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Abstract—Constellation shaping is a practical and effective
technique to improve the performance and the rate adaptivity
of optical communication systems. In principle, it could also
be used to mitigate the impact of nonlinear effects, possibly
increasing the information rate beyond the current limit dictated
by fiber nonlinearity. However, this appealing idea is frustrated
by the difficulty of designing an effective shaping strategy that
takes into account the nonlinearity and long memory of the
fiber channel, as well as the possible interplay with other
nonlinearity mitigation strategies. As a result, only little progress
has been made so far, while the optimal shaping distribution
and the ultimate channel capacity remain unknown. In this
work, we describe a novel technique to optimize the shaping
distribution in a very general setting and high-dimensional space.
For a simplified block-memoryless nonlinear optical channel,
the capacity lower bound obtained by the proposed technique
can be expressed analytically, establishing the conditions for an
unbounded growth of capacity with power. In a more realistic
scenario, the technique can be implemented by a rejection
sampling algorithm driven by a suitable cost function, and the
corresponding achievable information rate estimated numerically.
The combination of the proposed technique with an improved
(non-Gaussian) decoding metric yields a new capacity lower
bound for the dual-polarization WDM channel.

Index Terms—Optical fiber communication, channel capacity,
achievable information rate, nonlinearity mitigation, constellation
shaping.

I. INTRODUCTION

Modeling and mitigation of fiber nonlinearity have been
an important aspect of optical fiber communication since
the very beginning [2]. In the last decade, the revolution of
coherent detection aided by digital signal processing (DSP)
has further stimulated the research in this field, bringing two
new elements to the picture: an almost unlimited capability
to modulate, demodulate, and process optical signals by DSP;
and the apparent impossibility to push the spectral efficiency
of optical systems beyond an alleged limit set by fiber
nonlinearity [3]–[5]. Nonetheless, many problems related to
fiber nonlinearity—optimal modulation, optimal detection, and
channel capacity to name a few—are still open and actively
investigated.
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The problem of mitigating nonlinear effects and improving
system performance has been addressed from many different
perspectives. One such perspective is that of considering the
optical fiber channel as a fixed element of the system, whose
performance can be improved only by deploying proper DSP
techniques at the transmitter or receiver. In this context, a
fundamental problem is the study of the capacity of the optical
fiber channel and the implementation of systems that operate
at rates close to it. This problem has been widely addressed in
the literature, considering different bounding techniques, fiber
links, and configurations [3], [5]–[28]. For a more detailed
analysis of the existing literature, we refer to [5], [29]. In this
work, we focus on single-mode fibers and wavelength-division
multiplexing (WDM) systems, studying the capacity from a
single-user perspective [21]. On the one hand, the tightest
available capacity lower bounds for this channel can be found
by the methodologies proposed in [25], [27], which yield
an achievable information rate (AIR) that reaches a peak at
some optimum power and then decays. On the other hand, the
only available upper bound equals the capacity of the additive
white Gaussian noise (AWGN) channel and hence increases
indefinitely with power [20]. The combination of these bounds
rules out neither the existence of a finite capacity limit nor the
possibility of unbounded growth with power.

The capacity problem can be formulated in a way that
entails two fundamental subproblems: the optimization of the
input distribution, which is related to the implementation of
an optimal coded modulation scheme; and the optimization of
the decoding metric, which is related to the implementation
of an optimal receiver. The maximization of the AIR obtained
for a given input distribution and decoding metric yields the
channel capacity. For the AWGN channel, the solution is
well known. The optimal decoding metric, matched to the
channel conditional distribution, factorizes into the product of
Gaussian marginal distributions; analogously, the optimal input
distribution factorizes into the product of identical Gaussian
marginal distributions1; the resulting AIR equals the channel
capacity C = log2(1 + SNR), where SNR is the signal to
noise ratio [34].

1When the input is constrained on a fixed constellation, the capacity-
achieving distribution is not generally available analytically, and should be
computed numerically (e.g., by the Blahut–Arimoto algorithm [30], [31]). In
this case, the Maxwell–Boltzmann (MB) distribution—a sort of discretized
Gaussian distribution—is often considered as a nearly optimal distribution,
as it maximizes the entropy for a fixed energy [32] and approaches channel
capacity within 0.1 dB in practical cases [33].
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The picture is quite different for the nonlinear fiber chan-
nel. In this case, the conditional distribution is unknown, so
that the receiver is optimized for an auxiliary channel—an
approximated version of the true channel, for which the
optimal decoding metric is available. This approach is known
as mismatched decoding. Often, for simplicity and in the
absence of a suitable alternative, an AWGN auxiliary channel
is considered, so that the decoding metric is still taken as
the product of marginal Gaussian distributions. The search
for more accurate and mathematically tractable mismatched
channel models is the subject of current research [35]. For
instance, several models show that interchannel nonlinear in-
terference (NLI) includes relevant phase and polarization noise
(PPN) components that evolve slowly in time [36]–[38]. Such
components depend also on frequency and can be alternatively
represented as time-varying linear intersymbol interference
[39]. Their mitigation is possible [38], [40] and yields an
increase of the AIR, which is more effective if combined
with subcarrier multiplexing [25], [41] and an optimized per-
subcarrier power allocation [26], [27]. Moreover, even the
additive component of NLI has some correlation in time,
which might be exploited for its mitigation [26], [27].

Constellation shaping improves the efficiency of a digital
modulation scheme by modifying the position of the symbols
in the constellation diagram (geometric shaping) or the fre-
quency with which they are used (probabilistic shaping), trying
to match the optimal input distribution for the given channel.
A practical coded modulation scheme that has attracted much
interest in recent years is probabilistic amplitude shaping
(PAS), thanks to its nearly optimal performance, simple im-
plementation, and fine rate granularity [33], [42]. PAS uses a
distribution matcher, followed by a systematic forward error
correction (FEC) encoder, to induce the desired distribution
over a quadrature amplitude modulation (QAM) constellation.
The optimal condition of i.i.d. MB symbols is approached as
the block length of the distribution matcher goes to infinity
[33], [43].

Constellation shaping can be used also to mitigate nonlinear
effects. In this case, often referred to as nonlinear constella-
tion shaping, the location or probability of the constellation
symbols are optimized to minimize the amount or impact of
the generated NLI. The main problem here is that the optimal
input distribution is unknown, so that the distribution matcher
approach of PAS cannot be directly implemented. There
are many evidences suggesting that optimizing the marginal
distribution of i.i.d. 2D symbols yields negligible gains in this
case [44]. In fact, to unlock the full potentiality of nonlinear
constellation shaping, the optimization should be performed
in a higher dimensional space. So far, the approaches have
been limited to the optimization of low-rate constellations in
a low-dimensional space (e.g., geometric shaping in 4D and
8D [45], [46]), or to a highly constrained optimization of
PAS in a higher-dimensional space (e.g., optimizing the block
length of the distribution matcher while keeping an MB target
distribution) [47]–[50]. The advantages obtained in this way
are moderate, and might become negligible in the presence of
carrier recovery algorithms [51].

The current research challenge is the full optimization of

the constellation in a high-dimensional space, possibly in
combination with improved decoding strategies. While this
is an extremely complex and still unsolved problem, in this
work we propose a capacity lower-bounding technique based
on rejection sampling to estimate the gain achievable by such
an optimization. The idea, named sequence selection, was
briefly introduced in [52]. In this work, we better formalize
the technique, we describe some practical procedures for its
implementation, and we use it to derive some new analytical
and numerical results on the optical fiber capacity.

The paper is organized as follows. Section II introduces
the optical fiber channel and the capacity problem. Sec-
tion III describes the proposed sequence selection technique
and the related capacity lower bound. Section IV derives
an analytical capacity lower bound for a simplified block-
memoryless optical channel, establishing the conditions for an
unbounded growth of capacity with power. Section V presents
some numerical results and the new capacity lower bound
for the WDM channel. The conclusions are finally drawn in
Section VI.

Notation: a random variable is denoted by an uppercase
letter, e.g., X , its expectation by E{X}, and its realization
by the corresponding lowercase letter x. This rule, however,
is broken when dealing with some deterministic quantities,
e.g., the bandwidth W , the power P , or the length N . The
probability density function (or distribution, in short) of the
random variable X is simply denoted by p(x), with the
argument implicitly defining the specific distribution, so that
p(x) and p(y) denote the different distributions of the variables
X and Y . A subscript is sometimes used to distinguish some
specific distributions, e.g., the unbiased distribution pu(x).
A discrete-time stochastic process is denoted by a boldface
uppercase letter, e.g., X = (X1, X2, . . .), and the notation
Xn
k = (Xk, Xk+1, . . . , Xn) and Xn = (X1, X2, . . . , Xn) is

used to denote finite portions of the process, i.e., finite-length
random sequences. The corresponding realizations are denoted
by boldface lowercase letters. The energy of the sequence xn

is ‖xn‖2 =
∑n
i=1 |xi|2. Integrals, if not otherwise specified

by explicit limits, extend to the whole space in which the
integration variable is defined.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

The goal of this work is to study the capacity of the optical
fiber channel, from the perspective of a single WDM user
in a WDM configuration. Here the optical fiber channel is
defined as a waveform channel, in which the propagation of
the optical signal is governed by the Manakov equation [53].
The Manakov equation accounts for attenuation, dispersion,
and Kerr nonlinearity, with the addition of a noise term and
a periodic gain/loss function that accounts for the presence of
optical amplifiers [25], [29].

The available optical bandwidth is divided into several
independent slots of size W , each allotted to a different WDM
user. We assume fair and independent WDM users, meaning
that the multiplexed signals are independently modulated by
each user, have the same input power and statistical properties,
and are independently detected (behavioral model c in [21]).
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Fig. 1. Description of the system considered for AIR computation and
maximization.

Moreover, we assume that each user has access only to its
allotted portion of optical spectrum, i.e., that the available
hardware allows each user to generate only strictly band-
limited signals, with passband bandwidth W , and to detect
only the portion of the received signal that falls within the
same bandwidth.2 In this case, with no loss of generality, it is
possible to give an equivalent discrete-time formulation of the
problem, where the input and output signals are represented by
their samples taken at Nyquist rate W . The sampling theorem
[34], [54] ensures that the input and output samples are a
sufficient statistic to represent the input and output waveforms,
respectively, so that any possible coding and decoding strategy
for the waveform channel can be implemented by working on
the input and output samples.

From a single-user perspective, the system is described as
in Fig. 1. At the transmitter, a random message (a sequence
of independent uniformly distributed bits) is encoded on a
sequence of symbols x = (x1, x2, . . .) by a proper combi-
nation of coding and modulation. The input sequence x is
processed by a digital signal processing (DSP) block to obtain
the sequence x′ = (x′1, x

′
2, . . .) and converted to the input

waveform x(t) by an ideal digital-to-analog (D/A) converter
with sampling rate and bandwidth W . After propagation of
x(t) through the optical fiber channel, the output waveform
y(t) is converted into the sequence y′ by an ideal analog-to-
digital (A/D) converter with bandwidth and sampling rate W
and digitally processed to obtain y. The transmitted message
is finally recovered from y by demodulation and decoding.

For every N = 1, 2, . . ., the combination of coding and
modulation is characterized by the distribution p(xN ) of the
emitted sequence; the discrete-time physical link—obtained
by the combination of D/A converter, optical fiber link, and
A/D converter—is characterized by the conditional distribu-
tion p(y′N |x′N ); and the combination of demodulation and
decoding is characterized by the decoding metric q(yN |xN ).
Usually, DSP is employed at the transmitter and/or receiver
to compensate for some channel impairments (e.g., fiber
dispersion) and to perform some important tasks such as clock
and carrier recovery. The combination of DSP and discrete-
time physical link gives the overall discrete-time channel
p(yN |xN ).

2This assumption entails that the spectral broadening induced on the signal
of a particular user by nonlinear fiber propagation is seen as a spectral
loss by that user, and as interchannel NLI by the others. The assumption
also entails that these effects cannot be removed by increasing the mod-
ulation/demodulation bandwidth, but only mitigated by properly designing
the coding/decoding strategies—the latter being indeed the more interesting
scenario for practical applications.

The system performance is measured by the achievable
information rate (AIR) with mismatched decoding (also known
as auxiliary-channel lower bound) [55]

Iq(X;Y ) = lim
N→∞

1

N
E

{
log2

q(Y N |XN )

q(Y N )

}
(1)

where
q(yN ) =

∫
q(yN |xN )p(xN )dxN (2)

is the mismatched output distribution, obtained by connecting
the input source to an auxiliary channel with conditional dis-
tribution q(yN |xN ); the limit operation accounts for channel
memory; and the expectation is taken with respect to the input
distribution p(xN ) and true channel distribution p(yN |xN ). In
practice, (1) can be estimated by

Iq(X;Y ) ≈ 1

N
log2

q(yN |xN )

q(yN )
(3)

taking N sufficiently long to ensure that both the limit and
expectation operations are approximated with the desired
accuracy.

The AIR (1) can be converted into a spectral efficiency (SE)
by dividing it by the product WT , where W is the channel
bandwidth and T the symbol rate. The choice T = 1/W made
above means that the AIR values obtained in this work (in
bits/symbol) can be directly read as SE values (in bits/s/Hz).

Single-mode fibers allow the propagation of two orthogonal
polarization modes. For the sake of simplicity, this is not
explicitly considered in Fig. 1 and in the notation employed
in the paper, where symbols and signals are defined in C (2D
space). In fact, when a WDM user exploits both modes—as
usual in modern coherent systems—the corresponding sym-
bols and signals should be considered as dual-polarization
complex symbols and signals, defined in the 4D space C2. In
this case, the AIR in (1) is expressed in bits/4D symbol. This
specific scenario is considered in Sections V-C and V-D, where
the numerical results are anyway reported in bits/2D symbol
and bits/s/Hz/polarization by simply dividing the AIR by two.

The capacity problem studied in this work can be seen as
an optimization problem, where the AIR (1) of the system in
Fig. 1 is maximized by optimizing the input distribution p(xN )
(blue block labelled “Coding & Modul.”), the decoding metric
q(yN |xN ) (pink block labelled “Demodul. & decoding”), and
the DSP at transmitter and receiver (yellow blocks labelled
“DSP”). Any specific but suboptimal choice of these blocks
yields a capacity lower bound. In practice, this work and most
of the current research on this topic is focused on finding
better combinations of these three elements to improve on the
existing lower bounds. The choice T = 1/W made above
and the sampling theorem ensure that the capacity obtained in
this way equals the maximal SE for the waveform channel, no
further improvements being possible by changing the sampling
rate.

With respect to the classical formulation of channel capacity
[34], [56], [57], the optimization problem formulated above
contains some additional elements—namely, the decoding
metric and the DSP—which might be practically useful,
though formally redundant. In fact, the optimal decoding
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metric is known to be q(yN |xN ) = p(yN |xN ). However,
when the true distribution p(yN |xN ) is either unavailable
or too complicated (as in the case of Fig. 1), the detec-
tor is designed to make maximum-a-posteriori-probability
decisions based on a simpler but mismatched channel law
q(yN |xN ) 6= p(yN |xN ) [58], which is then optimized subject
to some reasonable assumptions and complexity constraints.
The derivation of improved decoding metrics for the system
in Fig. 1 is discussed, for instance, in [24]–[27]. Some of these
metrics will be used to obtain the capacity lower bounds shown
in Section V-D.

For what concerns the DSP, its optimization is clearly
unnecessary, since any DSP can be formally included in a
proper definition of p(xN ) and q(yN |xN ), whose optimiza-
tion therefore includes the DSP optimization. However, a
properly designed DSP can simplify the channel p(yN |xN )
(e.g., by shortening its memory or removing some undesired
effects) and the search for the corresponding optimal input
distribution and decoding metric. Two practical examples that
are considered in this work are chromatic dispersion com-
pensation, which completely removes the effect of chromatic
dispersion in the linear regime, and single-channel digital
backpropagation, which removes deterministic intrachannel
NLI, leaving interchannel NLI as a dominant impairment [13].

III. INPUT OPTIMIZATION VIA SEQUENCE SELECTION

A. General Idea

We first illustrate the basic idea with the simple example
depicted in Fig. 2. Given a discrete-time channel, we want
to find the most efficient way to encode a message of k
information bits on a sequence of n symbols, where each
symbol belongs to a given M -ary modulation alphabet (e.g.,
a 16-QAM symbol in the figure). Clearly, the problem has no
solution if R , k/n > log2M , where R is the code rate, as
in this case the number of possible messages 2k exceeds the
number of available sequences Mn. On the other hand, when
R = log2M , there is only one trivial solution, which uses the
whole set A of available sequences (the particular mapping
order being irrelevant). The problem becomes more interesting
when R < log2M . In this case, there are more sequences than
messages, meaning that we can find an optimum map that uses
only the “best” 2k sequences, contained in a subset B ⊂ A.
This selection process entails the existence of a certain cost
function, which can be used to rank the sequences according to
their cost and to select the “least expensive” ones, discarding
the others (e.g., the one denoted by the red dotted line in
Fig. 2). At this point, the most efficient encoding strategy
is simply obtained by mapping each possible message to a
different sequence of the subset B (in any arbitrary order),
as shown in the table in Fig. 2. In practice, by changing the
cardinality of the subset |B| = 2k, we can obtain a different
trade-off between code rate R and average cost. For instance,
by selecting fewer sequences, we reduce the transmission rate
but also the average cost (which means, for instance, a higher
energy-efficiency or a better performance, depending on the
considered cost function).

𝑏1 𝑏2 𝑏3…𝑏𝑘

𝑥1 𝑥2 𝑥𝑛𝑥3
…

…









0…000
0…001
0…010

… …

𝑘 bits 𝑛 symbols

2𝑘 entries

Fig. 2. The sequence selection approach: k input bits are mapped to the
“best” 2k sequences of n M -ary symbols, with rate R = k/n ≤ log2M .

𝒙𝑛 ∈ ℬ

Optimized source

Unbiased 
source

෥𝒙𝑛 ∈ 𝒜
if 𝜆 ෥𝒙𝑛 < 𝛾𝜆 → 𝒙𝑛 = ෥𝒙𝑛

if 𝜆 ෥𝒙𝑛 ≥ 𝛾𝜆 → reject

Accept/reject

∼ 𝑝𝑢(෥𝒙
𝑛) ∼ 𝑝(𝒙𝑛)

Fig. 3. The rejection sampling machine that generates sequences with the
optimized distribution.

B. Rejection Sampling Algorithm

The simple idea illustrated above raises several important
issues. The first issue is related to the procedure used to define
the subset B ⊆ A of “best” sequences. In fact, the proposed
exhaustive search becomes clearly unfeasible for large M
and n, or even impossible when considering a continuous
input constellation. Here we propose a different approach,
introducing a mechanism to implement an optimized source,
i.e., a source that emits random sequences with an optimized
input distribution. The optimization is based on the same idea
presented in Section III-A, but it avoids an exhaustive search
and works even in the general case of a continuous sampling
space with large dimensionality.

The optimized source is implemented by combining an
unbiased source with an accept–reject algorithm, as shown
in Fig. 3. The unbiased source draws a random sequence
x̃n from a certain sampling space A ⊆ Cn with proposal
(unbiased) distribution pu(x̃n). In general, both the sampling
space and the proposal distribution can be arbitrarily selected,
meaning that the symbols can be drawn from a discrete
or continuous constellation, be i.i.d. or not, and have any
distribution. In practice, it is convenient to select a sampling
space that matches the hardware constraints that we have at
the transmitter (e.g., the whole Cn for a theoretical analysis,
the Cartesian product of n QAM constellations for a practical
transmitter) and a proposal distribution that is simple enough
in terms of sample generation and AIR computation, but not
too far from the optimal one. In this work, we will consider
sequences of n i.i.d. complex symbols with a circularly-
symmetric Gaussian distribution.

The accept–reject algorithm is characterized by a cost
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(or loss) function λ(x̃n) and a selection threshold γλ. The
proposed sequence x̃n is accepted (emitted by the optimized
source by setting xn = x̃n) if λ(x̃n) < γλ, rejected otherwise.
As a result, the distribution of the sequences emitted by the
optimized source is

p(xn) =

{
1
ηpu(xn), λ(xn) < γλ

0, λ(xn) ≥ γλ
(4)

where
η = Pr{λ(X̃

n
) < γλ} (5)

is the acceptance probability, which can be practically esti-
mated as η ≈ Na/Np , where Na is the number of accepted
sequences and Np is the number of proposed sequences. On
average, each accepted sequence requires the generation of 1/η
proposed sequences and the computation of the corresponding
1/η values of the cost function. This gives an indication of
the computational cost of the proposed procedure.

In practice, the algorithm guarantees that all the emitted
sequences belong to the set B ⊆ A of “best” sequences (whose
cost is lower than the prescribed threshold γλ); within such set,
their distribution is just a rescaled version of the unbiased one.
Reducing γλ reduces the average cost of the sequences emitted
by the optimized source. At the same time, it reduces also
the acceptance rate η, which in turn reduces the (differential)
entropy rate of the optimized source (in the example of
Fig. 2, the number of sequences |B| = 2k available to encode
information decreases, reducing the rate k/n) and increases
the computational complexity of the generation procedure.

C. AIR Estimation

In principle, the AIR with mismatched decoding and the
optimized source described in Section III-B can be estimated
by the general expression in (1), where the input sequence xN

is obtained by concatenating several independent subsequences
of length n emitted by the optimized source (for simplicity, we
assume that N/n is an integer number). The corresponding in-
put distribution p(xN ) is hence the product of the distributions
of the N/n subsequences, given by (4), while the mismatched
output distribution q(yN ) is given by (2). However, since (4)
is a complicated distribution in an n-dimensional space, the
computation of (2) can be very complex in this case. Thus,
we resort to the lower bound

Iη(X;Y ) = lim
N→∞

1

N
E

{
log2

q(Y N |XN )

qu(Y N )

}
− 1

n
log2

1

η
≤ Iq(X;Y ) (6)

where the expectation is taken with respect to the actual
optimized distribution; the inequality is obtained by using
p(xN ) ≤ pu(xN )/ηN/n, which follows from (4); and

qu(yN ) =

∫
q(yN |xN )pu(xN )dxN (7)

is obtained by connecting the unbiased source pu(xN ) to the
auxiliary channel q(yN |xN ) and is, hence, much simpler to
compute than q(yN ). For instance, for an unbiased source

of i.i.d. Gaussian samples with variance P and an AWGN
decoding metric with variance σ2, the samples at the output of
the auxiliary channel are i.i.d. Gaussian with variance P +σ2.
In practice, the AIR (6) can be estimated by the following
simple procedure:
• create a long input sequence xN by concatenating N/n

subsequences of length n generated by the rejection
sampling machine in Fig. 3;

• compute numerically (or generate experimentally) the
corresponding output sequence yN obtained by the prop-
agation of xN through the system in Fig. 1;

• estimate the AIR using

Iη(X;Y ) ≈ 1

N
log2

q(yN |xN )

qu(yN )
− 1

n
log2

Np
Na

(8)

i.e., using the same expression as in the unbiased case
and subtracting the rate loss.

The AIR can then be maximized by optimizing the selection
threshold γλ, i.e., the acceptance rate η ≈ Na/Np. The
overall procedure is very similar to the case without sequence
selection, the only additional complexity being the generation
of the input symbols based on the rejection sampling machine
in Fig. III-B, which requires 1/η computations of the cost
function for each accepted subsequence of length n.

D. Cost Function

In practice, the definition of a suitable cost function is
essential for the correct optimization of the source. A good
cost function must be simple enough to be computed several
times per each generated sequence and, at the same time,
accurate enough to yield an effective selection. The final goal
is that of maximizing the AIR (1) over the given channel,
subject to some possible constraints. This means that, in
general, the cost function should be specifically defined to
account for the channel characteristics, the decoding metric,
and the required constraints.

As a first example, we consider a simple AWGN channel
with matched detection and an average-power constraint. In
this case, the channel effect is independent of the particular
input sequence and depends only on the noise variance. On the
other hand, different sequences may have a different energy,
meaning that their use may have a different cost in terms of
average power. Therefore, given a generic input sequence sn,
a suitable cost function appears to be the energy per symbol
of the sequence

λ(sn) =
1

n
‖sn‖2 (9)

With reference to the example in Fig. 2, setting a partic-
ular threshold γλ for the cost function in (9) corresponds
to selecting all the sequences within the sphere of radius√
nγλ in Cn. Changing the threshold γλ changes the number

of selected sequences 2k, i.e., the rate R = k/n of the
shaping strategy. Among all possible strategies allowed by the
considered architecture, the sphere shaping induced by the cost
function (9) clearly minimizes the average power required to
achieve the desired rate.
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The situation is different for the nonlinear channel, which
induces also signal-dependent distortions due to fiber nonlin-
earity. At the same time, the average power constraint might
no longer be relevant in this case, since the AIR has typically
a peaky behavior and the goal is that of maximizing the
peak AIR, regardless of the average power. The impact of the
channel on the AIR (6) is determined by the (mismatched)
conditional entropy term −E

{
log2 q(Y

N |XN )
}
/N , which

measures the average uncertainty that we have about the
output sequence, given the input sequence and the mismatched
probabilistic model q(yN |xN ).3 Therefore, a suitable cost
function to minimize this term (and maximize the AIR) is

λ(sn) = − 1

N
E
{

log2 q(Y
N |XN )|XN/2+n/2

N/2−n/2+1 = sn)
}
(10)

which measures the average effect that the particular sequence
sn has on the mismatched conditional entropy term. Note that,
in the case of an AWGN channel with matched decoding,
the cost function (10) equals the entropy of the noise and
is independent of the sequence sn, meaning that all the
sequences are equally good. In this case, the introduction of
an average power constraint and the use of the cost function
(9) is clearly more appropriate.

It is instructive to specialize the cost function above to the
case of an AWGN decoding metric

q(yN |xN ) =
1

πσ2N
exp

(
−
∥∥yN − xN∥∥2

σ2

)
(11)

By replacing (11) in (10) and omitting some inessential
constant terms (which do not alter the ranking induced by the
cost function over the available sequences), the cost function
can be expressed as

λ(sn) =
1

N
E

{∥∥∥Y N −XN
∥∥∥2 |XN/2+n/2

N/2−n/2+1 = sn
}

(12)

In practice, (12) can be estimated by replacing the expectation
with an average over a finite number of realizations, and
considering only a shorter portion of the sequence, i.e., only
those symbols which are more affected by the input sequence
sn—the n central symbols and, possibly, a few surrounding
ones, depending on the channel memory.

A final simplification can be obtained by assuming that
nonlinear effects are block-memoryless, with blocklength n,
and independent of the noise. In this case, both the noise and
the symbols outside the block of length n become irrelevant, as
they contribute only with a constant term to the cost function
(12), which can therefore be simplified as

λ(sn) =
1

n
‖ŷn − sn‖2 (13)

where the vector ŷn collects the n output symbols obtained
from a noiseless propagation of the input sequence xn = sn.

3Some authors use the term “cross entropy” to refer to the quantity
−Ep{log q(X)}, where p(x) and q(x) are two distributions defined over
the same probability space, and Ep{·} denotes expectation with respect to
p. The same term is used by other authors to refer to the relative entropy or
Kullback–Leibler divergence −Ep{log(q(X)/p(X)) [57]. To avoid confu-
sion and better highlight the relation with the mismatched probabilistic model,
we prefer here the term “mismatched entropy”.

The block-memoryless assumption ensures that ŷn depends
deterministically on sn, so that the expectation is no longer
required and the cost function can be estimated from a single
noiseless simulation.

IV. ANALYTICAL RESULTS

We apply here the proposed technique to a simple nonlinear
channel that includes AWGN and block-memoryless NLI.
Given a block of n input symbols xn, the corresponding output
block can be written as

yn = xn +wn + ξn (14)

where wn is a vector of i.i.d. noise samples with circu-
larly symmetric complex Gaussian distribution with variance
σ2
w, and ξn is a vector of NLI samples. As in a regular-

perturbation-based fiber channel model [16], [37], we assume
that NLI samples are generated by the nonlinear interaction of
the input symbols during propagation and scale cubically with
them, so that their variance can be written as σ2

ξ = aP 3, where
P = E{|Xi|2} is the input power and a a proportionality
constant. Moreover, we assume that channel memory does
not extend beyond the edges of each block, i.e., separate
blocks are independent. We remark that (14), with the related
assumptions, is not intended as an accurate description of a
realistic fiber channel but, rather, as a simplified model that
allows for an analytical study of the problem while retaining
some essential features of optical fiber channels.

First, we consider the simple case in which the system
is designed according to a simple Gaussian noise model,
i.e., by completely neglecting the dependence of NLI on
the input symbols and by assuming that the elements of ξn

are i.i.d. circularly symmetric complex Gaussian variables
[59]. In this case, (14) reduces to an AWGN channel with
noise variance σ2 = σ2

w + σ2
ξ , for which the optimal input

distribution consists in i.i.d. circularly symmetric complex
Gaussian symbols, and the optimal decoding metric is given
by (11). The corresponding AIR is

IG(X;Y ) = log2

(
1 +

P

σ2
w + aP 3

)
, (15)

which has the typical behavior shown in Fig. 4 with a red
dashed line for the case a = 0.01 and σ2

w = 0.001. With
respect to the linear capacity C = log2(1 + P/σ2

w) obtained
for a = 0, which grows unbounded with power, the Gaussian
AIR (15) over the nonlinear channel reaches a peak at the
optimal input power Popt = 3

√
σ2
w/2a, after which it decreases

again and vanishes. Though this behavior appears often in
the literature with reference to the optical fiber channel or
its approximated models, it has been already pointed out that
there is no proof that a similar behavior applies to the actual
channel capacity. Indeed, a different behavior has been demon-
strated for different approximated channel models, whereas the
problem remains open when considering a realistic channel
[5], [29].

Then, we consider a different approach, in which we ac-
count for the dependence of NLI on the input symbols in
(14) to better shape the input distribution. In particular, we
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optimize the distribution of the input symbols by applying
the sequence selection procedure described in Section III to
an unbiased source of i.i.d. Gaussian symbols with power P .
The length of the input sequences is taken equal to the block
length n over which the channel memory extends. On the other
hand, we do not optimize the decoding metric, keeping the
simple AWGN metric in (11). For this metric, given the block-
memoryless property of the channel, a suitable cost function
is the energy per symbol of the NLI (13), which in this case
can be expressed as

λ(xn) =
1

n
‖ξn(xn)‖2 (16)

with expectation E{Λ} = aP 3. The AIR obtained with the
optimized source is given by (6) and can be expressed as

Iη(X;Y ) = log2

(
1 +

P

σ2
n + σ2

ξ (γλ)

)
− 1

n
log2

1

η(γλ)
(17)

where we have made explicit the dependence on the threshold
γλ of both the acceptance rate η(γλ) and the NLI variance
(after selection) σ2

ξ (γλ), and we have assumed that E{|Y |2} =

P +σ2
n+σ2

ξ (γλ).4 By reducing γλ, we accept only sequences
with a lower NLI, reducing σ2

ξ (γλ). At the same time, we
accept fewer sequences, reducing also η(γλ). In terms of
AIR, the first effect is beneficial, whereas the second one is
detrimental. The opposite behavior is obtained by increasing
γλ. Two special cases are obtained for γλ → 0 and γλ →∞.
In the first case, η → 0 and the information rate vanishes (no
sequences are available). In the second case, η → 1, the source
remains unbiased, and σ2

ξ (γλ)→ aP 3, so that (17) reduces to
(15).

4In practice, we assume that the output power equals the input power plus
the noise and NLI power, implying that the three processes are uncorrelated.
This is clearly a simplification, since NLI does depend on the input symbols.
Nonetheless, the following analysis would produce qualitatively similar results
by making more realistic assumptions, e.g., E{|Y |2} = P + σ2

n (the total
energy is preserved by the nonlinear propagation), or E{|Y |2} = P +σ2

n−
σ2
ξ (γλ) (the NLI is anticorrelated with the signal and reduces the output

power, for instance due to the loss induced by spectral broadening).

In order to study the more general case and find the optimal
threshold γλ that maximizes the AIR, we need to make
some additional assumptions about the NLI distribution. In
particular, we assume that when the input is unbiased (i.i.d.
Gaussian symbols), the cost function in (16) has a gamma
distribution with shape parameter n′ ≤ n and expectation
E{Λ} = aP 3

pλ(λ) =
1

Γ(n′)

(
n′

aP 3

)n′
λn
′−1 exp

(
− n

′λ

aP 3

)
, λ > 0

(18)
where Γ(n) is the gamma function [60, eq. (6.1.1)]. This
assumption is motivated by the observation that, if NLI were
indeed statistically equivalent to AWGN, as suggested by the
GN model, the distribution of the cost function would be
exactly the one in (18) but with shape n′ = n—i.e., a rescaled
chi-squared distribution with 2n degrees of freedom. On the
other hand, adjacent NLI samples are not really independent,
as the same input symbols are involved in the generation
of several consecutive NLI samples, so that it is reasonable
to assume that the actual shape parameter in (18) might be
reduced. Again, (18) is just a working assumption, with no
claims of accuracy. In the next section, more realistic fiber
models will be studied numerically, also showing how far the
assumptions of this section are from reality.

The dependence of the acceptance rate and variance on
the threshold can be computed from the distribution in (18).
The acceptance rate equals the cumulative distribution function
(cdf)

η(γλ) =

∫ γλ

0

pλ(λ)dλ =
γ
(
n′, n′γλP

−3/a
)

Γ(n′)
(19)

where γ(s, x) is the lower incomplete gamma function with
parameter s [60, eq. (6.5.2)]. The NLI variance equals the
conditional expectation

σ2
ξ (γλ) = E{Λ|Λ < γλ} =

∫ γe

0

λ
pλ(λ)

η(γλ)
dλ

=
aP 3

n′
γ
(
n′ + 1, n′γλP

−3/a
)

γ (n′, n′γλP−3/a)
(20)

The AIR is eventually obtained by replacing (19) and (20) in
(17)

Iη(X;Y ) = log2

1 +
P

σ2
w + aP 3

n′
γ(n′+1,n′γλP−3/a)
γ(n′,n′γλP−3/a)


− 1

n
log2

Γ(n′)

γ (n′, n′γλP−3/a)
(21)

Interestingly, while the Gaussian AIR (15) has the typical
peaky behavior that is commonly found for most available
capacity lower bounds for the nonlinear optical fiber—it
reaches a peak at some optimal power and then decays again
to zero at high power—this is not necessarily the case for
the AIR (21) with sequence selection. In fact, by setting the
threshold to the approximately optimal value

γoptλ ≈ n′ + 1

n− n′
σ2
n (22)
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three different asymptotic behaviors can be observed for
P → ∞: i) for n′ < n/3, the AIR grows unbounded as
log2(P 1−3n′/n); ii) for n′ = n/3, the AIR saturates to a finite
constant value; for n′ > n/3, the AIR vanishes after reaching
a finite peak at some optimum power (as in the unshaped case).
This result, obtained specifically for the distribution in (18),
is more general and holds whenever the cdf in (19) grows as
∼ γn′λ for small γλ. A slow growth (n′ < n/3) implies that the
AIR can always be increased by increasing the power P and
simultaneously decreasing the selection threshold γλ to keep
the NLI limited, since the rate loss caused by the selection
is more than compensated by the corresponding increase of
the SNR. On the other hand, this is not possible, at least
asymptotically, when the growth is faster (n′ > n/3).

Fig. 4 shows the AIR (17) with optimized selection thresh-
old for the block-memoryless nonlinear channel (14) with
nonlinear coefficient a = 0.01, noise variance σ2

w = 0.001,
block length n = 60, under the assumption that the NLI
intensity, averaged over the block, has the distribution in (18)
with different values of the scale parameter n′. For compar-
ison, the figure reports also the linear channel capacity and
the Gaussian AIR (15). As anticipated, three fundamentally
different asymptotic behaviors (unbounded growth, saturation,
or decay to zero) are observed, depending on n′. Even in the
worst case (n′ = 30 > n/3), in which the AIR decays to
zero for P →∞, a gain with respect to the unshaped case is
obtained in the nonlinear regime.

V. NUMERICAL RESULTS

A. System Description

The system is depicted in Fig.1, while the scenario and
link parameters are the same considered in [25], [27]—a
1000 km standard single-mode fiber link with attenuation
α = 0.2 dB/km, group-velocity-dispersion parameter β2 =
21.7 ps2/km, and nonlinear coefficient γ = 1.27 W−1km−1;
ideal distributed amplification with unitary spontaneous emis-
sion coefficient; and, unless otherwise specified, five dual-
polarization 50 GBd Nyquist-WDM channels with sinc pulse
shape and 50 GHz spacing.5 The transmitted symbols are i.i.d.
circularly symmetric Gaussian variables (unbiased distribu-
tion), further processed by the rejection sampling machine
in Fig. 3 when sequence selection is applied (optimized
distribution). At the receiver, the central WDM channel is
demultiplexed by using an ideal rectangular filter with 50 GHz
bandwidth and further processed according to the selected
DSP (ideal dispersion compensation or ideal single-channel
DBP) and decoding metric (optimized for the AWGN or PPN
channel). When subcarrier multiplexing is considered, each
WDM channel is divided into four 12.5 GBd subcarriers with
sinc pulse shape and 12.5 GHz spacing. Before detection, a
possible constant average phase rotation affecting the signal
(due to nonlinearity) is estimated and removed.

Fiber propagation is emulated by using the split step Fourier
method (SSFM); a step size of 100 m and a sampling rate

5The same scenario was considered also in [1], though we accidentally used
a slightly higher nonlinear coefficient γ = 1.3W−1km−1, which explains
why the AIR values in [1] are slightly lower in the nonlinear regime.

of 400 GHz (eight samples per symbol in the single-carrier
case) are used for the WDM scenario; a step size of 500 m
and a sampling rate of 100 GHz (two samples per symbol in
the single-carrier case) for the single-channel scenario, for the
computation of the cost function, and for the implementation
of DBP.

The results of this section are shown in terms of achievable
SE, measured in bits/s/Hz/pol and estimated by the procedure
described in Section III-C with N = 218 symbols. As a
benchmark, all the figures report also the SE obtained on
the nonlinear channel when the system is optimized in the
absence of nonlinear effects, i.e., for a system with ideal
dispersion compensation, i.i.d. Gaussian input symbols, and
AWGN detection. The capacity per unit bandwidth for the
linear channel C = log2(1 + SNR) is also reported as a
reference.

B. Single-Channel Single-Polarization System

The first numerical test is performed in a simple scenario,
considering a single-polarization single-channel system with
ideal dispersion compensation. The main aim of this test is to
study the behavior of the proposed strategy in a more realistic
channel, where intrachannel NLI (including signal-noise inter-
action and spectral broadening) is accurately modeled by the
SSFM, possibly departing from the assumptions made for the
analytic study in Section IV (block-memoryless, cubic scaling
with power, gamma distribution). Moreover, the test will also
show how far those assumptions are from reality, and how fast
the cdf of the NLI energy grows with respect to the critical
rate defined in Section IV.

In this scenario, we employ the simple cost function in
(13), without averaging over the realizations. In practice, the
selection is implemented by the following fast procedure:
• generate a very long input sequence xN

′
by drawing

samples from the unbiased distribution and evaluate the
corresponding output sequence ŷN

′
by SSFM propaga-

tion through the noiseless channel;
• take all the Np = N ′ − n+ 1 subsequences of length n,
{xi+ni+1}, for i = 0, . . . , Np−1, that are contained in xN

′

as proposed sequences;
• for each proposed sequence, compute the cost function

λ(xi+ni+1 ) =
∥∥∥ŷi+ni+1 − xi+ni+1

∥∥∥2 (23)

• accept the Na subsequences for which the cost function
is below threshold.

If more sequences are needed, the procedure is repeated
several times. The selection is performed at a single launch
power (near the optimum launch power without selection),
under the hypothesis that the ranking induced by the cost
function on the sequences does not change significantly with
power. This is true, for instance, if the NLI scales cubically
with power. The AIR and SE at the desired launch power
are eventually estimated by using the procedure described in
Section III-C, where the input sequence xN is formed by
concatenating the accepted sequences.

First, we compare the assumptions made in Section IV
about the simplified nonlinear channel (14) with the actual
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NLI measured in the more realistic channel considered here.
Fig. 5(a) shows the distribution of the cost function (13),
corresponding to the NLI energy per symbol, evaluated for
Np ≈ 1.35 × 109 proposed sequences with blocklength
n = 256 and normalized to the mean signal energy per symbol.
The empirical distributions obtained at two different powers
(one rescaled by the cube of the power ratio to match the other)
are compared to the gamma distribution (18) with n′ = n
that would be obtained for the energy of an AWGN process.
The two empirical distributions are practically superimposed,
confirming the assumption that the NLI scales with very good
approximation with the cube of the input power. This is even
better illustrated by the inset of Fig. 5(a), where a point is
reported for each tested sequence, with coordinates equal to
the NLI obtained for the two different launch powers. As
expected, all the points practically lie on the straight line
y = 8x. Moreover, the empirical distributions of the NLI en-
ergy are significantly different and wider than the distribution
that would be obtained if NLI were statistically equivalent
to an AWGN, meaning that the AWGN assumption typically
made in GN models is too pessimistic and not accurate enough
for this approach. This is even better appreciated in Fig. 5(b),
which reports the left tails of the empirical cdf obtained for
different values of the block length n. The results show that
the particular characteristics of the generated NLI and the
dependence between its samples make its cdf grow with an
exponent that is not only lower than the value n that would
be obtained for AWGN, but also much lower than the highest
exponent n/3 that guarantees an unbounded growth of AIR
with power according to the theory developed in Section IV.
This is clearly not a proof that the same unbounded growth
can be actually obtained on this more realistic channel, but at
least a good reason to expect a significant AIR improvement.

As explained in Section III, by setting a threshold on the
cost function (the horizontal axis in Fig. 5), it is possible to
select only the “good” sequences that cause a lower NLI;
by reducing the threshold (moving it to the left), both the
acceptance rate (which equals the cdf) and the average NLI
energy decrease. The SE as a function of the acceptance rate
is reported in Fig. 6(a) for different values of the block length
n and two different launch powers: slightly more than the
optimal launch power without sequence selection (-9 dBm)
and 1 dB more. The SE increases monotonically for large
n (256 and 1024). A similar behavior could be expected for
n = 64, given that the corresponding cdf in Fig. 5(b) grows
more slowly than ∼ λn/3. However, the theory in Section IV
and the cost function (13) are based on the assumption of
a block-memoryless NLI, and do not account for inter-block
NLI. In fact, the value of the cost function computed for a
specific sequence by the above procedure depends also on the
adjacent sequences, meaning that a low-cost sequence selected
in this way might, in fact, have a higher cost when combined
with different adjacent sequences. The impact of inter-block
NLI affects mostly the symbols at the edges of the sequence,
so that it becomes less and less relevant as n increases. In
principle, n should be taken as large as possible to obtain the
best performance. However, as can be inferred from (19) and

(22) and from Fig. 5(b), a longer n requires a lower acceptance
rate to achieve the optimal performance, which means testing
many more sequences. The lowest acceptance rate for which
we were able to obtain reliable results (Na > 1000 accepted
sequences) in this scenario is ∼ 10−6. At this rate, we
have obtained the highest gain for n = 256. However, a
longer n should offer a higher potential gain, provided that
a sufficiently lower acceptance rate could be achieved. This is
indeed suggested by the behavior of the curve for n = 1024.
An alternative approach to limit the impact of inter-block NLI
without increasing n is the use of the more accurate cost
function (12), as it will be shown in Section V-C.

Fig. 6 also shows that without sequence selection (or for a
high acceptance rate) the lower launch power of -9 dBm offers
the best performance, as we are already beyond the optimal
power. However, when decreasing the acceptance rate, the SE
curves at higher power cross the ones at lower power, as the
optimal launch power increases. In general, to fully exploit the
potential of the sequence selection approach, it is necessary
to simultaneously decrease the acceptance rate and increase
the launch power. In fact, by reducing the acceptance rate, we
select sequences that cause less NLI, so that we can increase
their launch power and hence improve the SNR.

Fig. 6(b) shows the SE as a function of the launch power for
a block length n = 256 and different values of the acceptance
rate. As expected, reducing the acceptance rate improves the
SE, not only at the launch power at which the sequences have
been selected, but in the whole nonlinear regime. As a result,
both the optimal launch power and the peak SE increase by
reducing the acceptance rate. Clearly, a lower acceptance rate
means also a higher rate loss, which explains why the SE in
the linear regime is slightly lower. The results in Fig. 6(a)
and (b) suggest that an even higher SE could be expected by
further reducing the acceptance rate and increasing the launch
power for n ≥ 256.

C. WDM Dual-Polarization System
The second test is performed in the dual-polarization WDM

scenario, where each channel is affected by both inter- and
intrachannel NLI. In this case, we consider two different
procedures to compute the cost function and select the best
sequences. The first one is the fast procedure described in
Section V-B, simply extended to consider two polarizations.
The second one, on the other hand, considers the more accurate
cost function (12) to average out the impact of inter-block
NLI (neglected by the first approach) and will be hence
referred to as averaged procedure. This should ensure that
the cost of the selected sequences is actually low, regardless
of the adjacent sequences that are actually transmitted. In both
approaches, the cost function is evaluated in a single-channel
noiseless scenario, therefore preferring those sequences that
cause low intrachannel NLI, regardless of their impact in terms
of interchannel NLI and signal-noise interaction. The averaged
procedure is implemented by the following steps:
• generate a very long input sequence xN

′
by drawing

samples from the unbiased distribution and evaluate the
corresponding output sequence ŷN

′
by SSFM propaga-

tion through the noiseless channel;
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• take as proposed sequences the Np = N ′/(n+Ng) dis-
joint subsequences {xi(n+Ng)+ni(n+Ng)+1}, for i = 0, . . . , Np−1,
that are obtained by dividing xN

′
into subsequences of

length n, separated by Ng guard symbols;
• for each proposed sequence, compute the temporary cost

function

λ(x
i(n+Ng)+n

i(n+Ng)+1 ) =
∥∥∥ŷi(n+Ng)+ni(n+Ng)+1 − x

i(n+Ng)+n

i(n+Ng)+1

∥∥∥2 (24)

• repeat Nit times the previous steps by leaving the pro-
posed subsequences in xN

′
unchanged, while randomly

changing all the guard symbols;
• for each proposed sequence, compute the final cost func-

tion by averaging the temporary cost functions over the
Nit realizations;

• accept the Na subsequences for which the final cost
function is below the desired threshold.

If more sequences are needed, the procedure is repeated
several times. Also in this case, the selection is performed
at a single launch power. The AIR and SE are then estimated
on the central channel by following the procedure described
in Section III-C, where the sequences of length N transmitted
on the five WDM channels are independently generated by
concatenating in a random order the selected subsequences of
length n.

Fig. 7 shows the SE obtained in four different cases: the
benchmark without sequence selection, optimized for the lin-
ear regime; the system with sequence selection, with n = 256
dual-polarization symbols, Np = 65512 and Np = 38350
for the fast and averaged optimization, respectively, and η =
0.002 (chosen as a good trade-off between performance and
computational complexity); the system with single-channel
ideal DBP and without sequence selection; and the system
with both DBP and sequence selection, where the same
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sequences selected without DBP are transmitted. Sequence
selection is performed by using either of the two described
procedures to estimate the cost functions (13) or (12), the
latter by considering Ng = 800 guard symbols and averaging
over Nit = 20 realizations. As anticipated, the second cost
function accounts for the average impact of inter-block NLI,
providing a more accurate selection and a higher SE gain.
With the improved cost function, sequence selection alone
yields an SE gain of 0.37 bits/s/Hz/pol with respect to the
benchmark. By comparison, DBP yields only a slightly higher
gain of 0.39 bits/s/Hz/pol, while the combination of the two
techniques yields a higher total gain of 0.82 bits/s/Hz/pol.
This means that the input distribution provided by sequence
selection, though optimized to reduce intrachannel NLI, partly
mitigates also interchannel NLI, so that it provides an addi-
tional gain even when combined with DBP (which completely
removes intrachannel NLI).

D. Combination of Shaping, DBP, and Improved Detection

As a final test, we combine the proposed sequence selection
technique for the optimization of the input distribution, with
both DBP and an improved decoding metric optimized for
a channel with phase and polarization noise (PPN). The
aim is to maximize the achievable SE to improve on the
tightest available capacity lower bounds for the WDM channel
[25], [27]. In particular, by following [25], we consider a
random-walk model for the phase and polarization evolution
of the PPN metric, and divide each WDM channel into four
subcarriers to obtain the best trade-off between the temporal
and frequency coherence of the PPN processes over each
subcarrier. Moreover, by following [27], we optimize the
power allocation per subcarrier to maximize the SE. The SE
with PPN decoding is estimated by using the general procedure
described in Section III-C and computing the decoding metric
by using the particle filtering approach described in [25], [61].

Fig. 8 shows the new SE lower bound obtained in this
way, compared to lower bound [27] and to the SE obtained
with other configurations. Sequence selection is performed

according to the same procedure described in Section V-C and
based on the cost function (12), considering n = 512 dual-
polarization symbols, η =0.004, Np = 47820,, Ng = 800,
and Nit = 20. The only difference with respect to Sec-
tion V-C is that each proposed subsequence of n symbols
is formed by taking n/4 symbols simultaneously transmitted
on each subcarrier, and different subsequences are separated
by Ng/4 guard symbols on each subcarrier. Therefore, as in
Section V-C, the resulting input distribution is optimized for
the single-channel noiseless scenario and does not account for
the presence of interchannel NLI, for the optimized power
allocation per subcarrier, and for the use of DBP and of an
improved decoding metric. This allows to keep the computa-
tional complexity of the selection process low, but provides a
suboptimal input distribution. Nonetheless, even in this case
the sequence selection approach provides an additional SE
gain when combined with DBP, PPN detection, and optimized
power allocation, meaning that the selected sequences are good
also for this more complex scenario, though not specifically
optimized for it. In practice, DBP removes intrachannel NLI,
while both PPN detection and sequence selection mitigate
interchannel NLI.

The additional gain of 0.11 bit/s/Hz/pol provided by se-
quence selection is significantly smaller than in the case
studied in Section V-C, but still sufficient to bring the over-
all gain to 1.4 bit/s/Hz/pol with respect to the benchmark,
surpassing by 0.04 bit/s/Hz/pol the lower bound in [27]. We
remark that the latter uses a slightly different model for PPN
evolution; a whitening filter to account also for the correlation
of the additive noise; and optimized delays between subcarriers
and between WDM channels. These differences explain the
slightly higher SE of [27] (yellow curve) with respect to
our SE without sequence selection (the purple curve labelled
“4SC, DBP, PPN”). Nonetheless, the optimization of the input
distribution based on the sequence selection approach with
the suboptimal cost function (12) is more effective than all
these techniques, providing a higher SE gain. We expect that
our bound could be only slightly improved by including also
those techniques. On the other hand, we expect that a more
relevant SE gain should be obtained by improving the selection
procedure—e.g., by increasing n and Nit, decreasing η, and
tailoring the cost function (10) to the WDM scenario and to
the considered system configuration.

VI. CONCLUSION

We have presented a new technique to optimize the input
distribution and lower-bound the capacity of the optical fiber
channel in a very general setting. The technique uses a
rejection sampling algorithm, driven by a properly defined
cost function, to generate the sequences of input symbols that
are most suitable for the nonlinear channel and the selected
decoding metric. The corresponding AIR is then estimated by
Monte Carlo averaging. The rate loss induced by the selection
process is simply related to the acceptance rate of the rejection
sampling algorithm and removed from the AIR.

We have tested the proposed techniques in a few differ-
ent scenarios. In a simplified optical channel with block-
memoryless NLI, the AIR obtained with the selection process
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Fig. 8. Achievable SE for the dual-polarization WDM system with sequence
selection (n = 512, η = 0.004, averaged cost function) combined with
single-channel DBP, subcarrier multiplexing, per-subcarrier power optimiza-
tion, and PPN detection.

can be computed analytically, showing that an unbounded
growth of capacity with power is indeed possible, provided
that certain conditions on the distribution of the NLI hold.
In a still simple but more realistic single-polarization single-
channel scenario, numerical simulations demonstrate a sig-
nificant improvement of the AIR (and of the corresponding
SE). The same simulations also reveal that the above men-
tioned conditions on the NLI distribution are practically met,
suggesting that further AIR improvements are possible by
increasing the power and reducing the acceptance rate. In
a dual-polarization WDM scenario, the proposed technique
yields an AIR gain that is comparable to the gain offered by
ideal single-channel DBP; the gain is almost doubled when
the two techniques are combined, and further increases when
also subcarrier multiplexing and a PPN decoding metric are
employed. The peak AIR obtained by the combined techniques
exceeds the highest capacity lower bound available in the
literature for the same channel, effectively establishing a new
lower bound. These results suggest that nonlinear constellation
shaping, if properly optimized in a high-dimensional space,
can be a valid replacement or an effective complement to DBP
and other complex mitigation strategies.

The definition of a suitable cost function is essential for
the correct optimization of the input distribution. We have
proposed a general definition, related to the minimization of
the mismatched conditional entropy; a more specific definition,
suitable for intrachannel NLI and an AWGN decoding metric;
and a simplified definition, suitable when intrachannel NLI
is block-memoryless. Both the specific and the simplified
definitions have been implemented and tested numerically.
They work well in all the considered scenarios, even beyond
the original scope for which they are designed; in fact, the
sequences selected in this way mitigate also the impact of
interchannel NLI, even when combined with an improved de-
coding metric. The best performance is obtained with the more
complex cost function, whereas the simplified one reduces
significantly the computation cost of the selection procedure.

We expect that the numerical results and bounds obtained
in this work can be further improved by following different

possible approaches. The first one is merely a brute-force
approach. The values used for n, Nit, and η are not optimal,
but simply selected as a trade-off between performance and
computational cost; thus, better results can be obtained by
employing more computational resources to increase n and
Nit and to reduce η. A more interesting approach is that
of modifying the cost function. In fact, for simplicity, the
input sequences have been simply optimized to minimize
intrachannel NLI; higher gains are expected by better tailoring
the cost function to the relevant impairments and adopted
decoding metric, e.g., accounting also for interchannel NLI
and for the use of DBP and PPN decoding. An indication
in this sense is provided by (10). The same approach can
be followed also to extend the application of the proposed
techniques to other channels and scenarios.
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