Continuous gait phase plays an important role in wearable robot control. This study focuses on the online estimation of continuous gait phase based on robotic transtibial prosthesis signals. First, we adopt the prosthetic foot deformation information to detect the heel strike as the start timing (reset 0 rad) of one gait cycle. Then we conduct the gait phase estimation based on adaptive oscillators using the prosthetic shank angle signal as input. Three transtibial amputees were recruited in this study and they walked on the treadmill at different speeds (slow, normal and fast) and on different ramps (10°, 5°, 0°, -5° and -10°) in the experiment. The root-meansquare error between online estimation result and ground truth gait phase is calculated. The maximum and minimum errors are 0.147 rad and 0.058 rad, and the corresponding ratios in one gait cycle are 2.34% and 0.92%. This study achieves good performance and provides an effective method to estimate the continuous gait phase, which will instruct robotic transtibial prosthesis control.
Online estimation of continuous gait phase for robotic transtibial prostheses based on adaptive oscillators
Crea S.;Vitiello N.;
2020-01-01
Abstract
Continuous gait phase plays an important role in wearable robot control. This study focuses on the online estimation of continuous gait phase based on robotic transtibial prosthesis signals. First, we adopt the prosthetic foot deformation information to detect the heel strike as the start timing (reset 0 rad) of one gait cycle. Then we conduct the gait phase estimation based on adaptive oscillators using the prosthetic shank angle signal as input. Three transtibial amputees were recruited in this study and they walked on the treadmill at different speeds (slow, normal and fast) and on different ramps (10°, 5°, 0°, -5° and -10°) in the experiment. The root-meansquare error between online estimation result and ground truth gait phase is calculated. The maximum and minimum errors are 0.147 rad and 0.058 rad, and the corresponding ratios in one gait cycle are 2.34% and 0.92%. This study achieves good performance and provides an effective method to estimate the continuous gait phase, which will instruct robotic transtibial prosthesis control.File | Dimensione | Formato | |
---|---|---|---|
AIM20_0351_FI.pdf
accesso aperto
Tipologia:
Altro materiale
Licenza:
Licenza non conosciuta
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.