In plant-fungus phenotyping, determining fungal hyphal and plant root lengths by digital image analysis can reduce labour and increase data reproducibility. However, the degree of software sophistication is often prohibitive and manual measuring is still used, despite being very time-consuming. We developed the HyLength tool for measuring the lengths of hyphae and roots in in vivo and in vitro systems. The HyLength was successfully validated against manual measures of roots and fungal hyphae obtained from all systems. Compared with manual methods, the HyLength underestimated Medicago sativa roots in the in vivo system and Rhizophagus irregularis hyphae in the in vitro system by about 12 cm per m and allowed to save about 1 h for a single experimental unit. As regards hyphae of R. irregularis in the in vivo system, the HyLength overestimated the length by about 21 cm per m compared with manual measures, but time saving was up to 20.5 h per single experimental unit. Finally, with hyphae of Aspergillus oryzae, the underestimation was about 8 cm per m with a time saving of about 10 min for a single germinating spore. By benchmarking the HyLength against the AnaMorf plugin of the ImageJ/Fiji, we found that the HyLength performed better for dense fungal hyphae, also strongly reducing the measuring time. The HyLength can allow measuring the length over a whole experimental unit, eliminating the error due to sub-area selection by the user and allowing processing a high number of samples. Therefore, we propose the HyLength as a useful freeware tool for measuring fungal hyphae of dense mycelia.

HyLength: a semi-automated digital image analysis tool for measuring the length of roots and fungal hyphae of dense mycelia

Cardini A.;Pellegrino E.
;
Del Dottore E.;Mazzolai B.;Ercoli L.
2020-01-01

Abstract

In plant-fungus phenotyping, determining fungal hyphal and plant root lengths by digital image analysis can reduce labour and increase data reproducibility. However, the degree of software sophistication is often prohibitive and manual measuring is still used, despite being very time-consuming. We developed the HyLength tool for measuring the lengths of hyphae and roots in in vivo and in vitro systems. The HyLength was successfully validated against manual measures of roots and fungal hyphae obtained from all systems. Compared with manual methods, the HyLength underestimated Medicago sativa roots in the in vivo system and Rhizophagus irregularis hyphae in the in vitro system by about 12 cm per m and allowed to save about 1 h for a single experimental unit. As regards hyphae of R. irregularis in the in vivo system, the HyLength overestimated the length by about 21 cm per m compared with manual measures, but time saving was up to 20.5 h per single experimental unit. Finally, with hyphae of Aspergillus oryzae, the underestimation was about 8 cm per m with a time saving of about 10 min for a single germinating spore. By benchmarking the HyLength against the AnaMorf plugin of the ImageJ/Fiji, we found that the HyLength performed better for dense fungal hyphae, also strongly reducing the measuring time. The HyLength can allow measuring the length over a whole experimental unit, eliminating the error due to sub-area selection by the user and allowing processing a high number of samples. Therefore, we propose the HyLength as a useful freeware tool for measuring fungal hyphae of dense mycelia.
2020
File in questo prodotto:
File Dimensione Formato  
Cardini et al. 2020.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Creative commons (selezionare)
Dimensione 939.58 kB
Formato Adobe PDF
939.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/533450
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
social impact