We consider soft real-time applications organized as pipelines of tasks using resources of different type (communication, computation, and storage). The applications are assumed to be periodically triggered and the different tasks communicate by unidirectional buffers. The problem we cope with is how to effectively share the resources so that some specified Quality of Service (QoS) requirements are met. The QoS considered here is tightly related to the end-to-end temporal behavior of the application. To compensate for time-varying resource requirements, we advocate a distributed control approach whereby the scheduling parameters of each task are tuned depending on the temporal behavior of the application measured by appropriate sensors. The use of real-time scheduling strategies enables a mathematically safe control design in which the QoS requirements are translated into control goals, and formal proofs are provided on the ability of the controller to fulfil these goals. We also offer extensive simulations that validate the approach for multimedia applications.
QoS Control for Pipelines of Tasks using Multiple Resources
CUCINOTTA, TOMMASO;PALOPOLI, LUIGI
2010-01-01
Abstract
We consider soft real-time applications organized as pipelines of tasks using resources of different type (communication, computation, and storage). The applications are assumed to be periodically triggered and the different tasks communicate by unidirectional buffers. The problem we cope with is how to effectively share the resources so that some specified Quality of Service (QoS) requirements are met. The QoS considered here is tightly related to the end-to-end temporal behavior of the application. To compensate for time-varying resource requirements, we advocate a distributed control approach whereby the scheduling parameters of each task are tuned depending on the temporal behavior of the application measured by appropriate sensors. The use of real-time scheduling strategies enables a mathematically safe control design in which the QoS requirements are translated into control goals, and formal proofs are provided on the ability of the controller to fulfil these goals. We also offer extensive simulations that validate the approach for multimedia applications.File | Dimensione | Formato | |
---|---|---|---|
TOC09.pdf
accesso aperto
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
556.08 kB
Formato
Adobe PDF
|
556.08 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.