Bounding worst-case blocking delays due to lock contention is a fundamental problem in the analysis of multiprocessor real-time systems. However, virtually all fine-grained (i.e., non-asymptotic) analyses published to date make a simplifying (but impractical) assumption: critical sections must not be nested. This paper overcomes this fundamental limitation and presents the first fine-grained blocking bound for nested non-preemptive FIFO spin locks under partitioned fixed-priority scheduling. To this end, a new analysis method is introduced, based on a graph abstraction that reflects all possible resource conflicts and transitive delays.

A Blocking Bound for Nested FIFO Spin Locks

BIONDI, ALESSANDRO;
2017-01-01

Abstract

Bounding worst-case blocking delays due to lock contention is a fundamental problem in the analysis of multiprocessor real-time systems. However, virtually all fine-grained (i.e., non-asymptotic) analyses published to date make a simplifying (but impractical) assumption: critical sections must not be nested. This paper overcomes this fundamental limitation and presents the first fine-grained blocking bound for nested non-preemptive FIFO spin locks under partitioned fixed-priority scheduling. To this end, a new analysis method is introduced, based on a graph abstraction that reflects all possible resource conflicts and transitive delays.
2017
9781509053025
9781509053025
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/512873
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
social impact