously succeeded in invasive neural feedback to enable upper-limb amputees to intu-
itively perceive object textures [37–39]. According to the principle of contingency-mimetics,
non-invasive sensory augmentation strategies that exploit sensorimotor contingencies can
achieve fast and long-lasting perceptual effects [40–42]. Starting from this assumption, the
natural-like neuromorphic coding scheme of the vibrotactile feedback was provided to
able-bodied subjects while walking over different terrains. Then, the integration of the
vibratory cues into the subjects’ perception of the floor condition was validated through
a playback phase, where the previously experienced feedback patterns were delivered to
the participants. Finally, this study aims also at elucidating the feedback features that are
involved in the human mechanism of distinguishing between even and uneven terrains
and for recognizing them among tiles, grass and stones. Specifically, the explored vibration
features encoded the relative changes in the foot–ground contact during the gait cycle and
the amount of associated cues carried by individual or combinations of tactile units.

2. Materials and Methods

A wearable augmenting haptic belt was designed and developed to provide neuromor-
phic vibrotactile feedback about the foot–ground interaction during walking on different
types of terrains (Figure 1a). The feedback consisted of temporal patterns of vibrations
delivered on the waistline by three actuators, namely the VTs. To assess whether the
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subjects could leverage this information to perceive their navigation on diverse terrains,
psychophysical indoor experiments were carried out with four male able-bodied volun-
teers. The participants (age: 29 ± 4) were recruited among the personnel from Sant’Anna
School of Advanced Studies. The inclusion criteria concerned the foot size, in the range of
40–43 (EU), because of the form factor of the sensing insole, and the absence of any sensory
and motor impairments. The psychophysical experiment consisted of a familiarization and
a playback phase, requiring locomotion and recognition tasks, respectively.
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Figure 1. Experimental setup overview. (a) Familiarization phase: Exploration of the three terrains,
i.e., tiles, grass and stones (terrain configurations in the pictures). The detection of gait events by the
insole activates the corresponding VTs as follows: VT1 is triggered at the heel–strike (HS); VT2 is
triggered at the foot-flat (FF); and VT3 is triggered at the toe-off (TO). (b) The wearable augmenting
haptic belt embedding the VTs placed along the waist from the spine (VT1) to the navel (VT3).
(c) Neuromorphic vibrotactile feedback: examples of real-time spike trains delivered by each VT unit
according to the detected stance phase while walking along even (grass and tiles) and uneven (stones)
floors. (d) Neuromorphic vibrotactile feedback computation: example of the activation of VT1 relying
on the foot pressure sensors embedded in the insole and the relevant neuromorphic computation.

2.1. Experimental Setup

The wearable haptic feedback system consisted of three main components: a sensing
shoe insole, a tactile display and a haptic control unit [43,44].

The sixteen optoelectronics sensors embedded in the insole read the applied pres-
sure distribution resulting from the foot–ground interactions. The voltage readings were
converted into force signals through a characteristic curve, as defined in [45]. The sensor
configuration over the insole surface achieved the reliable detection of the gait events
from the ground reaction force profile, as detailed in previous studies [45,46]. A dedicated
electronic board placed on the shoe gathered these signals to wirelessly send them to a
central computing unit, namely the Vibro Board (NI SOM 9651). Here, at the low level, a
FPGA (Field-Programmable Gate Array) processed the plantar readouts to code them into
neuronal spike trains that activated the haptic interface. This consisted of an adjustable tex-
tile belt embedding three Eccentric Rotating Mass (ERM) motors (Precision Microdrives™,
London, United Kingdom) encapsulated in a silicone (PDMS) cover to enhance the comfort
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of the user. Henceforth, we refer to them as VT (vibrotactile) units. The belt was placed
around the waist and the VTs were attached to its inner side by Velcro straps. Since the
feedback is intended to provide the amputees with sensory information from the impaired
limb, the VTs were just placed on one side of the waist, going from the spine (VT1) through
the hip (VT2) to the navel (VT3). The distance between neighbor VTs was 9 cm, as in [47],
according to the waist perceptual spatial resolution found in [48] (Figure 1b).

Three floor textures were settled indoors to reproduce realistic terrains. Tiles were replicated
by the laboratory floor, grass by artificial plastic grass (IKEA, product: 503.131.31) and stones by
climbing holds (ChatNoirClimb). The latter had an averaged dimension of 5 cm× 5 cm× 2.5 cm
and they were randomly mounted on 12 particle boards (62.5 cm× 83 cm× 0.9 cm each) that
were alternated per density level (23.4 holds/m2 and 39 holds/m2). Stones represented
the uneven surface, whereas tiles and grass were comparatively uniform but different in
their stiffness. Each terrain pathway was 7.5 m long to elicit the sensation of walking along
(Figure 1a).

2.2. Feedback Strategy and Spiking Neuronal Network Architecture

In order to biomimetically encode the foot–ground interaction information onto the
VT activations, a neuromorphic stimulation strategy was implemented (Figure 1c,d). The
design of the proposed neuronal network took into consideration the mapping of both
the spatial placement and the forces exerted by the ipsilateral foot, onto the waist through
the spatially distributed VTs. Hence, at each discrete phase of the gait cycle (heel-strike,
foot-flat and toe-off) detected by the plantar sensors, the spatially corresponding VT unit
(VT1, VT2 and VT3, respectively) was activated (Figure 1d).

The raw data from the sensing insole were encoded into real-time spike trains gener-
ated by three Izhikevich artificial neurons [49], each one related to a discrete gait phase and
hence to a VT unit. The neurons had a regular spiking dynamics updated at 16 kHz (model
designed in LabVIEW-FPGA, National Instruments Corp, Austin, TX, USA), as in [44,49]. In
more detail, the sensor data, xn, were weighted to estimate the input, In

VTi, to each artificial
neuron (Equation (1)). When the input triggered a spike in the neuron, the spike activated
the corresponding VT for 15 ms, ignoring any other spike within this time window. The
gains were experimentally tuned for each neuron to guarantee the feedback perception
and avoid users’ discomfort. The resulting values, gVTi, were 72.17 ms−1, 32.08 ms−1 and
38.42 ms−1 for VT1, VT2 and VT3, respectively, and they were set on a dedicated LabVIEW-
RT GUI. The afferent receptive field weights, whose sign allowed for the appreciation of
the stance phases, were defined as wT

VT1 = [−0.17, −0.24, 1.00], wT
VT2 = [0, 0.98, 0] and

wT
VT3 = [0.32, −0.08, 0]. These weights have been chosen and experimentally tuned from a

pool of values generated through a Particle Swarm Optimization (PSO) approach [50]. The
terrain recognition accuracy of a k-Nearest Neighbors (KNN, K = 1) classifier based on the
Victor–Purpura distance [51] between spike trains was considered as the fitness function to
be optimized by the PSO procedure.

In
VTi = gVTimax

(
wT

VTix
n, 0

)
(1)

In
VTi = input current to the neuron associated with the ithVT;

gVTi = gain;
wT

VTi = weight;
xn = raw data from n = 16 sensors.

The three Izhikevich neurons (Equations (2) and (3)) were emulated on a Xilinx FPGA
board that updated the membrane potential in accordance with the input, In

VTi, as follows:

dv
dt

= Av2 + Bv + C− u + In
VTi (2)



Sensors 2023, 23, 4521 5 of 17

du
dt

= a(bv− u) (3)

Whenv ≥ Vth; then
{

v← c
u← u + d

where v is the membrane potential and u is the membrane recovery variable of the neuron.
The constants for the model were A = 0.04 ms−1 mV−1; B = 5 ms−1; C = 140 mVms−1;
a = 0.02 ms−1; b = 0.2 ms−1; c = −65 mV; d = 8 mV; Vth = 30 mV; dt = 0.0625 ms, with
reference to [44,49].

The computational neuronal core included the piece-wise solution to the ODE in
5 parallel and pipelined stages (dotted vertical lines in Figure 2). Each stage was executed
in one cycle of the FPGA, i.e., 25 ns. The fixed-point-based architecture (red values in
Figure 2) facilitated the accurate and timely completion of data computation at each stage
with an optimized usage of power and hardware resources. This approach can enable
the implementation of 2500 other neurons on the same core of the chosen hardware, to
implement even more refined neuromorphic strategies.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 18 
 

 

Neighbors (KNN, K = 1) classifier based on the Victor–Purpura distance [51] between 

spike trains was considered as the fitness function to be optimized by the PSO procedure. 

𝐼𝑉𝑇𝑖
𝑛 =  𝑔𝑉𝑇𝑖𝑚𝑎𝑥(𝑤𝑉𝑇𝑖

𝑇 𝑥𝑛, 0) (1) 

𝐼𝑉𝑇𝑖
𝑛  = input current to the neuron associated with the 𝑖𝑡ℎ𝑉𝑇; 

𝑔𝑉𝑇𝑖 = gain; 

𝑤𝑉𝑇𝑖
𝑇  = weight; 

𝑥𝑛 = raw data from n = 16 sensors. 

 

The three Izhikevich neurons (Equations (2) and (3)) were emulated on a Xilinx FPGA 

board that updated the membrane potential in accordance with the input,  𝐼𝑉𝑇𝑖
𝑛 , as follows: 

𝑑𝑣

𝑑𝑡
= 𝐴𝑣2 + 𝐵𝑣 + 𝐶 − 𝑢 + 𝐼𝑉𝑇𝑖

𝑛
 
 (2) 

𝑑𝑢

𝑑𝑡
= 𝑎(𝑏𝑣 − 𝑢) (3) 

𝑊ℎ𝑒𝑛 𝑣 ≥ 𝑉𝑡ℎ; 𝑡ℎ𝑒𝑛 {
𝑣 ←  𝑐

𝑢 ← 𝑢 + 𝑑
  

where v is the membrane potential and u is the membrane recovery variable of the neuron. 

The constants for the model were A = 0.04 ms−1 mV−1; B = 5 ms−1; C = 140 mVms−1; a = 0.02 

ms−1; b = 0.2 ms−1; c = −65 mV; d = 8 mV; Vth = 30 mV; dt = 0.0625 ms, with reference to 

[44,49]. 

The computational neuronal core included the piece-wise solution to the ODE in 5 

parallel and pipelined stages (dotted vertical lines in Figure 2). Each stage was executed 

in one cycle of the FPGA, i.e., 25 ns. The fixed-point-based architecture (red values in Fig-

ure 2) facilitated the accurate and timely completion of data computation at each stage 

with an optimized usage of power and hardware resources. This approach can enable the 

implementation of 2500 other neurons on the same core of the chosen hardware, to 

implement even more refined neuromorphic strategies. 

 

Figure 2. The customized fixed-point pipelined architecture designed for the Izhikevich neuron. The 

InVTi, BRAM_V and BRAM_U store the values of the input, 𝐼𝑉𝑇𝑖
𝑛 , v and u, respectively. The red 

numbers represent the fixed-point representation at every computational unit and the dotted lines 

denote the computational cycles. 

2.3. Experimental Protocol and Psychophysics 

The experimental sessions of the terrain recognition task included two phases, i.e., 

familiarization and playback, lasting 100 min overall. During the familiarization, after 

having worn the augmenting haptic feedback device, the participants were asked to select 

b = 0.2

InVTi

BRAM_U

A = 0.04

X
X

B = 5

X
+ >>4

c = – 65

BRAM_V
BRAM_V

X

+
C = 140

–

–

+

X
a = 0.02

>>4

+

>30 Spike

+
BRAM_U

d = 8

9.9

9.6

11.7

9.9

15.10

11.7

15.10 11.14

11.14

9.9

9.9

11.7

11.7

TimeStamp_U64

Fclk = 40 MHz

15.10

15.10

– 1

– 1

– 1

– 1

– 1

Figure 2. The customized fixed-point pipelined architecture designed for the Izhikevich neuron. The
InVTi, BRAM_V and BRAM_U store the values of the input, In

VTi, v and u, respectively. The red
numbers represent the fixed-point representation at every computational unit and the dotted lines
denote the computational cycles.

2.3. Experimental Protocol and Psychophysics

The experimental sessions of the terrain recognition task included two phases, i.e.,
familiarization and playback, lasting 100 min overall. During the familiarization, after
having worn the augmenting haptic feedback device, the participants were asked to select
the preferred parameters of the stimuli, i.e., the intensity and the duration of the vibrations.
Then, every subject chose her/his own speed to walk at throughout the experiment, by
adjusting her/his pace over the uneven terrain. The walking speed was then kept constant
to not affect further recognition of the terrains. The familiarization included four blocks
of training trials, each one consisting of a sequence of all the possible combinations of
consecutive terrains to walk on, summing up to 12. The 48 total trials aimed at imparting
the conceptual categorization of the perceived floor textures. The length of the paths
allowed the subjects to perform five full stances on each terrain before starting the new
trial, either on the same or a different terrain.

During the playback phase, instead, each subject was exposed to the vibratory stimu-
lations generated and recorded during the 48 familiarization trials. The activations were
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pseudo-randomly delivered to the waist of the subject, who was in a comfortable stationary
position. At each pattern, the subject was asked to identify the terrain type and her/his
responses were collected by the experimenter through a dedicated LabVIEW GUI.

2.4. Psychophysical Data Analysis and Data Pre-Processing

The analysis aimed at investigating the subjects’ ability to distinguish even from
uneven terrains and to recognize the three terrains as well. The responses of the subjects
were analyzed to estimate the 95% confidence intervals (CIs) with the exact Clopper–
Pearson method, and they were compared with the chance level (50% for unevenness
recognition and 33% for terrain identification) to assess the performance significance. The
differences in the walking behavior determined by the terrains were also assessed through a
One-Way ANOVA on the duration of the subjects’ stances. In case of significant differences,
post hoc comparisons were considered, and the relevant correction (Bonferroni’s) was
applied. The significance level was α = 0.05. The analysis was performed in MATLAB
(MathWorks, Inc., Natick, MA, USA).

2.5. Algorithm Decoding

The Peri-Stimulus Time Histograms (PSTH) of the spike trains related to each stance were
extrapolated to decode the spatiotemporal information associated with the recognition of the
terrains. Each trial was limited to five stances, whose spike times were normalized with respect
to the total duration of each stance. The spikes (inter-spike interval = 41.4 ms ± 18.6 ms) were
grouped by different bin sizes, which varied from 0% to 50% of the normalized stance cycle
with a step of 1.7%. The step width was chosen according to the minimum inter-spike
interval achievable (15 ms, i.e., the activation time of the VT at each single spike) and
considering an averaged stance time of about 900 ms. Three features were then extracted
for each bin size and fed to a machine learning algorithm to ultimately investigate the
human mechanism of decoding of the vibrotactile feedback. Therefore, the deactivation
(time of the last spike bin) of VT1 and the activations (time of the first spike bin) of VT2
and VT3 were chosen as they were considered, by visual inspection of the spike trains, to
capture the differential walking behaviors across the terrains. The 3D feature vectors were
then used to train population-wise (i.e., all the subjects included) and subject-wise (i.e.,
single subject) KNN classifiers (K = 5) to solve the terrain recognition task. In the case of
subject-wise training, the model was cross-validated with a leave-one-out approach. The
algorithm decoding workflow, so far, is represented in Figure 3.

For both the population- and subject-wise models, the accuracy of both the algo-
rithm (accuracyA) and the human subjects (accuracyH) and the candidacy, that is, the
overlap between the algorithm classifications and the subjects’ responses, were calculated
as follows:

accuracyX =
∑ TPX

Number o f trials
× 100 (4)

candidacy =
∑ TPC

Number o f trials
× 100 (5)

where TPX and TPC were defined as

TPX =

{
1; i f RX == RT
0; i f RX! = RT

(6)

TPC =

{
1; i f RA == RH
0; i f RA! = RH

(7)
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Figure 3. Workflow of the algorithm decoding. First box: the spike trains of each trial (i.e., 5 stances
over a terrain) are pre-processed into the PSTHs for every bin size, ranging from 0% to 50% of the
stance cycle. Two examples, for 1.7% (left column) and 5.1% (right column) bin sizes, are reported.
The last activation time of VT1 (Feature 1) and the activation times of VT2 and VT3 (Feature 2 and
Feature 3, respectively) are extracted and used as input features for the KNN algorithm. The second
box represents the KNN input feature space for the two bin sizes. The last box shows the confusion
matrix of the terrain classification task that the KNN algorithm outputs at each bin size.
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Here, RA is the algorithm classification outputs, RT is the actual terrain and RH is the
human subjects’ psychophysical responses. The X subscript in Equations (4) and (6) can
stand for A (algorithm) or H (human), accordingly. The candidacy was calculated for every
bin size and its maximum value determined the temporal scale, i.e., the corresponding
bin size, needed for the recognition of the unevenness/terrains. Hence, the population
candidate temporal resolution (CTRp) and the customized subject-wise candidate tem-
poral resolution (CTRc) were extrapolated. The customized temporal transitions (CTTc)
were then determined as the product of CTRc and the corresponding subject’s averaged
stance length.

Finally, to investigate the impact of the VT activations on human terrain classification,
the algorithm outputs were analyzed considering all the possible input combinations of
VTs. For this purpose, the candidacy and the related CIs were computed for each VT group.

3. Results
3.1. Haptic Feedback for Discrimination of Uneven Terrains

During the familiarization, the participants were trained for the further task of un-
evenness/terrain recognition. They completed between four and seven stances, with a
median value of five, taking 8.24 (5.4; 13) s (median, (min; max)) to accomplish each trial.
Individual stances lasted (mean ± standard deviation) (780 ± 50) ms on tiles, (810 ± 80) ms
on grass and (860 ± 180) ms on stones. The ANOVA on the stance durations returned
significant differences (F (2137) = 6.23; p = 0.0026). The post hoc comparisons revealed that
those differences concerned tiles and stones (p << 0.017, with the relevant correction of α)
(Supplementary Materials Figure S1).

During the playback phase, the subjects distinguished between the even and the
uneven terrains with an accuracyH of 87.5% ± 11.7% (mean ± standard deviation) and
they recognized the three terrains with an accuracyH of 62.5% ± 15.7% (Figure 4). These
outcomes were significantly better than the chance level for both the tasks (p < 0.05), as
shown in Figure 4c,d. More details about the terrain recognition task in terms of the
subject-wise confusion matrices are reported in Supplementary Materials Figure S2.
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and Clopper–Pearson exact intervals (error bars) for even/uneven terrain recognition and for each
terrain type identification, respectively.
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3.2. Decoding of the Neuromorphic Haptic Feedback for the Population-Wise Terrain Recognition

The population-wise KNN classification accuracyA decreased with the increase in the
bin size, i.e., the reduction in the temporal scale (R2 = 0.9260 and p < 0.05), when identifying
the terrain. The confidence interval of the subjects’ psychophysical performance and the
population-wise algorithm classification accuracyA were found to overlap up to a bin size
of 20–25% of the stance duration—for both the unevenness recognition and the terrain
identification (Figure 5). The CTRp for the unevenness recognition was found to be 5.1%
of the average duration of the stance, which corresponded to a 45 ms temporal dynamics.
At this temporal scale, the algorithm candidacy was 83.8%, and its accuracyA was 88.5%
(Figure 5). Concerning the CTRp for the terrain identification, instead, it was found to
be 1.7% of the stance duration, i.e., 15 ms, with an accuracyA of 62.8% and a candidacy
of 64.9%.
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Figure 5. Population-wise algorithm decoding performance. Unevenness recognition performance
(left) and three-terrain identification performance (right). Top: accuracyA as a function of the bin
interval measured as percentage of the stance duration (solid line); it is compared with subjects’
accuracy (shaded CI), with the chance level (flat solid line) and with the candidacy (right y-axis, dotted
line). Bottom: confusion matrices of the algorithm classification output at the bin size corresponding
to the maximum candidacy.

3.3. Estimation of the Human Decoding Temporal Dynamics through the Subject-Wise
Algorithm Performance

To investigate the human decoding temporal scale of the haptic feedback, the subject-wise
analysis was carried out. Figure 6 shows the accuracy and the candidacy as a function of the
bin size. The CTTc for the unevenness recognition was found to be 208 ms (CTRc = 25.5%),
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14 ms (CTRc = 1.7%), 49 ms (CTRc = 5.1%) and 16 ms (CTRc = 1.7%) for subjects 1 to 4, respec-
tively. In the case of terrain discrimination, the CTTc resulted to be 55 ms (CTRc = 6.8%),
14 ms (CTRc = 1.7%), 16 ms (CTRc = 1.7%) and 16 ms (CTRc = 1.7%). The across-subject
averaged maximum candidacy and accuracyA for the unevenness recognition were 86.4%
± 9.7% and 91.1%± 6.9%, respectively. In the case of the terrain recognition task, they were
63.4% ± 11.3% (candidacy) and 62.8% ± 18.5% (accuracyA). Further details are reported in
Tables 1 and 2.
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Subject 1 

Even 90.6% 100% 93.5% 

Uneven 93.8% 75% 81.2% 
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Figure 6. Subject-wise decoding performance. Unevenness recognition (left) and three-terrain
identification performance (right). Top: accuracyA (solid line) as a function of the bin size measured
as percentage of the stance duration; it is compared with the subjects’ accuracy (shaded CI), with the
chance level (flat solid line, 50% for the unevenness recognition and 33% for the terrain identification)
and with the candidacy (right y-axis, dotted line). Bottom: averaged confusion matrices and accuracyA

of the algorithm classification output at the bin size corresponding to the maximum candidacy for
each individual subject.
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Table 1. Subject-wise algorithm performance for unevenness recognition.

AccuracyH AccuracyA Candidacy

Subject 1
Even 90.6% 100% 93.5%

Uneven 93.8% 75% 81.2%
All 91.7% 91.5% 89.4%

Subject 2
Even 68.8% 93.8% 68.8%

Uneven 75% 62.5% 87.5%
All 70.8% 83.3% 75%

Subject 3
Even 93.8% 100% 93.8%

Uneven 81.2% 68.8% 62.5%
All 89.6% 89.6% 83.3%

Subject 4
Even 100% 100% 100%

Uneven 93.8% 100% 93.8%
All 97.9% 100% 97.9%

All All 87.5% 91.1% 86.4%

Table 2. Subject-wise algorithm performance for terrain identification.

AccuracyH AccuracyA Candidacy

Subject 1

Tiles 50.0% 60% 53.3%
Grass 56.2% 68.8% 87.5%
Stones 93.8% 68.8% 68.8%

All 66.7% 66% 70.2%

Subject 2

Tiles 18.8% 56.2% 18.8%
Grass 37.5% 12.5% 56.2%
Stones 75% 68.8% 75%

All 43.8% 45.8% 50%

Subject 3

Tiles 37.5% 31.2% 56.2%
Grass 56.2% 43.8% 43.8%
Stones 81.2% 81.2% 75.0%

All 58.3% 52.1% 58.3%

Subject 4

Tiles 93.8% 87.5% 93.8%
Grass 56.2% 75% 37.5%
Stones 93.8% 100% 93.8%

All 81.2% 87.5% 75%

All All 62.5% 62.8% 63.4%

3.4. Effect of the Different Combinations of VTs

The algorithm was evaluated with different combinations of the input VTs to inves-
tigate their contribution to human terrain choice. Tables 3 and 4 report the maximum
candidacy for each subject and input combination. The subject-wise candidacy and the
corresponding candidacy CIs of the combinations with VT2 (+) and those without it (−)
are shown in Figure 7. The information about the contribution of VT1 and VT3 is shown in
Supplementary Materials Figures S3 and S4, respectively. For the unevenness recognition,
the CI of the candidacy for all the subjects was [82.2%, 88.1%] when considering VT2 and
[70.7%, 78.0%] without VT2. In the case of the terrain identification task, the CI of the
candidacy was [56.6%, 64.8%] with VT2 and [46.8%, 55.1%] without VT2.
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Table 3. Algorithm unevenness recognition performance for the different combinations of VTs.
Maximum candidacy values and the corresponding accuracyA in parentheses.

Subject1 Subject2 Subject3 Subject4

VT1 91.5%
(89.4%)

56.2%
(68.8%)

68.8%
(66.7%)

68.8%
(66.7%)

VT2 83%
(85.1%)

72.9%
(85.4%)

83.3%
(89.6%)

95.8%
(97.9%)

VT3 87.2%
(89.4%)

68.8%
(77.1%)

70.8%
(72.9%)

77.1%
(79.2%)

VT1-VT2 91.5%
(89.4%)

72.9%
(85.4%)

83.3%
(89.6%)

97.9%
(100%)

VT1-VT3 87.2%
(89.4%)

68.8%
(77.1%)

72.9%
(75%)

77.1%
(79.2%)

VT2-VT3 87.2%
(89.4%)

75%
(83.3%)

83.3%
(89.6%)

97.9%
(100%)

All VTs 89.4%
(91.5%)

75%
(83.3%)

83.3%
(89.6%)

97.9%
(100%)

Table 4. Algorithm terrain identification performance for the different combinations of VTs. Maxi-
mum candidacy values and the corresponding accuracyA in parentheses.

Subject1 Subject2 Subject3 Subject4

VT1 57.4%
(59.6%)

37.5%
(52.1%)

37.5%
(39.6%)

54.2%
(60.4%)

VT2 48.9%
(53.2%)

52.1%
(52.1%)

54.2%
(50%)

72.9%
(87.5%)

VT3 59.6%
(63.8%)

41.7%
(52.1%)

39.6%
(39.6%)

66.7%
(68.8%)

VT1-VT2 70.2%
(72.3%)

50%
(60.4%)

56.2%
(54.2%)

75%
(89.6%)

VT1-VT3 59.6%
(59.6%)

41.7%
(47.9%)

50%
(43.8%)

66.7%
(72.9%)

VT2-VT3 57.4%
(63.8%)

50%
(60.4%)

66.7%
(56.2%)

75%
(87.5%)

All VTs 70.2%
(66%)

50%
(45.8%)

58.3%
(52.1%)

75%
(87.5%)
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Figure 7. Effect of VT2 on algorithm performance. The maximum candidacy and its CI for VT
combinations with (+) and without (−) VT2 for each subject and all the subjects grouped together are
represented. The maximum candidacy when all the input VTs are considered is shown in pink, as
reference. The presence of VT2 returned similar results to the all VTs cases (pink data) for unevenness
recognition ((a), purple data) and three-terrain identification ((b), blue data) in most of the cases.

4. Discussion and Conclusions

This study presents a neuromorphic haptic feedback strategy for the recognition of
uneven terrains. The tactile information of the foot–ground interaction during natural
walking was captured and delivered to the user by means of VT units placed on the
haptic belt worn on her/his waist. The progression of the gait was encoded in the spatial
distribution of the foot pressure recorded by the sensing insole. Then, it was injected into
slowly adaptive mechanoreceptor neuronal models and hence converted into spike trains
that activated the spatially corresponding VT (see Section 2 and Figure 1d). The proposed
neuronal strategy elicited a wave sensation on the waistline, travelling from the spine to
the navel to trace the progressive phases of the stance (Figure 1a,b).

This study successfully demonstrates that the subjects rapidly learnt sensorimotor
contingencies that govern terrain exploration through biomimetic neuromorphic haptic
feedback. The duration of each walk was chosen to be close to the estimated duration of
the haptic working memory [52], thus allowing the subjects to appreciate the relative simi-
larities/differences in the VT patterns amongst the trials. The psychophysical recognition
tests with this vibrotactile feedback substantiated the proposed contingency mimetics to
provide embodied awareness of the terrain walked upon. These findings pave the way for
new enabling strategies to be addressed for lower-limb amputees.

The vibrotactile haptic stimulations have been often exploited to non-invasively re-
store the missing plantar sensory information in amputees [15,19,35,36,53]. Partially ful-
filling the laws of sensorimotor contingencies (SMC), the activations of the tactile neu-
ronal pathway build their corresponding natural internal representation and provide the
accountable sensory perception [40,52,54]. However, the extent of these natural tactile
perceptions for lower-limb sensory augmentation has rarely been challenged. More specif-
ically, the quality of the haptic information is biomimetically extended in the presented
study, allowing the subjects to reliably discriminate between even and uneven terrains
(accuracyH: 87.5% ± 11.7%). On the other hand, the precise terrain identification was not
reliably achieved, given the high similarity between tiles and grass and the related elicited
sensations and effects (the relevant stance durations did not reveal significant differences;
accuracyH: 62.5% ± 15.7% with reference to Figure 4). In the perspective of enhancing
these results, further investigations with more terrain textures (e.g., gravel, sand, etc.) will
be considered in future experiments. In addition, a continuous use of feedback during
daily activities might consolidate the training and achieve better recognition performance.
Notwithstanding the reduced ability of the participants to identify very similar grounds,
one of the major difficulties for lower-limb amputees using a prosthesis is to maintain
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a balanced gait on an uneven terrain due to the lack of sensory information from the
foot–ground interaction [54,55]. The results of the presented perceptual recognition test
showed that, for the first time, a vibrotactile sensory augmentation strategy could primar-
ily enable unevenness recognition and additionally support terrain identification. These
achievements might ultimately mitigate the risk of falling in lower-limb amputees and
influence their walking behaviors depending on the stepped-on-ground features. Further
human-in the-loop trials will be considered to investigate the effect of stimuli identification
on cognitive load during walking on uneven surfaces. In this regard, previous results
have already demonstrated that healthy subjects were able to accurately localize vibrations
during constrained dynamic conditions, i.e., treadmill walking [48].

To better understand the human decoding mechanism of the biomimetic sensory feed-
back approach, an algorithm was trained to classify the proposed terrains. The deactivation
of VT1 and the activation of VT2 and VT3 were chosen as input features since they encoded
the information about the progression of the foot-flat phase, which is crucial to detect
under-the-foot obstacles. These features were extracted at each value of temporal scale, as
shown in the examples of Figure 3. The increase in the bin size, as a percentage of the stance
cycle, meant that variations in each bin were averaged over the corresponding time interval.
Consequently, the input features for the KNN algorithm were progressively associated
with a greater loss of information, determining lower machine recognition accuracy for
larger bins (Figures 5 and 6). The algorithm and the human subjects performed similarly
in the recognition of both the unevenness and the terrains (Figures 5 and 6). Hence, it
can be inferred that the machine successfully extracted the haptic perceptual complexity
that was learnt by the human subjects during the augmentation trials. Assuming this, the
temporal resolution (CTRp), i.e., the temporal bin size, was extracted where the candidacy
was the highest, since it represented the maximum correspondence between the algorithm
output and the subjects’ responses. It resulted in 45 ms for the unevenness recognition and
15 ms for the terrain identification. However, the accuracyA and the candidacy intersected
the subjects’ CIs up to a bin size of approximately 25%, i.e., a temporal scale of 220 ms, in
both the cases (Figure 5). Taking this into account, we can reasonably state that this value
can be considered the upper bound of the human vibrotactile stimuli temporal resolution.
When dealing with the subject-wise results, the CTRc followed the expected behavior, being
greater for the unevenness recognition, which requires less-precise feature decoding. Nev-
ertheless, we observed the absence of a significant slope in the relation between candidacy
and the bin size for all the subjects except for subject 4 (Figure 6). Up to the maximum
explored bin size, the algorithm accuracyA and the candidacy remained in the range of
most of the subjects’ CIs. Therefore, we conclude that the proposed method does not allow
us to draw strong conclusions about the individual temporal resolutions (CTRc).

The influence of each VT unit on the human terrain recognition choice was also
investigated. It was observed that the information provided by VT2, whose activation
occurred during the foot-flat event, was crucial for the algorithm to match the human
responses. Differently from the VT subsets that included VT1 and VT3, those with
VT2 matched the candidacy values achieved when using all the available inputs and
were considerably better than the subsets without it (unevenness recognition: (+VT2)
CI = [82.2, 88.1]%, (−VT2) CI = [70.7, 78]%; terrain recognition: (+VT2) CI = [56.6, 64.8]%,
(−VT2) CI = [46.8, 55.1]%; Figure 7). A similar pattern can be also observed when looking
at individual subjects, except for subject 1 (Figure 7). For this subject, the most informative
vibrotactile unit was VT1 (Supplementary Materials Figure S3). Despite the importance of
the contribution of VT2, the other VTs carried useful information since, with reference to
Tables 3 and 4, the addition of VT1, VT3 or both led to a slightly greater match between
the human and the algorithm responses. This can also be explained by the nature of the
feedback itself, conceived to encode terrain features as well as stance phases.

Overall, this study demonstrated the possibility to identify the unevenness of the
profile of the walked-upon terrains by means of a vibrotactile augmenting feedback device.
The neuronal spiking model fostered the interpretation of the human decoding mechanism
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of the perceived stimuli. This outcome can further promote the refinement of the feedback
patterns to enhance their effectiveness during explorative tasks. In this regard, lower-
limb amputees will be recruited to experience the proposed approach and to validate the
usability and the benefits of the biomimetic vibrotactile feedback system in rehabilitation
and real-life scenarios.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/s23094521/s1. Figure S1: Analysis of the subjects’ stance length; Figure S2:
Subject-wise psychophysical results; Figure S3: Effect of VT1 on algorithm performance; Figure S4:
Effect of VT3 on algorithm performance.
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