The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.

Intention-detection strategies for upper limb exosuits: Model-based myoelectric vs dynamic-based control

Chiaradia D.;Frisoli A.;
2020-01-01

Abstract

The cognitive human-robot interaction between an exosuit and its wearer plays a key role in determining both the biomechanical effects of the device on movements and its perceived effectiveness. There is a lack of evidence, however, on the comparative performance of different control methods, implemented on the same device. Here, we compare two different control approaches on the same robotic suit: a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a dynamic-based control that provides support against gravity using an inverse dynamic model. Tested on a cohort of four healthy participants, assistance from the exosuit results in a marked reduction in the effort of muscles working against gravity with both control approaches (peak reduction of 68.6±18.8%, for the dynamic arm model and 62.4±25.1% for the myoprocessor), when compared to an unpowered condition. Neither of the two controllers had an affect on the performance of their users in a joint-angle tracking task (peak errors of 15.4° and 16.4° for the dynamic arm model and myoprocessor, respectively, compared to 13.1o in the unpowered condition). However, our results highlight the remarkable adaptability of the myoprocessor to seamlessly adapt to changing external dynamics.
2020
978-1-7281-5907-2
File in questo prodotto:
File Dimensione Formato  
03_p_2020_Intention-detection strategies for upper limb exosuits model-based myoelectric vs dynamic-based control.pdf

non disponibili

Tipologia: PDF Editoriale
Licenza: Copyright dell'editore
Dimensione 8.96 MB
Formato Adobe PDF
8.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/555095
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
social impact