The effect of salinity on physiological traits, fatty acid composition and desaturase genes expression in fruit mesocarp of olive cultivar Leccino was investigated. Significant reduction of shoot elongation (−12%) during salt treatments (80 mM NaCl) was associated with the translocation of Na in the aerial part. After 75 days of treatment, fruits from each plant were subdivided into four maturation groups (MG0, MG1, MG2, MG3) according to ripening degrees. Na accumulation increased in each MG under salinity, reaching the highest values in MG1 fruits (2654 mg kg−1 DW). Salinity caused an acceleration of the ripening process, increased fruit number and decreased total fatty acids content in MG3. An increase in oleic acid at MG1 (53%) was detected, with consequent increase in the oleic/linoleic (41%) and decrease in the polyunsaturated/monounsaturated ratios (30%). Those variations could be explained by the synergic up-regulation of OeSAD1, together with the down-regulation of OeFAD6 transcript levels.

Effect of saline irrigation on physiological traits, fatty acid composition and desaturase genes expression in olive fruit mesocarp

Moretti S.;Francini A.
;
Sebastiani L.
2019-01-01

Abstract

The effect of salinity on physiological traits, fatty acid composition and desaturase genes expression in fruit mesocarp of olive cultivar Leccino was investigated. Significant reduction of shoot elongation (−12%) during salt treatments (80 mM NaCl) was associated with the translocation of Na in the aerial part. After 75 days of treatment, fruits from each plant were subdivided into four maturation groups (MG0, MG1, MG2, MG3) according to ripening degrees. Na accumulation increased in each MG under salinity, reaching the highest values in MG1 fruits (2654 mg kg−1 DW). Salinity caused an acceleration of the ripening process, increased fruit number and decreased total fatty acids content in MG3. An increase in oleic acid at MG1 (53%) was detected, with consequent increase in the oleic/linoleic (41%) and decrease in the polyunsaturated/monounsaturated ratios (30%). Those variations could be explained by the synergic up-regulation of OeSAD1, together with the down-regulation of OeFAD6 transcript levels.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/535781
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
social impact