This paper presents a linear optimization procedure able to adapt a simplified EMG-driven NeuroMusculoSkeletal (NMS) model to the specific subject. The optimization procedure could be used to adjust a NMS model of a generic human articulation in order to predict the joint torque by using ElectroMyoGraphic (EMG) signals. The proposed approach was tested by modeling the human elbow joint with only two muscles. Using the cross-validation method, the adjusted elbow model has been validated in terms of both torque estimation performance and predictive ability. The experiments, conducted with healthy people, have shown both good performance and high robustness. Finally, the model was used to control directly and continuously a exoskeleton rehabilitation device through EMG signals. Data acquired during free movements prove the model ability to detect the human’s intention of movement.

A linear optimization procedure for an EMG-driven neuromusculoskeletal model parameters adjusting: Validation through a myoelectric exoskeleton control

Buongiorno, Domenico;BARONE, Francesco;SOLAZZI, Massimiliano;FRISOLI, Antonio
2016-01-01

Abstract

This paper presents a linear optimization procedure able to adapt a simplified EMG-driven NeuroMusculoSkeletal (NMS) model to the specific subject. The optimization procedure could be used to adjust a NMS model of a generic human articulation in order to predict the joint torque by using ElectroMyoGraphic (EMG) signals. The proposed approach was tested by modeling the human elbow joint with only two muscles. Using the cross-validation method, the adjusted elbow model has been validated in terms of both torque estimation performance and predictive ability. The experiments, conducted with healthy people, have shown both good performance and high robustness. Finally, the model was used to control directly and continuously a exoskeleton rehabilitation device through EMG signals. Data acquired during free movements prove the model ability to detect the human’s intention of movement.
2016
9783319423234
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/514932
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
social impact