This paper presents the research done in the field of robotic cultural evolution in challenging real world environments. We hereby present these efforts, as part of project subCULTron, where we will create an artificial society of three cooperating sub-cultures of robotic agents operating in a challenging real-world habitat. We introduce the novel concept of “cultural learning”, which will allow a swarm of agents to locally adapt to a complex environment and exchange the information about this adaptation with other subgroups of agents. Main task of the presented robotic system is autonomous environmental monitoring including self organised task allocation and organisation of swarm movement processes. One main focus of the project is on the development and implementation of bio-inspired controllers, as well as novel bio-inspired sensor systems, communication principles, energy harvesting and morphological designs. The main scientific objective is to enable and study the emergence of a collective long-term autonomous cognitive system in which information survives the operational lifetime of individuals, allowing cross-generation learning of the society by self-optimising.
subCULTron - Cultural Development as a Tool in Underwater Robotics
Boyer F.;Ferrari G. W.;Donati E.;Pelliccia R.;Romano D.;Stefanini C.;Campo A.;
2018-01-01
Abstract
This paper presents the research done in the field of robotic cultural evolution in challenging real world environments. We hereby present these efforts, as part of project subCULTron, where we will create an artificial society of three cooperating sub-cultures of robotic agents operating in a challenging real-world habitat. We introduce the novel concept of “cultural learning”, which will allow a swarm of agents to locally adapt to a complex environment and exchange the information about this adaptation with other subgroups of agents. Main task of the presented robotic system is autonomous environmental monitoring including self organised task allocation and organisation of swarm movement processes. One main focus of the project is on the development and implementation of bio-inspired controllers, as well as novel bio-inspired sensor systems, communication principles, energy harvesting and morphological designs. The main scientific objective is to enable and study the emergence of a collective long-term autonomous cognitive system in which information survives the operational lifetime of individuals, allowing cross-generation learning of the society by self-optimising.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.