
Near Real-Time Anomaly Detection in NFV
Infrastructures

Arman Derstepanians∗, Marco Vannucci∗, Tommaso Cucinotta∗
∗ Scuola Superiore Sant’Anna, Pisa, Italy

∗ firstname.lastname@santannapisa.it

Avhad Kiran Sahebrao†, Sourav Lahiri†,
Antonino Artale§, Silvia Fichera§

†Vodafone Intelligent Solutions, Pune, India
§ Vodafone, Milan, Italy

† § firstname.lastname@vodafone.com

Abstract—This paper presents a scalable cloud-based archi-
tecture for near real-time anomaly detection in the Vodafone
NFV infrastructure, spanning across multiple data centers in 11
European countries. Our solution aims at processing in real-time
system-level data coming from the monitoring subsystem of the
infrastructure, raising alerts to operators as soon as the incoming
data presents anomalous patterns. A number of different anomaly
detection techniques have been implemented for the proposed
architecture, and results from their comparative evaluation are
reported, based on real monitoring data coming from one of the
monitored data centers, where a number of interesting anomalies
have been manually identified. Part of this labelled data-set is
also released under an open data license, for possible reuse by
other researchers.

Index Terms—Anomaly Detection, Network Function Virtual-
ization, Machine Learning

I. INTRODUCTION

Network operators are undergoing a steep change in their
operational practices, in order to deal with the high-bandwidth,
low-latency and high-reliability connectivity requirements in
modern and future mobility scenarios [1]. The increasing
dynamicity level in networking traffic conditions requires an
infrastructure more flexible than it used to be in the past.
This flexibility is being handled, among others, by recurring to
network function virtualization (NFV) [2], [3] and software-
defined networking (SDN) [4], [5]. These constitute funda-
mentally a paradigm shift by which network operators walk
away from the traditional static allocation of physical ded-
icated network appliances sized for peak-hour operations, to
switch to a much more flexible configuration where these tele-
com network functions become software components, a.k.a.,
virtualized network functions (VNFs). These are deployed and
managed as virtual machines (VMs) or containers within a set
of general-purpose servers, constituting a highly flexible net-
work virtual infrastructure (NVI). The NVI reuses principles
and lessons learned from the area of cloud computing [6],
[7] to allow for automated and rapid provisioning of VNFs
that are capable of dynamically tracking in real-time workload
fluctuations and to adapt to the always-changing conditions of
the networking traffic to handle [8].

In the context of NFV and cloud computing, the monitoring
subsystem of the infrastructure is a critical component, lever-
aged at various levels of daily operational activities. Specifi-
cally, monitoring of networking [9] appliances as well as com-

putational elements (both physical hosts and virtualized in-
stances), becomes critical [10] to support daily activities such
as realizing appropriate elasticity [11] and placement [12],
[13] policies or anomaly detection techniques [14], [15], where
metric forecasting can also play a key role [16], [17].

The monitoring subsystem of these NFV infrastructures
ends up collecting a very large amount of data, generated every
day in the form of many time-series per monitored instance.
The monitored metrics may range from system-level metrics
(e.g., CPU, network, disk utilization, power consumption), to
application/service-level metrics (e.g., volumes of correctly
served requests, experienced error conditions, etc.), reaching
easily to up to dozens and dozens of metrics per monitored
instance. Therefore, network operators are looking into ap-
propriate techniques leveraging on scalable big-data analytics
that are applicable for this purpose. From a network operator
perspective, deploying big-data analytics on their virtualized
infrastructures is becoming a critical task. Indeed, a compre-
hensive analysis of the data from the various components
of the NVI helps the operator in different activities, e.g.,
workload forecast for infrastructure sizing, capacity planning,
anomaly detection and alert management, fault management,
troubleshooting and root-cause analysis (RCA), etc.

This paper presents the software architecture under de-
velopment at Vodafone for near real-time (NRT) anomaly
detection, based on monitoring data coming from the NVI
of the operator, spanning across 12 different EU countries
(OpCos) where Vodafone has NFV data centers. Our solution
is based on Function-as-a-Service (FaaS) facilities of a public
cloud provider, for scalable processing of monitoring data
collected from the various NFV data centers. These include
thousands of hosts in which tens of thousand VMs are de-
ployed. For each VM and physical host dozens of metrics
are potentially available for analysis, with the time granularity
of one sample every 5 minutes, resulting into having GBs
of data to analyze every month. This makes the design of
the anomaly detection system particularly challenging due to
the need for balancing precision for computational overheads.
A number of different anomaly detection techniques have
been designed for the architecture and evaluated using real
data from Vodafone NFV data centers located in Italy and
Czech Republic, where a number of interesting anomalies have
been manually identified. The presented experimental results



highlight benefits and shortcomings of these techniques. Part
of the dataset used for the results shown in this paper is
released with an open data license (see Section IV).

The paper is structured as follows: Section II presents briefly
related research in the area, while Section III presents the
reference architecture we have developed and deployed for
NRT anomaly detection, along with an overview of algorithms
that looked interesting for our use-case; Section IV presents
experimental results from the application of these algorithms
to a sample dataset from the Vodafone NVI, to identify anoma-
lous behaviors; finally, Section V provides a few concluding
remarks.

II. RELATED WORK

Anomaly detection has been widely studied in the context
of NFV and cloud operations, often with the help of fault
injection techniques. For example, in [18], researchers have
built a data set injecting faults in a Kubernetes cluster, and
evaluating different techniques for anomaly detection based on
supervised machine learning (ML), including support vector
machines (SVMs), nearest neighbor, naive Bayes and random
forests. SVMs have also been used in [19] for on-line detection
of anomalies in data from transmissions in Wireless Sensor
Networks. In order to deal with transients of the time-series,
here an SVM with a Gaussian kernel has been applied to data
fitted with a least-squares regressor over a sliding window on
the raw data to process.

An evaluation of several supervised ML techniques for off-
line anomaly detection in NFV can be found in [20]. Authors
compared 13 different techniques, including various types of
decision trees, random forests, Bayesian networks and SVMs,
on host monitoring data obtained by injecting anomalies in
a test set-up running components from the ClearWater IMS
system within KVM VMs deployed in an OpenStack environ-
ment. Another interesting survey can be found in [14], where
authors discuss the risk of facing anomalies when switching to
a NFV/cloud model, mostly due to virtualization and resource
over-commitment issues causing temporal interferences among
co-hosted VNFs.

Unsupervised techniques for anomaly detection have also
been proposed in literature. For example, a technique based
on Hierarchical Temporal Memory (HTM) has been proposed
in [21] for analyzing streaming data in real-time. However, the
technique was evaluated on a benchmark using a single-variate
data. Self-Organizing Maps (SOMs) have been proposed
specifically for anomaly detection in NFV data centers [22],
with a multi-variate analysis method that identifies clusters
of similar daily patterns in multiple metrics of VMs of one
or more VNFs, so that changes in the classified behavior is
marked as a possible anomaly. The technique was coupled
with a heuristic for removing false positives, as often occurring
over transitions between working and weekend days. However,
the proposal focused on off-line analysis of daily behavioral
patterns as observed in a recent time horizon.

In [23], a digital twin approach is used for RCA of
anomalies in NFV infrastructures, formulating the problem as

Fig. 1: Anomaly Detection System Architecture

a dynamic set-covering problem, using also hidden Markov
models and transfer learning.

Compared to the techniques recalled above, this paper aims
at constituting an industrial experience report, providing in-
formation on how a variety of ML/AI algorithms for anomaly
detection have been evaluated and compared, many of which
having also been used in the above referenced papers. This
paper explains how these techniques have been integrated
with a paradigm for scalable big-data processing in cloud
environments, combining them into the architecture that is
currently under development at Vodafone to help in operating
its NFV infrastructure. We hope this paper may help other
industrial practicioners with the task of designing processing
pipelines for anomaly detection in big infrastructures.

III. PROPOSED ARCHITECTURE AND ALGORITHMS

Anomaly detection techniques are used in NFV and cloud
management frameworks to detect problems occurring within
the infrastructure, analyzing the plethora of data available
within its monitoring subsystem. Real-time, or NRT, anomaly
detection aims at performing this task in a timely manner,
just as soon as new data is collected at run-time. This allows
for attracting operators’ attention to promptly resolve possible
issues causing the spotted anomalies within the monitored
time series, minimizing or even preventing possible impact
on the hosted services. In our case, we are building a system
to analyze metrics in NRT from all the NFV data centers
spread across 12 EU countries. Therefore, we need a scalable
architecture design, as detailed below.

A. Proposed System Architecture

Fig. 1 shows our design for a NRT anomaly detection
architecture. The goal of the proposed system is to detect
anomalous points in the temporal evolution of metrics re-
lated to VMs/VNFs, focusing on their resource consump-
tion metrics, i.e., related to the utilization of the underlying
infrastructure (INFRA metrics), as well as the application-
level metrics (VNF metrics). More information about these
metrics and a visualization of their typical patterns can be
found in a prior work of ours [22]. Data related to VMs are
collected from proprietary management platforms by the local
data collection component and stored in a Data Lake within



a Google Cloud Platform (GCP) environment1, where we use
the Cloud Big Table service2 as a reliable NoSQL storage for
the gathered time-series. We also use a separate SQL database
to store meta-data about all active VMs in the Vodafone NVI,
including their unique identifiers and timestamps of creation,
termination or other relevant events. Raw metrics data is
extracted, in the form of time-series with a data point every
5 minutes, for each VM in the Data Lake, for a given period
and merged into one single vector. Then, data is cleaned so
to be ready to be processed with different algorithms for
anomaly detection. The data cleaning phase performs an initial
check on the data, and interpolates possible missing values if
detected, in addition to marking the corresponding timestamps
as possible anomalies. Interpolation is necessary due to some
anomaly detection techniques that do not tolerate the presence
of missing values in the input data. Also, min-max scaling is
applied on each time-series individually for faster convergence.

The system has been designed with modularity in mind,
with the ability to configure a number of different ML/AI
techniques for anomaly detection, which comply to a simple
interface, taking as input a vector of n values for each
VM and metric separately. These are deployed as Google
Cloud Functions3, a scalable Function-as-a-Service (FaaS)
framework available in GCP to design scalable serverless data
processing pipelines. The execution of the ML-based anomaly
detection Functions is triggered periodically exploiting the
Google Tasks service4. The final output of the ML-based
anomaly detection pipeline is an anomaly score for each new
data point that was injected into the data processing pipeline
since the last activation.

In the post-processing phase, isolated single anomalous
points of the monitored metrics followed by non-anomalous
points are actually ignored by the system and discarded, as the
system likely already recovered from the issue. On the other
hand, sequences of 3 or more timestamps marked as anomaly
are brought forward in the processing pipeline, towards a
persistent storage into a database. From there, operators may
access the identified anomalies at any time and visualize them
using an instance of the well-known Grafana framework5.

The proposed system is capable of detecting anomalies
in multiple input metrics. In our experimentation, we have
applied this methodology over individual VMs metric data
available with a 5-minutes granularity (288 observations per
day, per metric, per monitored VM).

B. ML-based Anomaly Detection Algorithms

In this section, we describe the algorithms we tested to per-
form anomaly detection in the described context. Specifically,
we tested the following well-known anomaly detection ML
algorithms: an ensemble-based model i.e., Isolation Forest;
a linear classification model, i.e., One-Class SVM; a model

1More information is available at: https://cloud.google.com/.
2More information is available at: https://cloud.google.com/bigtable.
3More information is available at: https://cloud.google.com/functions.
4More information at: https://cloud.google.com/tasks/docs/tutorial-gcf.
5More information is available at: https://grafana.com/.

based on neighbors, namely Local Outlier Factor (LOF). A
brief discussion of the main features of these techniques fol-
lows below for the sake of completeness, reminding the reader
to ML/AI textbooks for a more detailed and comprehensive
description of them.

a) Isolation Forest: (IF) [24] is an unsupervised ap-
proach to anomaly detection that can be applied to both uni-
variate and multi-variate domains. IF is based on the intuition
that, when partitioning a dataset using decision trees, isolated
points correspond to leaves located in the upper part of the
tree. Starting from this idea, IF builds a forest of random
decision trees, where each tree is computed by: partitioning
the training dataset by randomly selecting a feature and then
randomly selecting the split value for the feature space within
its minimum and maximum values. This operation is then
iterated on both sides of the split, which are attached to the
current node as children, until either a single point is isolated
in a partition that becomes a leaf of the tree, or the depth
of the current node/partition grows beyond a sufficiently large
threshold. Now, an ‘anomaly score’ is assigned to each of
the data points according to the depth of the tree required to
arrive at that point. This score is an aggregation of the depth
calculated from each tree within the forest. The points with
an anomaly score lower than a pre-defined threshold (called
contamination in the IF slang) are considered anomalous.

b) Local Outlier Factor: (LOF) [25] belongs to the
family of density based methods for anomaly detection and is
commonly used for outliers detection purpose. LOF compares
the spatial density of single data points within a dataset with
the density around its local neighbors [25], [26] according
to an arbitrary distance metric. The LOF technique defines a
local outlier score considering the relative density of the data
point. By comparing the local density of a point to the local
densities of its neighbors, one can identify regions of similar
density, and points that have a substantially lower density than
their neighbors. A normal data point has a LOF between 1 and
1.5 whereas anomalous observations will have a much higher
LOF. The higher the LOF, the more likely it is an outlier.

c) One-Class SVM: is a variant of classic SVM devoted
to the detection of rare patterns (among which outliers and
anomalies). Differently from standard SVM that use hyper-
planes to partition the feature space, One-Class SVM uses
hyper-spheres to incorporate all the instances from the feature
space [27], [28]. The resulting hyper-sphere is characterized
by its center and radius. Those points that lie inside or close
to the hyper-sphere are classified as normal data points, whilst
others are classified as anomalous.

C. Predictive Anomaly Detectors

In this subsection we introduce two threshold-based
anomaly detectors based on comparing the real values with the
predictions performed with either Long-Short Term Memory
(LSTM) autoencoders or a predictor based on the statistical
median, where an anomaly is declared once the actual value
deviates from its prediction for more than a threshold.



a) LSTM autoencoder: is one of the well-known Neural
Network (NN) based approaches for anomaly detection. We
consider a monthly data of the target metric during training,
normalizing the data before the analysis using a Robust Scaler.

As a baseline for our approach, we have used two different
LSTM autoencoders; one with 36 and the other with 6 LSTM
neurons for both the encoding and the decoding layers, in both
cases using 24H of samples as the NN input, corresponding
to 288 samples. A per-VM cluster model is trained on a
month of data on a random VM among those belonging to
the same behavioral cluster. These clusters are identified by a
SOM-based technique described in a prior work of ours [22].
Clustering is applied to avoid having to train an LSTM model
for each VM, considering that in our experimentation each
model training process takes about 3 hours of processing time
on a single processor (multi-core and/or GPU acceleration
might be conveniently used to speed-up the process). Every
30 minutes, the detector is fed with additional 6 samples,
corresponding to 30 minutes, which are compared to the
corresponding predictions made by the LSTM using as input
the 288 samples just preceding the first sample under analysis.

Anomalies are defined as the points for which the Mean
Absolute Error (MAE) of the predicted values and the actual
ones are above a certain threshold, which has been chosen as
any of the following values, in our evaluations below:

T1 = 0.20 , T2 = 0.24 , T3 = 0.28

These values can be obtained by studying the statistical
features of the prediction errors after normalizing the data with
Robust Scaler. Namely, they are obtained by calculating the
median of the prediction errors for different VMs plus their
median absolute deviation which is multiplied by a coefficient.

b) Simple Median predictor: is a model used to forecast
a metric behaviour for a given timestamp of a day, based on
an ”averaged” behavior of the same metric from the same
timestamp on the previous few days. To obtain this average
behaviour we perform the following steps:

• we classify the data into the three categories of Saturdays,
Sundays and weekdays since the daily behavior of the
metric is strictly dependent on whether it belongs to a
weekday or weekend;

• the final goal is to predict anomalies in 6 data points, as
the anomaly detector is activated every 30 minutes;

• the ”target day” is defined as the previous 24H of the
most recent timestamp;

• the ”averaged” behavior of the data is then defined as
the median among the 5 values obtained for the same
timestamp, in the 5 days prior to the ”target day”.

Here it should be mentioned that, for the weekends, since
the previous 5 days will go too much back to the past, we
just consider the previous three days, e.g., for the upcoming
Saturday, we pick the previous three Saturdays. The threshold
in this approach, in contrast to the LSTM approach, is not set
to a constant number. Instead, it is defined as follows:

Med(E) +m×MAD(E) (1)

where Med is the median of the prediction error E obtained
by calculating the MAE of the target and the averaged
behavior, and the MAD is the median absolute deviation. The
coefficient m is a free parameter we can adjust depending on
the general behavior of the dataset under consideration.

The next step, is to set both upper and lower limits for
the usage of the above formula. Indeed, since Eq.(1) strictly
depends on the distribution of the errors, there will be two
different scenarios where it might fail to give us correct predic-
tions. First, when the numerical values of target and averaged
behavior are very close to each other: then, even a small
deviation will be spotted as an anomaly. Thus, for such kind of
cases the above formula will produce a lot of false positives.
Second, when the ratio between numerical values of target
and averaged behavior is folded many times, e.g., doubled,
tripled: then, since Eq.(1) calculates the median of differences
between the inputs and outputs, the threshold would not be
successfully detecting the anomalies. Thus, in these situations
we would have false negatives (missed anomalies). In other
words, we would have a very large threshold which would
include all points within.

In order to overcome the above mentioned problems, we
propose upper and lower limits as follows:

• By setting m = 4 in the Eq.(1) we calculate the threshold.
– If the obtained value is less than 0.24 then we set the

threshold as
T = 0.24 (2)

• Otherwise we calculate the Med(E).
– If, 0.36 < Med(E) < 0.96, then we use Eq.(1) with
m = 1,

T1 = Med(E) +MAD(E), (3)

– and the threshold is set as

T = min(T1, 0.72). (4)

– Otherwise, we compute

T2 = Med(E) + 2×MAD(E),

– and the threshold is set as

Tmax = max(0.24, T2)

T = min(Tmax, 0.72). (5)

The numerical value 0.24 in Eq.(2) is obtained by calcu-
lating Eq.(1) with m = 2 for the distribution of the error of
different samples of VMs with normalized data (using a Robust
Scaler). Accordingly, the rest of those numerical values in the
above threshold are obtained as multiples of 0.24.

IV. EXPERIMENTAL RESULTS

A. ML-based anomaly detection:

All the ML-based anomaly detection models mentioned
above are tested on a portion of the dataset gathered from
25 randomly selected virtual machines (VMs) for the metric
cpu|demandPct. The models are tested for the following day’s



detections after being trained on the 30 days of prior data.
The anomaly detector, which was employed in our current
preliminary evaluation, activates every 30 minutes for each
VM/metric, trained on the previous 30 days of data, and
used to look for potential anomalies in the most recent six
newly collected data points. The performance of each model
is demonstrated with an example shown in Fig. 2. The plots
in the figure show the typical behaviour from earlier days
for the metric cpu|demandPct of one VM and the abnormal
behaviour occurred on February 2nd, 2022, where all the
detected anomalous points are depicted in red, for each of
3 considered predictors, as detailed below.

a) Isolation Forest: We used the open-source imple-
mentation of IF as available in the well-known scikit-learn
software6, tuned with 100 estimators, 1.0 max feature and
contamination of 0.015 as percentage of the tree depth from
the root, up to which the looked-up points are to be considered
anomalous. With these settings, it nearly takes 2ms to train and
predict anomalies for each VM/metric combination, analyzing
a month of single-metric data. IF works best in case of outliers
neatly falling outside of the main sample distribution observed
in the training data set.

Fig. 2(a) shows that IF is able to identify most of the anoma-
lous cases(depicted in red), generating fewer false positives.

b) Local Outlier Factor: We made our evaluation using
the open-source implementation of LOF as available within the
scikit-learn software, considering a number of neighbors equal
to 100 for density estimation, the “Minkowski” setting for
distance computations among neighbors, and a contamination
factor of 0.015 as the percentage of outliers in the data set.
LOF trains faster and produces average results with more false
positives than IF.

Fig. 2(b) shows that LOF is not able to detect anomalous
cases at the beginning of the dataset.

c) One-Class SVM: We trained a One-Class SVM model
with an rbf kernel and 0.0005 gamma value. One-Class SVM
gives significant results with correct detection of downside
anomalies as well as sudden peaks. Fig. 2(c) shows that One-
Class SVM is able to detect maximum anomalous points, but
it is giving more false positive cases as well (rightmost points).

Comparing the results obtained from the three anomaly
detection algorithms just mentioned, IF performs better than
other techniques with greater number of true positive de-
tections. LOF is able to detect fewer actual anomalies in
our data set, with many false positives. One-Class SVM
performs better for actual anomalous points detection, but it
has detected normal points as anomalous in the lower band
of the dataset. To sum up the comparison, we have also
obtained the confusion matrix for all detectors. Accordingly,
the Accuracy, Precision, Recall and F1 score of this dataset
are reported in Table I.

B. Prediction-based anomaly detection
In what follows, we show results obtained with the other two

techniques based on a predictor followed by a threshold-based

6More information is available at: https://scikit-learn.org/.

(a) Isolation Forest

(b) Local Outlier Factor

(c) One-Class SVM

Fig. 2: Anomalies detected by different ML algorithms for
cpu|demandPct for 2nd of February 2022.

TABLE I: Scores of the ML based A/D models

Predictor Accuracy Precision Recall F1 score
IForest 0.75 0.71 0.76 0.74
LOF 0.51 0.55 0.51 0.53
OC-SVM 0.67 0.56 0.75 0.64

identification of anomalies, namely the LSTM-based and the
SM based anomaly detectors.

A new test dataset is chosen which is a subsample of 25
VMs containing numerous normal days as well as anomalous
data points, including cases with an anomalous day preceeded
by either regular days only, or by one or more anomalous
days, and sudden upward and downward hiccups. See [22] for
more information on these behavioral patterns. This dataset
is released with an open data license, and it is accessible at:
http://retis.sssup.it/∼tommaso/papers/nfvsdn22.php.

Comparing the anomaly detectors based on LSTM autoen-



(a) LSTM with 36 neurons

(b) SM

Fig. 3: Predicted anomalies of cpu|demandPct for MISBC41-
SE2900-HRU1-10 on January 30th, 2020, according to LSTM
autoencoder with 36 neurons (T = 0.24) and SM.

coders with the one based on the ”Simple Median” (SM)
approach, it turns out that the latter has by far a better power of
identifying anomalies. In particular, when LSTM autoencoders
are used, a lot of false positive and false negatives are obtained.
As an example, let us look at the data of ”MISBC41-SE2900-
HRU1-10” on January 30th 2020. The predicted anomalies
according to the LSTM autoencoder with 36 neurons (the
threshold is set to 0.24) are shown in Fig. 3(a) which indicates
that the predictor is not able to fully predict the anomalous
interval starting from 10:49 till 13:44. In addition, between
the 3:00 to 10:00 some points have been spotted as anomalies.
However, in contrast to LSTM autoencoders, the SM predictor
(see Fig. 3(b)) can correctly detect both the isolated anomaly
at 1:19 (which is anyway discarded during post-processing,
as explained above) as well as the whole anomalous interval
without spotting false positives.

To complete the comparison, we also show the confusion
matrix obtained for all predictors, where we show the perfor-
mance obtained by LSTM with 3 different threshold values.
The results have been illustrated in Figures 4(a) and 4(b).
Accordingly, the Accuracy, Precision, Recall and F1 score
have been shown in Table II. The results indicate that for
LSTM autoencoders, as the baseline of our models, increasing
the complexity of the architecture (increasing the number of
LSTM units from 6 to 36) can increase the power of predictor
to detect anomalies. Also, the increase of threshold from
T = 0.20 to T = 0.28 improves the F1 scores. Nevertheless,
their obtained F1 scores is several times lower than SM.

(a) The SM predictor

(b) LSTM autoencdorers

Fig. 4: The confusion matrix for different predictors i.e. the
SM as well as the LSTM autoencoders with corresponding
number of LSTM units and different thresholds.

TABLE II: Scores of each Model

Predictor Accuracy Precision Recall F1 score
LSTM(6) T=0.20 0.90 0.19 0.18 0.18
LSTM(6) T=0.24 0.91 0.21 0.17 0.19
LSTM(6) T=0.28 0.91 0.23 0.16 0.19
LSTM(36) T=0.20 0.84 0.15 0.33 0.20
LSTM(36) T=0.24 0.87 0.18 0.29 0.23
LSTM(36) T=0.28 0.90 0.22 0.26 0.24
SM 0.98 0.83 0.98 0.90

At the end it is essential to outline the main difference
among the ML-based algorithms and the predictive models.
Indeed, as mentioned above, based on their mechanism for
detecting anomalies, the ML-based algorithms perform well
for those cases where the values of anomalous points are
considerably larger (or smaller) than the rest of the points e.g,
Fig. 2(a). However, for those cases such as the anomalous
interval in Fig. 3(b), where the values of anomalous points
are in the range of local minimum and maximum of normal
daily behavior, usually those anomalies cannot be found.

V. CONCLUSIONS

In this paper, we tackled the problem of Near Real-Time
Anomaly Detection in NFV infrastructures, proposing a mod-
ular and scalable architecture as it is being engineered for



the Vodafone European NFV Infrastructure, a.k.a., NVI. First,
we explained the general architecture designed to handle the
whole process in a scalable way. Then, we introduced different
approaches, based on ML algorithms, Neural Network models
and a SM predictor, showing the advantages and drawbacks
for each of them.

The ML-based detection models are properly identifying
anomalies with less computational effort. Despite the nature
of the data, the detection results show that Isolation Forest and
One-Class SVM are doing effectively. The isolation forest’s
nature is to separate points from dense points, therefore de-
pending on the contamination parameter, it may occasionally
identify more erroneous points. The isolation forest and LOF
models do not perform well as values fall, in contrast to One-
Class SVM.

For approaches based on a threshold-based comparison of
the time-series samples with the values output by a predictor,
tuning the threshold becomes fundamental for spotting anoma-
lies correctly. We experimented with a LSTM-based predictor,
and with a Simple Median (SM) one. A key advantage of the
SM predictor, is that it is only based on the mathematical and
statistical relations among the values of the dataset, so it does
not need heavyweight training/fitting, like LSTM does.

The results show that, due to the specific nature of our
data, i.e., daily periodicity, the SM predictor can perform
well despite its simplicity, compared to standard approaches
using ML/AI algorithms, and, in some cases, even outperform
them. More than everything, the SM approach presents a much
reduced computational burden, which is of paramount impor-
tance, given the amount of data to process in the industrial
use-case under consideration.

REFERENCES

[1] M. M. Erbati and G. Schiele, “Application- and reliability-aware service
function chaining to support low-latency applications in an NFV-enabled
network,” in 2021 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), Nov 2021, pp. 120–123.

[2] ETSI, “Network Functions Virtualisation,” SDN and Openflow World
Congress, Darmstadt, Germany, White Paper 1, 2012. [Online].
Available: https://portal.etsi.org/NFV/NFV White Paper.pdf

[3] ——, “Network Functions Virtualisation,” SDN and Openflow World
Congress, Dusseldorf, Germany, White Paper 3, 2014. [Online].
Available: http://portal.etsi.org/NFV/NFV White Paper3.pdf

[4] Open Network Foundation (ONF), “ONF SDN Evolution,” ONF,
White Paper, 2016. [Online]. Available: http://www.opennetworking.
org/wp-content/uploads/2013/05/TR-535 ONF SDN Evolution.pdf

[5] H. Woesner and D. Verbeiren, “SDN and NFV in telecommunication
network migration,” in 2015 Fourth European Workshop on Software
Defined Networks. IEEE, Sep. 2015.

[6] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
2011-09-28 2011.

[7] R. Buyya, C. Vecchiola, and S. T. Selvi, “Chapter 1 - introduction,” in
Mastering Cloud Computing, R. Buyya, C. Vecchiola, and S. T. Selvi,
Eds. Boston: Morgan Kaufmann, 2013, pp. 3–27.

[8] M. Gharbaoui, C. Contoli, G. Davoli, G. Cuffaro, B. Martini, F. Pa-
ganelli, W. Cerroni, P. Cappanera, and P. Castoldi, “Demonstration of
Latency-Aware and Self-Adaptive Service Chaining in 5G/SDN/NFV
infrastructures,” in 2018 IEEE Conference on Network Function Virtu-
alization and Software Defined Networks (NFV-SDN), Nov 2018, pp.
1–2.

[9] G. Liu and T. Wood, “Cloud-Scale Application Performance Monitoring
with SDN and NFV,” in Proceedings of the 2015 IEEE International
Conference on Cloud Engineering, ser. IC2E ’15. USA: IEEE Computer
Society, 2015, p. 440–445.

[10] J. Son, T. He, and R. Buyya, “Cloudsimsdn-nfv: Modeling and simu-
lation of network function virtualization and service function chaining
in edge computing environments,” Software: Practice and Experience,
vol. 49, no. 12, pp. 1748–1764, 2019.

[11] G. Lanciano, F. Galli, T. Cucinotta, D. Bacciu, and A. Passarella,
“Predictive auto-scaling with OpenStack monasca,” in Proceedings of
the 14th IEEE/ACM International Conference on Utility and Cloud
Computing. ACM, Dec. 2021.

[12] D. Bhamare, R. Jain, M. Samaka, G. Vaszkun, and A. Erbad, “Multi-
cloud Distribution of Virtual Functions and Dynamic Service Deploy-
ment: Open ADN Perspective,” in 2015 IEEE International Conference
on Cloud Engineering, March 2015, pp. 299–304.

[13] T. Cucinotta, L. Pannocchi, F. Galli, S. Fichera, S. Lahiri, and A. Artale,
“Optimum VM Placement for NFV Infrastructures,” in Proceedings of
the 10th IEEE International Conference on Cloud Engineering (IC2E),
Pacific Grove, California, USA, September 2022.

[14] M. Zoure, T. Ahmed, and L. Réveillére, “Network Services Anomalies
in NFV: Survey, Taxonomy, and Verification Methods,” IEEE Trans. on
Network and Service Management, pp. 1–1, 2022.

[15] T. Cucinotta., G. Lanciano., A. Ritacco., M. Vannucci., A. Artale.,
J. Barata., E. Sposato., and L. Basili., “Behavioral analysis for virtualized
network functions: A som-based approach,” in Proceedings of the 10th
International Conference on Cloud Computing and Services Science -
CLOSER,, INSTICC. SciTePress, 2020, pp. 150–160.

[16] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted nfv service chain
deployment based on affiliation-aware vnf placement,” in IEEE Global
Communications Conference (GLOBECOM), Dec 2016, pp. 1–6.

[17] T. Cucinotta, G. Lanciano, A. Ritacco, F. Brau, F. Galli, V. Iannino,
M. Vannucci, A. Artale, J. Barata, and E. Sposato, “Forecasting Oper-
ation Metrics for Virtualized Network Functions,” in 2021 IEEE/ACM
21st International Symposium on Cluster, Cloud and Internet Computing
(CCGrid), May 2021, pp. 596–605.

[18] Q. Du, Y. He, T. Xie, K. Yin, and J. Qiu, “An approach of collecting
performance anomaly dataset for nfv infrastructure,” in Algorithms and
Architectures for Parallel Processing, J. Vaidya and J. Li, Eds. Cham:
Springer International Publishing, 2018, pp. 59–71.

[19] H. Martins, L. Palma, A. Cardoso, and P. Gil, “A support vector machine
based technique for online detection of outliers in transient time series,”
in 10th Asian Control Conference (ASCC), May 2015, pp. 1–6.

[20] A. Gulenko, M. Wallschläger, F. Schmidt, O. Kao, and F. Liu, “Evalu-
ating machine learning algorithms for anomaly detection in clouds,” in
IEEE International Conference on Big Data, Dec 2016, pp. 2716–2721.

[21] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time
anomaly detection for streaming data,” Neurocomputing, vol. 262, pp.
134–147, 2017, online Real-Time Learning Strategies for Data Streams.

[22] G. Lanciano, A. Ritacco, F. Brau, T. Cucinotta, M. Vannucci, A. Artale,
J. Barata, and E. Sposato, “Using Self-Organizing Maps for the Behav-
ioral Analysis of Virtualized Network Functions,” in Cloud Computing
and Services Science, D. Ferguson, C. Pahl, and M. Helfert, Eds. Cham:
Springer International Publishing, 2021, pp. 153–177.

[23] W. Wang, L. Tang, C. Wang, and Q. Chen, “Real-Time Analysis of
Multiple Root Causes for Anomalies assisted by Digital Twin in NFV
Environment,” IEEE Trans. on Netw. and Serv. Manag., pp. 1–1, 2022.

[24] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining, 2008, pp. 413–422.

[25] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A
comparative study of anomaly detection schemes in network intrusion
detection,” in Proceedings of the SIAM International Conference on
Data Mining (SDM), 2003, pp. 25–36.

[26] E. Schubert, A. Zimek, and H.-P. Kriegel, “Local outlier detection
reconsidered: A generalized view on locality with applications to spatial,
video, and network outlier detection,” Data Min. Knowl. Discov., vol. 28,
no. 1, p. 190–237, Jan 2014.

[27] P. Oliveri, “Class-modelling in food analytical chemistry: Development,
sampling, optimisation and validation issues - a tutorial,” Analytica
Chimica Acta, vol. 982, pp. 9–19, 2017.

[28] N. Japkowicz, “Supervised versus unsupervised binary-learning by feed-
forward neural networks.”


